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Abstract—In recent medical research, skin cancer has emerged 

as one of the most prevalent and fatal cancers globally. Previous 

studies have faced challenges in detecting skin cancer early due to 

the complexity of identifying specific skin diseases, segmenting 

affected areas, and selecting relevant features. To address these 

limitations, this study proposes a novel AI-powered enhanced skin 

disease detection system that applies an Adaptive Particle Swarm 

Intelligent Optimization (APSIO) in conjunction with a Hyper-

Convoluted Intra-Capsuled Neural Network (HCI-CNN). In 

image processing, a Gaussian Wavelet Spectral Filter is initially 

used to preprocess the input dataset of skin-cancer images. This 

filter is used to standardize the skin layer of the pixel. After 

preprocessing, the method applies Slice Fragment Window 

Segmentation (SFWS) to divide the image into several clusters, 

focusing on the specified area affected by the disease. Next, 

Adaptive Particle Swarm Intelligent Optimization (APSIO) is 

applied for feature selection. APSIO is an optimization 

metaheuristic algorithm that optimizes the selection of relevant 

features from the segmented image. After removing evaluated and 

non-effective features, YOLO extracted features are passed 

through an HCI-CNN classifier to efficiently characterize high-

level spatial hierarchies and relations of features in the feature 

space using hyper-convolutional operations and capsule 

representations. This paper analyzed the clinical images of 

individuals along with the dataset images. The output gain 

improved Accuracy to 97%, precision to 96.52%, recall to 96.55%, 

and F1-score to 96.93%, while simultaneously minimizing false 

positives and total time complexity. 
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I. INTRODUCTION 

Early skin cancer detection continues to be challenging 
because of its aggressive nature and higher mortality rate when 
it is not treated. The delayed diagnosis of melanoma 
considerably reduces the survival rate of the patient, allowing 
the cancer to grow quickly to its terminal phase and spread. Most 
other skin cancers, including basal cell carcinoma, pose serious 
health threats due to high prevalence and potential severity. The 
phrase "Skin condition" describes any condition that tends to 
affect the skin, which is the biggest organ in the human body and 
one of many organs that make up the body. Automated 
classification [1]-[2] assists in reducing dissimilarity among 
samples, whereas proper skin disease detection is crucial for 

successful preprocessing and diagnosis. Actinic keratosis, an 
occasional precursor to squamous cell carcinoma, typically 
presents as a dry, scaly spot on the skin. 

Hereditary conditions may also result in skin disorders. The 
shallow, thin outer layer of skin. These diseases can lead to 
physical and psychological damage. Basal cell carcinoma [3] is 
the most common type of skin cancer that occurs in the 
outermost layer of the epidermis' basal cells. In addition, the sun-
exposed sites often include the hands, neck, ears, and scalp, 
where squamous cell carcinoma, the second most common skin 
cancer, arises from epidermal squamous cells. 

It can extend and infiltrate into deeper skin layers. In medical 
image analysis, skin disease classification entails distinguishing 
and differentiating among different situations based on their 
image characteristics [4]. This procedure characteristically 
depends on skin-layer imaging to detect such melanoma, and 
recent approaches employ machine learning and deep learning 
to evaluate the accuracy, especially CNN. 

The three components of the prediction element, the 
ensemble model, the predictive aggregator module, and the pre-
processing unit. The preprocessing module provides the proper 
preprocessing, such as scaling, normalization, and image 
changes, to the images in the dataset. The factors [5] to consider 
are the mutation amount, which randomly modifies the values 
of the chromosomes, and the random cross-over rate, which 
determines the likelihood of a random crossing occurring 
independent of the fitness parameter. 

A. Research Objective 

The primary objective of this study is to develop an 
advanced, AI-driven skin cancer detection system that enhances 
the accuracy and efficiency of diagnosis by integrating multiple 
novel techniques. Specifically, the research aims to: 

 Reduce the skin blur area and improve the image quality 
according to skin cancer using a Gaussian Wavelet 
Spectral Filter. 

 Accurately localize diseased regions via Slice Fragment 
Window Segmentation (SFWS), enabling precise 
clustering of affected areas. 

 Optimize feature selection using Adaptive Particle 
Swarm Intelligent Optimization (APSIO), thereby 
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eliminating redundant or irrelevant features to improve 
classifier performance. 

 Enhance classification performance by deploying a 
Hyper-Convoluted Intra-Capsuled Neural Network 
(HCI-CNN), leveraging hyper-convolution and capsule 
layers to capture complex spatial hierarchies. 

B. Paper Organization 

Section I introduces cancer with a related discussion, Section 
II about a Literature review on skin cancer, various machine 
approaches with classification techniques, and performance 
metrics. Section III discusses the methods of the proposed 
APSIO classification algorithm for skin disease identification. 
Section IV presents a comparison analysis of the proposed HCI-
CNN algorithm, and a discussion of metrics calculation with 
output is provided. In Section V, the study's conclusion and 
submissions of skin cancer classification processes are 
presented. 

II. LITERATURE REVIEW 

A computerized approach to skin disease classification using 
Long Short-Term Memory (LSTM) and Mobile Net V2, based 
on deep learning. The Grey-Level Co-occurrence Matrix 
(GLCM) utilizes the recurrent pattern of the localized intensity 
factor. The color and strength of a pixel are determined by the 
GLCM's spatial distribution based on the distribution of 
intensity levels. The ReLu6 module [6] is used in the output of 
the third layer. 

A secondary deep learning network is used in conjunction 
with an experimental multimodal smartphone imaging 
technique that produces RGB and fluorescence images. The 
fluorescence-aided amplification network (FAA-Net) is used to 
identify skin conditions. FAA-Net [7] was revised with an 
attention mechanism module to detect skin disease locations 
autonomously and mark potential disease regions. 

The use of human skin as a basis for these models enables 
self-learning algorithms to operate effectively. ANNs are 
neurons (nodes) connected [8] at various levels, such as brain 
cells in biology. In a network of neurons, data is stored, 
processed, and output. The CNN approach requires extensive 
recurrent training, and an ample image database had to be used 
to mitigate the risk of over-fitting. 

The FAA-Net is now equipped with an attention module that 
automatically detects skin disease sites and marks potential 
disease regions. According to experimental results [9], the 
average accuracy and area under the curve of our produced 
model for detecting skin diseases were 8.61% and 9.83%, 
respectively. 

The methods used high-resolution dermoscopic images to 
identify skin conditions, including psoriasis, dermatitis, and 
melanoma. The growing availability of large annotated image 
datasets has accelerated the development of this classification. 
Edge detection and segmentation techniques are frequently used 
to extract Regions of Interest (ROIs) [10], such as lesions or 
impacted regions. With an accuracy of 91.2%, the K-Nearest 
Neighbor classification algorithm outperforms the SVM 
classification method. 

The modified single DCNN model method [11] employed 
Modified R, Augment, MWNL, and CLS to achieve 
classification accuracy on certain dermoscopic image datasets 
that was at least as good as, or superior to, that of many ensemble 
methods. For optimal performance, a Fully Fused Network 
(FFN) is composed of an Improved Single Block (ISB) and an 
Improved Fusion Block (IFB) [12]. 

An attention-mixing decoder and multi-axis encoder were 
utilized in an attention-based, encoder-decoder architecture to 
segment the skin layers accurately. The simulation successfully 
maintained both global and local features using a transformer-
based encoder block. These features were then sent to the 
decoder block via an attention-based controlled skip link. By 
employing vision transformer structures [13], the multi-axis 
encoder enables the encoding of feature representations at 
various scales. The self-attention mechanism of transformers 
enables medical image segmentation to achieve remarkably high 
accuracies while accommodating dependencies over extended 
periods. 

Skin images saved in a data format on the blockchain are 
used to categorize skin conditions. Here, segmentation is 
performed using Deep Joint Segmentation, which has been 
modified by the introduction of the Kumar-HasseBrooks 
distance [14] and Transit Circle Inspired Optimization-LENet, 
achieving an accuracy of 0.92 and a True Positive Rate of 0.93. 

A DL architecture, described as Swin Transformer, was 
created for image categorization. This network's input is divided 
into non-overlapping windows using a hierarchical method. 
Fine-grained spatial characteristics are essential for precise 
classification. The final output probabilities [15] for each class 
were generated by processing the concatenated features through 
a fully connected top layer. The focused loss of the predicted 
class probabilities relative to the target class is maximized to 
optimize the network parameters. 

Pre-processing injury segmentation and classification are 
crucial steps in the proposed classification approach. After 
image pre-processing, skin lesion segmentation was 
accomplished using improved U-Net segmentation [16], which 
achieved this enhancement by proposing a hybrid optimization 
approach. The spatial interdependence between image areas is 
achieved without the need for substantial pre-processing or the 
use of constants, utilising features and leveraging the self-
attention mechanism of transformer models. A thorough 
analysis of many Deep Learning models [17] using reference 
datasets for skin imaging for different skin lesions. The model 
was trained when the number of training images and large 
datasets increased, and it was created by combining smaller 
datasets, achieving a test accuracy of 86.37%. 

A deep learning-based model for skin cancer detection was 
developed using a transfer learning approach [18], effectively 
distinguishing between benign and malignant stages. For 
classification of skin diseases, an ensemble of enhanced 
convolutional neural networks (CNNs) was employed in 
conjunction with a test-time augmentation strategy known as 
frequently spaced shifting [19]. The CNN model was evaluated 
using 960 images from the ISIC 2018 Skin Lesion Classification 
Challenge test set, which included 360 benign and 300 
malignant images [20]. The complete dataset comprised 3,533 
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lesion scans, nearly balanced with 1,760 benign and 1,773 
malignant samples. To capture multi-scale features, the 
Inception architecture was utilized, leveraging multiple 
convolutional kernels with diverse receptive fields to extract 
features at different spatial resolutions. 

A clinical decision support model [21] for skin disease 
detection and classification using a hybrid deep learning 
approach and enhanced segmentation capabilities. The tests 
related to data dimensionality were handled using Multi-
Strategy Seeking optimization (MSSO), which optimizes 
feature selection by determining the essential characteristics of 
hand and High-dimensional data using the Multi-Strategy 
Seeker Optimization (MSSO) approach. 

A complex neural network model [22] can automatically 
identify and differentiate between several types of skin lesions 
using dermoscopic images. Deep learning, particularly CNN, 
which learns hierarchical representations directly from raw 
image data, enables accurate feature extraction. This approach 
reduces the need for human feature engineering while increasing 
diagnostic accuracy. The algorithm is trained on large annotated 
datasets to classify lesions as benign or malignant, and then 
further categorize them into specific cancer subtypes. 

An algorithm based on dermoscopic images with channel-
specific, channel-shared, and depth-related variables. The 
Transformer baseline model [23], the traditional CNN model, 
and two datasets were evaluated against a dataset of Minnesota 
dermoscopic images, and the average accuracy of 70.23%. 
Training and validation loss, training and validation accuracy, as 
well as confusion matrices for each of the six networks that used 
transfer learning, were compared [24]. The objective was to 
expand the filter bank dimension before adding it to match the 
input depth. 

EfficientNetB0 [25] through transfer learning to enhance 
melanoma detection. Their approach yielded high diagnostic 
accuracy while maintaining computational efficiency, making it 
suitable for deployment in mobile health systems. However, the 
study focused solely on melanoma, limiting its applicability in 
multi-class skin disease classification. Introduced a hybrid 
ensemble model combining DenseNet and MobileNet [26]. 
Their deep learning ensemble improved classification 
robustness and generalization across different cancer types, 
although the increased model complexity resulted in higher 
training overhead. 

A fine-tuned DenseNet-121 model to classify skin lesions 
with improved feature reuse and gradient flow, achieving 
reliable results for binary classification tasks [27]. Ensemble 
learning by integrating multiple CNN architectures [28], which 
significantly boosted sensitivity and specificity. The 
effectiveness of traditional machine learning classifiers in 
detecting skin cancer using handcrafted features [29]. Their 
comparative study involving classifiers such as SVM, RF, KNN, 
and Naïve Bayes concluded that the Random Forest model 
offered superior accuracy. Though their work highlights the 
value of ML in dermatological diagnostics, it also emphasizes 

the limitations of manual feature engineering, pointing to deep 
learning as a promising direction for future research. 

The application of transfer learning using deep CNN 
architectures, including VGG16, ResNet50, and DenseNet201, 
for classifying skin cancer lesions [30]. Utilizing the ISIC 
dataset and augmentation techniques, they achieved high 
classification accuracy, particularly with ResNet50. Their 
findings underscore the efficacy of deep learning models for 
dermatological diagnostics and highlight transfer learning as a 
robust strategy for medical image analysis with limited labeled 
data. 

A lightweight CNN model tailored for cloud-based and 
mobile applications in skin cancer diagnosis [31]. Using the 
ISIC dataset, the model achieved competitive accuracy while 
maintaining low computational demands, enabling real-time 
analysis in remote or resource-limited settings. Their approach 
presents a viable solution for scaling dermatological services via 
telemedicine. The model effectively distinguished between 
seven different lesion types and achieved over 89% accuracy 
[32]. Their work underscores the strength of CNNs in handling 
complex dermatological image classification tasks beyond 
binary diagnosis, although class imbalance remains a challenge. 

A MobileNet-based lightweight deep learning model [33] 
for seven-way skin lesion classification using the HAM10000 
dataset. The system supports real-time, on-device predictions, 
demonstrating strong potential for deployment in tele-
dermatology and low-resource environments. 

The HAM10000 dataset, train a model for classifying skin 
cancer, training and validation losses, training and validation 
accuracies, and confusion matrices of every one of the six 
transfer learning networks carried out with the matching 
complexity of the inputs by augmenting the dimension of the 
filter before adding. 

A. Problems Identified 

Despite significant advancements in approaches for 
automating the detection of skin diseases using machine 
learning and deep learning methodologies, existing approaches 
tend not to optimize for classification accuracy and 
computational efficiency in real-time applications. Additionally, 
most existing research does not incorporate feature selection, 
segmentation, and classification. In this review, various types of 
skin cancer datasets and different performance analysis outputs 
are discussed. However, some limitations of this survey were 
identified from the review analysis in previous research work. 
Table I, literature survey discusses the gaps and reviews deep 
learning and machine learning algorithms for identifying skin 
diseases. 

B. Research Contribution 

 Development of an AI-powered skin disease detection 
framework that integrates preprocessing, clustering, 
segmentation, feature selection, and classification 
tailored for diverse skin tones and dermatological 
conditions. 
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TABLE I.  PROBLEM DESCRIPTION OF SKIN DISEASES IDENTIFICATION 

Ref Algorithm Used Output Dataset Gaps 

[25] Rectified Adam (RAdam) 
F1 Score 88 % Recall 88 
% Precision 89 % 

HAM10000 dataset 
Negatively impacted by overfitting in small 
or unbalanced classes. 

[26] CNN accuracy 93.75% ISIC dataset 
Demand fine-tuning of hyperparameters 

and substantial computational resources. 

[27] DENSENET-121 
accuracy 

87% 
HAM10000 dataset 

Low data or poor image quality can cause 

performance to deteriorate. 

[28] CNN accuracy 92.16% HAM10000 dataset 
Limited generalization across lesion types 
without data augmentation 

[29] 
Particle Swarm Optimization 

(PSO) 

accuracy 

86.9% 
Kaggle dataset 

Performance and convergence rate are 

strongly influenced by initial parameters. 

[30] 
Transfer Learning (ResNet50, 
InceptionV3, DenseNet201) 

Accuracy >90%, ISIC Dataset 

Does not include segmentation; 

performance depends on pre-trained model 

and dataset quality 

[31] Custom lightweight CNN Accuracy >87% ISIC Dataset 
Limited feature extraction compared to 

deeper models; no segmentation included 

[32] Custom Deep CNN Accuracy >89% HAM10000 Lacks integration with segmentation tools 

[33] MobileNet (lightweight CNN) Accuracy >85% HAM10000 

May underperform on rare or ambiguous 

lesions; real-time use tested only in 

prototype 

 

 A new AI-driven methodology for skin disease diagnosis 
using APSIO feature selection combined with a hybrid 
YOLO and HCI-CNN model. 

 Application of APSIO feature selection, which 
effectively reduces computational complexity and false 
positives, ensuring optimal feature relevance and 
improving diagnostic accuracy. 

 Robust segmentation approach for extracting geometric 
and physical attributes of skin lesions, facilitating precise 
evaluation of lesion boundaries and types of damage. 

 Enhanced image preprocessing pipeline designed to 
improve clarity and contrast for a range of skin tones, 
contributing to fairness and inclusivity in dermatological 
AI applications. 

 Potential for integration into real-time medical diagnostic 
tools, providing support for healthcare professionals in 
clinical environments, leading to faster diagnosis and 
improved patient outcomes. 

This proposed work focused on a hybrid intelligent 
architecture that includes APSIO feature optimization and an 
ensemble prediction model using deep learning models, 
allowing for better diagnostic accuracy while being applicable 
in real time. 

III. PROPOSED METHODOLOGY 

A skin disease classification structure based on HCI-CNN to 
maximize classification performance and improve feature 
selection. Pre-processing enhances the quality of images and 
highlights significant patterns; the skin images extracted are pre-
processed through a Gaussian wavelet transform, efficiently 
enhancing discriminative patterns and enhancing the quality of 
follow-up analysis. Segmentation technique with Weighted 
Strategy (SFWS) segments specific skin layers and regions of 

interest in classification. APSIO Feature selection adaptively 
controls evaluation parameters during training, allowing real-
time adaptation and offline optimization. This process selects 
the most informative and relevant features for effective 
classification. High-level discriminative patterns are initially 
derived from medical skin images using HCI-CNN with YOLO 
classifying features and are tested through layers to classify into 
several diseases, Melanoma, Basal Cell Carcinoma (BCC), 
Actinic keratosis, Melanocytic nevi, Benign keratosis, Vascular 
lesions, and Dermatofibroma. If no dermatological 
abnormalities are detected in the collected clinical skin image, 
the system will classify it as normal skin. Fig. 1 shows a block 
diagram of the proposed method; a complete description of each 
block is mentioned below. 

A. Gaussian Wavelet Spectral Filter (GWSF) Preprocessing 

GWSF Filter, image pre-processing process calculates the 
weights of the Gaussian smoothing, the weights of the wavelet 
transform, and the scalar values to enhance the features of skin 
images or avoid noise effectively, and not let the edge 
information be analyzed over during the process. Small image 
noise from a whole image and keep large structures in that 
image, untouched process validates large image structures that 
are preserved by discarding a small image with multi-resolution 
must be performed. 

ℎ(𝑚, 𝑛) =  
1

2𝜋 𝜎2  𝑒−(𝑚3+ 𝑛2)  / 2 𝜎2
  (1) 

Eq. (1), σ characterizes the distribution's standard deviation, 
and the distribution's mean is taken to be 0. 

𝐻 (𝑈, 𝑉)  ≈  𝑒−2 𝜋2 𝜎2 (𝑢2+ 𝑣2 )   for |𝑈|, |𝑣| <  
1

2
(2) 

Eq. (2), 𝐻 (𝑈, 𝑉)  Impulse response and occurrence reaction 
both gradually decrease, and the Gaussian filter stands out for 
not leaking noise or distorting. 
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Fig. 1. Overall proposed diagram. 

𝐼 =  ∫ exp( −𝑥2 ) 𝑑𝑥 =  √𝜋
∞

−∞
 (3) 

Eq. (3), when changing 𝐼  represents negative to positive 
values, 𝑑𝑥 describes the complex error of the possible values in 
any given space in probabilistic terms. 

ℎ𝑥𝑦 = 𝑓𝑥𝑦 ⨀ 𝑤𝑥𝑦  (4) 

Eq. (4) wavelet domain GWSF filtering improves complex 
structures as dark skin surface, texture patterns, border 
anomalies, and inhibits already spent data. Combining the two 
steps results in a preprocessed image, retains diagnostically 
relevant structures with improved contrast and less noise. It is 
also especially useful for analyzing affected skin areas, which 
improves the signal-to-noise ratio and feature stability across 
samples, leading to improved overview and classification 
performance in skin analysis. Fig. 2 shows the input skin cancer 
images and the GWSF filtering images output. 

B. Slice Fragment Window Segmentation (SFWS) 

SFWS is a progressive technique considered to improve the 
segmentation area of skin disease areas in medical images, 
particularly skin dataset images. The algorithm works by 
separating. The input image into reduced manageable fragments 
or "slices" using a sliding window method. Each window 
captures localized image data, preserving the spatial context and 
fine-grained texture differences of skin cancer. The cluster area 
is separated by specific regions, inner and outer border 
detection, particularly in cases of irregularly shaped or low-
contrast skin affected. By leveraging contextual signals and 
SFWS can efficiently differentiate between normally affected 
skin and diseased regions, even in complex background 
conditions. 

 

Fig. 2. GWSF preprocessing output. 

𝑆 =  𝑆𝑐𝑙𝑠 + 𝑆𝑏𝑜𝑥 +   𝑆𝑚𝑎𝑥    (5) 

In Eq. (5) 𝑆𝑐𝑙𝑠  specifies the skin affected area, and  𝑘𝑏𝑜𝑥 
indicates the outer region of the affected skin. 

𝑆𝑐𝑠 (𝑞, 𝑣) =  − log 𝑒 𝑉  (6) 

In Eq. (6), 𝑉 specifies the object class q = (𝑞𝑜 , … … … . 𝑞𝑘) 
using a logical function. 

𝐼 (𝑥) = arg max  (𝐴(𝑥), 𝐵 (𝑥))  (7) 

In Eq. (7), segmentations of all the skin layers are multipart 
to reproduce the whole segmented image. 

𝑎 (𝑥, 𝑦) =  
1

𝑡ℎ
∗  ∑ ∑ 𝑓(𝑥 + 𝑜 , 𝑦 + 𝑖) ∗  𝑓(𝑥 + 𝑜 , 𝑦 +𝑏

𝑡=−𝑏
𝑎
𝑠=−𝑎

𝑖)    (8) 
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In Eq. (8), 𝑜 and 𝑖 represent the dimensions of the over skin 
pixel. 

𝑙 (𝐸𝑘) =  ∑ 𝑝 (𝑟𝑘)𝑛−1
𝑘=0   (9) 

Eq. (9) is adjusted to the adjoining rate after being 
augmented by L1 indirection to control the pixel's value. 

 

Fig. 3. SFWS segmentation output. 

Fig. 3 shows the overlapping objects and variations caused 
by the segmentation approach as common pixel, weighted 
average, or confidence-based overlap segment selection. This 
technique is specifically valuable in processing images of high 
size and resolution without the need to downscale, typically 
resulting in information loss. Its networked context also makes 
it suitable for deep learning models, contributes towards more 
correct and stable subdivision, supporting dermatologists in 
early and accurate detection of skin diseases. 

C. Adaptive Particle Swarm Intelligent Optimization (APSIO) 

Feature Selection 

APSIO is a feature selection procedure that aims to select the 
most relevant features from a dataset for use in structure and 
training. The APSIO calculates the potential of each feature and 
assigns a fixed binary or continuous vector to each subset, 
adjusting its position based on the pixel of each skin layer. The 
adaptive approach dynamically changes the acceleration 
coefficients, inertia, and weight based on the current 
performance, range, and iteration progress of the swarm. The 
dataset is split into an 80:20 ratio, with 20% kept back for 
testing, and the remaining 80% used for training. Fig. 4 shows 
the working flow. APSIO takes input data features such as 
numerical or categorical parameters of the dataset, which are 
first preprocessed and normalized. Feature range is done by an 
adaptive mechanism that assesses each feature's relevance as per 
fitness scores obtained from a predefined objective function. 
Every particle in the swarm is a candidate solution, a set of 
features with position and velocity being updated step by step. 
The algorithm estimates the fitness of every particle by 
measuring model performance (e.g., classification accuracy or 
error rate) based on the chosen features. 

 

Fig. 4. Flow chart of APSIO feature selection. 

Adaptive methods update particle behavior according to 
convergence trends dynamically, optimizing an exploration and 
exploitation balance. The result is the optimal subset of features 
that maximizes the objective function, enhancing the 
performance, and minimizing dimensionality. 

D. APSIO Algorithm 

1) Adaptive inertia weight in particle velocity update 

𝑣𝑖
(𝑡+1)

=  𝑤(𝑡) . 𝑣𝑖
(𝑡)

+  𝐶1 . 𝑟1 .  (𝑝𝑖
𝑏𝑒𝑠𝑡 − 𝑥𝑖

(𝑡)
) +

𝑐2 . 𝑟2 .  (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖
(𝑡)

 )  (10) 

In Eq. (10), 𝑣𝑖
(𝑡)

 rate of unit i at iteration, 𝑤(𝑡) adaptive 

inertia weight (variations per iteration) for calculating the 
features. 

2) Position particle update 

𝑥𝑖
(𝑡+1)

 =  𝑥𝑖
(𝑡)

+  𝑉𝑖
(𝑡+1)

  (11) 

In Eq. (11), (𝑡 + 1)that creates a binary representation (0 or 
1) from a constant search space, where procedures may examine 
various feature combinations. 

3) Determine each element's fitness using a few chosen 

structures 

𝑆(𝑉𝑖
(𝑡)

) =  
1

1+𝑒
−𝑣

𝑖
(𝑡)  (12) 

In Eq. (12), A Binary Transfer Function (BTF) 𝑆 ( 𝑉𝑖
(𝑡)

 ), a 

mapping used in the selection of features which ends up in a 
binary representation (0 or 1) for each feature, signifying its 
inclusion or exclusion in the chosen subset, from a continuous 
search space where procedures may examine various feature 
configurations. 
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4) Function of binary transfer (for feature selection) 

𝑥𝑖
(𝑡+1)

 = {1  𝑖𝑓 𝑟 < 𝑆 𝑉𝑖
(𝑡)

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (13) 

In Eq. (13), feature subset valuation of a fitness function is a 
numerical appearance, which calculates how well a detailed 
feature subset is suitable for classification. At different selecting 
features, a collective skin structure image that shows the 
continuing link is created by reflecting of essential perceptual 
uniform areas. 

5) Optimization and backpropagation: Every few 

iterations, backpropagation can be used to optimize selective 

parameters. 

𝑥𝑖 =  𝑥𝑖 − 𝜂∇𝑥𝐿(𝑥𝑖)  (14) 

In Eq. (14), 𝜂 denotes the learning rate, and ∇𝑥𝐿 represents 
the gradient of the loss function with respect to the weights and 
biases denoted by 𝑥𝑖. 

6) Output: An optimized binary vector 𝑥𝑖 ∈ {0,1}𝑛  for 

each particle, representing the selected feature subset. 

E. Hyper-Convoluted Intra-Capsuled Neural Network (HCI-

CNN) and YOLO Algorithm 

The HCI-CNN structure utilizes hyper-convolutional layers 
to identify complex spatial pixels and employs capsule-based 
learning to preserve the pose and structural relationships 
between different layers of skin. In the initial stage, a 
convolutional layer with 32 filters of 3×3 and ReLU activation 
is utilized to extract low-level visual features. To ensure efficient 
and stable training, an exponential moving average with a 
momentum of 0.99 is implemented, along with an adaptive 
learning rate of 0.001. 

Fig. 5 shows the detailed architecture of the proposed hybrid 
classification model in skin disease detection. 

The HCI-CNN and YOLO algorithms operate in a hybrid 
manner by integrating deep feature extraction and real-time 
object detection. HCI-CNN accepts preprocessed dermoscopic 
images and clinical images as input and uses hyper-convoluted 
layers to extract detailed texture, color, and structural features, 
which are encoded through intra-capsuled routing mechanisms 
for high-level representation. Such encoded features are used for 
the classification of skin lesions with high accuracy. 

At the same time, the YOLO algorithm classifies the same 
images to identify and locate infected skin areas by segmenting 
them into a grid and predicting bounding boxes and confidence 
estimates. The hybrid system leverages HCI-CNN's 
classification power and YOLO's spatial localization feature. 
The combined technique improves both diagnostic accuracy and 
detection efficiency in medical imaging tasks. The Hybrid HCI-
CNN and YOLO classification technique aims to enhance the 
accuracy of skin disease classification using medical images. 

Fig. 6 shows an intra-capsuled architecture, which continues 
layers and orientation information through dynamic routing 
units, enabling the model to maintain spatial relationships 
among structures. As an outcome of HCI-CNN surpasses 
conventional CNNs by achieving greater generalizability, 

coupled with improved handling of intricate skin disease 
contours in diagnostic contexts. 

 

Fig. 5. Hybrid architecture diagram of HCI-CNN and YOLO algorithms. 

 

Fig. 6. Flow chart of feature classification. 
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F. Hybrid HCI-CNN and YOLO Algorithm 

1) Convolution hyper layer 

𝑌 =  ∑ 𝑘𝑖  (𝑥) ∗  𝑥𝑖
𝐶𝑖𝑛
𝑖=1   (15) 

In Eq. (15), 𝑥  is an input mapping channel, 𝑘𝑖  (𝑥)  is 
dynamically evaluated for pixel classification. 

𝑑𝑒  (𝑥, 𝑦) =  √∑ (𝑥𝑖 −  𝑦𝑖)2𝑛
𝑛−1   (16) 

In Eq. (16), distance 𝑛 is probably the most frequently used 
distance of difference across feature vectors. Here 𝑛 represents 
the number of characteristics. 

𝑑𝑒  (𝑥, 𝑦) =  ∑ | 𝑎𝑖− 𝑏𝑖  |
𝑛
𝑖=1    (17) 

In Eq. (17), (𝑎,𝑏)  constant may be used to quantify the 

separability of classes and to determine closely two samples 
(𝑥, 𝑦), under the different skin classes are related. 

𝑒 [ 𝑋 , 𝑌 ] =  
1

𝑁
 ∑ 𝑋𝑖 −  𝑌𝑖   𝑖   (18) 

In Eq. (18), hyper-convolutional layers 𝑋𝑖 − 𝑌𝑖  are 
evaluated using multi-scale receptive field processing to capture 
both fine-grained texture and contextual information, enabling 
the differentiation of visually confusable skin cancer types. 

Apply the YOLO Classification algorithm to predict object 
boundaries and class labels 

In Eq. (19), each pixel within the region is characterized 
based on the amount of associated data. 

𝑋𝑂 =  𝑋1 + 𝑋2 +  𝑋3  (19) 

2) Capsule intra transformation 

 Approach Routing (𝑈𝑖,𝑗  , 𝑟, 𝑙 ), All capsules I and J in 

layer l and (l + 1), respectively. 

 for r iterations, do 

 for all capsule i in layer l: 𝐶𝑖 = softmax (𝑏𝑖) 

 for all capsule j in layer (l + 1): 𝑆𝑗 =  ∑ 𝐶𝑖,𝑗  , 𝑈𝑖,𝑗
𝑁
𝑖=1  

 for all capsule j in layer (l + 1): Vj = 𝑆𝑞𝑢𝑎𝑠ℎ Si.j 

3) Routing between capsules in a dynamic manner: In Eq. 

(20), a squash function is applied to normalize the output 

vectors of capsules. 

𝑉𝑗 = 𝑆𝑞𝑢𝑎𝑠ℎ ( ∑ 𝑐𝑖𝑗 𝑢 𝑗| 𝑖)𝑖   (20) 

4) Output: The vector magnitude is maintained between 0 

and 1 by using the nonlinear squashing function, evaluated in 

Eq. (21) 

𝑃 (𝑦 = 𝑘 | 𝑥 ) = |𝑉𝑘|  (21) 

IV. RESULTS AND DISCUSSION 

Skin disease identification is the basis for the experiment 
calculation, and the system uses a specific dataset from which 
performance analysis is assessed. The specific test data with 
predictive values is properly evaluated for feature selection, 
identification of specific skin conditions, and comparison with 

previous studies. The APSIO feature selection and HCI-CNN 
classification are evaluated in this result and discussion. 

A. Skin Diseases Dataset Description 

The proposed method uses a dataset of high-resolution 
clinical skin images using the recommended medical 
application, 10015 images representing seven different classes 
includes Melanocytic Nevi (6705), Melanoma (1113), Benign 
Keratosis (1099), Basal Cell Carcinoma (514), Actinic Keratosis 
(327), Vascular Lesions (142), Dermatofibroma (115) from the 
HAM10000 dataset and it can be gain from 
https://www.kaggle.com/ and 1200 clinical images which is 
collected from individuals. Each image is associated with 
specific attributes. The dataset is divided into seven categories 
of dermoscopic images. The images are split into a training set 
(80%) and a testing set (20%). 

B. Feature Selection Calculation 

Three feature selection methods are compared in Table II 
based on feature dimensionality, computational time, and 
accuracy. When compared based on skin image features, the 
proposed APSIO method demonstrated superior performance, 
achieving higher accuracy than other methods across different 
data volumes. These results demonstrate that APSIO is a highly 
effective optimization-based feature selection technique, 
achieving higher accuracy with significantly fewer features and 
making it well-suited for efficient and accurate skin image 
classification tasks. 

TABLE I COMPARATIVE ANALYSIS OF SKIN FEATURE SELECTION 

METHODS 

Feature 

Selection 

Computational 

Time (s) 

Feature 

Dimensionality 
Accuracy 

Histogram of 

Oriented 

Gradients 
(HOG) 

1.8 
High (~3780 

features/image) 
92.4 

Gray Level 

Co-
occurrence 

Matrix 

(GLCM) 

1.2 
Medium (~20–40 

features) 
94.3 

Adaptive 
Particle 

Swarm 

Intelligent 
Optimization 

(APSIO) 

2.4 
Low (~10–15 

optimized features) 
95.3 

 
(a) 
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(b) 

Fig. 7. Training and testing accuracy and loss. 

Fig. 7 shows the accuracy of the typical and the loss of the 
APSIO approach generated from segmented images. The 
highest value of loss is 1.75, and the value decreases, as 
indicated by (a), as epochs increase, as indicated by (b). The 
output of the Dense model performs best on the testing set using 
segmented images. 

 

Fig. 8. Training and testing accuracy of hybrid HCI-CNN and YOLO. 

Fig. 8 evaluates and compares the performance of different 
deep learning and machine learning models for classification 
problems. In terms of generalization, the Hybrid HCI-CNN and 
YOLO models achieve higher accuracy than the previous 
classification methods. 

C. Experimental Evaluation 

The Error-Level Analysis (ELA) in Fig. 9 evaluates the error 
rates of different classification outputs. The HCI-CNN had a 
reduced error rate of 5.5%, which was significantly lower than 
GoogLe-Net 14.3%, ResNet 13.2%, and Mobile Net 8.4% and 
demonstrates the superior performance of HCI-CNN compared 
to other models. 

 

Fig. 9. Error rate analysis. 

 

Fig. 10. HCI-CNN classification ROC curve. 

Fig. 10 shows the HCI-CNN classification error analysis 
based on the test data, indicating a True Positive Rate (TPR) of 
0.97 and a False Positive Rate (FPR) of 0.03. 

D. Comparison Evaluation 

Fig. 11 validates that the proposed hybrid approach, HCI-
CNN combined with YOLO, reaches a maximum accuracy of 
97%, which is significantly better than the previous ResNet50 
and K-nearest neighbour, which show accuracies of 94 %, 
ResNet101V2 accuracy of 86 %. 

Fig. 12 shows that the HCI-CNN and YOLO hybrid model 
significantly improves recall, achieving 96.55% compared to 
existing methods. Random Forest and SVM achieved recall 
values of approximately 82.5% and 88.3%, respectively, 
whereas ResNet achieved 89.3% and Extreme Gradient 
Boosting achieved 92.5%. 
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Fig. 11. Proposed classification accuracy analysis. 

 

Fig. 12. Proposed recall analysis. 

 

Fig. 13. Proposed precision analysis. 

Fig. 13 shows that the proposed HCI-CNN and YOLO 
method achieves a precision of 96.52%, outperforming other 
existing methods such as Random Forest (81.3%), SVM 
(85.2%), ResNet (88.4%), and Dense Net (95.6%). 

 

Fig. 14. Proposed F1-score analysis. 

Fig. 14 shows a comparison graph of F1-Scores for various 
machine learning models, including Random Forest and SVM, 
which demonstrate an average performance of 83%. However, 
deep learning models such as deep residual networks and 
eXtreme Gradient Boosting are also compared. The proposed 
HCI-CNN and YOLO methods are also compared, with the 
highest F1 score of 96.93% achieved by HCI-CNN, 
demonstrating its superior performance. 

 

Fig. 15. Proposed segmentation analysis. 

Fig. 15 shows the segmentation evaluation of Global 
Consistency Error (dB) across the three segmentation methods: 
Slice Fragment Window Segmentation (SFWS), Deep 
Learning-Based Segmentation, and Clustering-Based 
Segmentation. The proposed SFWS has the lowest error at 
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0.3742 dB, demonstrating the highest reliability. In contrast, the 
Deep Learning-Based Segmentation has an error of 0.4785 dB, 
followed by the Clustering-Based Segmentation with an error of 
0.4472 dB. 

 

Fig. 16. MSE segmentation comparison analysis. 

In Fig. 16 MSE (Mean Square Error) for skin image 
segmentation with the existing approach is evaluated through 
the proposed SFWS method as an improved segmentation 
analysis. 

Fig. 17 illustrates the analysis results of the collected clinical 
skin images. When no dermatological abnormalities are detected 
in the collected clinical skin image, the system classifies it as 
normal skin; otherwise, it is classified as a disordered image. 
Among the 1,200 clinical skin images evaluated, 1,194 were 
detected as normal, and the remaining 6 were identified as 
containing dermatological disorders. 

 

Fig. 17. Assessment of acquired dermatological images. 

Table III presents a comparative analysis based on four 
different parameters, using data from cited references that 
support the comparison technique. 

TABLE II COMPARISON OF EXISTING SKIN CANCER IDENTIFICATION 

METHODS 

References 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Ashtagi et al. [25] 91.50 91.00 90.00 90.50 

Imam et al. [26] 93.75 93.75 92.50 93.00 

Bello et al. [27] 87.00 87.00 86.00 86.50 

Khan et al. [28] 92.16 92.16 91.50 91.80 

Natha et al. [29] 86.90 86.90 85.50 86.00 

Jain et al. [30] 90.00 90.00 90.00 90.00 

Huang et al. [31] 87.00 87.00 86.00 86.00 

Chaturvedi et al. 

[32] 
89.00 89.00 88.00 88.00 

Gupta et al. [33] 85.00 85.00 84.00 84.00 

Proposed Model 97 96.52 96.55 96.93 

E. Discussion 

Specific AI technologies have a significant impact on 
reliability and diagnostic classification results for classifying 
skin disease. In this research work, HCI-CNN and YOLO are 
applied for classification, while APSIO is employed for feature 
selection. The combination of these procedures addresses 
critical tests such as high-dimensional data, feature idleness, and 
demand for amplified classification accuracy. The mechanism 
of APSIO dynamically adjusts the limits of the convergence 
rate. The most discriminative features are selected from 
dermoscopic images owing to this adaptive mechanism, which 
decreases computational difficulty without compromising 
diagnostic accuracy. Deep and wide convolutional layers with 
multiple levels of abstraction constitute the HCI-CNN 
architecture, which is effective in capturing. 

V. CONCLUSION 

The proposed AI-powered skin disease detection method 
utilizes advanced image processing techniques, including 
preprocessing, clustering, and classification. Through the 
preprocessing filter, the image improves in clarity for different 
skin colors. In segmentation, factors are divided to evaluate 
geometric and physical damage. In APSIO feature selection, 
related features are selected. Furthermore, a hybrid approach 
integrating HCI-CNN and YOLO is employed for effective 
classification. This approach demonstrates high accuracy in the 
detection and classification of seven different types of skin 
disorders. The selective features remove false positives and 
computational burden, with the added potential for real-time 
medical applications. In this study, both real-world clinical 
images from individuals and curated images from established 
datasets were analyzed to evaluate the system’s performance 
comprehensively. The output performance analysis, with an 
Accuracy of 97%, a precision of 96.52%, a recall of 96.55%, and 
an F1-score of 96.93%, will enhance performance and improve 
classification for applications in healthcare facilities, ultimately 
leading to improved treatment outcomes for patients with skin 
diseases. 

In the future, the rising plurality and complexity of skin 
diseases require new modalities with newly available 
technologies, such as AI and the IoT, to better align and sustain 

0

2

4

6

8

10

12

14

16

18

Slice Fragment

Window

Segmentation

(SFWS)

Clustering-Based

Segmentation

Deep Learning-

Based Segmentation

M
S

E
 (

d
B

)

Performance Analysis of MSE -HAM10000 

Dataset

Analysis of Clinical Images

Normal Clinical Images Disordered Images



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 7, 2025 

323 | P a g e  

www.ijacsa.thesai.org 

the management (exposure reduction) of skin diseases. IoT-
based wearables equipped with high-fidelity imaging sensors 
and biosensors can continuously monitor skin surface indicators, 
temperature, and moisture, as well as the evolution of skin 
lesions, enabling direct and real-time examination of skin health 
by identifying the reliable amount of surface data on a person. 
Combining this data with an AI analytical model, which 
leverages streaming and real-time data, enables humane 
dimension management (e.g., tracking behaviors, detecting 
anomalies, and risk stratification) while learning and evolving. 
Future directions for connected wearables in regulating 
dermatological diseases can be supported by hybrid frameworks 
of learning, such as federated learning and edge cloud learning, 
which erase discreet elements to reduce decentralized training 
mechanisms using decentralized data. This approach maintains 
the patient's anonymity and increases the potential for 
generalizability. 
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