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Abstract—Images from low-light frequently exhibit poor 

visibility, excessive noise, and color distortion, which substantially 

impair both computer vision systems and human visual 

perception. Although numerous enhancement techniques have 

been developed, producing visually appealing results with well-

maintained structural details and natural color reproduction 

continues to pose significant challenges. To address these 

limitations, this paper present an Brightness-Aware Generative 

Adversarial Network (BA-GAN) for robust low-light image 

enhancement (LLIE). Our framework employs a U-Net-based 

generator that effectively captures multi-scale contextual features 

while preserving fine image details through skip connections. The 

key innovation lies in our novel Brightness Attention Mechanism 

Module, integrated within the decoder, which dynamically directs 

the network's focus to regions requiring substantial illumination 

correction. To ensure local photorealism, this paper adopt a 

PatchGAN discriminator architecture. The complete model is 

trained on the LOL dataset using a composite loss function 

combining: (1) adversarial loss for realistic image generation, (2) 

brightness attention loss for keeping the brightness accuracy, and 

(3) perceptual loss to maintain structural and semantic fidelity. 

Extensive experiments validate that our BA-GAN outperforms 

current state-of-the-art methods, achieving superior performance 

on both quantitative metrics (PSNR: 20.7127, SSIM: 0.7963, 

LPIPS: 0.2271) and qualitative visual assessments. The enhanced 

images demonstrate significantly improved visibility while 

effectively suppressing noise and preserving natural color 

characteristics. 
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I. INTRODUCTION 

Images captured by cameras often used by advanced 
computer vision tasks such as image classification, object 
detection, and image generation, and security monitoring [1]. 
However, during the capture process, due to low-light 
environments or insufficient device lighting capabilities, the 
resulting images are often dim, visually unclear, and have low 
contrast. These images significantly hinder subsequent 
computer vision processing, rendering them largely unusable. 
Low-quality images not only affect human visual experience but 
also have adverse effects on subsequent computer vision 
applications. 

When capturing images in low-light environments, long 
exposure or slow shutter speeds are often used to increase the 
amount of light captured by the camera, making more complex 
low-light blur degradation unavoidable [2]. While flash 
photography is commonly employed to brighten low-light 

environments, it often introduces uneven illumination artifacts 
that degrade image quality through increased noise and 
unnatural lighting patterns. To address these issues, professional 
photographers typically enhance the quality of pictures taken 
under low-light environments by adjusting camera parameters 
or using image editing software (such as Adobe Photoshop) [3]. 
However, this process usually requires complex operations and 
professional skills, making it unsuitable for ordinary users. 
Therefore, automated LLIE technology is crucial for solving this 
problem. 

Conventional approaches to LLIE mainly consist of 
histogram equalization techniques [4] and Retinex-based 
methods [5]. With the advancement of GPU computing power, 
the widespread application of neural networks and deep 
learning, and the emergence of training datasets, it is now 
possible to learn detailed information from images through deep 
learning methods, thereby improving the contrast of images with 
low-light [6]. Deep learning methods utilize deep neural 
networks to establish an end-to-end mapping between low-light 
and normal-light image domains through data-driven learning 
from extensive training samples. Compared to traditional 
methods, they possess more powerful feature representation 
capabilities and have achieved impressive results on benchmark 
datasets [7]. Existing LLIE methods, while capable of upgrading 
the brightness and contrast of dim images to some extent, still 
have issues such as color distortion, noise amplification, and 
insufficient model generalization [8] as it’s hard to obtain paired 
datasets in real-world production and life, as well as the limited 
global processing capability of convolutional operations on 
images. 

GANs [9] have proven effective for image-to-image 
translation tasks, including low-light enhancement. GANs 
leverage a generator network to produce enhanced images and a 
discriminator network to distinguish generated fake images from 
real normal-light images, leading to perceptually more 
convincing results. However, existing methods may still 
struggle with balancing noise suppression, detail preservation, 
and adaptive enhancement across different image regions and 
lighting variations. 

To solve these limitations, this paper propose a Brightness-
Aware Generative Adversarial Network (BA-GAN). The key 

contributions in this paper summarized as follows: 

1) A U-Net generator architecture that fuses multi-scale 

details. This paper adopted a U-Net-based generator, which 

processes images through a symmetric encoder-decoder 

structure. The key to this architecture lies in its skip connections. 

These connections directly transmit the low-level, high-
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resolution detailed features (such as edges and textures) captured 

by the encoder at different levels to the corresponding levels of 

the decoder. This design can effectively avoid the common 

problem of detail information loss in deep networks, thereby 

maximizing the preservation of fine structures while enhancing 

the image brightness and preventing the final result from 

becoming blurred. 

2) A novel illumination attention module for adaptive 

enhancement. This is the core innovation of this paper. We 

integrated an illumination attention module into the decoder of 

the generator. This module aims to solve the problem of uneven 

illumination in low-light images, enabling the network to 

dynamically and adaptively focus its attention on the area’s most 

in need of illumination correction according to the image 

content. By learning and applying this spatially varying 

enhancement strategy, the model can avoid overexposing areas 

with existing light sources while sufficiently brightening 

extremely dark areas, thus achieving a more natural and accurate 

enhancement effect. 

3) A PatchGAN discriminator that focuses on local realism. 

To generate more perceptually convincing results, our 

framework employs a PatchGAN discriminator. Different from 

traditional discriminators that make true/false judgments on the 

entire image, PatchGAN evaluates the authenticity by assessing 

local patches of the image. This mechanism encourages the 

generator to not only focus on the global visual effect but also 

pay attention to generating locally realistic textures and 

structures. This helps to significantly improve the detail quality 

and overall realism of the enhanced image. 

4) A composite loss function for balanced optimization. The 

low-light enhancement task requires a balance among multiple 

objectives. To this end, this paper designed and adopted a 

composite loss function to guide the training of the model. This 

function combines three key components: (1) adversarial loss, 

used to enhance the realism of the generated image; (2) 

brightness attention loss, used to ensure the accuracy of 

brightness correction; and (3) perceptual loss, used to maintain 

the original structure and semantic content of the image in the 

deep feature space. This multi-objective optimization strategy 

ensures that the final enhancement result achieves the best 

balance in terms of visual realism, brightness, and content 

fidelity. 

In summary, LLIE is crucial for improving visual quality and 
enabling robust performance in downstream computer vision 
tasks. However, existing methods ranging from traditional 
techniques like histogram equalization and Retinex theory to 
deep learning approaches—often suffer from color distortion, 
noise amplification, and limited generalization due to the 
scarcity of real-world paired datasets and the inherent 
constraints of convolutional operations. While GANs have 
shown promise in LLIE, challenges remain in achieving 
adaptive enhancement, detail preservation, and noise 
suppression. To address these limitations, this paper propose a 
BA-GAN that integrates a U-Net generator with multi-scale skip 
connections, a novel illumination attention module for adaptive 
brightness correction, a PatchGAN discriminator for local 

realism, and a composite loss function for balanced 
optimization. Our approach aims to deliver natural, high-fidelity 
enhancements while addressing uneven illumination and 
preserving fine-grained details. 

II. RELATED WORKS 

A. Traditional Methods 

Conventional approaches to LLIE mainly consist of 
histogram equalization techniques and Retinex-based methods. 

The histogram equalization method operates on the 
histogram of an image and upgrades the image's contrast by 
altering its dynamic range, which can enhance the quality of dim 
images to some extent [10]. The histogram records the 
distribution of image data, and due to its uneven distribution, 
this method redistributes it to achieve non-linear stretching, 
making the distribution of image data more reasonable. 
Examples include HE [2] and CLAHE [11]. Numerous 
improved methods based on HE, have enhanced HE to varying 
degrees. Compared to global equalization, local equalization 
focuses more on the internal detail distribution of the image, but 
the required computational effort also increases. Low-light 
images enhanced by such methods are prone to issues like 
overexposure or underexposure, color distortion, artificial 
artifacts, loss of image details, and unnatural appearance. 
Sometimes, the resulting images may also retain the noise 
present in the original images. 

Retinex-based methods perform image enhancement 
through a decomposition process, separating low-light images 
into illumination and reflectance components. This separation is 
typically achieved by applying physical priors or mathematical 
regularization constraints. The reflectance component is 
subsequently obtained by solving an optimization problem 
involving both the estimated illumination and the original input 
image [12], and is considered the final enhancement result. 
Building on Retinex, Single Scale Retinex (SSR) [13] was 
proposed, which removes the influence of illumination by 
comparing the central element with the surrounding area's 
luminance values. Multi-Scale Retinex (MSR) [14] was 
introduced to address the issue of Gaussian kernel optimization 
quality. The MSR with Color Restoration (MSRCR) [15] 
algorithm adjusts color distortion by adding a color restoration 
factor. 

Retinex-based LLIE methods can effectively address issues 
such as underexposure and overexposure. However, they often 
overlook the presence of noise during image processing, leading 
to noise amplification. Additionally, these methods struggle to 
find an effective prior or regularization. As a result, low-light 
images enhanced by these methods often have limitations like 
color distortion, artificial artifacts, overexposure, and 
accompanying noise. 

B. Deep Learning-Based Methods 

The rapid evolution of deep learning has led to the 
development of numerous data-driven approaches for LLIE, 
consistently outperforming conventional methods in terms of 
image quality improvement. These techniques leverage deep 
neural architectures to learn complex mappings between low-
light and normal-light image domains, effectively enhancing 
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visual clarity and perceptual quality. Current deep learning-
based approaches can be systematically categorized into four 
paradigms: (1) supervised learning, (2) unsupervised learning, 
(3) semi-supervised learning, and (4) zero-shot learning 
methods. 

1) Supervised learning methods. Supervised learning is 

widely used in LLIE. It involves providing a set of images along 

with their corresponding enhanced versions as training data, 

enabling the model to learn an end-to-end transformation that 

converts input images into enhanced outputs with improved 

visual quality. As the pioneering deep learning solution for 

LLIE, LLNet [16] demonstrated that a carefully designed 

autoencoder could effectively enhance low-light images while 

preserving important visual features. MSR-NET [17] introduced 

the use of convolutional neural networks, combined with 

Retinex theory, to restore images to good brightness levels. Wei 

et al. [18] proposed Retinex-Net, which includes decomposition, 

adjustment, and reconstruction, corresponding to three sub-

networks. During the adjustment phase, the brightness of the 

illumination map is increased through multi-scale encoders and 

decoders. In the final reconstruction stage, the enhanced image 

is obtained through element-wise multiplication of the processed 

illumination and reflectance maps. However, the edges of the 

enhanced structure are overly prominent, and the naturalness of 

the entire image is not perfect. KinD [19] followed the Retinex 

theory-based approach of decomposition followed by 

enhancement, constructing a two-stage network. The restoration 

sub-network introduced information from real illumination to 

prevent image distortion, and the loss function ensured the 

smoothness of the illumination layer. KinD++ [20] alleviated 

residual visual artifacts in the results generated by KinD through 

a multi-scale illumination attention module. MIRNet [21] used 

a multi-scale feature fusion method, including multi-scale 

residual blocks, multi-resolution convolutional streams, and 

attention mechanism-based multi-scale features, achieving high 

performance in image enhancement tasks. Liu et al. [22] 

proposed a three-stage brightness-aware network based on 

brightness-aware attention and residual quantization encoding 

blocks, and their designed a query module link the low-light and 

normal-light domains. Building upon U-Net [23], LAU-Net [24] 

augments the baseline architecture with a Parallel Attention Unit 

(PAU) to weight informative features dynamically, an Internal 

Resizing Module (IRM) for scale-invariant representation 

learning, and auxiliary convolutional layers to mitigate low-light 

artifacts. 

Supervised learning methods have shown improvements in 
color balance and brightness adjustment compared to traditional 
methods, but they tend to lose local details and often rely on 
paired datasets, leading to overfitting and low cross-data 
generalization. In the field of LLIE, paired datasets are limit in 
quantity and synthesizing image datasets can result in poor 
model generalization. 

2) Unsupervised learning methods. Unsupervised learning 

refers to training data without corresponding target enhanced 

images, allowing the model to learn the structure and features of 

image data on its own. After the introduction of GANs, GANs 

achieved significant results in computer vision tasks. This 

method do not need paired training data and can be trained using 

unpaired datasets, making data acquisition relatively easier. In 

the realm of LLIE, EnlightenGAN proposed by Jiang et al. [25] 

was the first to eliminate the dependency on paired training data, 

greatly enhancing the flexibility of generated images and 

adapting to various scenarios. The introduction of RetinexGAN 

[26] combined GANs with the Retinex model, incorporating a 

decomposition network and two discriminative networks, where 

the decomposition network decomposes the Retinex model, and 

the discriminators evaluate the illumination and reflectance 

components. Zhu et al. [27] designed Cycle-consistent 

Generative Adversarial Networks (CycleGAN), which use 

cycle-consistency loss to achieve image style transfer. However, 

applying it to LLIE training is challenging as it overlooks the 

preservation of local features. Hu et al. [28] developed a novel 

two-stage unsupervised framework that separates the 

enhancement process into distinct pre-enhancement and post-

enhancement phases. The initial stage employs conventional 

Retinex-based algorithms for primary image enhancement, 

while the subsequent stage utilizes an adversarial trained 

refinement network to achieve superior quality improvement. In 

a related approach, Wang et al. [29] introduced an attention-

guided unsupervised GAN architecture featuring: (1) an 

auxiliary edge restoration module for enhanced sharpness 

preservation, and (2) a dedicated attention mechanism for 

improved colour fidelity reconstruction. 

3) Semi-supervised learning methods. Semi-supervised 

learning integrates the advantages of supervised and 

unsupervised learning. Yang et al. [25] constructed a deep 

recursive frequency band network, which first uses supervised 

learning to learn frequency band representations from coarse to 

fine, and then employs unsupervised adversarial learning to 

improve the model's generalization ability. Through this end-to-

end recursive training, noise removal is effectively achieved, 

and the ability to recover local structural details is improved. 

Dimma [30] built a brightness adjustment module to obtain a 

low-light version of normal-light images, thereby enabling 

semi-supervised training. 

4) Zero-shot learning methods. Zero-shot learning in the 

field of LLIE refers to the ability to learn how to enhance images 

solely from test images. Guo et al. introduced Zero-DCE [31], a 

lightweight, reference-free deep curve estimation model that 

achieves pixel-level adjustments of input images through image-

to-curve mapping and utilizes a loss function to drive reference-

free training. Building on this, an accelerated lightweight 

version, Zero-DCE++ [32], was introduced. Zhang L et al. 

introduced a "zero-learning" approach for backlit image 

restoration, which is based on deep learning but does not rely on 

any training image. The framework ExCNet, a specially 

designed convolutional neural network architecture. Zhu et al. 

[32] introduced RRDNet, an innovative three-branch CNN that 

decomposes input images into illumination, reflectance, and 

noise components. This architecture employs iterative 
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optimization of a custom loss function to simultaneously predict 

noise patterns and restore underexposed regions. In a 

complementary approach, Liu et al.'s RUAS [33] formulates a 

mathematical model to represent the intrinsic illumination 

structure of low-light images, then unfolds this optimization 

process into a learnable network architecture. By exploring 

optimal configurations within a constrained search space, RUAS 

achieves superior enhancement performance through its 

propagated structure. 

In summary, conventional enhancement methods depend on 
fixed statistical priors, limiting their adaptability to diverse real-
world scenarios. While contemporary supervised approaches 
predominantly employ U-Net architectures, they frequently 
suffer from spatial detail degradation and inadequate feature 
representation due to the absence of attention mechanisms. To 
address these limitations, our proposed framework innovatively 
combines attention modules with a U-Net backbone and 
incorporates a PatchGAN discriminator. This hybrid 
architecture enables: (1) enhanced multi-scale feature learning, 
(2) improved discriminative feature extraction, (3) effective 
noise suppression, and (4) robust contextual information 
aggregation across different scales. 

III. METHODOLOGY 

The LLIE method based on the GANs model introduced in 
this paper employs U-Net as the generator, which is 
characterized by its low data requirement and fast training speed. 
By using PatchGAN as the discriminator instead of the 
traditional binary classifier, the trained model pays more 
attention to image details, improves image quality, and 
accelerates network convergence. The network structure of the 
method used is illustrated in Fig. 1. The generator consists of a 
U-Net backbone with embedded illumination attention modules. 
The discriminator follows a PatchGAN structure to promote 
local realism. 

 

Fig. 1. The proposed BA-GAN structure. 

C. Generator 

U-Net has demonstrated success in image segmentation, 
image translation, and enhancement. Through the structure of 
the encoder and decoder, along with skip connections, U-Net 
avoids generating blurry images or losing details (such as edges 
and textures). The symmetric structure of U-Net better preserves 
spatial correspondences. 

The extracted image features are encoded and decoded by 
the U-Net network, and the same convolution and structural 
detail residual fusion operations are performed on all branches 
to improve the features, resulting in feature maps with stronger 
expressive capabilities. The U-Net network can combine low-
level and high level features from the encoder and decoder, fully 

utilizing contextual texture information. The proposed generator 
structure is illustrated in Fig. 2. 

 

Fig. 2. The structure of the proposed generator. 

D. Brightness Attention Module 

In the low-light enhancement task, the degradation of the 
image is not uniformly distributed. Some areas may be almost 
completely black and require significant brightening, while 
other areas may have a small amount of light sources and need 
fine adjustment to avoid overexposure. Due to its fixed local 
receptive field, the traditional convolution operation has 
difficulty capturing such global and dynamic illumination 
dependencies. Therefore, this paper designed an Brightness 
Attention Module (BAM). Its core objective is to enable the 
network to adaptively evaluate the importance of different 
feature channels for the final illumination restoration and 
recalibrate the features accordingly, so as to achieve precise and 
differentiated enhancement of illumination. 

Our BAM is strategically placed between the encoder and 
decoder of the U-Net. It takes the deepest feature map 𝐹𝑒𝑛𝑐 ∈

𝑅𝐶×𝐻′×𝑊′
 output by the encoder as input and performs the 

following three consecutive operations to generate the attention-

calibrated feature map 𝐹𝑎𝑡𝑡 ∈ 𝑅𝐶×𝐻′×𝑊′
. 

1) Illumination squeeze. First, this paper perform Global 

Average Pooling on the input feature map 𝐹𝑒𝑛𝑐, compressing it 

in the spatial dimension to generate a scalar descriptor for each 

channel. This process can be regarded as the extraction and 

generalization of the global illumination information contained 

in each feature channel. The object is to obtain a vector 𝑧 ∈ 𝑅𝐶 , 

where each element 𝑧𝑐  represents the global illumination 

response of the c-th feature channel. 

zc = Fsq(Fenc) =
1

H′×W′
∑  H′

i=1 ∑  W′

j=1 Fencc
(i, j) (1) 

2) Illumination excitation. To learn the complex non-linear 

illumination dependencies between channels, this paper uses 

two fully connected (FC) layers to process the compressed 

descriptor z. The first FC layer reduces the dimension from C to 

C/r (where r is the reduction ratio) and uses the ReLU activation 

function. The second FC layer restores the dimension to C and 

uses the Sigmoid activation function, ultimately generating the 

attention weights 𝑠 ∈ 𝑅𝐶  for each channel. The output values of 

the Sigmoid function range from 0 to 1, which can exactly serve 

as the "importance" or "gain" weights for each channel. The 

closer the value is to 1, the more important the channel is for 

illumination restoration. 

𝑠 = 𝐹𝑒𝑥(𝑧, 𝑊) = 𝜎(𝑊2𝛿(𝑊1𝑧))  (2) 

Where σ is the Sigmoid function, δ is the ReLU function, 
and 𝑊1 and 𝑊2 are the weights of two fully connected layers. 
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3) Feature recalibration. Finally, this paper multiplies the 

learned channel attention weights s with the original input 

feature map 𝐹𝑒𝑛𝑐 channel by channel to obtain the final output 

attention feature map 𝐹𝑎𝑡𝑡. This operation enables the network 

to enhance the feature channels that are beneficial for 

illumination enhancement while suppressing the irrelevant 

channels that may introduce noise or artifacts. This calibrated 

feature map 𝐹𝑎𝑡𝑡  is then fed into the decoder to guide the 

subsequent image reconstruction process. 

𝐹𝑎𝑡𝑡𝑐
= 𝑠𝑐 ⋅ 𝐹𝑒𝑛𝑐𝑐

   (3) 

Although the BAM this paper proposed draws on the idea of 
channel attention in structure [34], its uniqueness and 
effectiveness are reflected in the following aspects: 

 Task Specificity: Different from general attention 
modules, our BAM is specifically designed to solve the 
problem of uneven illumination. By modeling global 
information at the bottleneck of the network, it focuses 
on learning which regional features should be brightened 
and which dark - area details should be retained, rather 
than general feature enhancement. 

 Strategic Placement: This paper place the BAM at the 
bottleneck of the U-Net, instead of spreading it after each 
convolutional block as in traditional practices. The 
reason for this design is that performing global 
illumination calibration at the place where information 
compression is most extreme allows the decoder to 
obtain prior knowledge about the overall illumination 
distribution at the first step of the reconstruction process, 
thereby more effectively guiding all subsequent 
upsampling and feature fusion steps and fundamentally 
reducing artifacts and color distortion. 

 Synergy with Loss Function: More importantly, the 
design of this module forms a synergy with the 
Brightness Attention Loss function this paper proposed. 
The BAM learns the intrinsic dependence of illumination 
at the feature level, while the brightness loss supervises 
the final brightness accuracy at the pixel level. The two 
jointly guide the network from different dimensions, 
ensuring the realism and accuracy of illumination 
enhancement. 

E. Discriminator 

In designing the discriminator network, this paper references 
the PatchGAN discriminator proposed by Isola et al. [27] to 
replace the traditional binary classifier discriminator. This 
discriminator outputs an N × N matrix, and the image is judged 
as real or generated based on the mean value of the matrix. 
Compared to the traditional binary classifier discriminator, the 
advantage of using the PatchGAN discriminator lies in its output 
being a matrix, with the final result being the matrix mean, 
which fully considers the influence of different regions of the 
image, thereby enhancing image quality and paying more 
attention to image details. Additionally, the computation of 
small-sized image patches significantly accelerates the 
convergence speed of the network. This paper designs a CNN 
model with 4 fully convolutional layers. Except for the last 

convolutional layer, the other 3 layers undergo BatchNorm for 
data standardization after convolution, and LeakReLu is used as 
the activation function. The proposed discriminator structure is 
illustrated in Fig. 3. 

 

Fig. 3. The structure of the discriminator. 

F. Loss Functions 

Adversarial Loss [35]. The adversarial loss is the core 
driving force of the GANs framework. Its fundamental goal is 
to drive the generator to produce enhanced images that are more 
visually realistic and indistinguishable from real normal - 
illuminated images in terms of distribution. This process can be 
understood as a two - player game involving two networks (the 
generator G and the discriminator D). 

Generator (G): The generator is a U-Net-based network. Its 
task is to receive a low-light image as input and output an 
enhanced fake image 𝐼𝑔𝑒𝑛 . The goal of the generator is to 

deceive the discriminator as much as possible and make it 
believe that the generated image is real. 

Discriminator (D): The discriminator adopts the PatchGAN 
architecture. Its role is like an image connoisseur or a binary 
classifier, and its sole goal is to accurately distinguish between 
the real normal-illumination image 𝐼𝑟𝑒𝑎𝑙  and the fake image 𝐼𝑔𝑒𝑛  

produced by the generator. 

𝐿𝑎𝑑𝑣 =  𝐸[𝑙𝑜𝑔(𝐷(𝐼𝑟𝑒𝑎𝑙))] +  𝐸 [𝑙𝑜𝑔 (1 −  𝐷(𝐼𝑔𝑒𝑛))](4) 

Compared with traditional loss functions that only rely on 
pixel-level differences (such as L1 or MSE loss), adversarial loss 
has significant advantages in improving the perceptual quality 
of images. It does not require the generated image to be exactly 
the same as the target image in terms of pixels, but encourages 
the generated image to look more realistic in terms of texture, 
structure, and overall style. 

In particular, the PatchGAN discriminator used in this paper 
does not output a single true/false judgment for the entire image. 
Instead, it makes judgments on N×N-sized image patches 
(Patches) in the image and then averages all the judgment 
results. This mechanism forces the generator to not only focus 
on global consistency but also ensure that the local texture and 
structure of the image are equally realistic, thereby effectively 
improving the quality of image details and accelerating the 
convergence of the network. 

Brightness Attention Loss. Using global L1 or L2 loss 
directly between the brightness and the target image treats all 
regions in the image equally. However, in the low-light 
enhancement task, the human eye perceives brightness errors 
differently in different regions [36]. For example, in regions that 
already have a light source or are rich in texture, slight 
deviations in brightness are more likely to be noticed and cause 
artifacts; while in smooth and extremely dark regions, the 
weight of the error can be relatively lower [37]. To make the 
model prioritize the key regions that have a greater impact on 
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visual quality during the optimization process, this paper 
designed the Brightness Attention Loss Function. 

Attention Map Generation. This paper assumes that in 
regions with drastic luminance changes (i.e., large gradient 
values), such as edges and textures, the accuracy of luminance 
restoration is crucial for the overall perceptual quality [38]. 
Therefore, this paper uses the gradient magnitude of the 
luminance channel of the target image to generate the attention 
map A. The specific steps are as follows: 

First, this paper uses the standard Sobel operator to calculate 
the gradients 𝐺𝑥 and 𝐺𝑦 of the target luminance map 𝑌𝑡𝑎𝑟𝑔𝑒𝑡 in 

the horizontal and vertical directions respectively. 

Then, this paper calculates the gradient magnitude of each 
pixel. 

𝑀𝑔𝑟𝑎𝑑(𝑖, 𝑗) = √𝐺𝑥(𝑖, 𝑗)2 + 𝐺𝑦(𝑖, 𝑗)2 (5) 

To convert the gradient magnitude into a normalized 
attention weight map A this paper processes it to make its values 
more concentrated in the key regions. First, this paper 
normalizes it to the range of [0,1], then add a small constant ε to 
avoid division by zero, and use it as the final attention weight. 
The weight map A generated in this way has higher values in the 
edge and detail regions of the image and lower values in the 
smooth regions. 

𝐴(𝑖, 𝑗) =
𝑀𝑔𝑟𝑎𝑑(𝑖,𝑗)

max(𝑀𝑔𝑟𝑎𝑑)
+ ε   (6) 

Finally, this paper combines the above attention weight map 
A with the brightness difference between the generated image 
𝑌𝑔𝑒𝑛  and the target image 𝑌𝑡𝑎𝑟𝑔𝑒𝑡  to define our brightness 

attention loss. 

𝐿𝑏𝑟𝑖𝑔ℎ𝑡 =
1

𝐻×𝑊
∑ 𝐴(𝑖, 𝑗)𝑖,𝑗 ⋅ (𝑌𝑔𝑒𝑛(𝑖, 𝑗) − 𝑌𝑡𝑎𝑟𝑔𝑒𝑡(𝑖, 𝑗))

2

(7) 

This paper uses the weighted L2 loss (squared difference) 
here mainly for two reasons: First, compared with the L1 loss, 
the L2 loss imposes a stronger penalty on larger errors, which 
helps the model quickly correct obvious brightness deviations in 
the early stage of training. Second, by multiplying with the 
attention weight A, this loss function forces the generator to 
prioritize optimizing the brightness accuracy in the key regions 
of the image structure (such as edges and textures), thereby 
effectively preserving image details and suppressing artifacts 
while improving the overall brightness. 

Perceptual Loss [35] mainly uses the differences between 
high-dimensional feature maps of images to guide model 
training. Perception loss can make the image more similar in 
high-level information such as content and global structure, 
ensure the semantic information of the image as much as 
possible, and also enhance the detail information, which is 
conducive to the training of unpaired data sets. 

𝐿𝑝𝑒𝑟𝑐𝑒𝑝 =  
1

𝑊𝑖𝐻𝑖𝐶𝑖
‖ 𝜑𝑖(𝐼𝑥) − 𝜑𝑖(𝐺(𝐼𝑥))‖ (8) 

Among them, the 𝜑𝑖  represents the ith feature map taken 
from VGG16 network, 𝐼𝑥 represents the input low illumination 
image, in the feature map, W is the width, H is the height and C 
is the channel. 

Generator loss [9]. In the BA-GAN framework proposed in 
this paper, the training objectives of the generator are multi- 
faceted. It not only needs to enhance the image brightness but 
also ensure the realism of the results and the fidelity of the 
content. To achieve this complex balance, the optimization of 
the generator is not driven by a single objective but is guided by 
a composite loss function. This total loss function 𝐿𝐺  is a 
weighted sum of three independent loss terms, and each term 
targets a specific aspect of the enhancement process. 

𝐿𝐺 =  𝜆𝑎𝑑𝑣 ∗  𝐿𝑎𝑑𝑣 +  𝜆𝑏𝑟𝑖𝑔ℎ𝑡 ∗  𝐿𝑏𝑟𝑖𝑔ℎ𝑡 +  𝜆𝑝𝑒𝑟𝑐𝑒𝑝 ∗

 𝐿𝑝𝑒𝑟𝑐𝑒𝑝(9) 

Among them, 𝜆𝑎𝑑𝑣, 𝜆𝑏𝑟𝑖𝑔ℎ𝑡 , 𝜆𝑝𝑒𝑟𝑐𝑒𝑝 are weights within the 

composite generator loss function. Through the synergistic 
effect of these three loss functions, the generator learns how to 
strike a balance among multiple objectives during the training 
process: making the image brighter and accurate, making it look 
real and natural, and at the same time retaining all the content of 
the original scene. The weights for the composite loss function 
were empirically set to 𝜆𝑎𝑑𝑣=1, 𝜆𝑏𝑟𝑖𝑔ℎ𝑡=1, and 𝜆𝑝𝑒𝑟𝑐𝑒𝑝=0.1 to 

balance the contributions of each component. 

Discriminator loss [9]. After each iteration, calculate the loss 
function to get the difference between the fake and true images, 
then guide the next step of training. The specific method is to 
first initialize the model parameters with random values, input a 
low light image, obtain an enhanced image through a generation 
network, calculate the error between images using a 
discriminator, pass the error back along the direction of 
minimum gradient, modify the parameter values, repeat multiple 
times until the error value reaches a satisfactory value, and then 
stop iterating to obtain the final required model.  

In the GANs framework proposed in this paper, the 
discriminator plays the role of an image connoisseur. The 
discriminator loss (𝐿𝐷) is the core indicator for measuring the 
level of its discrimination ability. Its fundamental goal is to drive 
the discriminator network to more and more accurately 
distinguish between real normal-illuminated images and 
enhanced images forged by the generator. 

The training process of the discriminator receives two types 
of inputs: 

Real images 𝐼𝑟𝑒𝑎𝑙 : Real, high-quality normal-illumination 
images from the LOL dataset. 

Fake images 𝐼𝑔𝑒𝑛 : Enhanced images output by the U-Net 

generator after processing low-light images. 

The goal of the discriminator is to output a probability value 
close to 1 for real images (judged as true) and a probability value 
close to 0 for fake images (judged as false). To achieve the above 
goals, the training of the discriminator aims to maximize its loss 
function 𝐿𝐷, which is defined in the paper as follows: 

𝐿𝐷 = 𝐸[log 𝐷 (𝐼𝑟𝑒𝑎𝑙)] + 𝐸 [log (1 − 𝐷(𝐼𝑔𝑒𝑛))](10) 

In each training iteration, the model calculates the value of 
this loss function to measure the difference between the real 
image and the fake image. Then, this error is backpropagated 
along the gradient to update the network parameters of the 
discriminator itself. 
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Different from traditional discriminators that output a single 
true/false probability for the entire image, PatchGAN divides the 
input image into multiple N×N image patches (Patches) and 
makes a authenticity judgment for each patch, ultimately 
outputting an N×N matrix. The final judgment result is obtained 
by taking the average of this matrix. The advantage of this 
mechanism is that it forces the discriminator to focus on the local 
details and texture realism of the image, rather than just the 
global appearance, which helps to improve the overall quality of 
the generated images and accelerate the convergence of the 
network. 

IV. EXPERIMENTS 

A. Dataset 

The existing LOL-dataset [39] is used in this study. The 
LOL-dataset includes 485:15 pairs of images used for training 
and testing. The most core feature of the LOL-dataset is that it 
contains paired images. Each pair consists of an image taken 
under low-light conditions and its corresponding ground-truth 
image of the same scene taken under normal lighting conditions. 
This paired characteristic makes it very suitable for calculating 
the metrics of model performance. The test set of this dataset is 
used as a standard platform to objectively evaluate and compare 
the performance of the method in this paper with other 
representative algorithms. Below image pairs in Fig. 4 are some 
of the image samples from the LOL-dataset. 

   

   

Fig. 4. The image samples from the LOL-dataset. 

B. Experimental Setting 

Hardware and platform: All training and testing were 
completed on a server equipped with an NVIDIA GeForce 4090 
GPU, and the operating system was Ubuntu. 

Software framework: Our model was implemented based on 
the PyTorch deep learning framework. 

Training hyperparameters: The model was trained using the 
Adam optimizer. The initial learning rate was set to 1e-4, the 
batch size was set to 64, and the model was trained for a total of 
3000 epochs. 

Algorithm 1: Training of the proposed BA-GAN Algorithm 

Input: Learning rate 𝛼,  Gradient penalty coefficient λ; Adam 
optimizer parameters α, β₁, β₂; batch size m; low-light image 
xᵢ; 
Initialize: discriminator parameters w₀; generator parameters 
θ₀ 

While (generator parameter θ not converged do) do 

 For (each epoch) do 

 

 

 

 

 

 

 

 

 

 

 

 

End 

Sample a batch of 𝑚 low-light images {𝑥(𝑖)}𝑖=1
𝑚  

from the dataset. 
   Sample a batch of 𝑚 real normal-light images 

{𝑦(𝑖)}𝑖=1
𝑚  from the dataset. 

   Generate fake images: �̃�(𝑖) = 𝐺𝜃(𝑥(𝑖)). 
   Calculate the discriminator loss 𝐿𝐷:  

𝐿𝐷 ← 𝐸[log 𝐷𝑤(𝑦(𝑖))] + 𝐸[log (1 − 𝐷𝑤(�̃�(𝑖)))] 
Update discriminator parameters via gradient ascent: 

𝑤 ← 𝑤 + 𝛼 ⋅ Adam(∇𝑤𝐿𝐷 , 𝑤, 𝛽1, 𝛽2) 
End for 

Sample a batch of 𝑚 low-light images {𝑥(𝑖)}𝑖=1
𝑚  from 

the dataset. 
Calculate the composite generator loss 𝐿G: 

𝐿𝐺 ← 𝜆𝑎𝑑𝑣𝐿𝑎𝑑𝑣 + 𝜆𝑏𝑟𝑖𝑔ℎ𝑡𝐿𝑏𝑟𝑖𝑔ℎ𝑡 + 𝜆𝑝𝑒𝑟𝑐𝑒𝑝𝐿𝑝𝑒𝑟𝑐𝑒𝑝 

Update generator parameters via gradient descent: 
𝜃 ← 𝜃 − 𝛼 ⋅ Adam(∇𝜃𝐿𝐺 , 𝜃, 𝛽1, 𝛽2) 

Output: The trained generator 𝐺𝜃. 
 

C. Evaluation Metrics 

To more objectively assess the performance of the improved 
model in this paper, common image assessment algorithms were 
used to evaluate some representative methods. The evaluation 
metrics selected were Peak Signal-to-Noise Ratio (PSNR) [40], 
Structural Similarity Index (SSIM), and Learned Perceptual 
Image Patch Similarity (LPIPS) [41]. 

PSNR is a widely used metric for measuring image quality. 
It evaluates image quality based on the errors between 
corresponding pixels. This metric quantifies the degree of image 
distortion by calculating the ratio of the signal (the maximum 
possible pixel value of the image) to the noise (the mean squared 
error between the enhanced image and the real image). When 
evaluating the results, a higher PSNR value indicates better 
quality and less distortion of the enhanced image. 

The calculation of PSNR is based on the Mean Square Error 
(MSE) [42]. MSE is calculated first, and then PSNR is 
calculated according to MSE. The calculation formula of MSE 
is: 

𝑀𝑆𝐸 =
1

nm
∑ ∑ (𝐼(𝑖,𝑗) − 𝐾(𝑖,𝑗))

2n
𝑗=1

m
𝑖=1  (11) 

Where m and n are the number of rows and columns of the 
image, 𝐼(𝑖, 𝑗)is position that the pixel value of the original image, 
𝐾(𝑖, 𝑗) is the pixel value of the processed image at the same 
position. After obtaining MSE, PSNR can be calculated by the 
following formula: 

𝑃𝑆𝑁𝑅 = 10 log10 (
MAXI

2

MSE
)  (12) 

Among them, MAX I is the maximum possible image pixel 
value. For 8-bit images, MAX I is usually 255. 

The SSIM quantifies image similarity through three key 
components: luminance, contrast, and structural composition. 
Higher SSIM values (ranging from 0 to 1) indicate greater 
similarity between the enhanced and reference images. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = (
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2+𝜇𝑦

2+𝐶1
) ⋅ (

2𝜎𝑥𝑦+𝐶2

𝜎𝑥
2+𝜎𝑦

2+𝐶2
) (13) 
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X and y are the two images to be compared, μ𝑥  And μ𝑦 

Average brightness of image x and y, μ𝑥
2  And μ𝑦

2  Is the 

variance of image x and y, μ𝑥𝑦
 is the covariance of image xx and 

y, and C1 and C2 are small constants added to avoid zero 
denominator. 

LPIPS is a modern metric that measures perceptual 
similarity by simulating human visual evaluation. It uses a deep 
learning network to extract and compare the deep features of 
image patches, thereby determining the similarity between two 
images in the eyes of human observers. Different from the 
previous two metrics, a lower LPIPS value (closer to 0) 
represents higher perceptual fidelity between the two images, 
meaning they are more similar visually. 

V. RESULTS AND DISCUSSIONS 

A. Comparsion with other Methods 

To evaluate the effectiveness of our method, this paper 
compares it with several representative low-light enhancement 
algorithms on the LOL dataset, including HE [11], MSR [14], 
Retinex-Net [18], EnlightenGAN [25], KinD [19], Zero-DCE 
[31], and SCI [43]. Quantitative comparisons of these metrics 
across different methods are presented in Table I. 

As shown in Table I, our proposed method achieves the 
highest SSIM score (0.7963) and the best PSNR (20.7127 dB) 
among all compared methods, indicating superior structural 
preservation and noise suppression capabilities. Moreover, our 
method attains a competitive LPIPS score (0.2271), 
demonstrating enhanced perceptual quality compared to most 
baseline approaches. These results validate the effectiveness of 
integrating U-Net, PatchGAN, and illumination attention for 
robust LLIE. 

Fig. 5 presents qualitative comparisons of enhanced results 
on representative samples from the LOL dataset using different 
methods. Compared to EnlightenGAN, Zero-DCE, and SCI, the 
proposed method achieves superior visual quality in terms of 
brightness balance, detail preservation, and color fidelity. 

Specifically, EnlightenGAN tends to produce over-saturated 
regions and amplifies noise in extremely dark areas. Zero-DCE 
improves brightness but suffers from local color distortion and 
residual noise, particularly in high-texture regions (e.g., books, 
patterns). SCI shows smoother brightness but lacks sharpness in 
edges and tends to flatten subtle textures. 

In contrast, the proposed method generates enhanced images 
that are perceptually more natural and visually closer to the 
ground truth. The edges and structural details (e.g., in cabinets, 
text, and metal objects) are well preserved, and the illumination 
is more uniformly distributed across the image. Furthermore, 
color consistency is notably better, with reduced color cast and 
halo artifacts compared to the other approaches. 

TABLE I EVALUATION RESULTS ON LOL DATASET 

Method SSIM↑ PSNR↑ LPIPS↓ 

HE [11] 0.6433 19.9959 0.3551 

MSR [14] 0.5327 11.4331 0.3505 

Retinex-Net [18] 0.7903 18.9775 0.2036 

EnlightenGAN [25] 0.7117 15.5693 0.2547 

KinD [19] 0.6475 16.0338 0.2979 

Zero-DCE [31] 0.6322 15.2961 0.2925 

SCI [43] 0.6514 16.4265 0.3156 

proposed 0.7963 20.7127 0.2271 

      

      

      

      

      
Input Ground truth EnlightenGAN [25] ZeroDCE [31] SCI [43] Proposed 

Fig. 5. The enhanced results from the LOL-dataset by different methods. 
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These results demonstrate the effectiveness of the proposed 
illumination attention mechanism and edge-aware optimization 
in guiding the network to enhance low-light images with 
improved structure, texture, and perceptual realism. 

B. Ablation Study 

To investigate the efficiency of each module in the proposed 
model to the final results, four experiments were designed. The 
following ablated Components were combined for training: U-
Net as generator, PatchGAN as discriminator, and Attention 
module. Finally, the generated models were compared to 
determine the role of each module in the model. From the Table 
II, it can be observed: 

1) Removing the illumination attention results in PSNR and 

SSIM decrease, and a deterioration in the LPIPS metric, 

indicating that illumination perception significantly enhances 

detail and realism. 

2) After removing the PatchGAN discriminator, the image 

quality metrics slightly decline, suggesting that adversarial 

training also contributes to improving local details. 

3) Without using U-net as the generator, the overall 

performance decreases, demonstrating that the U-net encoder-

decoder structure plays a crucial role in feature modelling under 

complex illumination conditions. 

TABLE II EVALUATION RESULTS FOR ABLATION STUDIES ON LOL-
DATASET 

Components SSIM↑ PSNR↑ LPIPS ↓ 

Full model 0.7963 20.7127 0.2271 

w/o attention 0.7012 16.4131 0.3422 

w/o patchGAN 0.7054 18.0921 0.3012 

w/o U-net 0.5023 12.1091 0.3547 

VI. CONCLUSION 

This paper addresses the existing challenges in the LLIE 
task, such as color distortion, noise amplification, and detail 
loss, and proposes a novel BA-GAN. This framework aims to 
generate enhanced images that are visually appealing and have 
high information fidelity through a well-designed end-to-end 
deep learning model. 

The core contribution of this paper lies in the hybrid 
architecture design of BA-GAN. This paper adopts a U-Net-
based generator, which effectively captures multi-scale context 
features and preserves fine image details through skip 
connections. The key innovation is that this paper integrates a 
novel illumination attention module into the decoder of the 
generator, enabling it to adaptively focus on the regions that 
require key illumination correction according to the image 
content. Meanwhile, this paper uses the PatchGAN 
discriminator architecture to ensure the local realism of the 
generated images. The entire model is optimized through a 
composite loss function that combines adversarial loss, 
brightness attention loss, and perceptual loss, thus achieving an 
effective balance among the realism, brightness accuracy, and 
structural fidelity of the images. 

To verify the effectiveness of our method, this paper 
conducted a series of extensive experiments on the public LOL 
dataset. The quantitative evaluation results show that our BA-
GAN outperforms a variety of current mainstream methods in 
terms of PSNR (20.7127) and SSIM (0.7963), demonstrating its 
superior ability in structure preservation and noise suppression. 
Qualitative visual comparisons further prove that our method 
can significantly improve the visibility of images while 
effectively suppressing noise and maintaining natural color 
features. Ablation experiments also verify the key contributions 
of each module this paper proposed to the final performance. 

Although this study has achieved remarkable results, there 
are still some limitations and future exploration directions. First, 
as a supervised learning method, our model currently relies on 
paired training data, which is difficult to obtain in many real-
world scenarios. Future work can explore combining the 
illumination attention mechanism with unsupervised or semi-
supervised learning frameworks to enhance the model's 
generalization ability. Second, further research can be conducted 
to extend this method from static images to the field of low-light 
video enhancement and explore how to ensure the temporal 
consistency between video frames. Finally, future research can 
systematically evaluate the actual improvement effect of the 
images enhanced by BA-GAN on the performance of 
downstream computer vision tasks (such as object detection and 
image classification). 
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