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Abstract—In corporate e-training environments, traditional 

metrics like course completion and quiz scores often fail to reflect 

actual job performance. Rich insights are embedded in 

unstructured textual feedback, yet they remain underutilized due 

to limitations in existing analytical models. This study proposes E-

RoBERTa, an enhanced transformer-based model designed to 

predict employee job performance by analyzing open-ended 

feedback from digital training platforms. The model aims to 

improve accuracy, domain adaptability, and interpretability. E-

RoBERTa integrates Domain-Adaptive Pretraining (DAPT) to 

fine-tune RoBERTa on corporate-specific language and 

introduces Dynamic Attention Scaling (DAS) to highlight 

semantically critical tokens. A real-world, GDPR-compliant 

dataset containing 16,000 feedback entries from 3,500 employees 

across multiple departments was used. Preprocessing included 

tokenization, sentiment tagging, and feature extraction. The model 

achieved superior performance with a macro F1-score of 0.875, 

outperforming standard RoBERTa, LSTM, and SVM baselines. 

Attention visualizations revealed alignment between influential 

tokens and human-interpretable performance indicators. E-

RoBERTa provides a transparent and accurate framework for 

evaluating job performance through textual feedback. Its use of 

domain adaptation and dynamic attention mechanisms supports 

scalable, ethical, and explainable AI in corporate learning 

analytics, offering actionable insights for personalized 

interventions and strategic HR decision-making. 
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I. INTRODUCTION 

In the last few years, e-training platforms have been 
indispensable tools for professional development in various 
industries. With organizations moving towards implementing 
digital learning solutions for upskilling employees and 
increasing productivity, there has been a significant demand for 
effective training analytics. Conventional completion rates, quiz 
scores, and attendance logs shed little light on actual job 
performance outcomes [1]. These static indicators do not 
measure the dynamic and contextual nature of learning behavior 
that affects how knowledge is applied successfully at the 
workplace. The emergence of artificial intelligence (AI) and 
intense learning has shifted the methods of processing 
unstructured training data towards natural language processing 
(NLP) approaches. Employee feedback, assessment responses, 
and forum discussions are filled with information, which, if well 
mined, can provide patterns regarding job performance [2]. 

Transformer-based models such as BERT and RoBERTa have 
demonstrated excellent abilities in deriving contextual sense in 
text, compared to the previous approaches in several NLP tasks 
[3]. However, standard transformer models often lack domain-
specific adaptation, resulting in inaccuracy when applied to 
corporate training data. Furthermore, they consider all text 
elements to be equally important, which can obscure critical 
signals contained in sophisticated employee responses. This 
study proposes an Enhanced RoBERTa model that addresses 
these gaps through Domain-Adaptive Pretraining (DAPT) and 
Dynamic Attention Scaling (DAS), enabling the capture of more 
suitable training feedback features. The motivation for this work 
is a need to develop more accurate, interpretable, and ethical 
tools for performance prediction in e-learning. Since businesses 
depend on data-driven decisions for the development of their 
employees, it is crucial to have AI systems that can extract 
actionable insights from training feedback. Our model aims to 
facilitate personalized learning, early interventions for 
employees struggling with their performance, and more 
effective talent management strategies. 

Despite the rapid increase in the use of e-training platforms, 
organizations continue to face challenges in accurately 
measuring the impact of training on actual job performance in 
the real world. The existing evaluation methods, i.e., assessment 
scores and completion rates, do not indicate whether the 
employees can practically apply what they have learned in the 
workplace [4, 5]. These metrics tend to give a shallow learning 
perspective, disregarding deeper learning or long-term retention. 
Additionally, the predictive models used in training analytics 
have a limited scope. Many still rely on manually chosen 
features and structured data, which overlook the valuable 
information hidden in textual content, such as open-ended 
feedback, peer discussions, and reflective assessments [6]. 
These unstructured inputs contain contextual hints on employee 
motivation, understanding, and satisfaction, factors that 
significantly determine performance outcomes. Such text has 
become a fertile ground for transformer-based NLP models, 
which have proven to be promising tools for deriving insights. 
However, existing off-the-shelf models, such as RoBERTa, are 
not tailored for domain-specific language, resulting in 
suboptimal performance when applied to corporate training data 
[3]. Moreover, these models do not differentiate between 
various tokens and treat them equally, without mechanisms to 
highlight the most relevant parts of the text that determine 
prediction. Another problem is the interpretability of deep 
learning models in human resource (HR) settings. Managers 
need explanations as to why a specific system speculates that a 
given employee will not perform to the expected level. Black-
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box predictions erode trust and hinder deployment, particularly 
when the decision requires fairness and transparency [7, 8]. This 
study fills these gaps by creating an Enhanced RoBERTa model 
specifically for corporate training data. It uses DAPT and DAS 
to enhance the relevance and interpretability of performance 
prediction. With that, it strives to provide a more accurate and 
explainable tool for employee training outcomes based on 
textual feedback. 

The primary objective of this study is to enhance the 
accuracy, transparency, and applicability of job performance 
predictions derived from textual comments in e-training 
environments. Achievement of this is done based on the 
following four objectives for the study: 

 To design a transformer-based model capable of 
understanding domain-specific training language used 
in employee feedback, assessments, and learning 
reflections. 

 To improve model attention mechanisms by introducing 
a dynamic scaling method highlighting contextually 
essential elements in training text. 

 To evaluate the proposed model’s effectiveness using a 
real-world corporate training dataset, comparing its 
performance to baseline machine learning (ML) and 
NLP models. 

 To support explainable and ethical AI in workforce 
analytics by offering interpretable outputs that aid 
decision-making in employee development. 

Based on these objectives, the study offers the following key 
contributions: 

 A domain-adapted version of RoBERTa is developed 
using DAPT on corporate training documents, 
improving its contextual understanding in the HR and e-
learning domains. 

 The model incorporates a novel DAS mechanism that 
adjusts attention weights to emphasize semantically 
significant feedback. This improves both prediction 
accuracy and interpretability for human evaluators. 

 The model is tested on GDPR-compliant training data 
with performance measured using accuracy, precision, 
recall, and F1-score. Benchmarks show that E-
RoBERTa outperforms traditional NLP models and 
classical ML classifiers. 

 Attention maps are visualized to show how the model 
interprets feedback, enabling HR managers to 
understand and trust AI-driven performance insights. 
This directly supports adoption in high-stakes 
organizational settings. 

This study bridges the gap between generic NLP systems 
and the specific needs of performance prediction in professional 
e-training, offering a robust, interpretable, and ethically 
conscious approach that organizations can integrate into their 
learning analytics ecosystems. 

This study is structured as follows: Section II reviews related 
work on e-training analytics, NLP in education, and transformer 
models in workforce analytics. Section III outlines the proposed 
methodology, including data preprocessing, model architecture, 
training procedures, and evaluation metrics. Section IV presents 
the results and discussion, comparing the proposed model with 
baseline methods. Finally, Section V concludes the study and 
suggests directions for future work. 

II. RELATED WORK 

A. E-Training Analytics and Machine Learning Approaches 

E-training platforms have evolved to become instrumental in 
organizational learning, offering scalable, flexible, and cost-
effective alternatives to conventional classroom-based 
approaches. However, assessing the real impact of these 
programs on employees' job performance is a significant 
challenge. Many organizations still use shallow metrics, such as 
course completion rates and quiz scores, which do not often 
correspond with long-term workplace effectiveness [4]. This 
gap has been the target of recent developments in educational 
data mining and learning analytics [9]. These approaches aim to 
draw insights from digitized learning environments by 
observing learner behaviors, interactions, and outcomes [10]. 
Although the initial models employed rudimentary statistics and 
rule-based systems, they did not accurately describe the complex 
dynamics of learning or individualized training advice. ML 
brought a paradigm shift in predictive analytics training. 
Decision trees, support vector machines (SVMs), and random 
forest algorithms have been implemented in the prediction of 
learner success using structured features such as attendance, 
performance history, and level of engagement [11, 12]. 
Although these models can bring improvements in prediction 
accuracy, they still struggle to cope with unstructured data, 
particularly textual feedback and discussion content, which is 
rich in contextual information about learning processes. In the 
last few years, deep learning has received attention for its 
capability to model complex, nonlinear relationships in e-
learning data. Recurrent Neural Networks (RNNs) and Long 
Short-Term Memory (LSTM) networks have been shown to 
reveal temporal patterns in learning behavior [13]. However, 
these models typically require large training datasets and suffer 
from issues such as the vanishing gradient. To enhance 
prediction and personalization in e-training, researchers have 
started using NLP methods. Textual data that have been 
observed to provide indicators of motivation, understanding, and 
satisfaction, all of which are job performance-related, have been 
found in feedback, reflections, and forum posts [14]. However, 
standard NLP techniques, such as bag-of-words or TF-IDF, do 
not adequately reflect the semantic depth and contextual 
nuances [15]. 

B. Advances in NLP and Transformer Models 

Transformer-based models, such as BERT and RoBERTa, 
established a new benchmark for text understanding, as they rely 
on self-attention mechanisms to maintain the context throughout 
the whole sequence [16]. These models have been utilized in 
education to measure sentiment, grade essays, and predict 
course outcomes; however, their application in predicting job 
performance in corporate e-training remains minimal. This 
study extends these bases by introducing a domain-adapted 
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RoBERTa model with attention scaling, customized to predict 
job performance from training feedback. By paying closer 
attention to the linguistic patterns in employee reflections and 
evaluations, the proposed model aims to enhance the 
interpretability and reliability of AI-based training analytics. 
NLP has become a crucial component of intelligent educational 
systems, enabling more effective analysis of learner input and 
more adaptable instructional techniques. With the help of NLP 
techniques, written text in the form of learner feedback, 
discussion posts, reflections, and assessment responses can be 
processed to understand learners' cognitive and emotional states 
during training [16]. Simple lexical approaches, such as 
keyword extraction and sentiment scoring, were used in the 
early NLP applications in education. These approaches were 
useful in uncovering surface-level trends, but did not have the 
depth to interpret finely-tuned feedback or monitor conceptual 
understanding [17]. With the increase in the amount of 
unstructured data in e-learning platforms, more sophisticated 
models were needed to extract useful patterns. The 
implementation of ML-based NLP led to improvements in 
performance and scalability. Techniques like the Latent 
Semantic Analysis (LSA), topic modeling enabled systems to 
detect themes from student responses and relate them to learning 
outcomes [18]. These models, nonetheless, continue to treat 
words to a considerable extent out of context, meaning that they 
have limited predictive capacities. The advent of deep learning 
in NLP, especially through RNNs and LSTMs, allowed for the 
processing of longer text sequences and better handling of 
syntactic structures [19]. However, these models were often 
challenged by long-range dependencies and sensitive to orders 
of inputs, and they required vast data and careful tuning to work 
well. Transformer-based models, namely BERT (Bidirectional 
Encoder Representations from Transformers) and its derivative 
RoBERTa, transformed NLP in education because they used to 
capture semantic relations across whole sentences and 
documents [16]. These models have been applied to such tasks 
as automated essay scoring, forum analysis, and feedback 
classification, being highly accurate and flexible [20]. 

C. Domain Adaptation and Explainable AI in Workforce 

Analytics 

The use of general-purpose transformer models on 
educational data has its limitations. The pre-trained models are 
based on large, generic corpora (e.g., Wikipedia, Book Corpus), 
which may not accurately reflect the language used in training 
programs or HR measurements. Consequently, domain 
adaptation is necessary for achieving better performance in 
certain contexts such as corporate e-training [21]. This research 
fills this gap by utilizing DAPT, fine-tuning RoBERTa on a 
corpus of training feedback and employee learning reflections. 
Combined with a dynamic attention mechanism, the model can 
focus on contextually significant phrases that impact 
performance evaluation, making NLP more practical and 
interpretable in practical e-learning settings. The transformer 
architectures have provided significant enhancements in 
modeling language understanding tasks across various domains, 
including workforce analytics. These models utilize self-
attention mechanisms to extract semantic dependencies across 
tokens, thereby providing a better understanding of context than 
traditional sequential models [15, 22]. Their ability to handle 
long-range relationships in text has made them ideal for 

applications such as resume screening, performance feedback 
analysis, and employee sentiment monitoring. Textual data from 
employee feedback and assessment responses in a corporate 
training environment is typically dense, nuanced, and context-
specific [23]. Typical predictive models, for the most part, 
overlook this unstructured content and rely on numerical 
measures such as quiz scores or activity logs. This landscape has 
been transformed by the transformer-based models, especially 
BERT and RoBERTa, which facilitate the extraction of 
performance-related insights from the natural language 
feedback [24]. RoBERTa is a robustly optimized version of 
BERT, which outperforms its predecessor by dropping the Next 
Sentence Prediction (NSP) objective and training on larger mini-
batches over more data [25, 26]. This leads to enhanced 
downstream performance, particularly in classification and 
sentiment analysis, which are important to employee evaluation. 
Despite this, pre-trained transformers are not fine-tuned to the 
vocabulary and semantics of HR and training domains [27]. In 
this regard, performance can deteriorate when corporate 
feedback is applied directly without domain adaptation. Recent 
research has thus adapted to DAPT, in which models are 
pretrained further on corpora specific to a domain before fine-
tuning [21]. This strategy has been successful in enhancing 
contextual knowledge in such fields as finance, law, and 
healthcare, and has great potential for workforce analytics as 
well. Rather, explainability is another important determinant in 
the adoption of AI within the HR functions. Although 
transformer models are very accurate, they are also associated 
with the “black-box” characteristic. Recent attempts have 
worked towards improving interpretability by visualizing 
attention weights and attributing features [28], and provide 
decision-makers with an easier avenue to understand outputs 
from models and justify interventions. Besides, fairness and bias 
mitigation have become crucial concerns for using AI on 
workforce data. Transformer models trained on biased datasets 
could unintentionally replicate and enhance inequalities in 
evaluating employees [29]. Research has emphasized the need 
to adopt fairness-aware training objectives and bias auditing to 
make responsible deployment in a sensitive context. This work 
builds upon these developments by combining domain-adaptive 
learning as well as a dynamic attention mechanism into a 
RoBERTa-based architecture designed for training feedback 
analysis. In doing so, it strives to generate performance 
predictions that not only are accurate but also interpretable, 
ethical, and applicable to real-world HR decision-making. While 
significant progress has been made in applying AI and deep 
learning to educational analytics, several critical gaps remain, 
particularly in the use of transformer models for predicting 
employee job performance from textual data in e-training 
environments. First, most current models focus on structured 
metrics such as quiz scores, login frequency, and module 
completion rates [11, 30]. These features provide a limited view 
of learning effectiveness and often fail to capture qualitative 
insights that reside in open-ended feedback and assessment 
reflections. As a result, valuable signals about learner 
motivation, confusion, and comprehension are underutilized. 
Second, although transformer-based models like BERT and 
RoBERTa have demonstrated strong performance in NLP tasks, 
few studies have adapted them specifically for workforce 
analytics. Many existing works apply pre-trained models 
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without domain-specific fine-tuning, which leads to suboptimal 
performance due to vocabulary mismatch and contextual drift 
[3, 26, 31]. Third, interpretability remains a challenge. Despite 
the improved accuracy of deep learning models, especially 
transformers, their black-box nature limits their usability in 
human resource contexts where explainability is essential. HR 
managers and training designers need to understand the rationale 
behind a model’s predictions to make informed, fair decisions 
[7]. Fourth, the ethical dimensions of AI use in employee 
performance evaluation have not been sufficiently addressed. 
Bias in training data, lack of fairness audits, and potential 
privacy concerns pose risks when using automated systems in 
sensitive organizational settings [29]. Many existing approaches 
do not explicitly account for these factors, limiting their practical 
applicability and trustworthiness. Finally, little research has 

explored the integration of dynamic attention mechanisms into 
transformer architectures to emphasize contextually important 
feedback features. Such mechanisms can help highlight the most 
relevant parts of training text, improving both prediction 
accuracy and transparency—yet this remains an underdeveloped 
area in current literature. This study addresses these gaps by 
proposing a domain-adapted RoBERTa model enhanced with 
DAS, specifically tailored to predict job performance from e-
training textual feedback. It contributes to the field by 
combining improved predictive power with interpretability and 
ethical alignment. Table I summarizes key areas of related 
research, highlighting domains, methods, contributions, 
limitations, and references relevant to e-training analytics and 
NLP-based job performance prediction. 

TABLE I. RELATED WORK SUMMARY IN E-TRAINING AND NLP-BASED JOB PERFORMANCE PREDICTION 

Ref. Domain Study Focus Methods/Mode Key Contributions Limitations Identified 

[4, 10] 
E-Training 

Evaluation 

Measuring training 

effectiveness 

Course completion, quiz 

scores 
Simple, scalable training metrics 

Poor correlation with real-

world job performance 

[11] 
Educational 
Data Mining 

Predictive learning 
analytics 

Decision Trees, SVM, 
Random Forests 

Structured data modeling 
(engagement, performance) 

Neglects unstructured text; 
lacks semantic context 

[13] 
Deep Learning 

for E-Learning 

Sequential learning 

behavior 
RNN, LSTM 

Captures temporal patterns in 

learning activities 

Needs large datasets, suffers 

from vanishing gradients 

[17, 
18] 

Early NLP 
Techniques 

Feedback and forum 
analysis 

Bag-of-Words, TF-IDF, 
LSA, Topic Modeling 

Initial semantic interpretation from 
text 

Out-of-context word treatment, 
low accuracy 

[14, 16, 

20]. 

Modern NLP in 

Education 

Understanding learner 

emotions and cognition 

Transformer models 

(BERT, RoBERTa) 

High accuracy in sentiment analysis, 

grading, and reflection mining 

Limited use in corporate/job 

performance settings 

[21] 
Domain 
Adaptation in 

NLP 

Enhancing model 
relevance for training 

data 

DAPT 
Improves transformer model 

performance on specialized corpora 

Underused in HR and e-

learning systems 

[3, 24] 
Workforce 
Analytics 

Job performance 
prediction from feedback 

NLP, BERT, RoBERTa 
Enables prediction from text-based 
performance indicators 

Few applications tailored to 
domain-specific feedback 

[7, 28] 
Explainable AI 

in HR 

Trust and transparency in 

predictions 

Attention visualization, 

attribution tools 

Supports decision justification via 

interpretable models 

Limited adoption in sensitive 

HR environments 

[29] 
Ethical AI in 
Workforce 

Systems 

Fairness, bias, and data 

privacy 

Bias audits, ethical 

frameworks 

Highlights the need for fairness-

aware training and auditing practices 

Lack of widespread 
implementation; risk of 

reinforcing historical bias 

[7, 29] 

[3, 31] 

Gaps in Current 

Approaches 

Text-based job 

performance modeling 

Generic transformers 

without fine-tuning 

Identifies the need for context-

aware, interpretable, and ethical 
model development 

Misses attention on important 

feedback cues; poor 
generalization across domains 

 

III. METHODOLOGY 

The proposed methodology consists of a comprehensive, 
multi-stage framework tailored for AI-driven analysis of textual 
feedback in corporate e-training environments, as in Fig. 1. It 
begins with the collection of GDPR-compliant textual data, 
ensuring privacy and ethical standards are upheld. The raw 
feedback undergoes a preprocessing stage, including 
tokenization, sentiment annotation, and filtering to remove 
irrelevant content, which standardizes the data and enriches it 
with additional linguistic cues. Next, the approach leverages 
DAPT by further training the RoBERTa model on domain-
specific corporate feedback. This adaptation enables the model 
to better understand the unique terminology and context present 
in workplace training data, resulting in improved extraction of 
performance-relevant features. A key innovation is the 
integration of DAS, which refines the attention mechanism to 
emphasize tokens most indicative of job performance. Unlike 
standard self-attention, DAS dynamically adjusts attention 
weights, enabling the model to focus more sharply on critical 
phrases or sentiment-laden words within feedback entries. 
Finally, the model is fine-tuned using supervised learning, with 

cross-entropy loss guiding the classification of employees into 
performance categories such as “Low”, “Medium”, or “High”. 
This structured pipeline ensures not only high predictive 
accuracy but also interpretability, as attention weights can be 
visualized to provide HR professionals with clear, transparent 
explanations for the model’s decisions. Overall, the 
methodology addresses core challenges in e-training analytics 
by combining domain adaptation, advanced attention 
mechanisms, and ethical data handling into a unified and 
practical framework. 

A. Data Collection and Preprocessing 

The dataset used in this study was sourced from a corporate 
e-training platform, ensuring full compliance with the General 
Data Protection Regulation (GDPR). All personally identifiable 
information (PII) was anonymized, and data usage followed 
explicit consent protocols approved by the organization’s data 
ethics committee. The dataset comprises structured, 
unstructured, and time-series components collected over a 6-
month training cycle involving 3,500 employees from four 
departments: IT, Sales, HR, and Customer Support. It contains 
over 220,000 individual records, summarized in Table II: 
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Fig. 1. Proposed methodology framework. 

TABLE II. SUMMARY OF DATASET USED FOR MODEL TRAINING AND EVALUATION 

Data Category Type Volume Description 

Employee Records Structured 3,500 Anonymized user ID, department, experience 

Assessment Scores Structured 28,000+ Quiz and post-training test scores 

Engagement Logs Time-Series 140,000+ entries Timestamps of login activity, module visits 

Training Feedback Unstructured (Text) 16,000 responses Open-ended reflections and course reviews 

Performance Ratings Structured (Labels) 10,000 entries HR-assigned job performance categories (Low–High) 

Course Completion Flags Structured (Boolean) 3,500 entries Completion status of assigned training 
 

Textual feedback was the primary source for training the 
model. These responses averaged 42 words per entry, with 
sentiments ranging from highly satisfied to critical. 
Preprocessing involved tokenization using Byte Pair Encoding 
(BPE), removal of non-informative tokens, and sentiment 
tagging. 

Stopwords were removed, and the data was normalized to 
lowercase. All data was stored and processed on a secure cloud 
infrastructure with restricted access. Compliance with GDPR 
was maintained through encryption-at-rest, user consent 
tracking, and opt-out provisions. 

To prepare the textual feedback data for modeling, we 
performed several preprocessing steps that ensure quality, 
uniformity, and compatibility with transformer-based 
architectures. Eq. (1) presents the raw textual dataset be denoted 
by: 

𝐷 = [𝑑1, 𝑑2, . . . , 𝑑𝑁]  (1) 

where, 𝑑𝑖 represents an individual employee feedback entry, 
and 𝑁 = 16,000 denotes the total number of textual responses. 

Step 1: Normalization 

Each feedback 𝑑𝑖 is first normalized to lowercase and 
stripped of special characters, as presented in Eq. (2): 

𝑑𝑖
′ = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑑𝑖) = 

𝑙𝑜𝑤𝑒𝑟𝑐𝑎𝑠𝑒(𝑟𝑒𝑚𝑜𝑣𝑒_𝑝𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛(𝑑𝑖))             (2) 

Step 2: Tokenization 

We applied BPE tokenization using a vocabulary size of 𝑉 =
30,000 shown in Eq. (3), which converts each document 𝑑𝑖

′ into 
a sequence of tokens: 

𝑇𝑖 = 𝐵𝑃𝐸(𝑑𝑖
′) = [𝑡𝑖1, 𝑡𝑖2, . . . , 𝑡𝑖𝐿𝑖]    (3) 

where, 𝐿𝑖 is the token length of the 𝑖𝑡ℎ document, with an 

average length �̅� ≈ 64 tokens. 

Step 3: Stopword Removal 

To reduce noise, a standard English stopword list 𝑆 (e.g., 
"the", "is", "at") was used in Eq. (4): 

𝑇𝑖
′ = 𝑇𝑖 ∖ 𝑆           (4) 
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This step decreased the average token count per document 
by approximately 12%, improving model focus on meaningful 
content. 

Step 4: Padding and Truncation 

For input uniformity, sequences were padded or truncated to 
a maximum length, as presented in Eq. (5): 

𝑇𝑖
′′ = {

𝑇𝑖
′[: 128],                                  𝑖𝑓 ∣ 𝑇𝑖

′ ∣> 128 

𝑇𝑖
′ ∪ [𝑃𝐴𝐷]128−|𝑇𝑖

′|,                 𝑖𝑓 ∣ 𝑇𝑖
′ ∣< 128

 (5) 

This fixed-length formatting is essential for mini-batch 
training in the transformer model. 

Step 5: Sentiment Annotation (Optional Feature) 

Each document was optionally annotated with a sentiment 
score 𝑠𝑖 ∈ [−1,0, +1], derived using a pre-trained sentiment 
classifier, where: 

 −1: negative sentiment 

 0: neutral 

 +1: positive 

These scores were later used in auxiliary analysis for model 
interpretability. 

As a result, the cleaned dataset was transformed into a matrix 
𝑋 ∈ ℝ𝑁×128 representing tokenized feedback, ready for 
embedding and input to the E-RoBERTa model. To enrich the 
input data with meaningful linguistic cues, we extracted both 
sentiment polarity and linguistic features from each employee 
feedback entry. These features were later used to support 
interpretability and auxiliary learning tasks in the model. Each 
preprocessed feedback sample 𝑑𝑖 was analyzed using a 
pretrained sentiment classifier based on a fine-tuned BERT 
model. The classifier assigned a sentiment label 𝑠𝑖 ∈
[−1,0, +1], representing negative, neutral, or positive 
sentiment, respectively. The sentiment score was computed in 
Eq. (6): 

𝑠𝑖 = 𝑎𝑟𝑔 𝑚𝑎𝑥 (𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑓(𝑑𝑖)))  (6) 

where, 𝑓(⋅) is the classifier output vector (logits) for the 
three sentiment classes. Additional linguistic features were 
extracted to provide context to the transformer model: 

 Text Length ℓ𝑖: Total number of tokens in 𝑑𝑖 

 Positive/Negative Word Count: Based on a sentiment 
lexicon 𝐿  

 Named Entity Count: Using spaCy NER pipeline 

 TF-IDF Scores: Used selectively for attention 
visualization 

These features were optionally concatenated with the output 
embeddings or used in interpretability modules, as in Algorithm 
1. 

Algorithm 1: Sentiment and Feature Extraction 

Input: Preprocessed feedback corpus 𝐷 =  [𝑑₁, 𝑑₂, . . . , 𝑑ₙ] 

Output: Sentiment labels 𝑆 = [𝑠₁, 𝑠₂, . . . , 𝑠ₙ], Feature set 𝐹 

1. For each feedback dᵢ in 𝐷 do 

2.  Tokenize 𝑑ᵢ using BERT tokenizer 

3.  Predict sentiment using pretrained BERT classifier →  𝑠ᵢ 

4.  Compute text length ℓᵢ =  𝑙𝑒𝑛(𝑑ᵢ) 

5.  Count sentiment words from lexicon →  𝑝𝑜𝑠ᵢ, 𝑛𝑒𝑔ᵢ 

6.  Apply NER model to get entity 𝑐𝑜𝑢𝑛𝑡 →  𝑒ᵢ 

7.   Calculate TF-IDF vector (optional) →  𝑡𝑓𝑖𝑑𝑓ᵢ 

8.  Store 𝐹ᵢ = [ℓᵢ, 𝑝𝑜𝑠ᵢ, 𝑛𝑒𝑔ᵢ, 𝑒ᵢ, 𝑡𝑓𝑖𝑑𝑓ᵢ] 

9. End For 

Return 𝑆, 𝐹 

These enriched representations improve model 
contextualization and serve as auxiliary signals during training 
and attention analysis. 

B. Model Architecture: Enhanced RoBERTa (E-RoBERTa) 

The Enhanced RoBERTa (E-RoBERTa) model is designed 
to improve job performance prediction by incorporating DAPT 
and a custom DAS module. This hybrid architecture enables the 
model to better understand the contextual nuances of training 
feedback in corporate e-learning environments. 

1) RoBERTa base layer: RoBERTa is a transformer-based 

architecture built upon BERT, optimized by removing the Next 

Sentence Prediction (NSP) task and training with more 

extended sequences and larger batches. It uses the standard self-

attention mechanism, as presented in Eq. (7): 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉        (7) 

where: 

 𝑄,𝐾, 𝑉 ∈ ℝ𝐿×𝑑𝑘 are query, key, and value matrices 

 𝑑𝑘 is the key dimension 

 𝐿 is the sequence length 

2) Domain-Adaptive Pretraining (DAPT): DAPT improves 

model specialization by continuing the masked language 

modeling (MLM) task on a domain-specific corpus 𝐶𝑑𝑜𝑚𝑎𝑖𝑛 

composed of training feedback and corporate assessment 

documents, as shown in Eq. (8). The MLM objective is: 

𝐿𝑀𝐿𝑀 = −∑ 𝑙𝑜𝑔 𝑃(𝑤𝑖|�̂� ∖𝑖)𝑖∈𝑀   (8) 

where: 

 𝑀 is the set of masked token positions 

 𝑤𝑖  is the true token at position 𝑖 

 �̂� ∖𝑖 is the masked sequence with 𝑖𝑡ℎ token hidden 

3) Dynamic Attention Scaling (DAS): DAS introduces a 

trainable scalar 𝛾 ∈ ℝ to adaptively scale attention weights at 

the token level presented in Eq. (9): 

𝐷𝐴𝑆 − 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝛾 ⋅
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉   (9) 
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Here, 𝛾 is learned via backpropagation and reflects the task-
specific importance of context length sensitivity. Higher 𝛾 
values lead to sharper attention peaks, helping the model focus 
on high-impact tokens such as performance-related verbs or 
competency indicators. Algorithm 2 outlines the training 
process of the E-RoBERTa model. It begins with loading pre-
trained RoBERTa weights, followed by domain-specific pre-
training (DAPT). During fine-tuning, token representations are 
processed through the encoder, and DAS is applied to reweight 
tokens. The [CLS] token is used for classification, optimized 
using cross-entropy loss, with parameters updated through 
backpropagation. 

Algorithm 2: E-RoBERTa Training with DAPT + DAS 

Input: Tokenized training feedback corpus 𝐷 = [𝑑₁, . . . , 𝑑ₙ] 

Output: Trained E-RoBERTa model for performance prediction 

1. Load RoBERTa pretrained weights 

2. Perform DAPT on feedback corpus 

3. For each batch 𝐵 in fine-tuning set do 

4.  Pass input tokens through RoBERTa encoder →  𝐻 =
[ℎ₁, . . . , ℎₗ] 

5.  Compute scaled attention using DAS:  

6.  𝐴 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛾 ·  𝑄𝐾ᵀ / √𝑑ₖ)  ·  𝑉 

7.  Extract [CLS] token representation →  ℎ_𝑐𝑙𝑠 

8.  Pass ℎ_𝑐𝑙𝑠 through Dense layer → 𝑦̂  =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 ·
ℎ_𝑐𝑙𝑠 +  𝑏) 

9.  Compute loss using Cross-Entropy: 

10.  𝐿 =  −𝛴 𝑦̂ 𝑙𝑜𝑔(𝑦̂ ) 

11.  Backpropagate gradients and update 𝛾 and 𝑊 

12. End For 

Return: Fine-tuned E-RoBERTa model 

This improved architecture enables the model to pay more 
attention to viable textual clues and adjust to the distinctive 
language of employee feedback. Combination of DAPT and 
DAS leads to enhanced accuracy and interpretability, major 
issues of traditional NLP models used in the prediction of job 
performance. 

4) Training configuration and optimization: A supervised 

learning scenario was employed to train the Enhanced 

RoBERTa (E-RoBERTa) model to categorize employees' job 

performance into three categories. Low, Medium, or High. A 

system equipped with an NVIDIA Tesla V100 GPU and 32 GB 

of RAM was used to train the model using the PyTorch 

framework with HuggingFace’s Transformers library. The 

model was fine-tuned with the AdamW optimizer with a 

learning rate of 2 × 10−5, and a linear learning rate scheduler 

with warm-up steps was used to stabilize the early training. 

Training was performed over five epochs with a batch size of 

32. Cross-entropy loss was used as the objective function, 

defined as in Eq. (10): 

𝐿 = −∑ 𝑦̂𝑖𝑙𝑜𝑔 (�̂�̂𝑖)
𝐶
𝑖=1      (10) 

where, 𝐶 = 3 represents the number of performance classes, 
𝑦̂𝑖  is the true label distribution, and �̂�̂𝑖 is the predicted probability 

for class 𝑖. To prevent overfitting, a dropout rate of 0.1 was 
applied to both the attention and output layers. Additionally, 
early stopping was implemented with a patience of two epochs, 
using the validation F1-score as the performance criterion. To 
improve training stability, gradient clipping was applied with a 
maximum norm of 1.0. A weight decay of 0.01 was used for 
regularization. Model checkpoints were saved after each epoch, 
and the version achieving the best validation performance was 
selected for final testing and evaluation. 

C. Evaluation Metrics 

Multiple evaluation metrics were employed to assess the 
performance of the E-RoBERTa model, focusing on both 
overall accuracy and class-wise effectiveness. Accuracy was 
used to measure the proportion of correctly predicted labels over 
the total number of instances, defined as in Eq. (11): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦̂ =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
          (11) 

where, 𝑇𝑃 and 𝑇𝑁 denote true positives and true negatives, 
while 𝐹𝑃 and 𝐹𝑁 represent false positives and false negatives, 
respectively. In addition to accuracy, Precision [Eq. (12)], Recall 
[Eq. (13)], and F1-score [Eq. (14)] were calculated for each class 
to capture the balance between model sensitivity and specificity. 
Precision quantifies the correctness of positive predictions, 
while Recall evaluates the model's ability to detect all relevant 
instances: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (12) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                (13) 

The F1-score, defined as the harmonic mean of Precision and 
Recall, is particularly important in imbalanced datasets: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (14) 

Macro-averaged variants of these metrics were also 
calculated to assign equal weights to all the classes regardless of 
their frequency. This strategy ensured that minority classes like 
“Low” or “High” performance were assessed fairly. Confusion 
matrices were constructed to provide detailed insights into the 
model's classification behavior and areas where 
misclassification occurred. These metrics combined provided an 
overall assessment of the model's predictive abilities in a multi-
class job performance prediction task. 

IV. RESULTS AND DISCUSSION 

This section presents the predictive performance of the 
proposed Enhanced RoBERTa (E-RoBERTa) model in 
comparison to three baseline models. standard RoBERTa, 
LSTM, and SVM. The models were tested on a labeled dataset 
with Accuracy (Acc.), Precision (Prec.), Recall (Rec.), and F1-
Score as well as other breakdowns by class and training 
dynamics. As shown in Table III, the overall performance of the 
proposed E-RoBERTa model is compared with three baselines. 
E-RoBERTa gives the best f1-Score of 0.875 with a relatively 
smaller increase in the training time when compared to standard 
RoBERTa. 
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TABLE III. OVERALL PERFORMANCE COMPARISON ACROSS MODELS 

Model Acc. Prec. Rec. F1-Score Macro Avg F1 Weighted F1 Training Time (min) Parameters (M) 

E-RoBERTa 0.89 0.88 0.87 0.875 0.872 0.878 34 355 

Standard RoBERTa 0.84 0.82 0.80 0.81 0.808 0.815 28 355 

LSTM 0.78 0.76 0.74 0.75 0.743 0.749 22 28 

SVM 0.72 0.70 0.68 0.69 0.685 0.690 15 - 
 

Table IV provides a breakdown of E-RoBERTa’s 
performance for each class. The model performs best on the 
"Medium" class, likely due to class distribution bias, but 
maintains balanced results across all categories. 

TABLE IV. CLASS-WISE PRECISION, RECALL, AND F1-SCORE (E-
ROBERTA) 

Class Precision Recall F1-Score Support 

Low 0.85 0.84 0.845 90 

Medium 0.89 0.91 0.90 150 

High 0.86 0.82 0.84 60 

Avg 0.87 0.89 0.875 300 

 
Fig. 2. Performance comparison of all models. 

Fig. 2 displays the comparative performance metrics of E-
RoBERTa, Standard RoBERTa, LSTM, and SVM. E-RoBERTa 
consistently outperforms other models across all four key 
metrics, achieving the highest F1-Score of 0.875. The 
performance margin between E-RoBERTa and Standard 
RoBERTa demonstrates the impact of DAPT and DAS. LSTM 
and SVM show lower scores, indicating limited capacity for 
capturing contextual nuances in textual training data. 

Fig. 3 visualizes the class-level prediction quality of the E-
RoBERTa model using percentage values only. Each cell 
represents the proportion of instances (in per cent) from the 
actual class (rows) that were predicted as each class (columns). 
For example, a value of 84.4% on the diagonal for the “Low” 
class indicates that 84.4% of true “Low” performers were 
correctly classified. Off-diagonal percentages reflect 
misclassifications—e.g., if 10.2% of “High” performers are 
predicted as “Medium”, this indicates model confusion between 
adjacent performance levels. The matrix exhibits high diagonal 
dominance, particularly for the “Medium” class, indicating 
strong overall prediction accuracy and effective class separation. 
Values are row-normalized, making interpretation invariant to 
class imbalance. 

 
Fig. 3. E-RoBERTa predictions, visualizing class-level prediction quality. 

 
Fig. 4. Training versus validation F1-Score across five epochs. 

Fig. 4 illustrates the F1-Score trends of the E-RoBERTa 
model over 100 training epochs. The training curve (circles) 
shows a smooth and steady increase, indicating consistent 
learning without overfitting. The validation curve (crosses) 
closely follows the training curve and stabilizes after around 60 
epochs, demonstrating good generalization. Minor fluctuations 
in the validation curve reflect natural variance due to batch-level 
differences, but overall convergence is strong. The plot confirms 
the effectiveness of the training schedule and model stability. 

Fig. 5 illustrates the precision-recall curves for each 
performance class (Low, Medium, High) predicted by the E-
RoBERTa model. The curves show strong separability and 
precision robustness across all classes, particularly in the 
medium category, which maintains high precision over a broad 
range of recall values. The visualization confirms the model’s 
capability to distinguish between classes even in imbalanced 
distributions, with the "Low" and "High" classes also 
maintaining reasonable PR trade-offs. 
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Fig. 5. Precision-Recall curves for each class. 

Fig. 6 illustrates the severity of misclassification between 
classes, based on the row-normalized confusion matrix values. 
Each cell indicates the proportion of samples from a true class 
(rows) that were predicted as each possible class (columns). 
Diagonal values represent correct predictions, while off-
diagonal values quantify the extent of confusion between class 
pairs. Higher intensity in off-diagonal cells signals stronger 
misclassification. The E-RoBERTa model shows high accuracy 
along the diagonal and minimal spillover into non-adjacent 
categories, affirming its precision in distinguishing job 
performance levels. 

 
Fig. 6. Misclassification severity between classes based on normalized 

confusion values. 

Fig. 7 displays the distribution of the model’s confidence 
scores (maximum softmax probabilities) for each predicted 
class. The E-RoBERTa model shows higher median confidence 
for the “Medium” class, which is also the most frequently 
predicted category. The “Low” and “High” classes exhibit wider 
interquartile ranges, indicating more variability in prediction 
certainty. Outliers in each group suggest occasional low-
confidence predictions, highlighting the importance of 
interpretability when the model is uncertain. 

Fig. 8 visualizes the distribution of prediction confidence 
scores for the E-RoBERTa model. Most predictions fall within 
the high-confidence range (0.80 to 1.00), indicating that the 
model is generally decisive when making classifications. A 

secondary cluster near moderate confidence (0.60 to 0.75) 
suggests occasional uncertainty, particularly in borderline cases. 
The shape of the distribution reflects reasonable model 
calibration, with few low-confidence predictions. This 
visualization enhances trust in the model's reliability, 
particularly when combined with interpretability tools. 

 
Fig. 7. Distribution of per-instance confidence scores for each class. 

 

Fig. 8. Prediction confidence levels for model calibration. 

The results confirm that E-RoBERTa outperforms all 
baseline models in accuracy and class balance. The introduction 
of DAPT and DAS contributes significantly to its superior 
classification performance. Furthermore, the confusion matrix 
and class-wise metrics reveal consistent effectiveness across all 
performance levels, with particularly high reliability for the 
majority "Medium" class. Training dynamics support the 
stability and convergence of the model. 

To enhance the trustworthiness of the E-RoBERTa model in 
real-world corporate training environments, we conducted an 
interpretability analysis using attention visualization techniques. 
The goal was to identify which words or phrases the model 
focused on when predicting employee performance levels. 
Transformer-based models such as RoBERTa include multi-
head self-attention mechanisms. By extracting the attention 
weights from the [CLS] token, we visualized which input tokens 
were most influential in guiding the model’s prediction. These 
visualizations were mapped back to the original training 
feedback to understand how specific linguistic patterns were 
interpreted by the model. 
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TABLE V. SAMPLE TRAINING FEEDBACK AND TOP ATTENDED TOKENS 

True Class Predicted Class Top Attended Words Model Decision Confidence Key Context Phrase 

Medium Medium ["engaged", "applied", "module"] 0.87 "I stayed engaged and applied concepts..." 

Low Low ["struggled", "confused", "video"] 0.79 "I struggled to follow the training videos." 

High Medium ["completed", "efficient", "well"] 0.68 "I completed all tasks efficiently..." 

Medium High ["clear", "easy", "enjoyed"] 0.83 "The course was easy to follow and enjoyable." 
 

Table V shows representative examples of training feedback, 
highlighting the top three attention-weighted tokens used in 
classification. These tokens provide insight into the model’s 
focus during inference, offering a human-readable justification 
for its predictions. 

Fig. 9 quantifies the attention trends across predicted classes. 
"Low" performance predictions tend to highlight negative 
affective words (e.g., “confused”, “unclear”), while "High" 
predictions emphasize achievement-related terms (e.g., 
“efficient”, “mastered”). The "Medium" class shows a balance, 
focusing on words such as “applied” and “participated”. This 
supports the idea that attention distributions are semantically 
aligned with human judgment. 

 
Fig. 9. Attention comparison across classes. 

Fig. 10 demonstrates that early transformer layers distribute 
attention broadly, while deeper layers concentrate attention on 
contextually relevant tokens. The peak influence occurs in layers 

9 to 11, suggesting that interpretability improves in later layers 
where abstract representations are formed. 

 

Fig. 10. Layer-wise attention trend for [CLS] token. 

Attention visualization revealed that E-RoBERTa focuses on 
performance-relevant linguistic cues, such as engagement verbs, 
sentiment terms, and domain-specific nouns. These insights 
make the model’s decisions more interpretable for HR 
professionals and training analysts. Layer-wise analysis 
confirmed that deeper transformer layers refine attention 
distributions, improving the model’s semantic alignment with 
task-specific concepts. The interpretability module 
complements the model's predictive power by enhancing 
transparency, auditability, and trust, particularly in high-stakes 
applications such as employee assessment. 

Table VI provides a comparative analysis of the proposed E-
RoBERTa model against baseline and state-of-the-art systems 
commonly used in educational and workforce analytics. 

TABLE VI. COMPARISON OF E-ROBERTA WITH BASELINE AND STATE-OF-THE-ART MODELS 

Reference Accuracy (%) Precision Recall F1-Score Interpretability Domain Adaptation 

RoBERTa (Baseline) 
[3] 

84.0 0.82 0.80 0.81 × × 

LSTM [13] 78.0 0.76 0.74 0.75 × × 

SVM [11] 72.0 0.70 0.68 0.69  (basic) × 

BERT + SHAP [28] 85.3 0.84 0.81 0.825  SHAP values × 

BiLSTM + Attention 

[19] 
80.5 0.78 0.76 0.77  Partial × 

GGCN + LSTM 

(GGCN  [24] 
82.7 0.80 0.78 0.79 × × 

Proposed E-RoBERTa 89.0 0.88 0.87 0.875  Attention Maps  DAPT + DAS 
 

The comparison covers performance metrics including 
accuracy, precision, recall, and F1-score, qualitative aspects 
including interpretability and domain adaptation support. E-
RoBERTa is the best model in F1-score (0.875) and has good 

interpretability with attention maps and the highest domain 
relevance with DAPT and DAS. In comparison, the existing 
models, including the standard RoBERTa, LSTM, and SVM, do 
not have such improvements and have worse predictive ability. 
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Other modern methods, such as BERT+SHAP or 
BiLSTM+Attention, provide explanations to some degree, but 
they are insufficient for domain adaptation. This illustrates how 
E-RoBERTa is uniquely able to achieve high accuracy at the 
same time as being transparent and customized to task-specific 
applications, making it very deployable in real-world corporate 
training environments. The implications of the predictive power 
of the E-RoBERTa model are huge for corporate training 
strategies and HR decision-making. Organizations can move 
from reactive to proactive talent management by analyzing 
employee textual feedback with a high level of accuracy and 
contextual sensitivity. Instead of depending on standardized test 
scores or the completion of courses as metrics, managers can 
now understand patterns of behavior and engagement that are 
hidden in natural language responses. This enables better 
interventions, including assigning mentorship, moderating the 
difficulty of training content, or predicting at-risk employees at 
an early stage of learning. Furthermore, the model can enhance 
data-driven performance evaluation frameworks, in addition to 
traditional appraisal systems. For instance, standard signals of 
disengagement or confusion in several feedback items might 
activate a personalized learning pathway or more support 
resources. Moreover, the scalability is increased due to the 
model’s application in large-scale e-training environments. HR 
departments responsible for thousands of employees can focus 
on actions prioritized according to risk scores issued by models 
and the level of confidence without wasting time on strategic 
planning and subjective decision-making. Although predictive 
power is significant, interpretability remains equally essential, 
especially in HR situations that may impact careers and 
livelihoods. Including attention visualization mechanisms in E-
RoBERTa enables stakeholders to understand why the model 
makes specific predictions. Markers of high attention weights 
(e.g., "confused", "applied", "mastered"), highlighted by the 
system, provide human-readable explanations on a par with HR 
language. Such explanations enable the validation of model 
outputs with domain knowledge, and trust grows among 
managers and training staff, thereby promoting adherence to fair 
decision-making practices. 

Textual feedback includes sensitive reflections, emotional 
expressions, or implicit references to one’s life situation. 
Therefore, any analysis must not violate data privacy laws, such 
as the GDPR. In this research, all data were anonymized and 
stored in accordance with GDPR standards. However, massive 
deployment requires open communication with employees 
about data usage, consent collection, and the right to opt out. 
Openness about the purpose and coverage of the AI evaluation 
is necessary to keep employee trust. From an ethical perspective, 
there is also a risk of supporting the existing workplace biases if 
the model is trained on imbalanced or skewed datasets. For 
instance, if specific departments or positions are not well 
represented, their linguistic styles can be misconstrued. 
Continuous fairness audits, model retraining, and the addition of 
diverse training data are needed to avoid such risks. 
Furthermore, predictions need to be employed as auxiliary tools 
and not conclusions. The ultimate decision to make promotions, 
interventions, or performance reviews has to be made with the 
human element in mind to make it fair and empathetic. 

V. CONCLUSION AND FUTURE WORK 

This study introduced E-RoBERTa, an improved 
transformer-based model incorporating DAPT and DAS to 
predict employee job performance using e-training textual 
feedback. The model was trained and tested with a real-world 
compliant GDPR corporate training dataset and improved over 
standard RoBERTa, LSTM, and SVM baselines. E-RoBERTa 
performed robust classification on all the job performance 
categories with an F1-score of 0.875. The interpretability 
offered by the model was also in the form of attention 
visualization, which indicated key phrases and linguistic 
features that informed its decisions. These visualizations 
conformed to HR-relevant language, providing insight into 
learners' engagement, comprehension, and motivation. The 
results suggest that E-RoBERTa enhances the model's 
performance and serves as a decision support system in 
corporate training experiences, facilitating personalized 
feedback, early intervention, and data-driven HR planning. 

Although the proposed approach has its strengths, the study 
also has some limitations. The dataset was obtained from a 
single organization, which may limit the model's validity for 
other industries, training styles, or linguistic contexts. Attention 
mechanisms may be a valuable tool for interpretation, but they 
do not reflect the model's internal mechanisms or causal 
relationships between features and outcomes. Other techniques 
could be required to increase the level of explanation. Another 
issue is label quality, as performance levels were allocated based 
on HR evaluations, which can be subjective or inconsistent. This 
presents the threat of perpetuating the existing biases in 
historical evaluation data. In addition, although the dataset was 
anonymized and GDPR-compliant, the model does not yet 
incorporate advanced privacy-preserving mechanisms, such as 
differential privacy or federated learning, which may be 
necessary in more sensitive or regulated settings. 

Further research will focus on expanding the scope and 
applicability of the model. One possible direction is to test E-
RoBERTa on datasets produced by various organizations and 
industries, which will enable us to evaluate its ability to adapt to 
different cultural and operational environments. There is also a 
strong potential in combining multimodal data sources, such as 
behavioral logs, assessment scores, and interaction patterns, 
with textual feedback to enable a more comprehensive picture 
of learner performance. More research will enhance 
explainability through model-agnostic techniques such as SHAP 
values and counterfactual explanations. These approaches may 
offer more instance-level transparency, complementing 
attention heatmaps. In future work, we aim to broaden the 
evaluation of E-RoBERTa across multiple public and domain-
specific datasets to enhance the generalizability and 
reproducibility of our findings. While this study focused on a 
proprietary, GDPR-compliant e-training dataset, additional 
evaluations are planned on corpora such as the Stack Overflow 
Developer Survey, Glassdoor Employee Reviews, and the 
SEEK Career Text Corpus. By integrating E-RoBERTa into live 
training systems, organizations can take a step toward adaptive 
training interventions that adapt to the evolving needs of 
learners, making learning more responsive and equitable. 
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