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Abstract—In this study, we propose a graph-based node 

classification to address challenges such as data scarcity, class 

imbalance, limited access to original textual content in 

benchmark datasets, semantic preservation, and model 

generalization in node classification tasks. Beyond simple data 

replication, we enhanced the Cora dataset by extracting content 

from its original PostScript files using a three-dimensional 

framework that combines in one pipeline NLP-based techniques 

such as PEGASUS paraphrase, synthetic model generation and a 

controlled subject aware synonym replacement. We substantially 

expanded the dataset to 17,780 nodes—representing an 

approximation of 6.57x scaling while maintaining semantic 

fidelity (WMD scores: 0.27-0.34). Our Bayesian Hyperparameter 

tuning was conducted using Optuna, along with k-fold cross-

validation for a rigorous optimized model validation protocol. 

Our Graph Convolutional Network (GCN) model achieves 

95.42% accuracy while Graph Attention Network (GAT) reaches 

93.46%, even when scaled to a significantly larger dataset than 

the base. Our empirical analysis demonstrates that semantic-

preserving augmentation helped us achieve better performance 

while maintaining model stability across scaled datasets, offering 

a cost-effective alternative to architectural complexity, making 

graph learning accessible to resource-constrained environments. 

Keywords—Graph Convolutional Networks (GCN); Graph 

Attention Networks (GAT); hyperparameter tuning; data 

augmentation; PEGASUS; synonym replacement; optuna bayesian 

optimization; node classification; class imbalance 

I. INTRODUCTION 

Text classification represents a foundational element within 
the domain of natural language processing (NLP), showcasing 
a broad scope of applications. Text classification systems must 
effectively map textual content to appropriate categories, a task 
complicated by the need to capture both local semantic patterns 
and global contextual relationships. In conventional methods, 
text is represented by hand-built features, typically lexical 
features (e.g., bags of words and n-grams) although they are 
efficient for particular tasks, semantic complex patterns are not 
well captured. The development towards deep learning models 
has been considerably applied to learn advanced textual 
representations, incorporating convolutional neural networks 

(CNNs) [1] and recurrent neural networks (RNNs) like long-
term memory (LSTM) [2], such models perform well in terms 
of capturing semantic and syntactic insights within sequences 
of local consecutive words; however, they are still likely to 
disregard co-occurrence of the global words in a corpus that 
covers long-range, non-consecutive semantics dependencies 
that are important for overall text comprehension [3]. 

Lately, emerging graph-based approaches trends have 
gained significant attention to remedy these limitations, such as 
graph neural networks or graphical embeddings [4]. Unlike 
conventional sequence-based methods, GNNs allows for 
processing data in graphical interconnected network format. 
This paradigm shift enable the models to leverage both local 
characteristics of nodes and global graph topology, given that 
graphs are highly eloquent and boost calculation performance 
and extract semantic and syntactic information, innovative 
methods emerged for processing graph-structured data in 
machine learning, i.e., the graphical neural network, making its 
mark in numerous applications and proving itself as an 
effective and successful architecture. 

Among the various GNN architectures, particularly Graph 
Convolutional Networks (GCNs) [5], shown remarkable 
success in node classification tasks. Based on the foundational 
work of spectral graph theory, the studies of (Bruna et al. 2014) 
[6], (Henaff et al. 2015) [7], and (Defferrard, Bresson, and 
Vandergheynst 2016) [8] set up the theoretical basis for 
carrying out convolution operations on graph-structured 
datasets, yielding competitive results in node classification 
seminal contribution introducing a localized, first-order method 
seminal contribution streamlined these spectral approaches by 
offering a localized, first-order approximation that maintains 
computational efficiency while achieving state-of-the-art 
performance across diverse graph-structured datasets, 
including the widely adopted Cora benchmark. Further 
applications include various domains from semantic role 
labeling in [9] to biomedical entity classification in [10]. 

Incorporating attention mechanisms into GNNs is yet a 
further significant advancement. The Graph Attention Network 
(GAT), introduced by Velickovic et al. (2018) [11], builds 
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upon the concept of attention, thereby enabling the model to 
prioritize the most significant nodes during the aggregation 
process. Graph Attention Networks (GATs) have been highly 
influential in enhancing the performance of GNNs by 
dynamically assigning adaptive attention weights to 
neighboring nodes based on their relevance allowing them to 
allocate computational resources to the richest connections, 
resulting in more nuanced and effective feature representations, 
notably in heterogeneous graph settings in which node and 
edge types diverge considerably. 

Although there have been significant architectural 
advances, critical challenges persist that impede the practical 
application and scalability of graph-based textual classification 
models such as data scarcity, class imbalance, and semantic 
coherence preservation. Benchmark datasets are typically 
provided in a format that limits their potential for these type of 
models, Cora [12] an example of a standard dataset, while 
academically valuable it comes often in pre-vectorized formats, 
which detaches the learning process from the original semantic 
complexity, restricts certain feature engineering introducing a 
barrier in research from flexibility in exploration of different 
preprocessing pipelines. In addition to its small size and class 
imbalance which further hinders generalization rare classes are 
not well represented. Furthermore, the lack of access to the 
original text prevents any attempt at implementing effective 
augmentation strategies. These common limitations prevent 
GNNs from fully using their ability to learn contextual 
representations from textual content. 

Existing approaches exhibit a notable research gap: while 
important efforts have focused on architectural innovations to 
advance GNN capabilities, less attention has been paid to the 
research-based investigation of dataset quality and preparation. 
This gap can be seen in three practical challenges that limit 
how well we can evaluate performance. First, benchmark 
datasets like Cora are distributed in pre-vectorized formats, 
which limit access to original textual content and opportunities 
for controlled preprocessing or semantic augmentation. 
Second, the often-overlooked persistent class imbalance such 
as Neural Networks composed of 30% of samples while only 
6% for Rule Learning can make the evaluation less accurate. 
Third, semantic preservation metrics for augmented graph data 
remain inconsistent, this makes it hard to make sure that 
synthetic relationships are meaningful. These data-related 
limitations suggest that focusing only on architectural 
complexity may not solve foundational challenges in graph-
based text classification, underscoring the need for 
complementary data enhancement approaches. Although 
several studies acknowledge these issues, more careful 
investigations into semantic-preserving augmentation and class 
distribution mitigation remain limited. Addressing these 
challenges is essential to support and not replace architectural 
progress. 

To address this gap, this study explores the following 
research question: How can semantic-preserving dataset 
augmentation serve as a cost-effective complement to 
architectural innovations in graph-based text classification, 
while maintaining semantic consistency and boosting 
performance without increasing computational demands? This 

question is motivated by the practical need to make advanced 
graph learning accessible to resource-constrained environments 
while tackling fundamental data quality issues that 
architectural solutions alone cannot resolve. To answer this 
question, we present a scalable framework for dataset 
augmentation that preserves semantic consistency, aimed at 
improving graph-based text classification using graph neural 
networks (GNNs). Our work places particular emphasis on 
Graph Convolutional Networks (GCNs) and Graph Attention 
Networks (GATs). The framework responds to a frequent issue 
in this field—the discrepancy between the sophistication of 
theoretical models and the constraints placed on by real-world 
datasets. While much of the existing literature centers on 
architectural innovation, our findings suggest that focusing on 
data quality—specifically through targeted augmentation—can 
lead to performance gains that are comparable to those 
achieved through complex model redesigns. Our approach 
addresses several challenges: 

1) Cost-effective: alternative to developing new 

architecture, making advanced graph learning accessible to 

researchers with limited computational resources. 

2) Data augmentation: We introduce a hybrid 

augmentation pipeline that combines in a refined pipeline, 

NLP-based techniques like PEGASUS for text paraphrase [13] 

, controlled synonym replacement techniques [14], and a 

synthetic domain-specific text generation, we augment the 

dataset to enhance both the diversity and quantity of the 

training data and solve class imbalances while preserving 

semantic coherence while enabling in addition flexible and 

transparent text preprocessing. 

3) Semantic quality assurance: We use semantic 

similarity checks employing the metric Word Mover's 

Distance (WMD) [15] to confirm that augmented samples 

maintain meaning and contextual relevance rather than 

depending just on cosine similarity operating on fixed vector 

representations and may overlook semantic changes 

introduced by paraphrasing. 

4) Model optimization and evaluation: we use Bayesian-

optimized Optuna [16] hyperparameter tuning, and k-fold 

cross-validation [17] to guarantee strong evaluation of model 

performance, providing a more reliable assessment of 

generalization across different data subsets. This method 

enhances the reliability of our systematically fair comparison 

of GCNs and GATs, in order to guarantee that the models 

reach their maximum potential on the augmented dataset. 

Our approach yields GCN achieving an accuracy of 
95.42% and GAT achieving 93.46% on 6.57x larger Cora 
dataset while supporting semantic fidelity (WMD scores: 0.27-
0.34) showing the effectiveness of models with our flexible 
pipeline. 

This paper is organized as follows: Section II reviews 
related work on GNNs and recent advancements in node 
classification. Section III details our methodologies. Section IV 
presents experimental results and analysis. Finally, Section V 
concludes with limitations and future research directions. 
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II. RELATED WORKS 

Recent advancements in Graph Neural Networks (GNNs) 
have propelled the field of graph-based node classification 
forward in addressing various limitations. Key developments 
include: 

1) Spectral graph convolutions: The groundwork for 

spectral graph convolutions was established by Bruna et al. 

(2014) [6], which was further advanced by Defferrard et al. 

(2016) [8] through ChebNet, utilizing Chebyshev polynomials 

to approximate convolutions on graphs. Kipf and Welling 

(2017) [5] simplified these methods by introducing Graph 

Convolutional Networks (GCNs), achieving state-of-the-art 

performance while maintaining computational efficiency. 

2) Attention mechanisms in GNNs: Veličković et al. 

(2018) [11] introduced Graph Attention Networks (GATs), 

employing self-attention mechanisms to dynamically weigh 

the significance of neighboring nodes, facilitating more 

flexible feature aggregation. This model has shown particular 

efficacy in heterogeneous graph settings, enhancing model 

adaptability. 

3) Scalability and efficiency: Addressing scalability 

issues, Chen et al. (2018) [18] proposed FastGCN, which 

employs importance sampling to minimize computational 

complexity. Huang et al. (2018) [19] further refined this with 

Adaptive Sampling GCN (AS-GCN), improving performance 

for large-scale graphs. 

4) Handling heterogeneity: The Heterogeneous Graph 

Attention Network (HAN), proposed by Wang et al. (2019) 

[20], tackles challenges in heterogeneous graph data, 

demonstrating notable improvements in tasks like author 

identification and paper classification. 

5) Mitigating over-smoothing: The issue of over-

smoothing in deeper GNN architectures was addressed in 

study [21] with DeepGCNs, which integrated residual 

connections and dilated convolutions, facilitating the training 

of much deeper networks. 

6) Data augmentation for graphs: Zhao et al. (2021) [22] 

proposed GraphSMOTE, a modification of the SMOTE 

algorithm tailored for graph-structured data to tackle class 

imbalance. Ding et al. (2022) [23] introduced a comprehensive 

data augmentation framework specifically for GNNs, showing 

significant improvements in performance across multiple 

tasks. Additionally, Zhang et al. (2020) [13] highlighted the 

effectiveness of PEGASUS for paraphrasing and synonym 

replacement in augmenting text data for GNN applications. 

7) Hyperparameter optimization: Recent work by (Akiba 

et al., 2019) [16] emphasized automated hyperparameter 

tuning for GNNs, achieving notable enhancements in model 

performance across various datasets. R. Kohavi (1995) [17] 

further explored the application of k-fold cross-validation, 

emphasizing robust model evaluation practices necessary for 

ensuring generalizability in GNN contexts. 

To overcome previously cited limitations and build upon 
these architectural advances. Our work focuses on combining 
architectural strength with data-centric approaches. 

III. METHODOLOGY 

A. Graph Convolutional Networks 

GCN is a fundamental component of our approach to text 
classification using graph-based data. This section outlines the 
GCN architecture, explains the mathematical foundations, and 
highlights its role in our methodology. 

1) Architecture overview: The GCN [1] operates like a 

layer that receives a set of input vectors representing the 

nodes, in conjunction with the graph structure, producing a 

new set of node mappings. In the context of a directed graph, 

denoted: 

𝐺 = (𝑉, 𝐸)  (1) 

where V represents the set of vertices (nodes), while E the 
set of edges (see Fig. 1). 

 
Fig. 1. Structure of a directed graph illustrating node-edge relationships in 

Cora dataset. 

The purpose is to glean insights from the graph by the 
features function. This function uses as its input: 

A description of the features xi for each node I, summed in 
a feature matrix N × D X (N: nodes, D: input features). 

A graph structure description embodied in a matrix form; 
specifically, as an adjacency matrix A (or a function of A). 

The output Z (an N × F matrix, F: output features at each 
node). Every layer unfurls as a unique non-linear function: 

H(l+1) = f(H(l),A)                      (2) 

H(0) initialized as X , as for I: the layers number. The 
patterns vary solely in choosing and parameterizing the 
function, so it can capture the transformation performed on the 
node representations in each layer, and A is a matrix attained 
through the normalization process applied to the adjacency 
matrix of the graph G. 

2) Message passing: As its name suggests, it refers to the 

neighbor of the destination node. The general concept is to 

exchange message (insights) constantly with its neighbors to 

reach a steady balance. Fig. 2 exhibits an illustration of the 

message passing process that consists of two key steps: 

a) Aggregation: each node transmits feature information 

(messages) to the target node from its neighbors. 
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b) Update: the functionality of each node according to 

the "Message" received to form an embedded representation 

(Embedded). 

Message passing guarantees consistent dimensions for all 
representations, allowing easy further processing. A final 
integrated representation is achieved after many layers of 
message passing, capturing the complex relationships within 
the graph structure. Eq. (2) gives the rule for passing messages 
from a GCN to a layer for an undirected graph, G. 

H = σ (AXW)                           (3) 

H represents the updated node representations, X the matrix 
that wraps the characteristics of the nodes, where W embodies 
weight parameters, and σ functions as the non-linear activation 
coordinator. Meanwhile, A appears as a matrix built using a 
process of normalization of the rows of the adjacency matrix of 
the complex graph to add richer feature representation of the 
model. The following Fig. 2 exhibits the message passing 
mechanism throw layers. 

 
Fig. 2. Message passing mechanism. 

In summary individual nodes aggregate information from 
their interconnected nodes, applying an aggregation function, 
which ensures that all representations result in equal size. Next, 
the vector undergoes a transformation through a dense neural 
network layer, together with a non-linear activation function to 
refine the vector's mapping. These steps are repeated according 
to how many layers are in the model. In particular, GCNs 
feature distinct representations at each layer: 

At the zeroth layer, the representation is aligned with the 
node's specific characteristics. 

At k layer, the node's mapping is calculated by going 
through its neighbors, aggregating their mappings from the 
preceding layer (k-1), averaging them and subjecting the result 
to a transformation via a parameter matrix. This process 
extends to include the node's proprietary messages from k-1 
onwards. This value is then subjected to a non-linear function, 
such as ReLU in our case. 

Eventually, when the node’s mappings pass through the 
transformations in the hidden layers conclusive integration is 
achieved. In summary, GCNs work via iterative message 
transmission among nodes, allowing them to leverage 
representations capturing their structural context, both local 
and global, in the graph. 

B. Graph Attention Networks 

GATs offer an excellent opportunity for the development of 
graphical neural networks. With Graph Convolutional 
Networks (GCN), every neighbor has the same importance. 
Yet, some nodes are more essential than others. Graph 
Attention Networks solve this issue with the self-attention 
mechanism that regards significance of individual neighbors, 
an attention mechanism granting a weight coefficient per 

connection. The following section illustrates GAT architecture, 
provides an overview of its mathematical background, and 
outlines its contribution to our methodology. 

1) Architecture Overview: GAT [11] architecture consists 

of various key elements, designed to contribute to its 

performance in graph-based neural networks: 

Self-attention mechanism lies at the core of GAT, this 
mechanism assigns a weighting factor (attention score) to each 
connection, allowing the nodes to target the most relevant 
neighbors. GAT applies mathematical equations to aggregate 
node characteristics based on attention, the embedding of node 
1 is calculated as the equation below shows, W: shared weight 
matrix: 

ℎ1 = 𝛼11𝑤𝜘1 + 𝛼12𝑤𝜘2 + 𝛼13𝑤𝜘3 + 𝛼14𝑤𝜘4        (4) 

αᵢⱼ the attention scores across nodes i and j. 

The calculation of these attention scores proceeds through 
three stages: 

a) Linear transformation: To calculate the importance 

of each connection, pairs of hidden vectors are needed (see 

Fig. 3). A straightforward approach to forming these pairs 

involves concatenating the vectors of the respective nodes. 

Moving on from this step, a new linear transformation is 

applied using trainable attention vector a: 

𝑎𝑖𝑗 = 𝑎𝑡[𝑊 ℎ𝑖|| 𝑊ℎ𝑗]                          (5) 

Where: 

W·hᵢ and W·hⱼ are the transformed node features, 

‖ Indicates vector concatenation, 

aᵗ is a transposed attention vector (learned during training). 

 

Fig. 3. Linear transformation process. 

b) Activation function: Since the aim is to build a neural 

network, the activation is the second stage. In this context, the 

LeakyReLU function is added (see Fig. 4). 

𝑒ⅈ𝑗=
′ 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑢(𝑒𝑖𝑗)                            (6) 

 
Fig. 4. Computing attention coefficient. 
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c) SoftMax normalization: The output of the neural 

network does not undergo normalization. To assess the 

relative relevance of node 2 to node 1 to node 3 (α₁₂ > α₁₃), the 

same scale should be shared. A frequently employed method 

in neural networks involves the SoftMax function (see Fig. 5). 

The equation below shows how it is applied to every 

neighboring node: 

α𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖𝑗) =
𝑒𝑥𝑝(𝑒𝑖𝑗)

∑ 𝑒𝑥𝑝(𝑒𝑖𝑗)
𝑘∈𝑁𝑖

                   (7) 

 
Fig. 5. SoftMax normalization. 

We can calculate every αᵢⱼ. However, self-attention can 
exhibit instabilities. To enhance robustness, multi-head 
attention was introduced into the architecture of the 
transformer. 

d) Multi-head attention: The multi-head attention (see 

Fig. 6) involves repeating three identical steps repeatedly, with 

the aim of calculating the average or recombine outputs. Here, 

rather than obtaining a unique hidden h₁, a separate hidden 

vector h₁ᵏ is generated for each attention head. We can then 

apply one of two schemes: 

Average: add together each of the hᵢᵏ. Normalize via the 
total number n of heads of attention. 

ℎ𝑖 =
1

𝑛
∑ ℎ𝑖

𝑘𝑛

𝑘=1
                                 (8) 

Concatenation: concatenate the different hᵢᵏ. 

ℎ𝑖 = ||𝑘=1
𝑛  ℎ𝑖

𝑘                                      (9) 

 

Fig. 6. Multi-head attention. 

In summary, attention-graph networks define self-attention 
as a mechanism that allows nodes nearby to be accorded levels 
of importance. Mathematically, this self-attention is 
characterized by linear transformations, activation functions, 
and SoftMax normalization. Multi-headed attention adds to the 
model's performance by considering multiple perspectives 
during the aggregation process. 

C. Data Preprocessing and Augmentation 

1) Original Cora dataset description: The Cora dataset 

published by Andrew McCallum and his research group at the 

University of Massachusetts Amherst [12] (see Fig. 7) as a 

compressed zip file containing .ps files containing metadata, 

abstracts and citations for 2,708 academic publications 

distributed across seven classes. The accompanying citation 

grid comprises 5,429 links. Cora’s established benchmark 

status in graph neural network literature enables meaningful 

performance contextualization, while its citation network 

structure provides the graph topology essential for GCN and 

GAT evaluation. We selected Cora for three reasons aligned 

with our objectives: 

 Availability of original PostScript text to support 
sophisticated, meaning‑preserving augmentation. 

 Moderate size (2 708 nodes) that allows comprehensive 
k‑fold validation without prohibitive compute demands. 

 Pronounced class imbalance (Neural Networks: 30 %, 
Rule Learning: 6 %), making it an ideal benchmark for 
evaluating imbalance‑aware graph learning strategies. 

 

Fig. 7. Original Cora dataset classes distribution. 

This dataset was subjected to a comprehensive 
preprocessing and augmentation protocol to enhance its utility 
and mitigate inherent limitations and was systematically 
expanded to a more robust dataset of 17,780 samples through a 
multifaceted augmentation strategy. 

e) Semantic-preserving multi-modal augmentation 

framework: Theoretical motivation: data expansion traditional 

methods regularly introduce semantic leakage in which 

synthetic input samples deviate increasingly far from the 

domain's original pattern. This issue is also pronounced in 

datasets like Cora that are already heavily pre-processed to a 

simplified representation removing much of its contextual 

richness that GAT and GCN are meant to capture. To solve 

this problem, instead of developing a costly new augmentation 

algorithm we propose a combination of existing methods with 

a semantic control level mechanism following this pipeline: 

 Preprocessing Cora original raw dataset: The initial 
phase was data preprocessing. It involved a meticulous 
examination and refinement of the raw Cora dataset, 
originally distributed in PostScript (ps) file format. This 
process was executed through a series of sophisticated 
steps to preserve data quality, relevance and semantic 
integrity. 

Content Extraction and Metadata Removal: we isolate 
essential textual content directly from the PostScript file one by 
one using a custom rule-based string parser we implemented in 

Neural_Networks, 818

Probabilistic_Methods, 426

Genetic_Algorithms, 418

Theory, 363

Case_Based, 286

Reinforcement_Learning, 217

Rule_Learning, 180
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Python while systematically removing extraneous metadata, 
such as (e.g. author names and institutional affiliations, links, 
etc.). Abstracts were retained, as they serve as the primary 
textual representation of each paper. 

Text Cleaning: A multi-tiered protocol to text cleaning has 
been used taking into consideration benchmark practices to not 
roughly eliminate semantic senses: custom regular expressions 
were employed to remove non-alphanumeric characters, 
normalize whitespace, and standardize formatting. 

 Data augmentation Pipeline (Methodologies) 

Let D = {(x₁, y₁), (x₂, y₂), ..., (xₙ, yₙ)}          (10) 

D represent the original dataset, where xᵢ is the feature 
vector and yᵢ is the label that correspond to the feature in 
question. The generated D' is the result of the augmentation 
process such that |D'| > |D| while preserving the label condition 

distribution P(x', y')≈P(x,y). 

PEGASUS-based Textual Transformation: We employed 
the PEGASUS (Pre-training with Extracted Gap-sentences for 
Abstractive Summarization) model, specifically fine-tuned for 
paraphrasing [13], as the primary method for generating 
diverse textual variations. This approach allows us to create 
semantically equivalent but linguistically diverse versions of 
the original text: 

𝑃 = 𝑓𝜃𝑝
(𝑥)                                   (11) 

where P is the paraphrased text, x is the paper textual 
content, and f_(θ_p ) 

is the PEGASUS paraphrasing function with parameters. 
This technique effectively doubles the dataset size while 
introducing linguistic variations that can improve model 
robustness. 

Subject-Aware Lexical Substitution via Synonym 
Replacement: We used synonym replacement algorithm [13] 
while enforcing controlled lexical variations through filtering 
according to subject domain, thereby maintaining thematic 
coherence while expanding vocabulary: 

𝑥aug = ℎ(𝑥orⅈg, 𝜆)                                 (12) 

Where x_aug  is the augmented paper content, x_orig is the 
original or previously augmented content, h is the synonym 
replacement function, and λ is a parameter controlling the 
degree of replacement. 

Conditional restrictions are applied so that only 
substitutions that met semantic and label constraint were 
retained (Samples exceeding the WMD threshold were 
rejected) 

WMD(xorig , xaug) ≤ τwmd = 0.35             (13) 

Class-balanced custom Generation Pattern: we devised a 
sophisticated syntactic generation framework characterized by 
a meticulously curated lexicon of action-oriented verbs and 
descriptive adjectives. Enabling the formulation of new 
sentences that are both semantically rich and consistent with 
the underlying class distributions of the original text, this 
pattern was applied specifically to limited set of isolated nodes 

with no connection in the network and particularly those with 
the shortest text content that lack sufficient presentation. 

N = g(X, V)                                   (14) 

where N is the new synthetic sample, X is the original text, 
V encapsulates our curated vocabulary and advanced 
terminological construct, and g is our custom generation 
function that generates suitable terms from V while respect 
part-of-speech to maintain correctness. This combinatorial 
approach allows for controlled growth of even smaller 
contributor nodes in the dataset with semantic check through 
the threshold τwmd. 

 Parameter Sensitivity: The choice of crucial parameters 
in our augmentation pipeline has an important impact 
on performance. While a lower Learning rate (Lr) 
produces nearly duplicate paraphrases with little 
advantage, a higher PEGASUS (Lr) introduces 
semantic drift that reduces classification accuracy. 
Raising the synonym rate beyond its optimal point 
disrupts domain-specific terminology, damaging 
coherence, while too low a rate limits new lexical 
variety. Temperature values above 0.8 produce 
semantically inconsistent text that misleads the 
classifier, and values below 0.6 result in repetitive, 
uninformative samples. While lowering the WMD 
threshold allows for excessive semantic divergence, 
raising it over-filters advantageous variations. These 
findings underscore how sensitive the augmentation 
process is to parameter choices and highlight the 
importance of systematic tuning, as even minor 
deviations from optimal settings can significantly 
degrade semantic quality. 

 Methodological Validation: Semantic Preservation: For 
each newly augmented node inherits the original node’s 
edges to preserve citation relationships so that the 
structural semantics of the graph remain intact after 
augmentation. To support the integrity of the 
augmented dataset, we implement: Automated intra-
category semantic similarity checks between original 
and augmented document embeddings for each 
category. We computed the Word Mover's Distance 
(WMD) [15] and set threshold for strict filtering; this 
validation mechanism prevents the semantic drift 
commonly seen in synthetic data generation. In addition 
to analyzing repetitiveness in sentence structure and 
phrase. 

Class Balance: The data were augmented to realize equal 
class distributions (approximately 14% each) drops the bias in 
the original Cora, where Neural Networks represented 30% of 
samples while Rule Learning only 6%, Neural Networks now 
present more equitable 16% reduced dominance. This balance 
guarantees fair model evaluation. 

Computational Efficiency: compared to the improvement of 
ensemble methods or attention mechanism. This pipeline 
provides better graph learning preserved semantically, enabling 
models to achieve better performance without architectural 
modifications, reducing computational overhead and more 
accessible to any individual. 
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IV. EXPERIMENTAL RESULTS 

A. Dataset Description 

In this study, we have created a customized augmented 
dataset from Cora [12] using various methods, each with 
critical parameter settings. The Pegasus model utilized a 
learning rate of 0.01 selected following several tests and 
monitoring continuously steady convergence without 
overshooting, a maximum input length of 512 tokens, a beam 
search size of 5, and was trained for 5 epochs to ensure 
effective learning. For synonym replacement, we set a 
replacement probability of 0.3 and a maximum of 3 synonyms 
per word, maintaining semantic integrity while promoting 
variability. In the text generation phase, we used a temperature 
of 0.7 for balanced creativity, top-k sampling with k=50 to 
restrict predictions to the most probable words, and to reduce 
repetitive phrases we used a repetition penalty of 1.2. These 
carefully chosen parameters, and many others significantly 
preserved the quality and diversity of the generated data. 

The New customized Cora dataset (see Fig. 8) cumulative 
generated by the augmentation techniques resulted in the 
important expansion of our dataset from the original 2,708 
samples to 17,780 samples, an increase in the factor of 
approximately 6,57x. This expansion not only increased the 
training data volume but also preserved the diversity of 
linguistic variations and synthetic samples, all while 
maintaining semantic coherence and domain. 

 

Fig. 8. Customized dataset classes distribution. 

The quality and relevance of the augmented samples shows 
a similarity threshold of 0,8 was maintained. Additionally, 
WMD calculated scores intra classes (see Table I) values 
around 0.3 to 0.34 suggest moderate similarity between 
original and augmented texts within each category introducing 
meaningful variation. 

TABLE I.  WMD SCORES 

Category WMD scores 

Case-Based 0.3389 

Genetic Algorithms 0.3049 

Probabilistic Methods 0.3044 

Reinforcement Learning 0.3309 

Rule Learning 0.3283 

Theory 0.2773 

B. Hyperparameter Tuning Configuration 

We adopted to conduct Naive Bayesian hyperparameters 
tuning with adopted Optuna [16], because of its empirical 
ability to efficiently navigate high-dimensional search spaces 
and typically generalize better, even in contexts like ours 
involving data imbalance and augmentation where stability is 
critical. The full set of optimized hyperparameter 
configurations for both GCN and GAT models is summarized 
in Table II, which lists ranges for learning rates, dropout, and 
architectural elements. 

This probabilistic approach enabled us to model the 
relationship between hyperparameters and model performance. 
In addition to ensuring the robustness and generalizability of 
our hyperparameter configurations, we employed a k-fold 
cross-validation strategy. This approach partitioned our 
augmented dataset into k subsets, allowing for multiple training 
and validation cycles. The cross-validation procedure not only 
provided a more reliable estimate of model performance but 
also mitigated the risk of overfitting to specific data partition. 

TABLE II.  OPTIMIZED HYPERPARAMETER CONFIGURATIONS 

Elements Values Model 

Optimization framework 100-400 trials 

GCN-

GAT 

Hidden features 8 to 128 

Activation 
["relu", "relu"], ["relu", "softmax"], 

["elu", "softmax"] 

Dropout 0.1 to 0.8 

Learning rate 1e-5 to 1e-1 (Log-uniform) 

Weight decay 1e-6 to 1e-2 (Log-uniform) 

Cross-Validation 5-fold cross-validation 

Early Stopping 
Patience of 20 epochs, monitored on 

validation set's F1 score 

Attn_heads 1 to 16 
GAT 

attn_dropout 0.2 to 0.8 

The hyperparameter tuning process aimed to maximize the 
mean cross-validated F1 score. The best-performing 
hyperparameters for each model were selected based on this 
metric. We then compared the optimized GAT and GCN 
models to determine which architecture was more suitable for 
our specific graph classification task. 

C. Evaluation Metrics 

Classification models are evaluated using well-established 
metrics to quantify their performance and effectiveness. These 
metrics are essential in determining how well a model can 
predict outcomes based on the given data. Below are the key 
metrics used in evaluating GCN and GAT classification [5] 
[11]: 

True Positives (TP): Instances where the model correctly 
predicts positive outcomes (i.e., both the actual and predicted 
results are positive). 

True Negatives (TN): Instances where the model correctly 
predicts negative outcomes (i.e., both the actual and predicted 
results are negative). 

Case-Based, 14%

Genetic_Algorithms, 14%

Neural_Networks, 16%

Probabilistic_Methods, 14%

Reinforcement_Learning, 14%

Rule_Learning, 14%

Theory, 14%
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False Positives (FP): Occurrences where the model predicts 
a positive result, but the actual result is negative (also known as 
a Type I error). 

False Negatives (FN): Occurrences where the model 
predicts a negative result, but the actual result is positive (also 
known as a Type II error). 

Accuracy: Conversely, false negatives occur if the model 
predicted a negative result, while the real result proved 
positive. 

Accuracy =  
TPi+TNi

TPi+TNi+FPi+FNi
                   (15) 

Loss: Loss measures the discrepancy between predicted 
values and actual values. Cross-entropy is a common loss 
function in deep neural networks. It quantifies how well the 
predicted probabilities match the actual class labels. 

𝐂rossEntropy = − ∑ 𝑙𝑜𝑔 (𝑃𝑖,𝑖)𝑦𝑖,𝑗

𝑛

𝑖=1
         (16) 

where yi,j is the true value, i.e. 1 if sample I is in class j and 
0 otherwise. Pi,j the likelihood forecast via the model that 
sample I is part of class j. 

Precision: is the ratio between the True Positives and all the 
Positives. 

Precision =  
TPi

TPi+FPI
                          (17) 

Recall: the extent to which our model correctly identifies 
true positives. 

Recall =  
TPi

TPi+FNI
                             (18) 

F1 Score is the harmonic mean of Precision and Recall. It 
provides a balanced measure that considers both false positives 
and false negatives, making it particularly useful when dealing 
with imbalanced datasets. The F1 Score ranges from 0 to 1, 
with 1 indicating perfect precision and recall. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                  (19) 

D. Results and Discussion 

1) Model settings: In this experiment we adapted across 

all models the same following configurations: 

a) Data preparation: The textual preprocessed data was 

transformed into TF-IDF vectors, with a maximum of 1000 

features for each record. Class labels were encoded using 

LabelEncoder, ensuring numerical representation for 

classification. We created an adjacency matrix from citation 

data, representing relationships between papers, and 

normalized it to ensure proper scaling in the graph model. 

Stratified Data Splitting We employed stratified k-fold 
cross-validation with 5 splits to ensure balanced class 
distributions across training and validation sets. A random state 
with a fixed seed of 42 was used for reproducibility throughout 
the data splitting and model training. For each fold, data was 
split into training and validation sets, without using a k-fold 
throught cross-validation. 

Following comprehensive hyperparameter tuning and 
testing, we identified a set of configurations for the 
foundational models as detailed in Table III. These 
configurations were meticulously selected to enhance the 
performance of the respective models. 

The results yielded by the individual models, GCN and 
GAT, were rigorously analyzed. Fig. 9 depicts the outcomes of 
numerous testing and fine-tuning iterations, providing a 
summary of the average performance metrics from the 5 folds 
that are broken down per model, and summarized in Table IV 
including key metrics: validation accuracy, precision, recall, 
and F1 score. 

The results of our analysis reveal that GCN is consistently 
better than GAT across all evaluated metrics. Specifically, 
GCN achieves a validation accuracy of 95.42%, which is a 
higher overall correct classification rate than GAT's 93.46%. In 
terms of precision, GCN achieves a score of 95.45%, compared 
to GAT's 93.50%, suggesting a lower false positive rate for 
GCN. In addition, GCN's recall of 95.42% above GAT's 
93.46%. This shows that GCN's improved capability in 
identifying true positives. The F1 score shows GCN at 95.42%, 
while GAT scores 93.47% which reflects the balance between 
precision and recall. 

TABLE III.  GRAPH CONVOLUTIONAL NETWORK AND GRAPH ATTENTION NETWORK SETTINGS 

Model GCN Instance Model GCN Average Model GAT Instance Model GAT Average Model 

Model architecture 
layer_sizes =108 activated by 

ReLU 

layer_sizes = 116 activated by 

ReLU 

layer_sizes = 106 activated by 

ELU 

layer_sizes = 106 activated 

by ELU 

Epochs 200 200 200 200 

Optimizer Adam Adam Adam Adam 

Learning Rate 0.04401160472 0.06507184668 
0.00066108710 

step_size=50, gamma=0.5 

0.000661087 

Step_size=50, gamma=0.5 

Early Stopping 
Stagnant F1 score validation for 

200 epochs 

Stagnant F1 score validation for 

200 epochs 

Stagnant F1 score validation for 

200 epochs 

Stagnant F1 score validation 

for 200 epochs 

Patience 20 20 20 20 

Activation 
ELU (hidden layers), Log 

Softmax (output) 

ELU (hidden layers), Log 

Softmax (output) 

ELU (hidden layers), Log 

Softmax (output) 

ELU (hidden layers), Log 

Softmax (output) 

Dropout Rate 0.44934028857 (45%) 
0.53708280317 
(50%) 

0.29109068673 (30%) 0.2910906867 (30%) 

Weight Decay 3.602702935945202e-05 3.602702935945202e-05 0.00010625787460334993 0.00010625787460334993 

Attention Heads None None 16 16 
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Fig. 9. Performance metrics comparison. 

The GCN model performed better than the GAT model 
across all evaluation measures, with accuracy being 
approximately 1.96% higher (95.42% vs. 93.46%) and 
statistical significance with the paired t-tests showing (p < 
0.05, t = 2.89, df = 4) also shows a 95% confidence interval: 
(94.77%, 96.07%) vs. (92.83%, 94.08%). The strong 
performance of both models, with low standard deviations, 
indicating stable learning over different data distributions. 

TABLE IV.  COMPARATIVE PERFORMANCE ANALYSIS OF GCN AND GAT 

MODELS ACROSS KEY EVALUATION METRICS 

Model Folds 
Validation 

accuracy 

Validation 

precision 

Validation 

recall 

Validation 

F1 score 

GCN 

F1 95,05% 95,06% 95,05% 95,04% 

F2 96,26% 96,27% 96,26% 96,26% 

F3 95,02% 95,09% 95,02% 95,03% 

F4 95,61% 95,61% 95,61% 95,60% 

F5 95,16% 95,23% 95,16% 95,18% 

GAT 

F1 92,69% 92,73% 92,69% 92,70% 

F2 93,64% 93,69% 93,64% 93,65% 

F3 93,25% 93,30% 93,25% 93,27% 

F4 93,98% 94,01% 93,98% 93,99% 

F5 93,73% 93,75% 93,73% 93,74% 

Based on cross-validation findings, detailed performance 
showed that the GCN maintains an accuracy of 95.42% 
(±0.47%) with a precision of 95.45% (±0.45%), a recall of 
95.42% (±0.47%) and an F1 score of 95.42% (±0.47%). While 
GAT also manifests the corresponding performance levels of 
93.46% (±0.45%), 93.50% (±0.45%), 93.46% (±0.45%) and 
93.47% (±0.45%). We kept track of validation loss across folds 
to determine model convergence and confidence level were 
balanced. GCN showed a consistently lower average validation 
loss of ~0.18 compared to GAT’s ~0.21. Both models 
demonstrated small standard deviations, indicating a good level 
of stability as well as reproducibility across different data 
partitions. 

However, there is a variation between the study datasets 
and data refinement methodologies, confronted with these 
limitations the establishment of internal reference measures 
was undertaken. To this end, we trained GCN and GAT on the 
original Cora dataset (2,708 samples) using identical 

architecture but without augmentation. The resulting accuracy 
rates were 83.39% and 82.24%, respectively, aligning with 
existing literature on the subject such as [5][11], where 
standard Cora benchmarks rarely go above 85% in the absence 
of architectural refinement. While this comparison does not 
represent a strictly controlled ablation, it is still useful to 
understand the potential impact of our semantic preservation, 
class balanced augmentation pipeline. The augmented and 
optimized models exhibited an accuracy rate of over 95%, 
these results show how important it is to preserve the semantics 
of the dataset during the engineering process. The findings of 
this study provide an indicative—but not strictly controlled—
comparison, which is developed in the limitations section. 

 Class-wise Performance Analysis: To further 
investigate per-class performance, we computed F1-
scores for each class across all folds (see Table V). 

TABLE V.  AVERAGED F1-SCORES RESULTS ACROSS THE FIVE FOLDS FOR 

EACH CLASS WITH STANDARDS DEVIATIONS 

Class GCN F1-Score GAT F1-Score 
(GCN-

GAT) 
Support 

Case-Based 0.9575 ± 0.0073 0.9378 ± 0.0029 +0.0197 500 

Genetic_Alg
orithms 

0.9726 ± 0.0037 0.9584 ± 0.0039 +0.0142 500 

Neural_Netw

orks 
0.9194 ± 0.0097 0.8898 ± 0.0115 +0.0296 556 

Probabilistic
_Methods 

0.9504 ± 0.0081 0.9284 ± 0.0054 +0.0220 500 

Reinforceme

nt_Learning 
0.9733 ± 0.0057 0.9608 ± 0.0135 +0.0125 500 

Rule_Learnin

g 
0.9737 ± 0.0068 0.9590 ± 0.0081 +0.0147 500 

Theory 0.9364 ± 0.0096 0.9140 ± 0.0086 +0.0224 500 

Weighted 
Avg 

0.9542 ± 0.0047 0.9347 ± 0.0045 +0.0195 3556 

As detailed in Table V the analyses by class highlight 
notable aspects. Overall, all seven classes are consistently well 
managed by the GCN model, with a performance variance 
between 1.25% (Reinforcement Learning) and 2.96% (Neural 
Networks). The Neural Networks category shows the most 
difficulties in classification with both models, particularly due 
to the conceptual overlap and semantic ambiguity inherent in 
the literature on neural networks affecting many areas of 
artificial intelligence. Probabilistic Methods and Theory exhibit 
relatively significant performance differences (2.20% and 
2.24%), suggesting that GCN's aggregation process is effective 
in capturing the particularities of these domains. However, the 
relatively smaller difference between the two models in 
reinforcement learning (1.25%) clearly illustrates how well the 
two models deal with this specific domain. 

The plots shown in Fig. 10 and Fig. 11 provide an overview 
of the learning history that gives a further indication of the 
convergence and stability of GCN and GAT performance over 
the course of the learning process with second fold as the 
representative fold. We can observe that the learning process 
for both models GAT and GCN presents some notable 
differences, particularly during the early training stages. GAT, 
for instance, is more unstable at the beginning, especially in the 
initial starting epochs. This instability likely comes from the 
way attention mechanism that GAT uses, as it requires more 

95.42%

93.46%

95.45%

93.50%

95.42%

93.46%

95.42%

93.47%

GCN GAT

  Validation accuracy

   validation precision

   validation recall

   validation F1 score
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time to adjust and optimize the importance of edges within the 
graph. Learning how to prioritize different node connections 
adds more complexity, which in turn causes performance to 
initially fluctuate. 

How GAT manages isolated nodes is one of its main 
challenges. While GCN works best in treating all neighboring 
nodes equally, GAT's effectiveness is more dependent on the 
topology of the graph. The presence of isolated nodes, which 
lack neighboring information, makes it harder for GAT to fully 
benefit from its attention mechanism. This has likely 
contributed to the early performance issues and slower 
convergence compared to GCN. 

 
Fig. 10. GAT Fold 2 training and validation accuracy fit history. 

 

Fig. 11. GCN Fold 2 training and validation accuracy fit history. 

Despite these challenges at the beginning, both models 
eventually ended up achieving high-performance levels. While 
it takes longer to converge for GAT, that frequently matches or 
even outperforms GCN in the end. This suggests that although 
GAT works in a more complex optimization environment, its 
ability to learn which edges are most important can offer 
important advantages as training continues. 

Overall, the consistent results across the five cross-
validation folds show that both models are robust, especially 
GCN, which was less variable across different data splits. The 
slight differences in GAT’s performance could be due to its 
sensitivity to specific graph structures within each fold. 
Compared to baseline models, both GCN and GAT perform 
very well on the expanded dataset, suggesting their 
architecture’s strength in handling complex graph data. This 
analysis underlines the unique strengths of each model and the 
importance of giving GAT sufficient training time to fully 
optimize its performance, particularly in scenarios with diverse 
graph connectivity. 

V. CONCLUSION 

This study represents a notable advancement in graph-
based node classification, effectively addressing key challenges 
related to data quality in preserving semantic aspect, class 
imbalance, and model performance generalization constraints. 
Our approach enhanced the Cora dataset by extracting content 
from its original PostScript files and applying a systematic 
implementation of a tripartite augmentation framework 
combination of benchmark techniques: a combination of 
textual transformation PEGASUS-based, subject aware 
synonym replacement and customized class-balanced 
generation pattern function on isolated nodes to expand the 
dataset to 17,780 nodes, achieving a 6.57x scaling factor while 
maintaining semantic fidelity as evidenced by Word Mover's 
Distance scores ranging from 0.27 to 0.34. In addition the use 
of Optuna-driven hyperparameter optimization using Naïve 
Bayesian with k-fold cross-validation, to make sure achieving 
optimal model performance. Both the GCN and GAT models 
performed effectively, achieving accuracy of 95.42% and 
93.46% respectively. This analysis highlights how is consistent 
is GCN alongside GAT more intricate learning pattern, where 
early fluctuation gave way to competitive results. These results 
show the potential of attention mechanisms to capture complex 
graph dynamics with sufficient training. The models’ 
resilience, validated across five folds, further demonstrates 
motivation of our approach. Importantly, this work illustrates 
how advanced data augmentation and optimization techniques 
can boost the performance and scalability of graph-based 
models by preserving important semantic aspect that can be 
lost in rough engineering, also shows the ability of these 
models on larger datasets without compromising accuracy. 

Despite overall good classification performance, there are 
some limitations that should be acknowledged, particularly in 
distinguishing between overlapping classes such as neural 
networks. The attention mechanism of GAT also introduced 
computational costs without corresponding gains. In 
conclusion, results demonstrate that performance obtains 
equivalent to architectural complexity alone can be obtained 
through strategic dataset augmentation, this principle provides 
a cost-effective alternative, making advanced graph neural 
networks accessible to researchers with limited computational 
resources. 

A. Limitations and Future Work 

While our approach has shown good results as discussed 
earlier in the previous section, we acknowledge different 
limitations that present opportunities for future improving: 

1) Domain specificity: Our validation focuses on 

academic paper classification that the Cora dataset provides. 

Future work should explore the practical applicability across 

variety of text domains and languages. 

2) Comparative evaluation: Direct comparison with 

existing methods is challenging due to the characteristics of 

the new dataset and the difference in engineering approaches. 

Future work should establish a more standardized evaluation 

protocol. 
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