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Abstract—Poultry farming is pivotal to global food security, 

yet maintaining optimal environmental and operational conditions 

remains a challenge. Suboptimal conditions, such as high 

temperature and humidity, promote bacterial growth and the 

production of toxic gases like ammonia (NH3), carbon monoxide 

(CO), carbon dioxide (CO2), methane (CH4), and hydrogen 

sulfide (H2S), which increase poultry disease and mortality rates. 

This study introduces an innovative, modular, and scalable system 

integrating Artificial Intelligence (AI), Internet of Things (IoT), 

Edge Computing, and Cloud Computing for real-time monitoring, 

prediction, and automation in poultry barns. The system employs 

a hybrid AI framework combining Gradient Boosting techniques 

(XGBoost, LightGBM, CatBoost) and Long Short-Term Memory 

(LSTM) networks to analyze data from a heterogeneous wireless 

sensor network. It monitors critical parameters—temperature, 

humidity, and toxic gas concentrations—while predicting 

environmental conditions and detecting potential stress to 

optimize poultry welfare. Leveraging IoT for data collection, Edge 

Computing for low-latency processing, and cloud analytics for 

advanced insights, the system enhances decision-making, reduces 

feed wastage, lowers energy costs, and decreases mortality rates. 

A case study demonstrates significant improvements in prediction 

accuracy, operational efficiency, and animal welfare, 

underscoring the framework’s adaptability across diverse 

agricultural settings. This work establishes a robust precedent for 

hybrid AI-driven smart farming solutions, advancing precision 

livestock farming. 

Keywords—Hybrid artificial intelligence; edge computing; cloud 

computing; Internet of Things; artificial intelligence; predictive 
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I. INTRODUCTION 

Global poultry farming is facing fast and continuous 
development of technologies and increasing market demands. 
Environmental control, including temperature, humidity, and 
noxious gases—like CH4, H2S, NH3, CO, CO2—is highly 
important for the health and productivity of poultry. However, 
traditional monitoring systems have serious shortcomings: no 
predictability, no scalability, and no real actionable insights. 
Some of the challenges related to poultry are as follows: 

 Maintaining the best environmental conditions for the 
health of the birds. 

 Predicting harmful gas levels to avoid respiratory issues 
in poultry. 

 Emphasizing feed conversion ratios by reducing stress 
among poultry. 

 Ensuring profitability while adhering to all the 
challenges of sustainability standards. 

This paper picks up these challenges by integrating advanced 
Artificial Intelligence (AI) algorithms, namely Gradient 
Boosting methods (XGBoost, LightGBM, and Cat-Boost), with 
LSTM for predictive analytics. The hybrid framework has been 
developed in this regard, which leveraged the strengths of 
gradient boosting regarding feature selection and the temporal 
modeling capabilities of LSTM to carry out real-time forecasts 
with a high degree of accuracy. Based on the results obtained 
from proof-of-concept testing at a working poultry farm, the 
system demonstrated its potential to improve sustainability and 
productivity, coupled with lower operational costs and risks. 

II. LITERATURE REVIEW 

A. Smart Farming Technologies 

Smart farming represents the integration of Internet of 
Things (IoT), Artificial Intelligence (AI), and Edge Computing 
in the hope of bringing up productivity in agriculture [1-3]. It 
will also give the possibility for real-time monitoring, data-
driven decision-making, and automation of tasks [4-5]. The use 
of IoT and Big Data in optimizing livestock farming is cited by 
Wolfert et al. [6] and Regan [7]. Other applications involve 
monitoring environmental conditions and health and providing 
adequate feed management [8, 9]. 

Smart farming generally employs the IoT-enabled systems 
that using wireless sensor networks to measure and report on 
some very critical parameters. For example, an IoT system used 
in poultry can monitor environmental conditions in real time, 
including temperature, humidity, and concentration of harmful 
gases [5]. The information obtained with such systems will 
enable better decision-making regarding animal health and 
productivity [5]. For instance, Zhang et al. [8] illustrated how 
IoT could help precision livestock monitoring to achieve 
economical control of the environment. 
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Advanced usages of IoT include edge devices that process 
data locally to reduce latency and increase responsiveness. 
Examples include cloud-assisted monitoring platforms where 
sensor data is aggregated for predictive analytics. Applications 
have been extended to optimize water and feed usage in poultry 
farms [10], showcasing significant savings and operational 
efficiency. Besides, technologies such as LoRaWAN and 
ZigBee have enabled better connectivity even in rural farms, as 
pointed out by Guillermo et al. [11]. 

Panfilova et al. [12] highlighted the social effects of cloud 
technologies on digitizing agriculture, while Lashari et al. [13] 
illustrated the role of IoT in maintaining environmental 
standards in poultry farms. Integration of IoT with Big Data 
analytics provides deep insights into long-term trends, thus 
enabling predictive interventions [14]. 

B. Gradient Boosting Algorithms 

Gradient Boosting algorithms like XGBoost, LightGBM, 
and CatBoost have revolutionized predictive modeling in almost 
every domain different from agriculture [15].  In general, the 
main benefits take place in feature selection, workability with 
great volumes of data, or complex relationships in general 
between various variables. 

 XGBoost: This algorithm is known for performance and 
speed while utilizing gradient descent to minimize loss 
functions [15]. Its applications range from yield 
prediction to pest detection and livestock management 
[14]. 

 LightGBM: Efficient on large datasets with less use of 
memory, it is perfect for IoT applications in agriculture. 
It is proven to work well in high-dimensional data, such 
as nutrient monitoring, according to various studies [16]. 

 CatBoost: It handles categorical variables nicely, 
providing robust results on noisy datasets. For example, 
its use in categorizing disease patterns among poultry 
farms demonstrated great contrast in efficiency 
compared with traditional machine learning methods 
[17]. 

Boosting models enhance not only the efficiency of feature 
selection but also work as robust tools for noise management in 
large-scale data environments. For example, Teng [18] 
demonstrated that boosting models can be embedded in the 
process of monitoring livestock environments to provide 
accurate predictions. 

C. LSTM Networks 

LSTMs are a variant of RNNs, designed to model long-range 
dependencies in time series data [15]. They were first applied 
for time-series prediction by Hochreiter and Schmidhuber [19], 
while Greff et al. [20] discussed their efficiency in different 
scenarios, including agriculture. 

For example, LSTM networks have been used to forecast 
weather patterns, crop yields, and the behavior of livestock. 
Their capability for temporal relationship modeling has made 
them suitable for predicting environmental conditions in poultry 
farming. For instance, using an LSTM-based model can forecast 
temperature and humidity trends, thus enabling proactive 

interventions. Studies also indicate their integration with 
reinforcement learning techniques for optimizing barn 
ventilation systems [21]. 

The applications of LSTM for time-series forecasting are 
indeed adaptable, ranging from predictive maintenance in 
farming equipment and water resource optimization to a host of 
other works [11], [22]. The mentioned systems suit well within 
the IoT frameworks due to sensor data inputted for predictions 
at very high accuracy. 

D. Hybrid AI Approaches 

The potential of hybrid approaches is enhanced the 
efficiency and accuracy of models. By hybridation of various 
methods—such as metaheuristics and AI techniques, 
researchers can develop robust frameworks that effectively 
tackle complex problems, allowing for improved overall 
performance and operational strategies [23-25]. 

Hybridizing machine learning (ML) algorithms with deep 
learning (DL) models has shown promise in predictive analytics. 
Recent works, such as [26] and [11], point toward the 
advantages of hybrid Artificial Intelligence frameworks in 
enhancing the performance of predictions by raising their 
accuracies and computational efficiencies. For instance, certain 
works have used hybrid models for yield forecasting, which 
predict crop yield by fusing satellite images—whose features are 
extracted through ML—and time-series data analyzed through 
LSTM. This work effectively bridges the complementary 
strengths of ML in feature extraction and DL in temporal 
modeling. 

Hybrid systems also find utility in multi-modal data 
integration. In poultry farming, the combination of video feed 
analysis and IoT sensor data has been explored to detect 
anomalies, such as underweight birds or irregular feeding 
behaviors [27]. 

Chiluisa-Velasco et al. [28] also focused on hybrid models, 
which are helpful in integrating multisourced environmental 
data to generate more accurate and comprehensive insights for 
smart farming applications. Hybrid frameworks allow dynamic 
adaptation, hence being suitable for a wide range of agricultural 
environments. 

E. Advances in AI for Livestock Farming 

Other applications of AI in livestock farming, beyond 
predictive analytics, include: 

 Health Monitoring: Machine vision systems detect early 
signs of illness based on perceived movement patterns or 
physical abnormalities in poultry [27, 28]. 

 Behavior Analysis: AI algorithms classify behaviors into 
feeding, resting, or pecking to ensure optimal welfare 
conditions [29, 30]. 

 Resource Optimization: Predictive models forecast feed 
and water consumption, minimizing waste and reducing 
operational overheads [31, 32]. 

AI integrated with robotics has further enabled automation 
in routine farm tasks, including feed distribution and waste 
management [33-35]. For example, the automated systems 
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developed by Lashari et al. [13] showcase how IoT-driven 
robotics can streamline poultry operations. Advanced sensing 
technologies discussed by Zhang et al. [8] enhance precision in 
environmental control. 

III. MATERIALS AND METHODS 

The proposed system for monitoring and predicting 
environmental conditions in poultry farms is shown in Fig. 1. 

 

Fig. 1. The proposed system for monitoring and predicting environmental conditions in poultry farms. 

A. System Architecture 

The proposed system is based on three interrelated layers 
that are intended to optimize scalability, efficiency, and 
accuracy in monitoring and predicting environmental conditions 
in poultry farms [5]: 

1) IoT Layer 

a) Sensor deployment: Sensors like AM2315 and SHT20 

for temperature and humidity and MQ-series for harmful gases 

such as NH3, CO2, CH4, H2S, and CO were strategically 

positioned both inside and outside poultry barn to capture real-

time data. External sensors were weather-shielded to ensure 

accuracy. 

b) Data transmission: The sensor readings were 

transmitted using a wireless sensor network (WSN) with low-

power communication protocols like ZigBee, ensuring reliable 

data transfer and energy efficiency even in low-connectivity 

areas. 

2) Edge computing layer 

a) Preprocessing: This layer handled preliminary data 

cleaning, aggregation, and feature extraction to minimize noise 

and redundancy before transmitting data to the cloud. Faulty 

sensor data was flagged and excluded in real time. 

b) Edge analytics: Gradient Boosting models, including 

XGBoost, LightGBM, and CatBoost, were deployed at the edge 

to provide fast insights and anomaly alerts for sudden spikes in 

harmful gases or abrupt changes in temperature and humidity. 

3) Cloud layer 

a) Advanced modeling: Temporal analysis and long-term 

predictions were conducted in the cloud using LSTM networks. 

The cloud infrastructure also provided advanced data 

visualization through interactive dashboards tailored for farm 

managers. 

b) Data archiving: Historical data was stored in a 

scalable database optimized for trend analysis, compliance 

reporting, and periodic model retraining. 

B. Data Collection 

The IoT-based monitoring system was deployed for three 
months continuously in a medium-scale poultry farm. Key 
parameters monitored included: 

1) Environmental metrics: Temperature (Celsius) inside 

and outside poultry barn. Humidity (%) inside and outside 

poultry barn. 

2) Gas concentrations: Ammonia (NH3), Carbon Dioxide 

(CO2), Methane (CH4), Hydrogen Sulfide (H2S) and Carbon 

Monoxide (CO). 
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Data were captured on a minute-to-minute basis, resulting in 
approximately 130,000 entries. Sensors were calibrated weekly 
to ensure data integrity and accuracy. 

C. Data Preprocessing 

A strict preprocessing pipeline was implemented to ensure 
high-quality data and enhance model performance. 

1) Handling missing data: Missing values for continuous 

variables were imputed using the k-nearest neighbors (KNN) 

algorithm. Sensor data with more than 10% missing values for 

a day were excluded for that period. 

2) Outlier detection: An interquartile range (IQR)-based 

method was applied to identify and exclude extreme values in 

gas concentration and environmental measurements. 

3) Feature engineering: Derived new features, such as 

time-based averages, variances, and rolling windows for gas 

concentrations and temperature trends, to extend temporal 

patterns. Added cross-metric interactions, such as temperature 

and gas concentration correlations, to identify dependencies. 

4) Data normalization: Min-max normalization was 

performed to standardize feature ranges, facilitating faster 

convergence in machine learning models. 

D. Model Training and Hyperparameter Optimization 

1) Gradient boosting models 

a) Individual training: XGBoost, LightGBM, and 

CatBoost were trained separately to determine feature 

importance and establish baseline predictions. 

b) Hyperparameter optimization: 

 Learning rate: Tested between 0.01 and 0.1. 

 Max depth: Ranged from 3 to 10 to balance complexity 
and performance. 

 Number of estimators: Set between 100 and 500 for 
optimal outcomes. 

 Subsampling: Configured between 0.7 and 1.0 to 
enhance generalization. 

2) LSTM network 

a) Architecture: 

 Two hidden layers with 64 and 32 neurons, respectively. 

 Dropout rate: 20% to prevent overfitting. 

 Input sequence length: Configured at 60-minute intervals 
to capture short-term trends. 

 Activation function: ReLU for hidden layers; sigmoid for 
output layer. 

b) Training parameters: 

 Batch size: 128. 

 Optimizer: Adam optimizer with an initial learning rate 
of 0.001. 

 Early stopping: Monitored validation loss to mitigate 
overfitting. 

3) Hybrid AI framework implementation: The framework 

combines Gradient Boosting and LSTM models for superior 

pre-diction accuracy and robustness: 

a) Feature importance analysis: Gradient Boosting 

models ranked key features like NH3 concentration and daily 

temperature variance, removing irrelevant or noisy data to 

refine model focus. 

b) Temporal dependency modeling: LSTM networks 

captured sequential dependencies, analyzing temporal patterns 

in gas concentrations and environmental metrics to predict 

anomalies and trends. 

c) Ensemble integration: Predictions from Gradient 

Boosting models served as inputs to the LSTM network, 

enhancing overall prediction accuracy and robustness by fusing 

static and temporal insights. 

4) Computational resources 

a) Edge devices: Raspberry Pi 5 devices with 8 GB RAM 

handled preprocessing and local Gradient Boosting model 

execution. 

b) Cloud infrastructure: AWS EC2 instances 

(m5d.xlarge) with 16GB RAM and NVIDIA Tesla T4 GPUs 

managed LSTM training and advanced analytics. Data was 

archived in a PostgreSQL database. 

5) Evaluation metrics: Model performance was evaluated 

using: 

 Root Mean Square Error (RMSE): Penalized larger 
prediction errors to measure accuracy. 

 Mean Absolute Percentage Error (MAPE): Assessed 
interpretability and reliability of predictions. 

 Execution Time: Evaluated computational efficiency at 
edge and cloud levels. 

 Scalability Tests: Simulated operations across multiple 
farms using synthetic datasets to test scalability. 

 Anomaly Alert Precision and Recall: Validated the 
system's capability for timely and accurate anomaly 
alerts. 

IV. RESULTS AND DISCUSSION 

A. Predictive Accuracy 

The hazardous gas levels (CH4, H2S, NH3, CO, CO2) in the 
poultry barn and the corresponding estimate levels that were 
obtained by the artificial intelligence techniques (XGBoost, 
LightGBM, CatBoost, Hybrid (XGBoost + LSTM), Hybrid 
(LightGBM + LSTM) and Hybrid (CatBoost + LSTM)) are 
shown in Fig. 2, Fig. 3, Fig. 4 and Fig. 5. 
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Fig. 2. The experimental findings of indoor temperature and humidity. 
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Fig. 3. The experimental findings of hazardous gases (CH₄, NH₃, H₂S). 
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Fig. 4. The experimental findings of hazardous gases (CO₂, CO). 

 

 

Fig. 5. The experimental findings of outdoor temperature and humidity. 

The hybrid AI framework has proven to be superior in 
predictive accuracy, significantly outperforming standalone 
models. Key performance metrics, such as Root Mean Square 
Error (RMSE) and Mean Absolute Percentage Error (MAPE), 
illustrate this advantage. Table 1 reflects the performance of 
each model, with the newly included LSTM and specific hybrid 
combinations. 

The hybrid model, combining Gradient Boosting (XGBoost) 
and LSTM, demonstrated the lowest RMSE (0.02) and MAPE 
(1.85%), underscoring its ability to reduce prediction errors 
significantly. This hybridization leverages Gradient Boosting 
for feature importance and LSTM for handling temporal 
dependencies, making it particularly effective in applications 
like environmental monitoring. For instance, it accurately 

predicted ammonia (NH3) levels during critical production 
periods, enabling timely interventions to reduce risks. 

TABLE I.  PERFORMANCE METRICS OF THE MODELS 

Model RMSE MAPE (%) 

XGBoost 0.030 2.15 

LightGBM 0.045 2.35 

CatBoost 0.037 2.20 

Hybrid (XGBoost + LSTM) 0.020 1.85 

Hybrid (LightGBM + LSTM) 0.028 2.05 

Hybrid (CatBoost + LSTM) 0.026 2.00 
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B. Environmental Monitoring and Control 

The system also excelled in maintaining optimal 
environmental conditions, ensuring both animal welfare and 
productivity. Key monitored parameters include: 

1) Temperature: Maintained between 22°C and 30°C, 

minimizing heat stress and enhancing feed efficiency. 

2) Humidity: Regulated within 50%–70%, reducing 

respiratory disease risks and improving overall welfare. 

3) Gas concentrations: 

a) Ammonia (NH3): <20 ppm (avoiding respiratory 

distress in birds). 

b) Carbon dioxide (CO2): <2500 ppm (ensuring 

adequate ventilation). 

c) Methane (CH4): <1000 ppm (promoting 

environmental safety). 

d) Hydrogen sulfide (H2S): <10 ppm (preventing 

toxicity). 

e) Carbon monoxide (CO): <35 ppm (mitigating 

suffocation risks). 

During peak production hours, a spike in ammonia (NH3) 
levels at 3:00 AM triggered an alert. The system prompted the 
farm manager to increase ventilation immediately, preventing 
potential health crises. This real-time responsiveness highlights 
the framework’s utility in dynamic and critical conditions. 

Overall, the hybrid model demonstrates robustness, 
adaptability, and significant practical value in predictive 
accuracy and environmental management. 

C. Model Interpretability and Feature Importance 

Using Gradient Boosting models for feature importance 
analysis, we identified key predictors contributing to the 
system’s accuracy: 

1) NH3 concentration: Exhibits a strong correlation with 

poultry health and productivity, acting as an essential metric in 

setpoint adjustments. 

2) Daily temperature stratification: Has a direct effect on 

feed conversion ratio and growth rates. 

3) Humidity: Impacts respiratory condition dynamics and 

pathogen survival in the environment. 

These insights offered actionable intelligence to farm 
managers, allowing data-driven decisions to improve their 
productivity. 

D. Computational Efficiency 

The hybrid system showed significant computational 
efficiency, detailed as follows: 

1) Edge computing execution time: Achieved an average 

inference time of 15 ms per sample, allowing real-time 

decision-making. Delivered 35% lower latencies than cloud-

only solutions, empowering real-time decision-making. 

2) Cloud processing efficiency: Reduced training time by 

20%. This was achieved due to optimized LSTM architecture 

for easy adaptability to new datasets. 

3) Energy consumption: Low-power edge devices (less 

than 10 W per device) brought sustainability to operations. This 

efficiency is particularly beneficial for large-scale 

deployments. 

E. Scalability and Multi-Farm Deployment 

Scalability tests utilized synthetic datasets reflecting 
operations across five poultry farms, differentiated by size and 
environmental circumstances. Key results include: 

1) Consistency across multiple farms: RMSE and MAPE 

values remained consistent, with less than a 5% deviation 

across farms, indicating the framework's robustness. 

2) Data integration: Sensor data from diverse setups were 

seamlessly integrated, signifying high adaptability. 

3) Deployment challenges: Issues such as sensor 

compatibility and calibration were addressed through a modular 

design approach and automated sensor calibration protocols, 

ensuring uniform performance across multiple farms. 

F. Economic Impact 

The system contributed to significant cost savings and 
productivity improvements, emphasizing its economic viability: 

1) 16% Reduction in feed wastage: Significant savings due 

to improved environmental control. 

2) 25% Reduction in mortality rates: Reflecting better 

animal welfare and operational efficiency. 

3) 22% Decrease in energy costs: Achieved through 

efficient resource utilization and adaptive ventilation strategies. 

G. Practical Applications 

The hybrid framework’s real-world implementation across 
different poultry farms manifested tangible benefits:  

1) Small-scale farms: Enabled cost-effective monitoring 

and control, overcoming budgetary constraints. 

2) Large-scale operations: Delivered scalable solutions 

across multiple farms, utilizing cloud analytics for centralized 

decision-making. 

3) Remote farms: Reliable data transmission was enabled 

through Zigbee-based communication in areas with limited 

connectivity. 

H. Limitations 

The limitations of this work are: 

1) Sensor precision: Extreme weather conditions 

occasionally affected sensor readings, necessitating manual 

verification to ensure accuracy. 

2) Connectivity dependence: Despite Zigbee's advantages, 

long-term connectivity disruptions impacted data 

synchronization and real-time monitoring. 

I. Future Work 

In light of these limitations, the following areas are proposed 
for future research to extend the system's capabilities: 
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1) Transfer learning: Enabling models to generalize across 

diverse farming conditions with minimal retraining, enhancing 

scalability across regions. 

2) Robotics integration: Exploring autonomous systems 

for feeding and waste management to improve operational 

efficiency. 

3) Extended scalability tests: Expanding simulations to 

include larger datasets and additional environmental variables 

such as light intensity and noise levels. 

4) AI-driven optimization: Incorporating reinforcement 

learning to dynamically adjust ventilation, lighting, and feeding 

schedules based on predictive insights. 

J. Broader Implications 

The results of this study indicate the potential that hybrid AI 
frameworks hold for poultry farming. Combining advanced 
analytics with real-time monitoring, the system generates 
actionable insights that enhance productivity and ensure more 
sustainable practices. Its scalability and adaptability make it a 
fundamental principle for further advancements in smart 
agriculture. 

Predictive accuracy, operational efficiency, and scalability, 
showcased in the proposed hybrid framework, pave the way for 
advanced AI-driven agriculture. Refinements and innovations 
addressing existing limitations will ensure broader adoption and 
impact. 

V. CONCLUSION 

The proposed research work introduces a hybrid AI 
framework that integrates Gradient Boosting algorithms 
(XGBoost, LightGBM, and CatBoost) with Long Short-Term 
Memory (LSTM) networks to address various challenges in 
poultry farming. It ensures real-time insights by leveraging IoT-
based data collection alongside Edge Computing, thereby 
enhancing poultry health and productivity while improving 
operational efficiency. 

Key contributions include improved predictive accuracy, 
real-time monitoring capabilities, scalability, and economic 
benefits such as reduced feed wastage and lower mortality rates. 
While significant successes have been achieved, limitations like 
sensor dependency and connectivity issues remain areas for 
improvement. 

Future research should focus on exploring advanced 
technologies such as reinforcement learning, expanding 
deployments across diverse conditions, and integrating robotics 
for enhanced automation and transparency. 

This paper highlights the transformative potential of AI in 
agriculture, paving the way for intelligent, efficient, and 
sustainable farming practices to tackle food security and 
environmental challenges. 
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