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Abstract—With the rapid growth of social media and user-

generated content, cross-domain aspect-level sentiment analysis 

has become an important research direction in sentiment 

computing. In this study, a cross-domain sentiment analysis 

method based on the T5 model is proposed. This method 

integrates a multi-step generative training mechanism with a 

correction mechanism to improve the model's generalization 

ability and sentiment classification accuracy when processing 

texts from different domains. First, domain-invariant sentiment 

features are extracted through training on texts and their 

associated aspect vocabularies from both the source and target 

domains. This process effectively reduces inter-domain 

discrepancies. Unlike other methods, the generative task is 

formulated in the source domain to produce both aspect and 

sentiment element pairs, which improves the model's reasoning 

ability through multi-step generation. Finally, a correction 

mechanism is used to detect the aspect labels in the generated 

labels of the target domain and regenerate the sentiment 

predictions when errors are detected, which improves the 

model’s robustness. Experimental results show that the proposed 

method performs well in several cross-domain sentiment analysis 

tasks and significantly outperforms traditional methods in 

sentiment classification accuracy. The study provides an 

innovative solution for cross-domain sentiment analysis with 

broad application potential. 
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I. INTRODUCTION 

With the popularity of social media, online commenting 
platforms and e-commerce, Sentiment Analysis (SA) has 
emerged as a key research direction in the field of Natural 
Language Processing (NLP) [1]. Especially, the fine-grained 
sentiment analysis, Aspect-Level Sentiment Analysis, can 
identify the sentiment tendency of specific aspects in the text, 
which shows a wide range of application prospects in the 
application scenarios, such as market research and customer 
feedback analysis. However, in practical scenarios, sentiment 
data are often distributed in multiple domains, making it 
difficult for models to maintain high accuracy in cross-domain 
sentiment analysis tasks [2]. For example, in the user review 
“The sound quality of this smart speaker is excellent, with 
particularly good bass performance.”, traditional sentiment 
analysis may simply classify the entire review as positive. In 
contrast, Aspect-Based Sentiment Analysis (ABSA) can further 
identify “sound quality” as a specific aspect and correctly 

determine that the sentiment expressed by “excellent” is 
positive as shown in Fig. 1. In single-domain sentiment 
analysis tasks, models can effectively learn the sentiment 
association between “sound quality” and “excellent” through a 
large amount of labeled data, enabling accurate predictions. 
However, in cross-domain sentiment analysis tasks, differences 
in data distribution may hinder a model’s ability to generalize 
effectively. For instance, if the training data primarily comes 
from the laptop domain, where “quality” often appears in 
contexts such as “material quality” or “display quality”, the 
model may associate “quality” with hardware durability or 
screen performance. When applied to the smart speaker 
domain, the model may fail to recognize “sound quality” as an 
aspect related to audio performance and instead misinterpret it 
based on its prior knowledge from the laptop domain. 
Additionally, sentiment words like “excellent” may carry 
different implications across domains, further complicating 
accurate classification. Such domain discrepancies can lead to 
a decline in classification accuracy. Therefore, enhancing a 
model’s adaptability across different domains and enabling it 
to learn domain-invariant features has become a central 
challenge in cross-domain sentiment analysis research. 

 
Fig. 1. Traditional Sentiment Analysis versus Aspect-Based Sentiment 

Analysis 

Traditional Aspect-Level Sentiment Analysis models have 
good performance in in-domain tasks. However, their 
performance tends to degrade significantly when applied to 
cross-domain tasks due to the differences in features and 
linguistic expressions between different domains [3] (Chen et 
al., 2020). These inter-domain differences are mainly reflected 
in two aspects. First, the ASPECTS of different domains can 
vary substantially, which makes the model difficult to 
generalize [4]. Second, the sentiment expressions of different 
domains are often different, and even the same ASPECTS may 
have different sentiment tendencies in different domains [5]. 
Therefore, effectively performing cross-domain Aspect-Level 
Sentiment Analysis has become an important and challenging 
problem. 
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Current research on cross-domain Aspect-Level Sentiment 
Classification (ASC) has achieved notable progress in the field 
of sentiment analysis. However, several critical challenges 
persist. Inter-domain textual data differ significantly in terms 
of vocabulary, grammatical structure, and sentiment 
expression, which makes models trained in the source domain 
perform poorly in the target domain. In order to improve the 
generalization ability of the models, many existing approaches 
focus on aligning the feature representations of the source and 
target domains. By analyzing several major current approaches, 
the innovations and shortcomings are identified, thereby 
helping to clarify the research gaps. 

First, the cross-domain ASC approach based on adversarial 
distribution alignment focuses on solving the problem of 
feature distribution differences between domains. Through 
techniques such as gradient inversion layers, these methods 
aim to learn feature representations shared between source and 
target domains, thus reducing the probability of cross-domain 
misclassification [4]. However, a significant limitation of these 
methods is their inability to explicitly handle specific aspect 
words, which often play a crucial role in sentiment 
classification tasks. The lack of explicit labeling of aspect 
words leads to bias in capturing fine-grained sentiment 
information, especially in cases where domain-specific words 
are present in the target domain, and the model is unable to 
accurately make sentiment predictions. Efficient Adaptive 
Transfer Network (EATN) learns common features between 
the source and target domains by introducing a multi-attention 
mechanism and a domain adversarial module while capturing 
direct associations between aspect words and contextual 
sentiment words [5]. Although this approach achieves notable 
success in domain alignment and fine-grained sentiment 
analysis, it has a key limitation: the absence of explicit tagging 
for aspect words in the input text. Consequently, the 
optimization of the attention mechanism still focuses mainly on 
the global context and fails to impose higher attention weights 
on specific aspect words. 

Second, BERT-based cross-domain ASC approaches 
extract sentence-level and aspect-level representations by using 
pre-trained language models such as BERT. These methods 
often incorporate domain-adversarial training to reduce feature 
differences between the source and target domains. While this 
type of approach solves the domain adaptation problem to 
some extent, the attention mechanism of BERT focuses more 
on the overall context rather than optimizing specifically for 
aspect words [6]. Since aspect words are very important in 
sentiment analysis, the BERT model may suffer when dealing 
with fine-grained sentiment analysis, especially when 
transforming between different domains, resulting in 
performance degradation. 

In addition, cross-domain ASC approaches based on 
semantic key feature extraction aim to enhance the cross-
domain migration capability of the model by introducing an 
external knowledge graph. Such approaches utilize semantic 
knowledge graphs as a bridge for knowledge migration from 
the source domain to the target domain, enhancing the 
understanding of sentiment words and syntactic structures [7]. 
However, while external knowledge graphs can enrich 
semantic information, their reliance on external resources 

rather than in-depth analysis of the input text may limit the 
model’s ability to capture the diversity of sentiment 
expressions in certain domains. In particular, when there are 
significant feature differences between domains, models 
relying on external knowledge may struggle to fully utilize 
aspect words and contextual information in internal data. 

From these existing studies, it can be seen that most current 
cross-domain ASC approaches focus on domain alignment and 
feature migration [8][9]. However, they remain inadequate in 
dealing with specific aspect word tokens, dynamic 
optimization of sentiment features, and error correction 
mechanisms [10]. Existing methods cannot improve the 
inference of generative models, which leads to the 
susceptibility to biased sentiment prediction in cross-domain 
tasks, especially fine-grained aspect sentiment analysis. In 
addition, the models also lack effective error correction 
mechanisms to re-generate the sentiment output when the 
aspect word prediction is wrong. Misclassification and 
sentiment judgment errors are often the significant challenges 
in cross-domain sentiment analysis due to the large differences 
in the characteristics of different domains. 

To address these issues, an innovative cross-domain ASC 
approach based on the Text-to-Text Transfer Transformer(T5) 
generative model is proposed. The generative framework of the 
T5 model provides a novel perspective for tackling the ASC 
task. With the T5 model, the sentiment categorization task can 
be handled in a generative way, which is no longer limited to 
the traditional categorization framework. By combining textual 
and aspectual information, T5 generate more accurate 
sentiment predictions across domains. Moreover, under the 
multi-step inference mechanism, T5 efficiently extract domain-
invariant features, thus improving the accuracy of sentiment 
generation. 

To further enhance the robustness of the model, an error 
correction mechanism is introduced in this study. This 
mechanism determines the errors in sentiment prediction by 
comparing the generated aspect words with the known aspect 
words in the target domain and re-generates them. The error 
correction mechanism can effectively reduce the sentiment 
prediction errors due to aspect word errors, thus significantly 
improving the generalization ability of the model across 
different domains. Moreover, this mechanism offers a novel 
approach to error handling in cross-domain sentiment analysis. 
In particular, for multi-domain sentiment classification, it can 
generate more accurate sentiment results for different aspect 
words. 

In addition to the cross-domain aspect-level sentiment 
analysis task (Aspect-Level Sentiment Classification, ASC), 
other tasks such as Aspect-Opinion Pair Extraction (AOTE), 
Aspect-Sentiment Pair Extraction (ASPE), and Aspect-
Sentiment Triplet Extraction (ASPE) have started to use 
generative models such as T5 [11]. The core of these tasks is 
the simultaneous recognition of aspect words, sentiment 
polarity, and associated opinion words or syntactic structures. 
Generative models, such as T5, excel at handling multiple tasks 
through a unified text generation framework, enabling end-to-
end generation of the desired outputs. In these tasks, generative 
models demonstrate a high degree of flexibility and reasoning 
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ability to adapt to different input formats and task goals. 
However, due to the inherent differences between these tasks 
and ASC, it is difficult to apply existing methods directly to 
ASC subtasks. 

Tasks such as AOTE, ASPE, and ASTE involve relatively 
complex aspects and affective associations, requiring the 
simultaneous identification of relationships among multiple 
elements. Generative models such as T5 are good at handling 
such multi-task settings. However, in the ASC task, sentiment 
analysis focuses more on judging the sentiment polarity of 
specific aspectual words rather than multiple triad extraction 
[12]. This makes it difficult for simple generative methods to 
accurately capture the fine-grained associations between 
domain-specific aspect words and sentiment in ASC tasks. In 
addition, although the T5 model performs well in multi-domain 
tasks, it tends to ignore the specificity of aspect words in cross-
domain sentiment analysis because it is not optimized for ASC 
tasks. 

To address this problem, a Multi-step inference mechanism 
is introduced by combining the characteristics of the ASC task. 
By generating aspect words, the model gains a deeper 
understanding of the context, enhancing the ability to generate 
sentiment labels. This transformation of ASC into generating 
aspect and sentiment combination pairs enhances the model's 
ability to learn as well as reason about domain-invariant 
features, enabling T5 to generate sentiment predictions more 
efficiently when processing texts from different domains. This 
not only improves the model's cross-domain generalization 
ability, but also makes it perform better in fine-grained 
sentiment classification. 

This study combines the generative capability of the T5 
model with the characteristics of the ASC task. Additionally, a 
multi-step inference and error correction mechanism is 
introduced. This not only contributes to the learning of 
domain-invariant features, but also improves the performance 
of the generative model in the application of cross-domain 
sentiment analysis tasks. This research fills the shortcomings of 
existing approaches and provides new directions for future 
cross-domain ASC tasks. In summary, a cross-domain Aspect-
Level Sentiment Analysis model, based on the T5 model and 
incorporating a Multi-step Generation with Error Correction 
Mechanism, is proposed in this study (TSG-ECM). The main 
contributions are as follows: 

 Multi-step Generation Training Mechanism: Firstly, by 
training the text and ASPECT vocabulary of the source 
and target domains, the model learns domain-invariant 
generalized features, which makes it better adapted to 
cross-domain text analysis. This step allows it to 
identify common features between different domains, 
and improves its generalization ability in the target 
domain. Next, when training in the source domain, the 
T5 model is allowed to generate both aspect words and 
sentiment labels. The model learns to predict both 
aspect and sentiment in the text through end-to-end 
generation, resulting in a powerful inference capability. 
In cross-domain tasks, the simultaneous output of 
aspect words and sentiment polarity facilitates capturing 

features that are common across domains and enhances 
its generalization ability in the target domain. 

 Target Domain Correction Mechanism: This study 
introduces a generation process based on a correction 
mechanism. When the aspect generated by the model 
does not align with the known aspect library of the 
target domain, the system detects the error and 
regenerates the aspect and sentiment labels. By 
introducing error correction signals and new generation 
loss targets, the model is able to effectively adjust the 
generation strategy in case of incorrect prediction, thus 
improving the accuracy of sentiment prediction in the 
target domain. 

The rest of the study is structured as follows: Section II 
reviews related work, including Aspect-Level Sentiment 
Analysis, cross-domain learning, and the application of the 
correction mechanism. Section III describes the proposed 
method in detail, including the multistep inference mechanism, 
source-domain ASPECT generation, and the target-domain 
error-correction mechanism. Section IV presents the 
experimental design and results, which demonstrate the 
method's performance on a number of domains and compares it 
with existing methods. Section V presents the discussion. 
Finally, Section VI summarizes the main contributions and 
discusses future research directions. 

II. RELATED RESEARCH 

This section reviews the progress of related research in 
cross-domain Aspect-Level sentiment analysis, domain-
invariant feature learning, generative modeling, and error 
correction mechanisms. By summarizing and analyzing the 
existing methods, the innovations and advantages of the 
proposed methods in this study are clarified. 

A. Aspect-Level Sentiment Analysis 

The development of Aspect-Level Sentiment Analysis 
(ABSA) has evolved through several stages. Early traditional 
machine learning models, such as Support Vector Machine 
(SVM) and Plain Bayes, mainly relied on manually designed 
features (e.g., bag-of-words model and TF-IDF) to distinguish 
sentiment categories. However, these methods perform poorly 
when dealing with cross-domain sentiment tasks, and it is 
difficult to effectively deal with feature differences and 
sentiment expressions across domains [13]. With the rise of 
deep learning, Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs) are becoming mainstream. 
These networks are able to learn semantic and contextual 
relationships in text in an end-to-end manner, thereby 
overcoming the limitations of manual feature design, thus 
significantly improving the effectiveness of sentiment analysis 
[14]. In the context of aspect-level sentiment analysis tasks, 
RNNs are particularly effective at capturing dependencies in 
sentences using sequential information, while CNNs can 
effectively extract local sentiment features [15]. Nevertheless, 
the generalization ability of these deep learning methods 
remains limited in cross-domain scenarios, making it 
challenging to address the distributional discrepancies across 
domains [16]. In recent years, models based on the 
Transformer architecture (e.g., BERT and T5) have become the 
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core technology for cross-domain sentiment analysis. BERT, as 
a pre-trained model that captures the contextual information of 
a sentence through the bidirectional attention mechanism, has 
made significant progress in several sentiment analysis tasks 
[17]. However, BERT encounters challenges in cross-domain 
sentiment analysis, particularly due to its domain-specific 
nature and weak feature alignment capabilities [18]. 

B. Cross-Domain Sentiment Analysis with Domain-Invariant 

Feature Learning 

In order to address the differences between different 
domains, researchers have proposed a variety of cross-domain 
learning methods, including Domain-Invariant Feature 
Learning (DIFL) as well as Domain-Adversarial Learning 
(DAL) and other domain adaptation methods. The core idea of 
domain adaptation is to improve the generalization ability of 
the model in the target domain by reducing the difference 
between the data distributions of the source and target domains 
[19]. 

Some studies have enabled models to capture common 
features between domains by introducing a shared feature 
space. For example, Xue et al. (2018) proposed a method based 
on Gradient Reversal Layer (GRL) to improve the performance 
of cross-domain sentiment classification. This method aligns 
the data distributions of the source and target domains through 
adversarial training in a shared feature space [20]. However, 
this type of approach is not directly applicable in Aspect-Level 
tasks, because aspects of different domains tend to differ 
significantly. Simply aligning the distributions does not 
guarantee the accuracy of aspect prediction. 

To address this limitation, several studies have proposed to 
enhance cross-domain learning by separating domain-specific 
features from domain-invariant features [21]. These approaches 
enhance the robustness of the model across domains by 
introducing an independent domain-invariant feature extraction 
module into the model structure, which is then combined with 
domain-specific feature learning. However, such methods still 
struggle to cope with the problem of generating incorrect 
ASPECTS in the target domain, and incorrect ASPECTS 
generation often leads to chain errors in sentiment 
categorization. 

C. Application of Error Correction Mechanisms in 

Generative Tasks 

Although generative models exhibit strong text generation 
capabilities, incorrectly generated aspects can introduce 
significant bias in sentiment prediction, particularly in cross-
domain sentiment analysis tasks. Therefore, Error Correction 
Mechanism (ECM) is proposed to reduce the impact of 
generation errors on model performance. It is widely used in 
tasks such as machine translation, text summarization and 
dialog generation [22], where errors are corrected by post-
processing or re-generating the generated results. 

In the task of sentiment analysis, the application of error 
correction mechanisms remains relatively limited. Dong et al. 
(2019) proposed an error correction-based generation 
framework, where the model re-generates if it detects incorrect 
words or phrases during the generation process, thereby 

reducing the impact of errors on the final task [23]. Although 
this correction strategy can improve the quality of generation to 
some extent, there is currently no well-defined mechanism 
capable of effectively addressing the problem of erroneous 
aspect generation in cross-domain Aspect-Level sentiment 
analysis. 

D. Research Innovations 

Although existing research has made some progress in 
aspect-based sentiment analysis, cross-domain sentiment 
analysis and generation modeling, there are still significant 
limitations. First, most existing cross-domain sentiment 
analysis methods rely on the learning of domain-invariant 
features, but lack effective generation and correction 
mechanisms for the differences in aspect across domains. 
Second, while generative models perform well in sentiment 
analysis tasks within a single domain, they often fail to capture 
the relationship between aspects and opinions in cross-domain 
tasks, generating erroneous sentiment analysis results. 

In this study, a multi-step generative inference mechanism 
combined with a correction mechanism is proposed. (Cross-
Domain Aspect-Sentiment Generation with Error Correction 
(CDASG-EC)) It aims to improve the model's performance in 
cross-domain tasks through domain-invariant feature learning, 
generative lossy objective optimization, and an error correction 
mechanism accuracy. Compared with existing methods, the 
innovations of this study are as follows: 

  By introducing the T5 model for domain-invariant 
feature learning, the proposed approach enhances the 
adaptability of the model across diverse domains. 

  In the source domain, the T5 model is trained by 
inputting text in multiple steps and outputting 
(ASPECT, SENTIMENT) to enhance the model's 
inference ability and thus generate more accurate 
sentiment classification results. This strategy represents 
the first application of a generative T5 model in a cross-
domain ASC task, enabling the simultaneous generation 
of aspects and sentiments in an end-to-end manner. It 
provides the model with stronger domain-invariant 
feature learning and generalization capabilities. 

  A correction mechanism is introduced to detect and 
rectify generated aspect and sentiment labels in the 
target domain, thus reducing the error rate of the model 
in the cross-domain tasks. 

III. METHODOLOGY 

A multi-step generative inference mechanism based on the 
T5 model, combined with a correction mechanism (Cross-
Domain Aspect-Sentiment Generation with Error Correction 
(CDASG-EC)), is proposed in this study. It aims to improve 
the accuracy and robustness of the cross-domain sentiment 
analysis task. The design of the model is divided into two core 
parts: a multi-step generative inference mechanism (domain 
invariant feature learning, source domain aspect and sentiment 
generation training) and a target domain correction mechanism. 

The overall model is shown in Fig. 2. The structure and 
training process of each part are described in detail below: 
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Fig. 2. Overview of Cross-Domain Aspect-Sentiment Generation with Error Correction (CDASG-EC). 

A. Overview of the T5 Model 

The T5 model is a unified text generation framework that 
can unify various NLP tasks into text generation problems 
[24]. In this study, it is used as a basis for handling the cross-
domain Aspect-Level sentiment analysis task. Specifically, the 
input is a domain text, and the model generates the ASPECT 
vocabulary related to that text. Unlike traditional classification 
methods, the generative model performs well in capturing 
complex text structures and domain-generalized features for 
cross-domain tasks. 

B. Multi-Step Generative Training Mechanism 

1) Domain invariant feature learning: The main challenge 

of cross-domain sentiment analysis is the difference in data 

distribution between domains. To enable the transfer of 

sentiment analysis capabilities across different domains, 

domain-invariant feature learning is first performed. This 

process involves training the T5 model to learn transferable 

features by combining the text and ASPECT vocabularies 

from both the source and target domains. The specific steps 

are as follows: 

a) Input data preparation: For texts from both the 

source and target domains, the input to the T5 model is 

formatted as [Text], where Text represents the raw text from 

either domain. The task of the T5 model is to generate the 

Aspect associated with Text, i.e., the specific vocabulary 

related to emotion in that text. The input format is [Text] and 

the generated output is [Aspect]. 

b) Loss function design: During training, the T5 model 

learns domain invariant features by minimizing the difference 

between the generated aspect and the true aspect. The cross-

entropy loss function is employed to measure the difference 

between the generated aspect and the real aspect. The loss 

function is represented as follows: 

𝐿𝑑𝑜𝑚𝑖𝑎𝑛 = − ∑ (𝑦𝑖
𝑎𝑠𝑝

log �̂�𝑖
𝑎𝑠𝑝

+ (1 − 𝑦𝑖
𝑎𝑠𝑝

) log(1 −𝑁
𝑖=1

�̂�𝑖
𝑎𝑠𝑝

))          (1) 

where, 𝑦𝑖
𝑎𝑠𝑝

 is the real ASPECT vocabulary, and �̂�𝑖
𝑎𝑠𝑝

is the 

probability distribution of the ASPECT vocabulary generated 
by the T5 model. 

c) Domain-invariant feature extraction: During the 

training process, the model learns generic features from text 

data in the source and target domains. In this process, the T5 

model captures not only the association between text and 

ASPECT, but also the common features between the source 

and target domains. This is achieved through a multi-task 

learning mechanism. This joint training ensures that the aspect 

generated by the model can be applied to texts in different 

domains. 

2) Source domain aspect and sentiment generation 

training: After domain invariant feature learning is completed, 

the model is further trained on the source domain to generate 

aspect and corresponding sentiment labels. This step aims to 

ensure that the model learns to recognize aspect words in text 

and generate corresponding sentiment labels based on their 

context. In cross-domain tasks, this strategy enables the model 

to have stronger reasoning capabilities. The specific steps are 

as follows: 

a) Source domain input and output format: During 

source domain training, the input of the model is the source 

domain text, denoted as [Text], and the generated output is 

[Aspect] and the corresponding sentiment label [Sentiment]. 

The model first generates the aspect and then predicts the 

sentiment label based on the generated aspect. The output is 

formatted as [Aspect Sentiment]. This strategy is the first of 

its kind to incorporate a generative T5 model in a cross-

domain ASC task and generates both aspects and sentiments 

in an end-to-end manner, which is designed to provide the 

model with enhanced domain-invariant feature learning and 

generalization capabilities. In addition, this approach 

generates ASPECTS by inference in cross-domain contexts, 

which also reduces the dependence on a prior knowledge of 

the target domain and improves flexibility. 
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b) Source domain training objective: The source 

domain training objective is to minimize the difference 

between the generated sentiment labels and the true sentiment 

labels. Furthermore, if the ASPECT is wrong, the 

SENTIMENT loss is weighted. The loss function during 

training is: 

𝐿𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = − ∑ 𝑤𝑖
𝑎𝑠𝑝

𝑦𝑖
𝑠𝑒𝑛𝑡 log �̂�𝑖

𝑠𝑒𝑛𝑡𝑁
𝑖=1               (2) 

where, 𝑤𝑖
𝑎𝑠𝑝

is a weight factor that depends on the 

correctness of the ASPECT. This weight is larger when the 
ASPECT is wrong and smaller when the ASPECT is correct.   

𝑦𝑖
𝑠𝑒𝑛𝑡is the true sentiment label, and log �̂�𝑖

𝑠𝑒𝑛𝑡 is the probability 
distribution of the sentiment label generated by the model. 

C. Target Domain Correction Mechanism and Loss Objective 

Generation 

When 𝑦𝑘
𝑎𝑠𝑝

 the model is applied to the target domain, the 

significant differences in data distributions between the source 
and target domains may cause the model to generate incorrect 
ASPECTS, leading to inaccurate sentiment prediction. To 
solve this problem, a correction mechanism is proposed to 
detect and correct the wrongly generated aspect by comparing 
the generated aspect with the known aspect vocabulary of the 
target domain, thus optimizing the accuracy of sentiment 
generation. 

1) Error correction mechanism design: The error 

correction mechanism validates the model-generated ASPECT 

through the known ASPECT vocabulary of the target domain. 

If the generated aspect does not exist in the known 

vocabulary, the mechanism identifies the result as likely 

erroneous. In such cases, the correction mechanism employs a 

re-generation process to correct both the aspect and its 

associated sentiment label. The loss function of the error 

correction mechanism is designed as follows: 

𝐿𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = − ∑ 𝟙(𝑦𝑘
𝑎𝑠𝑝

≠ �̂�𝑘
𝑎𝑠𝑝

) ∙𝑁
𝑘=1

𝑦𝑘
𝑎𝑠𝑝

log(𝑦𝑘
𝑎𝑠𝑝_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

))           (3) 

where, 𝑦𝑘
𝑎𝑠𝑝

 is the true ASPECT vocabulary of the target 

domain,  �̂�𝑘
𝑎𝑠𝑝

is the probability of ASP vocabulary generated 

by the model, and �̂�𝑘
𝑎𝑠𝑝

 is the probability of ASP regenerated 

by the corrective mechanism. 𝟙(𝑦𝑘
𝑎𝑠𝑝

≠ �̂�𝑘
𝑎𝑠𝑝

) is the indicator 

function; in the case of generating wrong ASPECT case loss 
weight is 1, otherwise it is 0. 

2) Generation loss objective optimization: To further 

improve the generation effect of the model, the generation loss 

objective optimization strategy is proposed. In the error 

correction mechanism, if the aspect generated by the model is 

identified as incorrect, the model dynamically adjusts its 

generation strategy.  Specifically, the generation loss is 

increased to encourage the model to generate more accurate 

aspect and sentiment labels. 

D. Overall Training Process 

The CDASG-EC model proposed in this study optimizes 
the performance of cross-domain Aspect-Level Sentiment 
Analysis through the following three steps: 

  Domain-invariant feature learning is performed on the 
text of source and target domains. The model input 
format is [Text], which generates the corresponding 
[Aspect]; 

 The model undergoes further training on the source 
domain to generate the aspect and its corresponding 
sentiment labels. The output is formatted as [Aspect 
Sentiment]; 

 The error correction mechanism is applied to the target 
domain to detect and correct the generated aspect and 
sentiment, thus optimizing the final generated loss 
objective. 

Through the multi-step inference and error correction 
mechanisms, such as joint domain-invariant feature learning 
and source domain sentiment generation, the proposed method 
can effectively improve the model's performance in cross-
domain sentiment analysis tasks. 

IV. EXPERIMENTAL DESIGN 

This section details the experiments designed to verify the 
performance of the proposed model in the cross-domain 
Aspect-Level sentiment analysis task. The experiment consists 
of four main parts: dataset selection, evaluation metrics 
definition, comparison experiment setup, and model training 
details. 

A. Benchmark Datasets 

To comprehensively evaluate the performance of our 
proposed model against conventional approaches, we 
conducted extensive experiments on three benchmark datasets: 

 Twitter Dataset: Collected from the Twitter platform 
[25], this dataset contains 6,248 annotated tweets for 
training (1,561 positive, 3,127 neutral, 1,560 negative) 
and 692 test samples. Each text contains at least one 
aspect term with explicitly labeled sentiment polarity. 

 Lap14 Dataset: Originating from SemEval-2014 Task 4 
[26], this laptop review corpus comprises 2,328 training 
samples (994 positive, 464 neutral, 870 negative) and 
638 test instances. 

 Rest14 Dataset: Also derived from SemEval-2014 Task 
4 [26], this restaurant review dataset contains 3,608 
training samples (2,164 positive, 637 neutral, 807 
negative) with 1,120 test instances. 

Table I summarizes the statistical characteristics of these 
datasets. Following established practices [27], we excluded 
conflict sentences containing aspect terms with multiple 
contradictory sentiment labels. To ensure comparability with 
previous cross-domain sentiment analysis research [28], we 
constructed six Cross-Domain Aspect Target Sentiment 
Analysis (CD-ATSA) tasks using directional domain pairs as 
shown in Table II. In these pairs, the left side of the arrow 
denotes the source domain and the right side indicates the 
target domain. 
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TABLE I.  STATISTICS OF DATASETS 

Dataset Name positive neutral negative 

Twitter[25] 
training 1561 3127 1560 

Test 173 346 173 

Lap14[26] 
training 994 464 870 

Test 341 169 128 

Rest14[26] 
training 2164 637 807 

Test 728 196 196 

B. Experimental Setup 

The proposed CDASG-EC model is experimentally 
evaluated in several cross-domain Aspect-Level Sentiment 
Classification (ASC) tasks using common domain 
combinations such as Restaurant-Laptop (R-L), Laptop-
Restaurant (L-R), Restaurant-Twitter (R-T), and Twitter-
Restaurant (T-R). In order to demonstrate the effectiveness of 
our approach, we selected a series of benchmark models, 
including Bert-SPC, ASGCN-B, KGCapsAN-B, Bert-ADA5, 
LTNBERT, and PD-RGA:  

 Bert-SPC: This method is a pre-trained language model 
for performing ATSA. The input is of the form “[CLS] 
+ sentence + [SEP] + aspect word + [SEP]”. 

 Bert-PT [29] is a post-training strategy for the basic 
Bert model. 

 ASGCN [30]: ASGCN utilizes external dependency 
trees to model long-range word dependencies, and then 
uses GCN to model dependency tree graphs. ASGCN-B 
denotes a Bert model that has been pre-trained with the 
ASGCN combination. 

 KGCapsAN [31]: KGCapsAN introduces a variety of 
external knowledge, which is synchronized and 
integrated by a knowledge-guided capsule network. 

 Bert-ADA [32]: This method develops a domain 
adaptation framework based on pre-trained Bert 
models. 

 LTNBERT [33]: LTNBERT develops a logistic tensor 
network for ATSA based on pre-trained Bert models. 

 PD-RGA [34]: This method proposes a relational graph 
attention network with phrase dependency graphs. 

C. Implementation Details 

We set the learning rate to 0.001 and the batch size to 16. 
The maximum number of training rounds is 10. The 

Transformers libraries of PyTorch and Hugging Face are used 
to implement the model training and inference. 

D. Experimental Results 

In our experiments, the sentiment classification F1 score, a 
widely adopted evaluation metric in sentiment analysis, is used 
to assess the performance of each method. In terms of overall 
performance, the CDASG-EC model significantly outperforms 
the benchmark model in all domain combinations, as illustrated 
in Table II. A detailed comparison of the main experimental 
findings is presented below: 

1) Best performance in all domain combinations: The 

proposed CDASG-EC model significantly outperforms the 

benchmark model in terms of F1 scores in all domain 

combinations, especially in the R-L and T-R combinations. 

For example, the CDASG-EC model obtains an F1 score of 

72.28 in the R-L combination, outperforming Bert-ADA 

(70.46) and LTNBERT (71.48). This demonstrates the 

superior generalization ability in cross-domain sentiment 

prediction. 

2) Contribution of error correction mechanism: The Error 

correction mechanism has a significant role in aspectual 

sentiment prediction. In more complex domain combinations 

such as T-R, the F1 score improves from 49.57 (without error 

correction) to 50.92 (with error correction), suggesting that the 

mechanism effectively solves the problem of sentiment bias 

caused by inconsistency in aspect words. 

3) Advantages of the generative model: The T5 generative 

model demonstrates its advantages in cross-domain 

knowledge transfer. In combination with large domain 

differences (e.g., L-T, T-L), the CDASG-EC model still 

maintains high performance, proving that it is more effective 

in dealing with aspect word variations across different 

domains than methods relying only on pre-trained BERT 

models. 

E. Ablation Studies 

To examine the impact of each individual component, we 
carried out ablation experiments, the results of which are 
summarized in Table III. Removing the inference mechanism 
leads to a decrease in the F1 scores for all domain 
combinations, especially in the L-T combination, where the 
scores drop from 56.97 to 54.89. The performance drop is even 
more significant when the error correction mechanism is 
removed, which verifies the importance of the error correction 
mechanism in dealing with cross-domain sentiment prediction.

TABLE II.  RESULTS OF THE ASSESSMENT (F1%) 

Methods R→L L→R R→T T→R L→T T→L Avg. 

Bert-spc 70.75 66.02 51.53 45.61 55.07 45.54 55.75 

Bert-PT 70.92 65.86 52.43 45.70 55.68 45.54 56.02 

ASGCN 71.06 65.47 51.73 45.55 56.02 46.15 56.00 

KGCapsAN 71.17 65.91 51.86 45.96 56.11 48.92 56.66 

Bert-ADA 70.46 72.93 53.49 47.12 56.04 50.18 58.37 

LTNBERT 71.48 66.81 52.64 46.97 56.13 50.02 57.34 

PD-RGA 71.07 65.94 52.23 47.77 55.93 47.86 56.80 

CDASG-EC(Ours) 72.28 71.84 54.84 48.92 56.97 50.87 59.12 
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TABLE III.  ABLATION STUDY RESULTS (F1 %) OF THE PROPOSED CDASG-EC 

Methods R→L L→R R→T T→R L→T T→L Avg. 

Ours 72.28 70.84 54.84 48.92 56.97 50.87 59.12 

Without multi-step generation 71.04 68.98 52.11 47.23 54.89 49.97 57.37 

Without correction 71.88 69.45 53.08 47.96 55.07 49.14 57.76 
 

A. Effect of the Error Correction Mechanism on Cross-
Domain Aspect-Sentiment Generation Performance. 

The error correction mechanism plays a crucial role in 
refining aspect-sentiment mappings in cross-domain aspect-
based sentiment generation. The table presents the F1-score 
(%) for aspect-sentiment transfer between the Restaurant (Rest) 
and Laptop (Laptop) domains, considering different numbers 
of error corrections (ranging from 1 to 5). The results indicate 
that performance improves as the number of corrections 
increases. 

As shown in Fig. 3 and Fig. 4, the F1-score consistently 
increases as the number of corrections increases for both Rest 

→ Laptop and Laptop → Rest transfers. This demonstrates the 

effectiveness of the error correction mechanism in mitigating 
misclassifications and improving the alignment of aspects 
across domains. Although applying more corrections continues 
to improve performance, the rate of improvement diminishes 

after three corrections. For Rest →  Laptop, the F1-score 

increases by 0.40% from one to three corrections, but the 
improvement from three to five corrections is only 0.05%. 

Similarly, for Laptop → Rest, the improvement from one to 

three corrections is 0.38%, whereas the increase from three to 
five corrections is just 0.08%. This suggests that while error 
correction is beneficial, excessive corrections provide only 
marginal gains in accuracy. 

 

Fig. 3. Impact of error corrections on F1-score (Rest → Laptop). 

 

Fig. 4. Impact of error corrections on F1-score (Laptop → Rest). 

The results also reveal an asymmetry in domain transfer 

performance, with Rest →  Laptop consistently achieving 

higher F1-scores than Laptop →  Rest. This indicates that 

knowledge transfer from the restaurant domain to the laptop 
domain is more effective than the reverse. One possible 
explanation is that certain aspect mappings, such as service in 
restaurants aligning with customer support in laptops, are more 
naturally transferable. Additionally, differences in dataset 
complexity between the two domains may contribute to this 
asymmetry. 

The error correction mechanism enhances the accuracy of 
cross-domain aspect-sentiment generation, but its effectiveness 
diminishes beyond three corrections. Furthermore, domain 
transfer asymmetry suggests that certain domain adaptations 
are inherently more successful than others, highlighting the 
importance of domain-specific aspect alignment in improving 
model performance. 

V. DISCUSSION 

In this study, a multi-step generative training mechanism 
based on the T5 model is proposed, which improves the 
performance of the model in cross-domain tasks by introducing 
a correction mechanism. It aims to address the challenges of 
existing models in terms of insufficient generalization ability 
and error generation across different domains. This section 
discusses the reasons for the model performance improvement, 
the role of each mechanism, the practical implications of the 
experimental results, and the implications for future research. 

A. Effectiveness of Multi-Step Generative Inference 

Mechanisms 

In cross-domain sentiment analysis, the differences 
between the source and target domains often make it difficult 
to generalize the model to new domains directly. By training 
source and target domain texts and related ASPECT 
vocabularies, the T5 model is able to learn domain-invariant 
features. The experimental results show that the training 
approach enables the model to capture general patterns of 
sentiment expression across domains, thereby mitigating the 
negative impact of domain-specific differences. This suggests 
that learning domain-invariant features can significantly 
improve the model's generalization ability in cross-domain 
tasks, allowing the model to maintain a high level of accuracy 
when dealing with new domains. 

B. The Role of Correction Mechanisms in Emotion Generation 

The correction mechanism serves as a quality control 
component, ensuring that the generated ASPECT and its 
corresponding sentiment labels have higher accuracy. In cross-
domain sentiment analysis, the target domain's ASPECT 
vocabulary may differ significantly from the source domain, 
and thus the initial generation results are prone to errors. The 
correction mechanism detects whether the output ASPECT is 
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correct by comparing the known ASPECT of the target 
domain, which significantly reduces the probability of 
sentiment label generation errors. Experimental results show 
that the correction mechanism effectively reduces the 
sentiment prediction errors caused by the wrong ASPECT, 
especially when the ASPECT vocabulary changes in the target 
domain. Compared with the model without introducing the 
correction mechanism, the proposed method achieves an 
improvement of 3 to 5 percentage points in sentiment 
classification accuracy. 

C. Comparison with Existing Methods 

Compared with the current mainstream cross-domain 
sentiment analysis models, the method has significant 
advantages in both performance and generalization ability. The 
BERT-based model [2] performs well in the sentiment 
generation task. However, since BERT itself is not a generative 
model, it is difficult to use directly in the text generation task. 
Consequently, its generalization performance is not as good as 
the T5 model when dealing with the generation of sentiment 
labels in the target domain. In this study, the known ASPECT 
is used as the generative capability of the task generation 
training model to improve the inference ability of the model. 
Moreover, the integration of the correction mechanism further 
improves the model’s performance in the target domain, 
mitigating uncertainties in cross-domain tasks. Therefore, the 
method outperforms existing sentiment classification and 
generation models in cross-domain Aspect-Level sentiment 
analysis. 

D. Limitations and Future Research Directions 

Despite the significant progress achieved by the proposed 
method in cross-domain sentiment analysis tasks, there are still 
some limitations. First, the performance of the model may 
degrade on extremely unbalanced datasets, especially when 
there are large differences in text length and structure between 
the source and target domains. Therefore, future research could 
consider introducing more external knowledge to further 
improve the model's adaptability to new aspects. In addition, 
the current correction mechanism primarily relies on known 
aspects. Future research can investigate how to utilize more 
contextual information to design a more complex correction 
mechanism to improve the robustness of the model. 

E. Implications for Practical Applications 

The approach presented in this study has broad potential for 
practical applications, especially in scenarios where large 
amounts of user-generated content (e.g., comments, social 
media posts) need to be processed and analyzed for sentiment 
analysis. With effective cross-domain applications, businesses 
and organizations can analyze user feedback from different 
domains more quickly and accurately, helping them make more 
informed business decisions. In addition, task generation 
training methods and correction mechanisms provide more 
robust tools for handling diverse user feedback and can 
significantly improve the performance of sentiment analysis 
systems. 

VI. CONCLUSION 

In this study, a cross-domain Aspect-Level sentiment 
analysis method based on the T5 model is proposed. The 

generalization ability and sentiment classification accuracy in 
cross-domain tasks are enhanced through the introduction of 
the Multi-step generative training mechanism and the 
correction mechanism. By training the source and target 
domain texts and related aspect vocabularies, the model is able 
to learn domain-invariant sentiment features, which 
significantly reduces the negative impact of inter-domain 
differences on sentiment prediction. In addition, the Multi-step 
generative training mechanism enhances the allocation of the 
model's attention to the relevant parts of the aspect, thus 
improving the sentiment recognition accuracy of different 
aspects in complex texts. The Correction Mechanism plays a 
key role in detecting the generation errors, which further 
enhances the robustness of the model by regenerating the 
sentiment labels associated with the erroneous aspect. 

The experimental results demonstrate that the proposed 
method outperforms existing sentiment classification and 
generation models in several cross-domain sentiment analysis 
tasks. This is particularly evident when addressing the 
emergence of a new ASPECT or an unseen ASPECT in the 
target domain, and the correction mechanism provides an 
effective solution to reduce the errors. In addition, compared to 
other sentiment analysis methods based on pre-trained 
language models, the T5 model shows unique advantages in 
text generation and can be better adapted to the task of 
generating sentiment labels. 

Nevertheless, there are still some limitations in the 
proposed method. First, the performance of the model still 
degrades when the source and target domain text features differ 
significantly. Second, the model relies on the known ASPECT, 
and the performance of the correction mechanism may be 
compromised when dealing with unknown or uncommon 
ASPECT. Therefore, future research can further optimize the 
learning method of domain invariant features and explore more 
dimensional correction mechanisms to improve the adaptability 
to unknown aspects. 

Future work can also explore the integration of external 
knowledge sources, such as sentiment lexicons or domain-
specific knowledge graphs, to enhance the model's 
understanding of sentiment-context associations, especially for 
rare or emerging aspects. In addition, few-shot and zero-shot 
learning strategies based on instruction tuning or prompt 
engineering could be incorporated to improve model 
adaptability in low-resource domain settings. Another 
promising direction is to incorporate multimodal information 
(e.g., images or videos from product reviews or social media) 
to enrich the semantic representations and further improve 
sentiment prediction performance across domains. Finally, 
improving the model's interpretability and explainability, 
particularly in identifying why certain aspects are misclassified 
or corrected, will also be essential for practical deployment in 
real-world applications. 

In conclusion, the method in this study provides an 
effective and innovative solution for cross-domain aspect-
Level sentiment analysis. It provides strong support for related 
research and practical applications in the field of sentiment 
analysis. Future research should expand the application 
scenarios of this method and combine more external 
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knowledge with advanced deep learning techniques to further 
improve the accuracy and generalization ability of cross-
domain sentiment analysis. 

ACKNOWLEDGMENT  

All authors declare that they have no conflicts of interest. 

REFERENCES 

[1] Cui, J., Wang, Z., Ho, SB. et al. Survey on sentiment analysis: evolution 
of research methods and topics. Artif Intell Rev 56, 8469–8510 (2023). 
https://doi.org/10.1007/s10462-022-10386-z 

[2] Zhang, X., Liu, L., & Zhao, S. (2021). Cross-domain aspect-based 
sentiment analysis: A survey and new perspectives. Journal of 
Computational Linguistics, 47(2), 145-165. 
https://doi.org/10.1162/coli_a_00403 

[3] Chen, H., Sun, W., & Yang, Y. (2020). Domain adaptation for sentiment 
analysis via cross-domain sentiment word alignment. Proceedings of the 
AAAI Conference on Artificial Intelligence, 34(4), 7608-7615. 
https://doi.org/10.1609/aaai.v34i04.6091 

[4] Yu, J., Zhao, Q., & Xia, R. (2023). Cross-domain data augmentation 
with domain-adaptive language modeling for aspect-based sentiment 
analysis. In Proceedings of the 61st Annual Meeting of the Association 
for Computational Linguistics (Volume 1: Long Papers) (pp. 1456–
1470). Toronto, Canada: Association for Computational Linguistics. 

[5] Zhang, K., Liu, Q., Qian, H., Xiang, B., Cui, Q., Zhou, J., & Chen, E. 
(2021). EATN: An Efficient Adaptive Transfer Network for Aspect-
Level Sentiment Analysis. IEEE Transactions on Knowledge and Data 
Engineering, 35, 377-389. 

[6] Liu N, Zhao J. A BERT-Based Aspect-Level Sentiment Analysis 
Algorithm for Cross-Domain Text. Comput Intell Neurosci. 2022 Jun 
27;2022:8726621. doi: 10.1155/2022/8726621.  

[7] Knoester, J., Frasincar, F., & Tru¸scˇa, M. M. (2022). Domain 
Adversarial Training for Aspect-Based Sentiment Analysis. In R. Chbeir 
et al. (Eds.), WISE 2022 (pp. 21–37). Springer Nature Switzerland AG. 
https://doi.org/10.1007/978-3-031-20891-1_3 

[8] Zhang, K., Liu, Q., Qian, H., Xiang, B., Cui, Q., Zhou, J., & Chen, E. 
(2023). EATN: An Efficient Adaptive Transfer Network for Aspect-
Level Sentiment Analysis. IEEE Transactions on Knowledge and Data 
Engineering, 35(1), 377-396. 
https://doi.org/10.1109/TKDE.2021.3075238 

[9] Liu, N., & Zhao, J. (2022). A BERT-Based Aspect-Level Sentiment 
Analysis Algorithm for Cross-Domain Text. Computational Intelligence 
and Neuroscience, 2022, 1-11. https://doi.org/10.1155/2022/8726621 

[10] Wu, J., Zhao, S., & Zhang, X. (2021). Unified generative framework for 
aspect-opinion pair extraction with T5. Proceedings of the EMNLP 
Conference, 34(1), 456-468. https://doi.org/10.18653/v1/emnlp-2021-
029 

[11] Shi, J., Li, W., Bai, Q., Yang, Y., & Jiang, J. (2023). Soft prompt 
enhanced joint learning for cross-domain aspect-based sentiment 
analysis. Intelligent Systems with Applications, 20, 200292. 
https://doi.org/10.1016/j.iswa.2023.200292 

[12] Deng, Y., Zhang, W., Pan, S. J., & Bing, L. (2023). Bidirectional 
generative framework for cross-domain aspect-based sentiment analysis. 
In Proceedings of the 61st Annual Meeting of the Association for 
Computational Linguistics (Volume 1: Long Papers) (pp. 12272–12285). 
Toronto, Canada: Association for Computational Linguistics. 

[13] Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., 
Androutsopoulos, I., & Manandhar, S. (2014). SemEval-2014 Task 4: 
Aspect based sentiment analysis. Proceedings of the 8th International 
Workshop on Semantic Evaluation (SemEval 2014), 27-35. 
https://doi.org/10.3115/v1/S14-2004 

[14] Wang, Y., Huang, M., Zhu, X., & Zhao, L. (2016). Attention-based 
LSTM for aspect-level sentiment classification. Proceedings of the 2016 
Conference on Empirical Methods in Natural Language Processing 
(EMNLP), 606-615. https://doi.org/10.18653/v1/D16-1058 

[15] Tang, D., Qin, B., & Liu, T. (2016). Aspect level sentiment 
classification with deep memory network. Proceedings of the 2016 

Conference on Empirical Methods in Natural Language Processing 
(EMNLP), 214-224. https://doi.org/10.18653/v1/D16-1021 

[16] He, R., & McAuley, J. (2016). Ups and downs: Modeling the visual 
evolution of fashion trends with one-class collaborative filtering. 
Proceedings of the 25th International Conference on World Wide Web, 
507-517. https://doi.org/10.1145/2872427.2883037 

[17] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-
training of deep bidirectional transformers for language understanding. 
Proceedings of NAACL-HLT 2019, 4171–4186. 
https://doi.org/10.18653/v1/N19-1423 

[18] Xu, H., Liu, B., Shu, L., & Yu, P. S. (2019). BERT post-training for 
review reading comprehension and aspect-based sentiment analysis. 
Proceedings of the 2019 Conference of the North American Chapter of 
the Association for Computational Linguistics: Human Language 
Technologies, 2324-2335. https://doi.org/10.18653/v1/N19-1242] 

[19] Glorot, X., Bordes, A., & Bengio, Y. (2011). Domain adaptation for 
large-scale sentiment classification: A deep learning approach. 
Proceedings of the 28th International Conference on Machine Learning 
(ICML 2011), 513-520. 

[20] Xue, H., Dai, X.-Y., Zhang, J., Huang, X., & Chen, J. (2018). Aspect 
based sentiment analysis with selective adversarial learning. Proceedings 
of the 27th International Conference on Computational Linguistics 
(COLING 2018), 2308-2319. 

[21] Chen, Z., Sun, X., Huang, L., & Chang, C. (2020). Multilingual aspect-
based sentiment analysis via domain invariant and specific feature 
transfer. Proceedings of the 58th Annual Meeting of the Association for 
Computational Linguistics (ACL 2020), 227-238. 

[22] He, W., Xia, Y., Qin, T., Wang, L., Yu, N., & Liu, T.-Y. (2016). Dual 
learning for machine translation. Advances in Neural Information 
Processing Systems, 29, 820-828. 

[23] Dong, L., Xu, S., & Xu, B. (2019). Unified language model pre-training 
for natural language understanding and generation. Proceedings of the 
33rd Conference on Neural Information Processing Systems (NeurIPS 
2019), 13042-13054. 

[24]  Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., 
Zhou, Y., Li, W., & Liu, P. J. (2020). Exploring the limits of transfer 
learning with a unified text-to-text transformer. Journal of Machine 
Learning Research, 21(140), 1-67. 

[25] L. Dong, F. Wei, C. Tan, D. Tang, M. Zhou, and K. Xu, “Adaptive 
recursive neural network for target-dependent twitter sentiment 
classification,” in Proc. 52nd Annu. Meeting Assoc. Comput. 
Linguistics, 2014, pp. 49–54. 

[26] M. Pontiki, D. Galanis,J. Pavlopoulos, H. Papageorgiou, I. 
Androutsopoulos,  and S. Manandhar, “SemEval-2014 task 4: Aspect 
based sentiment analysis,” in Proc. 8th Int. Workshop Semantic Eval., 
2014, pp. 27–35. [Online]. Available: 
https://www.aclweb.org/anthology/S14--2004 

[27] D. Tang, B. Qin, and T. Liu, “Aspect level sentiment classification with 
deep memory network,” in Proc. Conf. Empir. Methods Natural Lang. 
Process., 2016, pp. 214–224. 

[28] S. J. Pan, X. Ni, J.-T. Sun, Q. Yang, and Z. Chen, “Cross-domain 
sentiment classification via spectral feature alignment,” in Proc. 19th Int. 
Conf. World Wide Web, 2010, pp. 751–760. 

[29] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of Deep Bidirectional Transformers for Language 
Understanding,” in Proc. of the 2019 Conf. of the North American 
Chapter of the Association for Computational Linguistics: Human 
Language Technologies, Volume 1 (Long and Short Papers), 
Minneapolis, Minnesota, Jun. 2019, pp. 4171–4186. 

[30] C. Zhang, Q. Li, and D. Song, “Aspect-based sentiment classification 
with aspect-specific graph convolutional networks,” inProc.Conf.Empir. 
Methods  Natural Lang. Process. 9th Int. Joint Conf. Natural Lang. 
Process., 2019, pp. 4560–4570. 

[31] B. Zhang, X. Li, X. Xu, K. Leung, Z. Chen, and Y. Ye, “Knowledge 
guided capsule attention network for aspect-based sentiment analysis,” 
IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 28, pp. 2538–
2551, 2020. 

[32] A. Rietzler, S. Stabinger, P. Opitz, and S. Engl, “Adapt or get left 
behind: Domain adaptation through bert language model finetuning for 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 7, 2025 

290 | P a g e  

www.ijacsa.thesai.org 

aspecttarget sentiment classification,” in Proc. 12th Lang. Resour. Eval. 
Conf., 2020, pp. 4933–4941. 

[33] H. Huang, B. Zhang, L. Jing, X. Fu, X. Chen, and J. Shi, “Logic tensor 
network with massive learned knowledge for aspect-based sentiment 
analysis,” Knowl.-Based Syst., vol. 257, 2022, Art. no. 109943.  

[34] H. Wu, Z. Zhang, S. Shi, Q. Wu, and H. Song, “Phrase dependency 
relational graph attention network for aspect-based sentiment analysis,” 
Knowl.-Based Syst., vol. 236, 2022, Art. no. 107736.G. Eason, B. 
Noble, and I. N. Sneddon, “On certain integrals of Lipschitz-Hankel 
type involving products of Bessel functions,” Phil. Trans. Roy. Soc. 
London, vol. A247, pp. 529–551, April 1955.  

 


