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Abstract—The accurate prediction of stock indexes plays a 

critical role in supporting investment decisions and managing 

financial risks. This study proposed a novel hybrid deep learning 

model that integrated the strengths of Convolutional Neural 

Networks (CNN), the Attention mechanism, and Long Short-

Term Memory (LSTM) networks to enhance the modelling of 

temporal patterns in financial time series. To further improve the 

prediction performance, the Hippopotamus Optimization (HO) 

algorithm was incorporated to fine-tune the networks 

parameters. This is the first application of the CNN-Attention-

LSTM (CAL) architecture to stock index prediction. Ablation 

experiments revealed that the proposed CAL significantly 

outperformed traditional CNN, LSTM, and CNN-LSTM models, 

highlighting the effectiveness of the Attention-based architecture. 

Comparative analyses also demonstrated that the HO-optimized 

CAL (HO-CAL) model achieved superior predictive accuracy 

across multiple markets, confirming both the robustness of the 

hybrid model and the optimization algorithm. These findings 

underscore the potential of combining deep learning 

architectures with metaheuristic optimization to improve the 

prediction accuracy in financial markets, offering valuable 

insights for real-world investment strategies. 
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I. INTRODUCTION 

With the rapid development of the global economy and 
increasing maturity of financial markets, stocks play an 
important role in economic progress [1]. It has become an 
important investment tool for investors due to its high return 
characteristics. In the stock market, accurate price prediction is 
important for investors' decision making and risk management 
[2]. Nevertheless, the stock market is highly volatile and stock 
data are characterized by large volume, non-linearity, and 
noise, which makes accurate prediction extremely challenging 
[3]. The stock index as an investment weathervane is especially 
critical. Thus, exploring more efficient and accurate prediction 
methods has attracted increasing attention from researchers and 
investors. 

Traditional econometric methods, such as ARIMA and 
GARCH, perform better on low-volatility time series, yet they 
are unable to deal with high-dimensional and highly nonlinear 
financial data as complexity and uncertainty increase [4]. 
Machine learning methods such as Random Forest (RF) and 
Support Vector Machine can learn the nonlinear relationship 
between stocks and various impact factors effectively [5]. 
However, these methods are limited in dealing with noise and 
missing data and rely too much on feature selection, which 
leads the prediction accuracy to be difficult to reach the 

expectation [6]. Recently, deep learning has been shown to 
perform better than traditional machine learning in stock price 
analysis because its stronger learning and adaptive capabilities 
[7]. Most representative neural networks have superior 
nonlinear generalization abilities. Such as convolutional neural 
networks (CNN) and long short-term memory networks 
(LSTM) have become the first choices for handling financial 
time series, and the applications include stock price, volatility, 
and trend prediction [8]. However, there are still some 
significant weaknesses in the existing methods: insufficient 
modelling of sequence patterns, poor extraction of deep data 
features, and difficulties in handling large-scale long-term data 
owing to overfitting and gradient issues [9]. 

To address these issues, this study proposes a novel short-
term stock index prediction model. First, CNN is utilized to 
extract deep features from stock data, then the Attention 
mechanism is introduced to assign higher weights to key 
features, and finally, LSTM is used to mine long-term time 
series features, that is, the CNN-Attention-LSTM (CAL) 
hybrid model. The three work in concert to extract more 
comprehensive and in-depth feature information over multiple 
time periods, to adapt to the characteristics and requirements of 
short-term stock prediction and improve the prediction 
accuracy. 

It should be noted that the choice of neural network 
hyperparameters has a significant impact on the prediction 
performance [10], and the hyperparameters of CAL are 
numerous and interrelated. Traditional hyperparameter tuning 
methods, such as Grid Search and Random Search, are 
inefficient and prone to falling into local optimal solutions 
[11]. To address this problem, researchers have used 
optimization algorithms to automatically find the suitable 
hyperparameters of the model, such as the Genetic Algorithm 
and Particle Swarm Optimization (PSO). As an emerging 
metaheuristic optimization algorithm, the Hippopotamus 
Optimization (HO) algorithm simulates the feeding and social 
behaviors of hippos in nature [12]. It shows strong potential for 
solving complex optimization problems, with the advantages of 
fast convergence, strong global search capability, and easy 
implementation [13]. And the HO tends to perform better in 
dealing with high-dimensional, nonlinear, and multimodal 
problems than traditional algorithms like Grid Search, PSO and 
others [14]. 

As this study intends to enhance short-term stock index 
prediction, HO was utilized to explore the optimal 
hyperparameter combination of CAL (HO-CAL). Several 
international indexes were presented to examine the superiority 
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of the HO-CAL hybrid optimization framework. The 
contributions of this study are as follows: 

 The CAL architecture integrates the advantages of 
different blocks. It realizes a breakthrough in extracting 
multi-dimensional features and fully exploits temporal 
information in the sequence. It not only captures the 
local features and long-term dependencies but also 
automatically focuses on the most important parts of the 
input. It shows good adaptability when facing different 
markets and effectively improves the prediction 
performance and generalization ability; 

 The pioneering use of HO to optimize the CAL model, 
which plays a significant role in improving the 
prediction accuracy and robustness, contributes to the 
current research on combining optimization algorithms 
and deep learning. 

 The experimental results show that HO-CAL can 
capture complex relationships and patterns in stock data 
and accurately predict the international indexes, which 
can help investors manage their assets more efficiently 
and allocate capital more adequately. 

The remainder of the study is organized as follows: Section 
II reviews some related work; Section III elaborates on the 
architecture of the proposed model and the optimization 
process; Section IV introduces the experimental settings; 
Section V analyses and discusses the experimental results; and 
Section VI provides the conclusion of this study. 

II. RELATED WORK 

A. Deep Learning Models for Time Series Prediction 

Multivariate time series prediction has a wide range of 
applications in industry, finance, meteorology and other fields 
[15]. An increasing number of finance scholars have begun to 
use neural networks to build stock prediction models, which 
have achieved remarkable results. Deng et al. [16] utilized a 
CNN model to extract the structured features of a time series 
through multilayer convolutional operations and achieved good 
prediction results. Li et al. [17] proposed an LSTM model for 
predicting stock prices by preserving historical information 
through memory cells. Similarly, the integration architecture of 
CNN-LSTM is applied in stock market analysis [18], which 
captures the market fluctuation patterns by analyzing stock 
prices, volumes, and financial data. This assisted investors in 
formulating scientific investment strategies and effectively 
reducing investment risk. However, the dynamic interaction 
modelling ability of CNN-LSTM for temporal features is still 
limited by its static weight allocation mechanism [19]. 
Abbasimehr and Paki [20] proposed an Attention-based LSTM 
time series prediction model that dynamically assigned weights 
through an Attention layer to focus on key information, 
resulting in improved prediction accuracy. 

B. Hybrid Deep Learning Architectures 

The use of a single model often makes it difficult to 
simultaneously consider spatial features, temporal dependence 
and key information screening needs. Thus, combining CNN, 
LSTM and Attention has gradually become a research topic. Yi 
et al. [21] adopted the combined LSTM-CNN Attention model 

in short-term load prediction, which innovatively used 
convolutional kernels to extract the stochasticity of the user 
and solve the problem of non-smooth characteristics. 
Experiments proved that the model reduced the amount of 
input data, and the prediction accuracy outperformed the 
benchmark by more than 10%. Shi et al. [22] predicted stock 
prices by initially extracting the deep features of raw data 
through an Attention-based CNN-LSTM model and then fine-
tuning them using XGBoost. It improved prediction accuracy, 
and helped investors realize income growth and risk avoidance. 
Borré et al. [23] proposed a hybrid LSTM-CNN architecture 
with the introduction of Attention mechanism and Gated 
Residual Networks. The experimental results showed that the 
proposed model performs well in predicting extreme events. 
Peng et al. [24] used an Attention-based CNN-LSTM model to 
predict multiple currencies simultaneously, which better 
captured the correlation between different frequencies and 
currencies. The model improved the prediction accuracy, and 
reduced the transaction cost and investment risk. LÜ et al. [25] 
used CNN-LSTM-Attention to effectively capture the spatial-
temporal correlation of soil moisture, and its RMSE was 
reduced by 49% and 57% compared to LSTM and CNN-
LSTM models, respectively. 

C. Metaheuristic Optimization 

Alongside advances in deep learning models architecture, 
the application of metaheuristic optimization for 
hyperparameter tuning in models has also received increasing 
attention. Although HO is still in the early stages of research, it 
has attracted attention owing to its simple structure and ease of 
integration with deep learning models. Maurya et al. [14] used 
HO to optimize distributed power planning and network 
reconfiguration under different load models and then compared 
it with PSO, whale optimization, grasshopper optimization, 
zebra optimization, coot bird optimizer, and firefly algorithms, 
proved the superiority of HO. Mashru et al. [26] proposed a 
multi-objective hippopotamus optimizer and compared it with 
six well-known swarm intelligence algorithms, which 
demonstrated the effectiveness of HO in dealing with structural 
optimization problems. 

With the rapid evolution of deep learning, CAL model has 
emerged as a powerful tool for dealing with time series due to 
their capacity to jointly capture local patterns, sequential 
dependencies, and key feature importance. Meanwhile, the HO 
algorithm offers an efficient method for tuning 
hyperparameters of such deep architectures, further enhancing 
their performance in noisy stock market environments. While 
existing research still faces several limitations. Many hybrid 
models inadequately address the challenge of hyperparameter 
adjusting, often relying on inefficient or limited optimization 
strategies. Moreover, few studies systematically evaluate the 
integration of attention-based deep learning models with 
metaheuristic algorithms in the context of stock index 
prediction. To bridge this gap, this study proposes a novel HO-
CAL model that combines the CNN-Attention-LSTM model 
with hippopotamus optimization algorithm for hyperparameter 
tuning. This approach is designed to enhance model robustness, 
accuracy, and adaptability across diverse market environments, 
offering both theoretical advancement and practical guidance 
for financial prediction. 
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III. METHODOLOGY 

HO-CAL is a hybrid optimization deep learning framework 
that combines three different types of neural network layers as 
well as an optimization algorithm to fully capture financial 
information and temporal features in the data with the 
following basis. 

A. Convolutional Neural Networks 

A CNN can effectively extract local patterns and features 
from a time series by sliding a convolutional kernel over the 
input data to scan it, as shown in Fig. 1. And pooling layer is 
usually added after the convolutional layer to reduce the 
feature dimension of the data and reduce the computational 
complexity [27]. Therefore, in this study, when facing a large 
amount of stock time series, a 1D-CNN was used to extract 
features and reduce their dimensionality to make the learning 
effect more accurate and concise. 

 

Fig. 1. CNN process structure. 

B. Squeeze-and-Excitation Attention 

CNN cannot distinguish the importance of information 
during learning [28]. While the Attention is extremely 
specialized in capturing critical nodes in sequence processing 
[29]. SE Attention is designed to improve the model 
performance by adaptively adjusting the weights of the feature 
channels. The Squeeze part extracts the global features by 
reducing the features size to 1×1 through a global average 
pooling operation. This step compresses the features of each 
channel into a scalar value to form a channel description 
vector. The Excitation part learns the channel weights through 
a series of fully connected layers and activation functions. 
These weights are used to weight the features and enhance the 
important feature channels. Its core formulas are as follows: 

s = 𝜎(W2 ⋅ 𝛿(W1 ⋅ z))  (1) 

𝑧𝑐 =
1

𝐻×𝑊
∑  𝑖,𝑗 𝑈𝑐(𝑖, 𝑗)  (2) 

𝑈𝑐 = 𝑠𝑐 ⋅ 𝑈𝑐   (3) 

where 𝐻,𝑊 are the feature dimensions and 𝐶 is the number 
of channels. Attention enables the proposed model to 
automatically focus on the key features in massive information, 
significantly improving the relevance of data processing. 
Therefore, the introduction of Attention is expected to further 
enhance the accuracy of stock index predictions. 

C. Long Short-Term Memory Networks 

LSTM is used to process the temporal correlation of the 
sequence data. It adopts a unique gating mechanism to 
effectively manage the flow and memory of information, 
avoiding the loss of important information [30]. The gating 
unit of the LSTM consists of an input gate (𝑖𝑡), forgetting gate 
(𝑓𝑡 ), output gate (𝑜𝑡 ) and cell status (𝐶𝑡 ). The following 
equations express the relationship between these four: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (4) 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (5) 

�̃�𝑡 = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (6) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡  (7) 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)  (8) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)  (9) 

where 𝑥𝑡  is the input at the current moment, ℎ𝑡−1  is the 
output at the previous moment, 𝜎 is the sigmoid function, and 
𝑊, 𝑏 are the weight and deviation of the neuron respectively. 
The 𝑖𝑡 determines the degree of acceptance of new information, 
the 𝑓𝑡  controls the reservation ratio of historical information, 
and the 𝑜𝑡  filters out critical information for current decision 
making. This sophisticated gating mechanism enables LSTM 
to effectively deal with long-term dependencies in sequence 
data. 

D. CNN-Attention-LSTM 

The accurate prediction of stock prices is crucial and 
previous studies have verified the effectiveness of various 
single models. However, there is still much potential to 
improve prediction accuracy, especially in the context of model 
integration and complementarity. Therefore, this study 
proposes an enhanced stock index prediction method based on 
the CAL architecture as shown in Fig. 2. And the specific 
implementation steps are as follows: 

Step 1: Input: stock historical data [𝑇 × 𝐹 × 1], where 𝑇 
denotes the time step and 𝐹 denotes the feature dimension; 

Step 2: Feature extraction (CNN): local features are 
extracted from the input data and deep temporal features are 
gradually extracted through two convolutional layers with an 
activation function to improve the model expression ability; 

Step 3: Attention weighting (Attention): extraction from the 
last step is fed into the SE Attention module. The importance 
weights of each channel are calculated and are weighted by 
fusion with the original features, thereby enhancing the key 
features and suppressing redundant information; 

Step 4: Sequence modelling (LSTM): the weighted feature 
sequences are input into the LSTM network to further model 
the long-term dependencies in the time dimension and extract 
the time series information; 

Step 5: Prediction output: the LSTM output is mapped 
through the fully connected layer to obtain the final predicted 
price. 
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Fig. 2. CAL architecture for stock index prediction. 

It can be found that CAL integrates the feature extraction 
capability of CNN, the channel feature weighting capability of 
Attention mechanism, and the temporal modelling capability of 
LSTM. Its innovation lies in integrating different types of 
neural network layers to form an efficient temporal prediction 
architecture, which can improve prediction accuracy. 

E. Hippopotamus Optimization Algorithm 

CAL has a complex hyperparameter space, and the 
combination of these hyperparameters can significantly affect 
the prediction accuracy and generalization ability of the model. 
HO is the newest metaheuristic optimization algorithm 
proposed by Amiri et al. [12] in 2024. It simulates the dynamic 
response strategy of hippos under different environmental 
conditions, which is an SI algorithm based on stochastic 
search. The HO algorithm consists of the following three 
stages: 

The initialization of HO involves the generation of 
stochastic initial solutions, and the decision variables are 

𝑥𝑖𝑗 = 𝑙𝑏𝑗 + 𝑟 ∗ (𝑢𝑏𝑗 − 𝑙𝑏𝑗), 𝑖 = 1,2,⋯ ,𝑁; 𝑗 = 1,2,⋯ ,𝑚(10) 

where 𝑟 is a random number within (0,1), 𝑙𝑏𝑗  and 𝑢𝑏𝑗  are 

the upper and lower bounds of the 𝑗𝑡ℎ dimension respectively. 

Phase I: Position updating (Exploration). The dominant 
hippo individual in the group (the optimal solution) guides the 
other individuals to update positions, which can be expressed 
as 

𝑥𝑖𝑗
𝑀 = 𝑥𝑖𝑗 + 𝑦1 ⋅ (𝐷ℎ𝑖𝑝𝑝𝑜 − 𝐼1 ⋅ 𝑥𝑖𝑗) (11) 

where 𝑥𝑖𝑗  denotes the position of the 𝑖𝑡ℎ hippo in the 𝑗𝑡ℎ 

dimension, 𝐷ℎ𝑖𝑝𝑝𝑜 is the position of the dominant male hippo, 

𝑦1  is a random number within [0,1] , and 𝐼1  represents the 
distance reduction factor. The position update formula for a 
female or immature hippos is as follows: 

𝑥𝑖𝑗
𝐹𝑀 = {

𝑥𝑖𝑗 + ℎ1 ⋅ (𝐷ℎ𝑖𝑝𝑝𝑜 − 𝐼2 ⋅ 𝑀𝐺𝑖), 𝑇 > 0.6

Δ, else
(12) 

Δ = {
𝑥𝑖𝑗 + ℎ2 ⋅ (𝑀𝐺𝑖 − 𝐷ℎ𝑖𝑝𝑝𝑜), 𝑟6 > 0.5

𝑙𝑏𝑗 + 𝑟7(𝑢𝑏𝑗 − 𝑙𝑏𝑗), else
   (13) 

𝑇 = exp (−
𝑡

Maxiteration
)  (14) 

where 𝐼2  is an integer between [1,2] , 𝑀𝐺𝑖  denotes the 
average position of some randomly selected hippos from the 
population, 𝑟6 and 𝑟7  are random numbers between [0,1], and 
ℎ1  and ℎ2  are randomly selected numbers. The following 
equation describes the update of the position of hippos in the 
population: 

𝑥𝑖 = {
𝑥𝑖 , 𝐹𝑖

𝑀 < 𝐹𝑖
𝑥𝑖 , else

  (15) 

Phase II: Defence against predators (Exploration). 
Avoiding the algorithm falling into a local optimal solution by 
simulating the hippos' defence strategy when threatened by a 
predator. The predator position is denoted by 

Predator𝑗 = 𝑙𝑏𝑗 + 𝐫8 ⋅ (𝑢𝑏𝑗 − 𝑙𝑏𝑗) (16) 

where 𝐫8  is a random vector within [0,1] . The hippos 
respond to a predator as 

𝑥𝑖𝑗
𝐻𝑖𝑝𝑝𝑜𝑅

=

{
 

 𝐑𝐋⊕ Predator𝑗 +
𝑓

𝑐−𝑑×cos(2𝜋𝑔)
⋅
1

𝐃
, 𝐹Predator𝑗 < 𝐹𝑖

𝐑𝐋⊕ Predator𝑗 +
𝑓

𝑐−𝑑×cos(2𝜋𝑔)
⋅

1

𝐃+𝐫9
, else

(17) 

where 𝐑𝐋 is a random vector with a Lévy distribution to 
model the fast-acting behaviour of hippos during attacks, and 
𝑓, 𝑐, 𝑑, and 𝑔 are random numbers to control the intensity and 
direction of the hippos' response. The position of the 𝑖𝑡ℎ hippo 
is updated by 

𝑥𝑖 = {
𝑥𝑖
𝐻𝑖𝑝𝑝𝑜𝑅

, 𝐹𝑖
𝐻𝑖𝑝𝑝𝑜𝑅

< 𝐹𝑖
𝑥𝑖 , else

  (18) 

Phase III: Escaping from predator (Exploitation). Focus on 
efficient localized search in the solution space to improve the 
accuracy and quality of the solution. Hippos escape position 
update: 

𝑥𝑖𝑗
ℎ𝑖𝑝𝑝𝑜𝜀

= 𝑥𝑖𝑗 + 𝑟10 ⋅ (𝑙𝑏𝑗
𝑙𝑜𝑐𝑎𝑙 + 𝑠1 ⋅ (𝑢𝑏𝑗

𝑙𝑜𝑐𝑎𝑙 − 𝑙𝑏𝑗
𝑙𝑜𝑐𝑎𝑙)(19) 

𝑙𝑏𝑗
𝑙𝑜𝑐𝑎𝑙 =

𝑙𝑏𝑗

𝑡
, 𝑢𝑏𝑗

𝑙𝑜𝑐𝑎𝑙 =
𝑢𝑏𝑗

𝑡
 (20) 

Fig. 3 shows the specific process of HO adjustment of the 
CAL hyperparameters. HO begins by randomly initializing a 
population of hippo individuals, where each represents a set of 
CAL hyperparameters. In the fitness evaluation section, each 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 7, 2025 

337 | P a g e  

www.ijacsa.thesai.org 

individual's hyperparameter configuration was used to train the 
CAL, with the RMSE on the validation set serving as the 
fitness value. The algorithm then updates each individual's 
position according to HO principles, effectively adjusting the 
CAL hyperparameters. This process iterates until the 
convergence criteria are reached, and the optimal 
hyperparameters that minimize the prediction error are 
obtained. 

 

Fig. 3. CAL hyperparameter optimization via the HO algorithm. 

IV. EXPERIMENTAL PROCESS 

For stock index prediction evaluation, all experiments were 
conducted on a Windows 11 system using a CPU (13th Gen 
Intel Core i7-13700H) and GPU (NVIDIA GeForce RTX 3050 
4GB). And the prediction models were implemented in 
MATLAB (R2024b). 

A. Data Pre-Processing 

This study targets the CSI 300 Index in China, which is 
regarded as a trend indicator for the Shanghai and Shenzhen 
markets. It covers 300 A-shares with large market 
capitalization and high liquidity. The research period is from 
January 7, 2019 to December 27, 2024, with 1,451 trading 
days. The proposed model is based on technical analysis and is 
premised on the identification of behavioral patterns in 
historical series. Thus, referring to Paiva et al. [31], Table I 
summarizes 21 technical indicators were used as inputs for the 
prediction, including return rate indicators calculated based on 
opening (𝑂), closing (𝐶), high (𝐻) and low (𝐿) prices, as well 
as momentum, volatility, and volume related indicators etc. 

There is a considerable difference in the scale of the above 
features. The normalization process helps to speed up the 
convergence of the loss function, prevent gradient explosion in 
network training, and improve the computational accuracy [5]. 
Therefore, this study applies the Min-Max normalization 
method to transform the data between [0,1], and the calculation 
process is as follows: 

𝐗new =
𝐗−𝐗min

𝐗max−𝐗min
  (21) 

where X  is the original technical indicators matrix, 
Xmax  and Xmin  are the maximum and minimum values of X, 
respectively, and Xnew is the new value after normalization. 

TABLE I.  SUMMARY OF STOCK INDEX PREDICTION VARIABLES 

Return Rate Indicators Technical Indicators 

𝑣1 = 𝑙𝑛 (
𝐶𝑡
𝐶𝑡−1

) 𝑣8 = 𝑙𝑛 (
𝐻𝑡−1
𝑂𝑡−1

) 
Momentum (close price, period = 
10) 

𝑣2 = 𝑙𝑛 (
𝐶𝑡−1
𝐶𝑡−2

) 𝑣9 = 𝑙𝑛 (
𝐻𝑡−2
𝑂𝑡−2

) 
Relative strength index (close 
price, period = 14) 

𝑣3 = 𝑙𝑛 (
𝐶𝑡−2
𝐶𝑡−3

) 𝑣10 = 𝑙𝑛 (
𝐻𝑡−3
𝑂𝑡−3

) 
Parabolic SAR (high and low 

price, acceleration = 0, maximum 
= 0) 

𝑣4 = 𝑙𝑛 (
𝐻𝑡
𝑂𝑡
) 𝑣11 = 𝑙𝑛 (

𝐿𝑡
𝑂𝑡
) 

Average true range (high, low and 

close price, period = 14) 

𝑣5 = 𝑙𝑛 (
𝐻𝑡
𝑂𝑡−1

) 𝑣12 = 𝑙𝑛 (
𝐿𝑡−1
𝑂𝑡−1

) 
True range (high, low, and close 
price) 

𝑣6 = 𝑙𝑛 (
𝐻𝑡
𝑂𝑡−2

) 𝑣13 = 𝑙𝑛 (
𝐿𝑡−2
𝑂𝑡−2

) 
Chaikin A/D line (high, low, and 

close price; volume) 

𝑣7 = 𝑙𝑛 (
𝐻𝑡
𝑂𝑡−3

) 𝑣14 = 𝑙𝑛 (
𝐿𝑡−3
𝑂𝑡−3

) 
On balance volume (close price, 

volume) 

B. Sliding Window and Evaluation Metrics 

This study uses the technical indicators of the past 20 days 
to predict the closing price of the next day. And a sliding 
window approach was conducted for the six-year index data: 
the first three years of data were used to train the model; the 
following year was used as a validation set for optimally tuning 
the CAL hyperparameters; and the subsequent year is used as a 
test set to examine the prediction ability. And each completed 
cycle slides forward for one year, ultimately obtaining daily 
predicted closing price for 2023 and 2024. 

In order to evaluate the model prediction performance, this 
research employed six evaluation metrics. They are Mean 
Absolute Error, Mean Absolute Percentage Error, Mean Square 
Error, RMSE, R2 and Relative Error, which are calculated as 
follows: 

MAE =
1

𝑁
∑  𝑁
𝑡=1 |𝑟𝑡 − �̂�𝑡|  (22) 

MAPE =
1

𝑁
∑  𝑁
𝑡=1 |

𝑟𝑡−�̂�𝑡

𝑟𝑡
|  (23) 

MSE =
1

𝑁
∑  𝑁
𝑡=1 (𝑟𝑡 − �̂�𝑡)

2  (24) 

RMSE = √
1

𝑁
∑  𝑁
𝑡=1 (𝑟𝑡 − �̂�𝑡)

2 (25) 

𝑅2 = 1 −
∑  𝑁
𝑡=1 (𝑟𝑡−�̂�𝑡)

2

∑  𝑁
𝑡=1 (𝑟𝑡−�̅�)

2   (26) 

Relative Error =  
�̂�𝑡−𝑟𝑡

𝑟𝑡
  (27) 

where 𝑟𝑡, �̂�𝑡 represent actual close price and predictive close 
price at time 𝑡 respectively. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

This section presents and discusses several experimental 
evaluations of the proposed HO-CAL framework through 
systematic analysis across multiple perspectives, including 
ablation studies, optimization effectiveness comparisons, and 
robustness across international stock markets. Beyond the 
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quantitative outcomes, we also contextualize these findings by 
comparing them with existing literature and by evaluating how 
the model addresses the challenges identified in earlier 
sections. 

A. Ablation Experiment 

In order to verify the effectiveness of the proposed CAL 
model for short-term stock index prediction, Table II presents a 
comparison of the ablation results against several baseline and 
state-of-the-art methods, including econometric (ARIMA), 
machine learning (RF), and deep learning (CNN, LSTM, 
CNN-LSTM). 

TABLE II.  COMPARISON OF ABLATION RESULTS FOR CAL MODEL 

Model MAE RMSE MAPE(%) R2 

ARIMA 122.86 166.63 3.41 0.897 

RF 101.32 139.78 2.75 0.923 

CNN [16] 82.04 129.96 2.20 0.947 

LSTM [17] 69.25 109.43 1.89 0.957 

CNN-LSTM [18] 59.73 91.82 1.49 0.971 

CAL 52.41 80.57 1.31 0.978 

Among the baseline models, ARIMA shows the worst 
performance, with an MAE of 122.86 and R² of 0.897, 
indicating its limited capacity to capture the nonlinear 
characteristics of stocks. In contrast, the RF model significantly 
improved the prediction accuracy (MAE: 101.32, R²: 0.923), 
highlighting that machine learning methods are better suited 
for modelling the complex relationships among technical 
indicators. Meanwhile, CNN achieved an MAE of 82.04, 
whereas LSTM further reduced it to 69.25, reflecting the 
effectiveness of temporal modelling in financial time series. 
All all deep learning models outperformed RF, underscoring 
their enhanced learning capability and adaptability. The 
combination of CNN-LSTM resulted in a substantial boost in 
performance (MAE: 59.73, R²: 0.971), confirming prior 
findings that hybrid architectures can integrate complementary 
strengths of individual components [18], [22]. 

Building on these findings, the ablation study clearly 
demonstrates that the CAL model delivered the most accurate 
and reliable performance, with the lowest MAE (52.41), 
RMSE (80.57), MAPE (1.31%), and the highest R² (0.978). 
This proves that the addition of the Attention mechanism 
dynamically allocates weights to important time-dependent 
features—addressing the static limitation in CNN-LSTM 
architectures, as previously highlighted by Abbasimehr and 
Paki [20]. These results align with [21] and [24], who reported 
that attention-based models significantly improve prediction 
accuracy by enhancing the model’s ability to focus on relevant 
input segments. 

B. Model Optimization Effectiveness Comparison 

After proving the validity of the CAL model, HO was used 
to optimize CNN-LSTM and CAL for comparison. Fig. 4 
shows the hyperparameter tuning process on the validation set, 
and it can be seen the HO2 (belonging to CAL) demonstrates 
markedly superior performance from the initial iteration, with a 
starting fitness value of 72.35 compared to HO1 (belonging to 
CNN-LSTM) initial value of 87.29. Throughout the 
optimization process, HO2 consistently maintains lower fitness 
values than HO1, ultimately achieving a final fitness value of 
50.41 compared to HO1's 55.73, demonstrating the superior 
optimization ability of HO algorithm. This 10.55% 
improvement, as well as the consistent and substantial 
performance differential between the curves, provide strong 
empirical evidence that the CAL architecture possesses 
inherently better representational capabilities owing to its 
Attention mechanisms. Remarkably, both models exhibited 
rapid convergence within 6 iterations without extensive 
computational overheads. And the steep descent during the first 
two iterations followed by gradual stabilization highlights HO's 
exceptional search efficiency and ability to effectively balance 
exploration and exploitation phases, which proves that HO is 
particularly well suited for CAL hyperparameter optimization 
tasks. 

 

Fig. 4. Convergence analysis of HO for CNN-LSTM and CAL. 

The training period spanning from 2019 to 2022 in Fig. 5 
demonstrate exceptional model convergence, with all models 
exhibiting remarkably close alignment with the actual price 
trajectory. Notably, the models successfully capture major 
market movements, including the significant upward trend 
from early 2020 to mid-2021 (reaching peaks around 5,700) 
and the subsequent downward correction through 2022. The 
observable differences on the training set are minimal, 
suggesting that all models have sufficient price recognition 
capabilities and all have learned effectively. 
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Fig. 5. Prediction performance comparison on training set (2019-2022). 

 

Fig. 6. Prediction performance comparison on testing set (2023-2024). 

The testing results for 2023-2024 in Fig. 6 reveal more 
pronounced performance differentials. The HO-CAL 
demonstrates superior tracking accuracy, maintaining the 
closest alignment with actual price movements throughout the 
testing period. Particularly notable is the model's performance 
during high-volatility periods, such as the sharp decline in mid-
2023 (from ~4,000 to ~3,200) and the subsequent market 
recovery phases, which captures such extreme events in line 
with the study in [23]. The CNN-LSTM baseline shows the 
most significant deviations, particularly during rapid price 
transitions, while the HO-CNN-LSTM demonstrates improved 
stability over its non-optimized counterpart. The CAL 
performs moderately well but lacks the precision achieved by 
its HO-optimized version. The hyperparameter optimization 
significantly enhances prediction accuracy, HO-CNN-LSTM 
and HO-CAL showing reduced prediction volatility and better 
trend-following capabilities. 

The comprehensive performance evaluation presented in 
Table III demonstrate a clear hierarchical structure. 
Specifically, HO-CAL attains the lowest MAE of 40.03, 

representing substantial improvements of 33.0% over CNN-
LSTM, 13.5% over HO-CNN-LSTM, and 23.6% over CAL. 
And the HO algorithm's contribution is consistently significant, 
with HO-CNN-LSTM showing 19.7% RMSE improvement 
over CNN-LSTM, and HO-CAL achieving 22.0% 
improvement over non-optimized CAL. These results confirm 
the complementary value of model architecture (CAL) and 
optimization strategy (HO). In line with Maurya et al. [14], 
who validated HO’s superior performance in engineering 
optimization problems, our results highlight its promising 
extension to stock prediction. 

TABLE III.  HO EFFECTIVENESS TEST 

Model MAE RMSE MAPE(%) R2 

CNN-LSTM [18] 59.73 91.82 1.49 0.971 

HO-CNN-LSTM 46.29 73.69 1.18 0.984 

CAL 52.41 80.57 1.31 0.978 

HO-CAL 40.03 62.86 0.99 0.991 
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The visualization in Fig. 7 provides an intuitive multi-
dimensional performance comparison, clearly illustrating the 
dominance of HO-CAL across all metrics. The radar chart 
reveals that HO-CAL (represented by the innermost polygon 
for error metrics and outermost for R²) consistently achieves 
optimal or near-optimal performance boundaries. Notably, the 
visualization emphasizes the substantial performance gap 
between the optimized and non-optimized models, with both 
HO-enhanced variants showing marked improvements over 
their baseline counterparts. 

 

Fig. 7. Multi-dimensional performance evaluation. 

The comparison in Fig. 8 provides crucial insights into the 
temporal distribution and magnitude of relative errors across 
four models. The error distribution around the zero baseline 
indicates minimal systematic bias across all models, with 
relatively balanced positive and negative errors suggesting 
unbiased prediction behavior. However, the frequency and 

magnitude of extreme errors vary significantly. The CNN-
LSTM exhibiting the most pronounced error volatility, 
displaying frequent extreme deviations reaching ±4%. These 
large-magnitude errors are particularly concentrated during 
periods of high market volatility, indicating the baseline 
model's limited capacity to handle rapid price fluctuations. In 
contrast, HO-CAL demonstrates remarkably constrained error 
boundaries, with the majority of errors confined within ±2% 
range, representing a 50% reduction in maximum error 
magnitude compared to CNN-LSTM. The chronological 
analysis reveals that HO-CAL maintains consistent error 
stability throughout the entire testing period, with notably 
reduced error spikes during critical market transitions observed 
in mid-2023 and late 2024. The HO-CNN-LSTM shows 
intermediate performance, exhibiting improved stability over 
the baseline but lacking the precision consistency achieved by 
Attention-based models. CAL demonstrates moderate error 
reduction compared to CNN-LSTM, though it occasionally 
exhibits error spikes that are effectively mitigated in its 
optimized counterpart HO-CAL. The comparison between 
optimized and non-optimized model pairs clearly demonstrates 
the HO algorithm's effectiveness in error reduction, with HO-
CAL achieving the most significant improvement in error 
containment. 

The HO-CAL framework integrates CAL networks with 
the HO algorithm, achieving lower error metrics and improved 
predictive accuracy. It excels at capturing market turning 
points and maintaining stability during transitions, effectively 
modelling complex temporal and nonlinear dynamics. 
Consistent performance gains across metrics highlight both 
statistical and practical relevance, reducing prediction errors 
and financial risk. The relative error reduction throughout the 
testing period confirms the stability of the proposed framework 
for stock time series prediction applications. 

 

Fig. 8. Temporal distribution of relative prediction errors across models. 
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C. Robustness Test 

To further validate the accuracy and robustness of the HO-
CAL framework, this study extends the evaluation to four 
major international stock indexes: the S&P 500 (Standard & 
Poor’s 500 Index), FTSE 100 (Financial Times Stock 
Exchange 100 Index), Nikkei 225 (Nikkei 225 Stock Average), 
and KOSPI (Korea Composite Stock Price Index). These 
indexes represent a diverse range of market structures and 
efficiency levels across developed and emerging economies. 

TABLE IV.  COMPARISON OF PREDICTIONS FOR INTERNATIONAL MARKETS 

Stock Index MAE RMSE MAPE(%) R2 

CSI 300 40.03 62.86 0.99 0.991 

S&P 500 75.26 113.85 1.42 0.983 

FTSE 100 129.48 194.20 1.56 0.982 

Nikkei 225 471.21 706.85 1.24 0.989 

KOSPI 28.15 42.75 1.06 0.990 

The experimental results in Table IV confirm the 
robustness and generalizability of the proposed framework. 
HO-CAL achieved strong predictive performance across all 
markets, with high R² values (≥ 0.982) and consistently low 
MAE, RMSE, and MAPE values. Notably, KOSPI (MAE: 
28.15, R²: 0.990) and CSI 300 yield the best results, followed 
by Nikkei 225 (MAE: 471.21, R²: 0.989), whereas S&P 500 
and FTSE 100 showed slightly higher error metrics. The 
differences between these international markets are consistent 
with the findings in [32], and can be interpreted through the 
lens of market efficiency: the S&P 500 (USA) and FTSE 100 
(UK) are generally classified as semi-strong to strong-form 
efficient markets, where price patterns are quickly arbitraged 
away, making predictive modelling more challenging. In 
contrast, Nikkei 225 (Japan), KOSPI (Korea) and especially 
CSI 300 (China), often considered weaker-form efficient or 
less efficient due to higher market volatility and behavioral 
factors, may retain exploitable patterns that the HO-CAL 
framework can effectively capture. This also suggests that deep 
learning methods like HO-CAL, tend to perform better in 
markets with lower informational efficiency. These results 
underscore the practical value of the proposed hybrid 
framework in real-world financial predictions, particularly in 
scenarios that involve diverse data distributions and varying 
market dynamics. 

VI. CONCLUSION AND FUTURE WORK 

Stock markets are crucial to global financial systems, and 
accurate stock index prediction remains a challenging yet 
valuable task for investors, policymakers, and researchers. This 
study proposed a novel hybrid HO-CAL framework for 
enhance the predictive accuracy and generalizability of stock 
index. Through comprehensive experiments, the HO-CAL 
achieved consistently superior performance across multiple 
evaluation metrics (e.g., MAE, RMSE, R²), outperforming 
baseline models including CNN, LSTM, CNN-LSTM, and 
even CNN-LSTM-Attention variants. The Attention 
mechanism significantly enhanced the model's ability to focus 
on key temporal patterns, while HO effectively optimized 

parameters to avoid local minima. Ablation studies and visual 
analyses confirmed the individual and synergistic contributions 
of each component. In robustness tests across five major global 
stock markets, HO-CAL maintained high predictive accuracy, 
demonstrating strong generalization ability even in markets 
with differing volatility and efficiency levels. These results 
validate the model’s applicability in real-world investment and 
confirm its alignment with behavioral finance perspectives. 

From a theoretical standpoint, this research contributes to 
the growing body of literature on deep learning in financial 
prediction by (1) empirically demonstrating the benefits of 
attention-enhanced feature selection in volatile stock series, (2) 
proposing the first integration of the CAL architecture with the 
HO algorithm, and (3) verifying the feasibility of metaheuristic 
optimization in tuning deep learning models for financial 
applications. Practically, the proposed framework offers a 
scalable and accurate solution that can assist investors in 
managing portfolio risk and timing market entry more 
effectively. 

Nevertheless, this study has certain limitations: the model 
relies exclusively on technical indicators, without incorporating 
macroeconomic or firm-level fundamental variables, which 
may limit its comprehensiveness in capturing long-term market 
dynamics; while HO showed strong performance, its 
computational cost is non-negligible, especially when applied 
to large-scale or high-frequency datasets. Future work could 
address these limitations in several ways. First, integrating 
fundamental financial indicators (e.g., ROA, PE ratios) and 
macroeconomic variables (e.g., inflation, M2 growth) could 
improve the model’s explanatory power. Second, the model 
can be extended by exploring other deep learning architectures 
such as Transformers, Temporal Convolutional Networks, or 
Graph Neural Networks, which may offer enhanced 
capabilities in modeling complex dependencies. Finally, 
comparisons with other powerful metaheuristic optimization, 
such as Grey Wolf Optimizer or Whale Optimization 
Algorithm, can further refine the optimization strategy. 
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