
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 7, 2025 

221 | P a g e  

www.ijacsa.thesai.org 

Bio-Inspired Metaheuristic Framework for DNA 

Motif Discovery Using Hybrid Cluster Based Walrus 

Optimization 

M. Shilpa, C. Nandini 

Department of Computer Science and Engineering, 

Dayananda Sagar Academy of Technological & Management, Bengaluru, Karnataka, India1, 2 

Visvesvaraya Technological University, Belagavi, Karnataka, India1, 2 

 

 
Abstract—Motifs are short, recurring sequence elements with 

biological significance within a set of nucleotide sequences. Motif 

discovery is the problem of finding these motifs. The problem of 

motif discovery has become an important problem in the field of 

Bioinformatics since, it finds its applications in Drug discovery, 

Environmental Health Research, and early Detection of Diseases 

by finding anomalies in gene sequences. Motif discovery is a 

challenging job in bioinformatics since it is NP-hard and cannot 

be solved within an exact time. In this study, we have proposed 

Hybrid Cluster based Walrus Optimization algorithm 

(HCWaOA) to solve the problem of motif discovery. The accuracy 

and efficiency of the proposed algorithm are improved using a 

hybrid approach. The population is initialized using Random 

Projection technique to generate a meaningful solution space. 

Then, k-means clustering is used to group similar solutions. Lastly, 

a population-based metaheuristic algorithm, Walrus optimization 

technique, is applied on each of the clusters to find the best motif. 

The proposed Hybrid Cluster-based Walrus Optimization 

algorithm (HCWaOA) is tested on both simulated and real 

biological datasets. The performance of HCWaOA is compared 

with benchmark algorithms like MEME, AlignCE and other 

meta-heuristics algorithms. The results of the proposed algorithm 

are found to be stable with a precision of 92%, a recall of 93% and 

an F-score of 93%. The proposed HCWaOA is tested using 

biological cancer-causing BARC and CTCF datasets to identify 

cancer causing motifs. Results show that incorporating clustering 

to initial solution space results in optimal solutions within a fewer 

iteration. The results of HCWaOA are compared with other 

popular motifs discovery algorithms and found to be stable. 

Keywords—Motifs; walrus optimization algorithm; meta-

heuristic algorithms; k-means clustering; DNA; bioinformatics 

I. INTRODUCTION 

The current Next Generation Sequencing (NGS) technology 
rapidly sequences the genomes to produce large volumes of high 
throughput data. The field of bioinformatics involves analyzing 
these high throughput data to find meaningful inferences. 
Analyzing these large volumes of high throughput data using 
traditional approaches is time consuming and prone to error. 
Regulation of gene expression is carried out using transcription 
and translation process. Before the transcription process, a 
specific region of gene is activated which is critical. The 
activation is caused by special proteins called Transcription 
factors which bind to specific region in gene called 
Transcription Factor Binding Sites (TFBS). Hence it is critical 

to find TFBS to understand the gene regulation process. These 
TFBS are known as motifs. Motifs are short, repeated, over 
represented patterns present in the regulatory regions of gene 
sequences, which play an important role in gene regulation 
mechanisms. These motifs are statistically significant, meaning 
they appear more frequently than expected. They are conserved 
among the sequences and have biological significance, often 
related to gene regulation. Therefore, Motif Discovery is one of 
the important research problems in bioinformatics. The problem 
of Motif Discovery is challenging because the exact positions of 
the motif in the gene sequences are not known. Due to 
mutations, the pattern of motifs across gene sequences can be 
the same or may vary slightly. Even though a number of motif 
discovery algorithms have been developed over a period, it is 
still a complex challenge for biologists and computer 
researchers. 

Given a set of DNA sequences, the problem of motif 
discovery is to find a common pattern of length l that appears in 
all or most sequences with a maximum of d mutations. Different 
Computational approaches have been employed to solve the 
problem of motif discovery. Enumerative and Probabilistic 
approaches are the two important classifications of motif 
discovery algorithms. Enumerative approach involves an 
exhaustive search to find motifs, but it is impractical and time-
consuming based on the nature of motifs. The Probabilistic 
approach uses Position Weight Matrix (PWM) to represent 
motifs. But the problem with the probabilistic algorithms is that 
they may converge to local optima. Other important approaches 
used in motif discovery are Machine Learning, Metaheuristics 
and Deep Learning techniques. Each of these algorithms has its 
own advantages and disadvantages. 

Metaheuristic algorithms [1] are computational optimization 
algorithms that explore a solution space to find acceptable 
solutions for complex problems. Metaheuristic algorithms have 
drawn inspiration from nature, some from physics, chemistry, 
and mathematical concepts. Nature-based metaheuristic 
algorithms are inspired from natural processes to solve complex 
problems. Some of the popular and widely used metaheuristic 
algorithms are Genetic Algorithms based on biological 
evolution, Particle Swarm Optimization inspired from behavior 
of flock of birds, Ant Colony Optimization from ant colonies. 
Other nature-based metaheuristic algorithms are Grey Wolf 
Optimization, Cuckoo Search Optimization, FireFly 
Optimization, Walrus Optimization and so on. The advantages 
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of using nature-based metaheuristic algorithms for DNA motif 
discovery are the ability to handle large volumes of DNA 
sequence input data, provide good global exploration and escape 
the local optima. The limitations of existing algorithms are, they 
face scalability issues i.e. with the increase in the number of 
sequences and length of motifs the complexity of the algorithm 
increases. The tuning of algorithms parameters to derive at the 
optimal solution is one of the common problems encountered in 
metaheuristics algorithms. 

In the proposed study, we use the Walrus Optimization 
algorithm to solve the problem of motif discovery. The 
advantage of using WaOA is, it requires minimal parameter 
setting with balanced exploration and exploitation. The key 
contributions of the proposed study are: 

1) First, the Random projection technique is used for 

initializing the population solution space. It improves the 

diversity of the solution space while avoiding random unwanted 

population space. This acts as a starting point for providing 

promising solutions. 

2) A k-means clustering technique is used for clustering the 

solution space. 

3) Walrus optimization algorithm is used for motif 

discovery. 

4) The proposed HCWaOA algorithm is evaluated using 

both simulated and biological datasets. 

5) The proposed HCWaOA algorithm is tested to identify 

the cancer-causing BRCA1 and CTCF motifs in promoter 

regions of human gene sequences. 

The study is organized as follows: The literature review is 
presented in Section II, discussing different and current 
approaches to motif discovery along with metaheuristics 
algorithms. Section III explains the proposed methodology of 
HCWaOA. Section IV gives the results, with analysis and 
evaluation of the proposed HCWaOA. Conclusion and future 
research directions of HCWaOA are given in Section V. 

II. LITERATURE REVIEW 

Multiple approaches have been proposed to solve the 
problem of Motif Discovery, each having its own advantages 
and disadvantages. Enumerative and Probabilistic approaches 
are the two major categories of motif discovery algorithms [2]. 
The other important approaches in motif discovery are Genetic 
algorithms, Meta-heuristics algorithms, Machine Learning and 
Deep Learning Techniques. In this section, we discuss the 
important and latest approaches used currently. 

A. Enumerative Approach 

The algorithms in Enumerative approach conduct an 
exhaustive search in entire search space to find the patterns. This 
covers the entire search space, thus exponentially increasing the 
time required as the size of the problem space increases. Hence 
it is suitable for finding motifs of short length in smaller 
sequences. Enumeration techniques are based on simple words, 
suffix trees, graphs, hashing. Some of the techniques that come 
under this category are: 

 Brute-force Search: Examines all possible motifs and 
selects the best one based on a scoring function. 

 Consensus-based Methods: Identify the most frequent k-
mers (short substrings of length k) across sequences. 

 Suffix Trees: Used to efficiently store and search for 
repeated substrings in a dataset. 

 Word-based Methods: Search for overrepresented short 
words across sequences. 

The algorithms developed using this approach are DREME, 
CisFinder, Weeder, FMotif, MCES. 

B. Probabilistic Approach 

Probabilistic algorithms compute a position weight matrix or 
position-specific weight matrix for representing motifs. Some of 
the important algorithms are Expectation Maximization (EM) 
and Gibbs sampling. 

 Expectation-Maximization (EM) Algorithm: A 
probabilistic method that iteratively refines a motif 
model by updating motif positions in sequences. 

 Gibbs Sampling: A Markov Chain Monte Carlo method 
that iteratively samples motif positions to improve 
alignment. 

MEME, STREME [3], EXTREME are based on EM, and 
AlignCE is based on the Gibbs-Sampling approach. 

Machine Learning, Artificial Intelligence and Deep 
Learning Approaches. 

Current trends involve the use of Machine Learning [4], 
Artificial Intelligence and Deep Learning Approaches [5] in 
motif discovery. Hidden Markov Models (HMMs) are 
probabilistic models. Neural Networks and Deep Learning 
models are used to detect motifs. Deep Learning models like 
Convolutional Neural Networks (CNNs), Recurrent Neural 
Networks (RNNs), Hybrid CNN RNN, Ensemble-based models 
and complex hybrid models are applied to Motif Discovery. 
Supervised learning, like Random Forests and Support Vector 
Machines (SVMs), is used in settings when labelled motif data 
is available, whereas Autoencoders are used for unsupervised 
motif discovery by reducing dimensionality and extracting 
patterns. DeepBind, DeepVISP [6], and Deep6mA are some of 
the popular deep learning approaches used in the problem of 
motif discovery. 

C. Nature Inspired Approach 

Metaheuristic algorithms are approximate methods which 
provide acceptable solution within reasonable computational 
cost.  Metaheuristic algorithms have drawn its inspiration from 
nature. The solution to the problem is based on natural selection 
and survival of the fittest. Some of the popular and widely used 
nature inspired metaheuristic algorithms are Genetic Algorithms 
based on biological evolution, Particle Swarm Optimization 
based on behavior of flock of birds [7], Ant Colony 
Optimization based on ant colonies. Other nature-based 
metaheuristic algorithms [8] are Grey Wolf Optimization, 
Cuckoo Search Optimization, FireFly Optimization, Walrus 
Optimization [9] and so on. In [10] and [11], Chemical Reaction 
Optimization (CRO) and Henry Gas Solubility optimization 
which are based on physics and chemistry are used. Hybrid 
metaheuristic algorithms have given good results compared to 
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traditional approaches.  Recent trends in motif discovery 
algorithms are discussed below: 

The study in [12] is a physics inspired metaheuristic for 
DNA motif discovery proposed in 2025. Here Archimedes 
Optimization Algorithm (AOA) mimics the principles of 
buoyant force and object equilibrium in fluids, balancing 
exploration (global search) and exploitation (local refinement) 
effectively. The Information Content is used for fitness 
evaluation. This technique is tested using real DNA dataset and 
the performance is evaluated against other metaheuristics 
algorithm. The major drawback is scalability issue to handle 
huge data and risk of convergence to local optima. The 
algorithm needs optimal tuning of control parameters to achieve 
optimal solutions. 

In 2023, Dang et al [13] proposed a hybrid genetic algorithm 
to discover DNA motifs that satisfy the 2-Optimality postulate. 
2-optimality postulate means the motif should be found in 
minimum of two input sequences. It uses evolutionary 
operations selection, crossover and mutation. It is tested against 
a benchmark dataset and provides better accuracy. The 2-
optimality postulate may sometimes not discover relevant 
motifs. 

In 2023, Theepalakshmi, P. and Reddy, U.S., [17] have 
proposed a novel effective quorum seeded (ℓ, d) motif search 
utilizing segmentation to filter using freezing firefly approaches 
on ChIP-seq data. The final motif was identified using the usual 
firefly approach, which uses both local and global freezing 
techniques. The effectiveness of these techniques was assessed 
using both simulated and actual datasets, including the human 
ChIP-seq dataset, the mouse emergent stem cell dataset, with 
Escherichia coli cyclical AMP receptor protein (CRP) dataset. It 
attains high F-measure and low accuracy. 

In [14], the authors proposes a Freezing FireFly algorithm to 
solve the motif discovery problem. Here local and global 
freezing strategy is used wherein the best possible positions of 
the poor solution is also preserved. This helps in the overall 
search process to find new possible good results. The 
performance of Freezing Firefly algorithm is evaluated by 
comparing with benchmark tools like Samselect, 
TraverStringRef, PMS8, qPMS9, AlignACE, FMGA, and 
GSGA. 

In 2022, Li, Song et al. [15] proposed an improved henry gas 
optimization algorithm with levy mechanism and brown motion. 
The study in [11], is Henry gas solubility optimization 
(MHGSO) algorithm for motif discovery. In MHGSO, the 
optimal solutions are obtained by evaluating the characteristics 
of the candidate solution space. It is based on chemistry, Henry’s 
Law, treating the search space as gas molecules and mimics the 
finding of best motif to adjusting the solubility of gas molecules. 
The performance of MHGSO algorithm is evaluated on both 
synthetic and real datasets to find accurate motifs. The 
limitations of the algorithm is control parameters are specified 
which make the algorithm less flexible. 

In 2024, Mohammad Hasan, et.al. [16] have proposed a Trie-
PMS8. The algorithm is based on enhanced trie-tree for planted 
motif search problem. The problem with earlier PMS algorithm 

is that the time complexity increases exponentially in worst case 
scenarios. The proposed trie tree uses sort row by size step to 
reduce the time and linked lists to reduce the space. It also uses 
dynamic programming techniques to avoid redundant 
calculations in frequent tree processing. It gives better results 
than earlier versions of PMS with reduced time complexity. 

In 2024, Qiang Yu, et.al. [18] have proposed an exact 
Planted Motif Search (PMS) on large DNA sequences. The 
efficient and exact algorithm finds (l, d) motifs using the 
technique of searching the branches on the pattern tree. The 
algorithm has good running time ratio compared to the existing 
PMS algorithms. The algorithm is tested on challenging problem 
instances of large DNA sequence datasets. 

In 2024, Ledesma-Dominguez, et al. [19] have proposed a 
hybrid model named Deep Regulation (DeepReg) to identify 
transcription factor binding sites in prokaryotic and eukaryotic 
protein sequences. The hybrid model uses CNN, BiLSTM and 
attention mechanism. Feature extraction and grammar 
regulation is done using CNN and BiLSTM respectively. This 
leads to enhanced F1-score and performance in DeepReg 
compared to the other deep learning models. The model showed 
reliability and robustness for unseen experimental data. It 
provided low variance and eliminated overfitting problem. The 
model was tested on three organisms S. cerevisiae, N. crassa, 
and A. nidulans [19] and on average identified 71.8% of 
transcription factors. 

The motif discovery problem is essential for understanding 
regulatory elements in DNA sequences. Various computational 
techniques, ranging from simple brute-force methods to 
advanced deep learning models, are used to identify biologically 
significant motifs. Despite the progress, motif discovery 
continues to be a challenging problem in genomics and 
bioinformatics research. The major issues with the existing 
metaheuristics algorithm are: 

 Results are dependent on algorithms parameters tuning 
like the mutation rate, co-efficient, optimal size of 
population and iterations. 

 Scalability issues as the number of sequences, length of 
sequences and motif length increases. 

The aim of the research is to address the limitations of the 
existing metaheuristics algorithm and propose a hybrid 
metaheuristics algorithm to address the above issues. 

III. PROPOSED METHOD 

In this study, a Hybrid Cluster based Walrus Optimization 
algorithm (HCWaOA) is proposed for finding motifs in the 
promoter regions of a given set of DNA sequences. The first step 
of the proposed algorithm, builds an initial population solution 
using random projection strategy [20]. The second step involves 
clustering the population solutions using k-means clustering. In 
the third step, modified Walrus optimization algorithm is 
applied on the clusters to find the best solution. Here the best 
solution is the motif with highest fitness value found in the given 
set of DNA sequences. The architecture block diagram of the 
HCWaOA is given in Fig. 1. 
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Fig. 1. Block diagram of HCWaOA. 

A. Walrus Optimisation Algorithm 

Walrus Optimization Algorithm (WaOA) is a new nature-
based metaheuristic algorithm that is based on the behavior of 
walruses. It draws inspiration from Walrus behavior of feeding, 
migrating, escaping predators and fighting predators [21]. The 
Walrus Optimization Algorithm is implemented in three phases: 
exploration, migration, and exploitation. The working of the 
algorithm is given by the following steps: 

1) Initialization: A population of walrus solutions is 

randomly generated within the search space, representing 

potential solutions to the optimization problem. 

2) Movement based on behavior: 

Phase 1: Feeding (Exploitation): When a safety signal [22] 
is identified, the walruses feed by refining their positions, 
moving closer to the optimal solution. The new position is 
calculated using Eq. (1): 

𝑋𝑖
𝑡+1 =  𝑋𝑖

𝑡 + 𝑟 (𝑆𝑡 − 𝐼. 𝑋𝑖  
𝑡 )                  (1) 

𝑋𝑖
𝑡  : Position of the 𝑖𝑡ℎ walrus at iteration t 

𝑆𝑡 : Best fitness solution 

𝐼 : control parameter  

𝑟 : random vector [0,1] 

Phase 2: Migration: Walruses are simulated to migrate 
towards areas with better potential solutions, based on the 
random solution. The new position for migration is calculated 
using Eq. (2): 

𝑋𝑖
𝑡+1 =  𝑋𝑖

𝑡 + 𝑟 (𝑋𝑘
𝑡 − 𝐼. 𝑋𝑖  

𝑡 )                     (2) 

𝑋𝑘
𝑡  : Position of randomly selected walrus 

Phase 3: Escape (Exploration): When a danger signal [22] is 
triggered, the walruses escape by making large random 
movements to explore new regions of the search space. The new 
position for exploitation is calculated using Eq. (3): 

𝑋𝑖
𝑡+1 =  𝑋𝑖

𝑡 + 𝑟. 𝛿                 (3) 

𝛿 =  𝛼 . ( 𝑢𝑏 − 𝑙𝑏) 

𝛼 ∶ 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑙𝑢𝑒 [−0.1, 0.1] 

      𝑢𝑏, 𝑙𝑏: 𝑢𝑝𝑝𝑒𝑟 𝑎𝑛𝑑 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 

3) Updating positions: The position of each walrus 

(candidate solution) is updated based on the calculated danger 

signals and safety signals, influencing how much exploration or 

exploitation is performed in each iteration. 

4) Iteration and convergence: The process of movement 

and position updates is repeated for a set number of iterations, 

with the best solutions gradually converging towards the 

optimal solution. 

B. Random Projection Technique 

The starting point of the algorithm is the generation of initial 
population using on random projection technique. This involves 
selecting random sub sequences of motif length from the given 
set of input DNA sequences. These sub sequences act as the 
initial population i.e. candidate solutions. This gives a set of 
candidate solutions which are closer to the optimal solution 
since they are already a part of the solution space. This strategy 
is better than generating random candidate solution which are 
not related to the solution space. The number of iterations and 
time required to reach the optimal solution is reduced and a 
meaningful initial candidate solution space is generated as the 
input to walrus algorithm. 

C. Clustering 

A k-means clustering is used to cluster initial candidate 
solutions. Clustering allows us to group highly similar motifs. 
This allows for easier analyzing of pattern, reducing noise and 
identifying biologically significant motifs. The problem with 
initial candidate solutions of metaheuristic algorithms is they are 
random and no relation exists between them. It is found that 
individual elements of candidate solution which are similar or 
closer have higher fitness then dissimilar elements. 

Clustering techniques [23] like k-means help group similar 
motifs which may have variations due to mutations, insertions 
or deletions together, making the analysis more structured and 
meaningful. The partitioning of the population into multiple 
clusters allows only intra cluster operations like mutation, 
crossover within the cluster whereas multiple clusters allow for 
diversity in the population. Multiple clusters allow us identify 
multiple weaker motifs which are similar. Hence clustering 
efficiently organize motifs and improves the motif discovery 
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process. K-means is used in the proposed study since it is 
computationally efficient and can handle large-scale motif 
datasets. 

D. Fitness Function 

The fitness or the quality of the motifs is evaluated based on 
the information content (IC). IC is calculated using the following 
steps: 

1) Compute PFM (Position Frequency Matrix): A Position 

Frequency Matrix (PFM) represents how frequently each 

nucleotide i.e. A, C, G, T appears at each position in a set of 

aligned motifs. 

2) Computer PWM (Position weight matrix): The PWM is 

obtained by normalizing the PFM with background nucleotide 

probabilities and taking the logarithm, as in Eq. (4): 

𝑃𝑊𝑀𝑏,𝑗 = 𝑙𝑜𝑔2 (
𝑃𝐹𝑀𝑏,𝑗

𝑃𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(𝑏)
)                    (4) 

Here, 𝑃𝑊𝑀𝑏,𝑗 is the weight for nucleotide b at position j, 

and 𝑃𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(𝑏) is the background probability of nucleotide 

b. This is often assumed to be 0.25 for uniform distribution. 

This transformation helps identify conserved positions in the 
motif. 

3) Computer IC: quantifies how well a motif is conserved. 

It measures how different each position is from a random 

sequence. 

Eq. (5): 

𝐼𝐶𝑗 = ∑ 𝑃𝑏,𝑗  𝑙𝑜𝑔2𝑏 (𝑃𝑏,𝑗 𝑃𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(𝑏)⁄ )           (5) 

Total IC is the sum across all motif positions, as in Eq. (6): 

𝐼𝐶 =  ∑ 𝐼𝐶𝑗
𝐿
𝑗=1                                (6) 

A higher IC means the motif is more conserved and 
biologically significant. The calculated IC value serves as the 
fitness score. 

E. Process of Walrus Optimisation Algorithm for Motif 

Discovery 

The Walrus Algorithm efficiently discovers motifs by 
combining random exploration with local exploitation. Its 
adaptive approach ensures a balance between global search 
(exploration) and local refinement (exploitation), making it 
well-suited for motif discovery in DNA sequences. Walrus 
Optimization technique operates on each of the clusters. Thus, 
returning the best solution in each of the clusters. The results are 
evaluated to obtain global best solution based on the fitness. The 
global best solution is the motif with fitness score having highest 
IC value. Algorithm 1 presents the pseudocode of the proposed 
HCWaOA algorithm. 

Algorithm 1: Pseudocode of the proposed HCWaOA 
algorithm 

1. Set all the parameter values 

2. Initialise the population 

3. Calculate the fitness value using the fitness function to get the 
best solution 

4. while (t < max_generations) 

5.       Compute adaptive exploration and exploitation rates 

6.       Update Motif Positions 

7.        For each motif set in population: 

              Phase 1: Feeding (Exploitation) 

      Calculate the new position using Eq1 

      Update the position of new walrus 

  Phase 2: Migration 

     Using a random walrus, find the position    
of new walrus using Eq2 

      Update the position of new walrus 

  Phase 3: Escape (Exploration):  

      Calculate the new position using Eq3 

      Update the position of new walrus 

8.   Compute new fitness scores using Eq4, Eq5, Eq6 

9.   Update the best solution with highest fitness score 

10. Return the best motif with the corresponding fitness score 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

HCWaOA algorithm is implemented in Python using 
Anaconda IDE under Windows OS and tested on both real-time 
and simulated dataset. The test results are analyzed and the 
performance is compared with existing state-of-art tools such as 
MEME, DREME and MHGSO [11] systems. The proposed 
algorithm is tested to identify breast and ovarian cancer causing 
motifs BRCA1 and CTCF in human gene sequences. 

A. Performance Measure 

The performance of the HCWaOA is evaluated using the 
metrics Precision (P), Recall (R) and F-score [24]. Precision P 
is number of predicted motifs that are true divided by number of 
predicted motifs. Recall R is number of predicted motif sites that 
are true divided by number of true motifs. F-score is computed 
using the values of Precision and Recall. The best value for F-
score is 1 and worst is 0. TP is true positive, TN is true negative, 
FP is false positive, FN is false negative. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

B. Test on Simulated Data 

The algorithm is tested using 7 groups synthetic dataset. The 
details of the dataset are given in Table I. The sequences are 
generated randomly and motifs with mutations are added at 
random positions using python script. 

The proposed algorithm is tested on the synthetic dataset 
given in Table I. The detailed results for each of the 7 dataset 
groups is given in Table II. The algorithm is run for 10 times and 
the best value of P and R is taken into consideration.  Table II 
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gives the average values of P, R and F -score for 7 dataset 
groups. The results show a higher F-score attained through 
higher values of P and R. Thus, results show a higher F-score 
for dataset (8, 2) and (9,3). We can infer that as the length of the 
motif increases with the increase in the number of mutations. It 
is difficult to identify all the correct motifs since higher R value 
means large number of candidate instances which cause false 
positive. Prediction results can be sensitive to the dataset 
properties like the number and length of sequences generated, 
true and mutated motifs in the input sequence. 

TABLE I.  SYNTHETIC DATASET DETAILS 

Dataset group 1 2 3 4 5 6 7 

No of sequences (t) 40 40 40 40 40 40 40 

Length of sequence (n) 400 400 400 400 400 400 400 

Length of motif ( l) 8 9 10 14 16 18 21 

Maximum mutations 2 3 3 4 5 6 7 

TABLE II.  RESULTS FOR SYNTHETIC DATASET ON PROPOSED 

ALGORITHM: P IS PRECISION, R IS RECALL AND F IS F-SCORE 

SI NO Dataset P R F - score 

1 (8,2) 0.95 0.95 0.95 

2 (9,3) 0.95 0.95 0.95 

3 (10,3) 0.90 0.92 0.91 

4 (14,4) 0.93 0.93 0.93 

5 (16,5) 0.93 0.93 0.93 

6 (18,6) 0.90 0.92 0.91 

7 (21,7) 0.90 0.92 0.91 

 Avg 0.92 0.93 0.93 

 
Fig. 2. Analysis of F-score results on synthetic dataset. 

The synthetic datasets (10, 3), (14,4), (15,5), (18,6) and 
(21,7) are familiar examples in motif discovery problem. Fig. 2 
shows the F-score on synthetic dataset. The results of HCWaOA 
are compared with the results of state-of-art motif discovery 
tools MEME, DREME and metaheuristic algorithm MHGSO 
[11]. The proposed algorithm provides an improved F-score 
compared to the other algorithms. The clustering approach 
allows for grouping of similar solution space and walrus 
optimization exploits the solution space to get better results. The 
hybrid approach of HCWaOA allows a thorough exploration of 

the search space. This thorough exploration reduces the chances 
of missing optimal solutions and increases the overall accuracy 
of the optimization task. 

C. Convergence of Proposed HCWaOA 

The proposed HCWaOA algorithm detects the convergence 
based on the fitness of the motifs. The fitness, i.e. IC is 
calculated using Eq. (6) across fixed iterations. If the fitness 
value reaches the highest and remains the same for fixed number 
of iterations then the algorithm is terminated. This prevents the 
overhead of computation once convergence is reached. Fig. 3 
shows the convergence curve for dataset group 1, 2 and 3 of 
Table I. 

 
Fig. 3. Convergence curve for motifs of length 8, 9 and 10. 

D. Analysis of k-means Clustering on Walrus Optimisation 

The proposed Walrus optimization algorithm was tested 
with and without k-means clustering on the initial population for 
simulated dataset given in Table I. The fitness was calculated 
using the Eq. (6). The average fitness value was calculated 
across 15, 25, 35 and 50 generations. The results in Table III 
show an improvement in average fitness value when clustering 
is employed. It was also observed that new weaker motifs are 
identified in the clusters which was not a part of the simulated 
dataset. Fig. 4 infers; clustering discovers better motifs i.e. 
motifs with better fitness values within fewer iterations. Hence 
by incorporating clustering on initial population, the proposed 
HCWaOA allows for discovering of motifs with higher fitness 
values within given iterations. This overcomes the complexity 
issue of metaheuristics algorithms. 

TABLE III.  PERFORMANCE COMPARISON OF HCWAOA WITH 

CLUSTERING AND WITHOUT CLUSTERING 

SI NO Dataset 
Without clustering With Clustering 

Average Fitness Average Fitness 

1 (8,2) 51.14 53.18 

2 (9,3) 53.46 57.95 

3 (10,3) 58.78 62.29 

4 (14,4) 82.9 98.29 

5 (16,5) 92.6 101.74 

6 (18,6) 100.49 126.85 

7 (21,7) 110.39 146.17 
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Fig. 4. Performance comparison of HCWaOA with and without clustering. 

E. Test on Real-Time Data 

The proposed algorithm is tested using a CRP benchmark 
dataset. The benchmark dataset is a real-time dataset consisting 
of 18 sequences of Escherichia coli of 105 bp-long. The 
proposed HCWaOA algorithm finds the motifs and their starting 
positions for the CRP E. coli input sequence. Table IV shows 
the results of the proposed algorithm in comparison with MEME 
and AlignCE. Table IV gives the actual starting position of the 
known motif, the predicted motif start position from different 
algorithms and the deviations between actual and predicted 
results. The proposed algorithm gives most of the positions 
correctly, and the results are better than existing algorithms 
MEME and AlignCE. 

F. Test on Breast Cancer Gene Input Dataset 

The proposed algorithm is tested to check its ability to 
discover real biological data in human DNA sequence. The input 
gene sequences are collected from well curated JASPAR 
database and government authorized website NCBI. These are 
breast cancer gene input sequences containing BRCA1 [25] and 
CTCF motifs. These BRCA1 and CTCF motifs are associated 
with breast and ovarian cancer. The identification of BRCA1 

and CTCF motifs in the input data sequence infers the detection 
of cancer. Table V gives the details of input sequences along 
with their accession numbers as well as true motifs and predicted 
motifs. The proposed algorithm was run on the cancer dataset, 
and the experimental results show that the predicted motifs 
match with known cancerous motifs. 

TABLE IV.  COMPARISON RESULTS OF HCWAOA, MEME, ALIGNCE 

FOR CRP BENCHMARK DATASET 

Sequence 

No 

Starting 

position of 

the known 

motif 

MEME AlignCE 

Proposed 

algorithm 

(HCWaOA) 

1 17,61 61 63(2) 61 

2 17,55 55 57(2) 55 

3 76 76 78(2) 76 

4 63 63 65(2) 63 

5 50 13 (-37 ) 52(2) 50 

6 7,60 7 9(2) 7 

7 42 42 26(-16) 24(-14) 

8 39 39 41(2) 39 

9 9,80 9 11(2) 9 

10 14 14 16(2) 14 

11 61 35 63(2) 61 

12 41 34 43(2) 51(10) 

13 48 48 50(2) 48 

14 71 71 73(2) 71 

15 17 75 ( 58) 19(2) 17 

16 53 6 55(2) 53 

17 1,84 27 (26) 68(16) 5(4) 

18 78 76 (-2) 80(2) 78 
 

TABLE V.  LIST OF CANCER CAUSING BRAC1 AND CTCF GENE INPUT DATASET WITH PUBLISHED AND PREDICTED MOTIFS 

Name Seq No Accession no. Published Motif using MEME & TOMTOM Predicted Motif from proposed HCWaOA algorithm 

BRCA1 15 sequences 

AF507075.1 

 
Name : SP5(C2H2 zinc finger factors) 

Matrix ID: MA1965.1 
 

AY093484.1 

AF507076.1 

AF507077.1 

AF507078.1 

AY093484.1 

AY093486.1 

AY093487.1 

AY093488.1 

AY093489.1 

AY093492.1 

AY093493.1 

AY093490.1 

AY093491.1 

AF284812.1 

CTCF 30 sequences JASPAR 
 

Name : CTCF 

Matrix ID: MA0139.1 
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The predicted motifs identified by the proposed algorithm is 
validated by checking the similarity with annotated motifs. 
Motif similarity analysis was evaluated using TomTom from the 
MEME tool-kit. It was also found that the discovered motif had 
clear resemblance with known motif in JASPAR database. The 
predicted motifs logo was created using the tool 
https://weblogo.berkeley.edu/logo.cgi. 

V. CONCLUSION 

The study proposes, hybrid cluster-based motif discovery 
approach using a new metaheuristic walrus optimization 
algorithm. Using the proposed technique, adjusting the 
algorithm parameters is considerably reduced compared to the 
other metaheuristic algorithms and this in turn efficiently 
discovers the motifs in gene sequences. The performance of the 
proposed HCWaOA algorithm is evaluated using both synthetic 
and real dataset. The results on synthetic and real dataset are 
better compared to existing well-known traditional methods. 
Experimental results have shown that the proposed algorithm 
can discover motif of both short and long length sequences with 
mutations. By employing clustering, better motifs can be 
identified within fewer iterations thereby reducing the 
complexity of the algorithm. Here the real time application of 
the proposed algorithm is verified using cancer gene sequences. 
The proposed HCWaOA algorithm is successfully applied for 
the detection of CTCF and BRCA1 binding sites in 
homosapiens, whose deletion or inactivation has been detected 
in various cancers.  

Although, the proposed algorithm gives good results, it can 
be extended to handle motifs of unknown length, thus providing 
more flexibility in discovering motifs of any length. In future a 
better clustering technique can applied which utilizes the 
properties of motifs. Even though multimodal metaheuristics 
algorithm solves some of the issues with motif discovery, deep 
learning techniques that are robust and scales well to handle 
large gene dataset can be explored in future. 
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