
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

390 | P a g e

www.ijacsa.thesai.org

Scalable Graph Learning with Graph Convolutional

Networks and Graph Attention Networks: Addressing

Class Imbalance Through Augmentation and

Optimized Hyperparameter Tuning

Chaima Ahle Touate1, Rachid El Ayachi2, Mohamed Biniz3

Information Processing and Decision Support Laboratory-Department of Computer Science-Faculty of Sciences and Techniques,

Sultan Moulay Slimane University, Beni Mellal, Morocco¹

Department of Computer Science-Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco²

Department of Mathematics and Computer Science, Sultan Moulay Slimane University, Beni Mellal, Morocco³

Abstract—In this study, we propose a graph-based node

classification to address challenges such as data scarcity, class

imbalance, limited access to original textual content in

benchmark datasets, semantic preservation, and model

generalization in node classification tasks. Beyond simple data

replication, we enhanced the Cora dataset by extracting content

from its original PostScript files using a three-dimensional

framework that combines in one pipeline NLP-based techniques

such as PEGASUS paraphrase, synthetic model generation and a

controlled subject aware synonym replacement. We substantially

expanded the dataset to 17,780 nodes—representing an

approximation of 6.57x scaling while maintaining semantic

fidelity (WMD scores: 0.27-0.34). Our Bayesian Hyperparameter

tuning was conducted using Optuna, along with k-fold cross-

validation for a rigorous optimized model validation protocol.

Our Graph Convolutional Network (GCN) model achieves

95.42% accuracy while Graph Attention Network (GAT) reaches

93.46%, even when scaled to a significantly larger dataset than

the base. Our empirical analysis demonstrates that semantic-

preserving augmentation helped us achieve better performance

while maintaining model stability across scaled datasets, offering

a cost-effective alternative to architectural complexity, making

graph learning accessible to resource-constrained environments.

Keywords—Graph Convolutional Networks (GCN); Graph

Attention Networks (GAT); hyperparameter tuning; data

augmentation; PEGASUS; synonym replacement; optuna bayesian

optimization; node classification; class imbalance

I. INTRODUCTION

Text classification represents a foundational element within
the domain of natural language processing (NLP), showcasing
a broad scope of applications. Text classification systems must
effectively map textual content to appropriate categories, a task
complicated by the need to capture both local semantic patterns
and global contextual relationships. In conventional methods,
text is represented by hand-built features, typically lexical
features (e.g., bags of words and n-grams) although they are
efficient for particular tasks, semantic complex patterns are not
well captured. The development towards deep learning models
has been considerably applied to learn advanced textual
representations, incorporating convolutional neural networks

(CNNs) [1] and recurrent neural networks (RNNs) like long-
term memory (LSTM) [2], such models perform well in terms
of capturing semantic and syntactic insights within sequences
of local consecutive words; however, they are still likely to
disregard co-occurrence of the global words in a corpus that
covers long-range, non-consecutive semantics dependencies
that are important for overall text comprehension [3].

Lately, emerging graph-based approaches trends have
gained significant attention to remedy these limitations, such as
graph neural networks or graphical embeddings [4]. Unlike
conventional sequence-based methods, GNNs allows for
processing data in graphical interconnected network format.
This paradigm shift enable the models to leverage both local
characteristics of nodes and global graph topology, given that
graphs are highly eloquent and boost calculation performance
and extract semantic and syntactic information, innovative
methods emerged for processing graph-structured data in
machine learning, i.e., the graphical neural network, making its
mark in numerous applications and proving itself as an
effective and successful architecture.

Among the various GNN architectures, particularly Graph
Convolutional Networks (GCNs) [5], shown remarkable
success in node classification tasks. Based on the foundational
work of spectral graph theory, the studies of (Bruna et al. 2014)
[6], (Henaff et al. 2015) [7], and (Defferrard, Bresson, and
Vandergheynst 2016) [8] set up the theoretical basis for
carrying out convolution operations on graph-structured
datasets, yielding competitive results in node classification
seminal contribution introducing a localized, first-order method
seminal contribution streamlined these spectral approaches by
offering a localized, first-order approximation that maintains
computational efficiency while achieving state-of-the-art
performance across diverse graph-structured datasets,
including the widely adopted Cora benchmark. Further
applications include various domains from semantic role
labeling in [9] to biomedical entity classification in [10].

Incorporating attention mechanisms into GNNs is yet a
further significant advancement. The Graph Attention Network
(GAT), introduced by Velickovic et al. (2018) [11], builds

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

391 | P a g e

www.ijacsa.thesai.org

upon the concept of attention, thereby enabling the model to
prioritize the most significant nodes during the aggregation
process. Graph Attention Networks (GATs) have been highly
influential in enhancing the performance of GNNs by
dynamically assigning adaptive attention weights to
neighboring nodes based on their relevance allowing them to
allocate computational resources to the richest connections,
resulting in more nuanced and effective feature representations,
notably in heterogeneous graph settings in which node and
edge types diverge considerably.

Although there have been significant architectural
advances, critical challenges persist that impede the practical
application and scalability of graph-based textual classification
models such as data scarcity, class imbalance, and semantic
coherence preservation. Benchmark datasets are typically
provided in a format that limits their potential for these type of
models, Cora [12] an example of a standard dataset, while
academically valuable it comes often in pre-vectorized formats,
which detaches the learning process from the original semantic
complexity, restricts certain feature engineering introducing a
barrier in research from flexibility in exploration of different
preprocessing pipelines. In addition to its small size and class
imbalance which further hinders generalization rare classes are
not well represented. Furthermore, the lack of access to the
original text prevents any attempt at implementing effective
augmentation strategies. These common limitations prevent
GNNs from fully using their ability to learn contextual
representations from textual content.

Existing approaches exhibit a notable research gap: while
important efforts have focused on architectural innovations to
advance GNN capabilities, less attention has been paid to the
research-based investigation of dataset quality and preparation.
This gap can be seen in three practical challenges that limit
how well we can evaluate performance. First, benchmark
datasets like Cora are distributed in pre-vectorized formats,
which limit access to original textual content and opportunities
for controlled preprocessing or semantic augmentation.
Second, the often-overlooked persistent class imbalance such
as Neural Networks composed of 30% of samples while only
6% for Rule Learning can make the evaluation less accurate.
Third, semantic preservation metrics for augmented graph data
remain inconsistent, this makes it hard to make sure that
synthetic relationships are meaningful. These data-related
limitations suggest that focusing only on architectural
complexity may not solve foundational challenges in graph-
based text classification, underscoring the need for
complementary data enhancement approaches. Although
several studies acknowledge these issues, more careful
investigations into semantic-preserving augmentation and class
distribution mitigation remain limited. Addressing these
challenges is essential to support and not replace architectural
progress.

To address this gap, this study explores the following
research question: How can semantic-preserving dataset
augmentation serve as a cost-effective complement to
architectural innovations in graph-based text classification,
while maintaining semantic consistency and boosting
performance without increasing computational demands? This

question is motivated by the practical need to make advanced
graph learning accessible to resource-constrained environments
while tackling fundamental data quality issues that
architectural solutions alone cannot resolve. To answer this
question, we present a scalable framework for dataset
augmentation that preserves semantic consistency, aimed at
improving graph-based text classification using graph neural
networks (GNNs). Our work places particular emphasis on
Graph Convolutional Networks (GCNs) and Graph Attention
Networks (GATs). The framework responds to a frequent issue
in this field—the discrepancy between the sophistication of
theoretical models and the constraints placed on by real-world
datasets. While much of the existing literature centers on
architectural innovation, our findings suggest that focusing on
data quality—specifically through targeted augmentation—can
lead to performance gains that are comparable to those
achieved through complex model redesigns. Our approach
addresses several challenges:

1) Cost-effective: alternative to developing new

architecture, making advanced graph learning accessible to

researchers with limited computational resources.

2) Data augmentation: We introduce a hybrid

augmentation pipeline that combines in a refined pipeline,

NLP-based techniques like PEGASUS for text paraphrase [13]

, controlled synonym replacement techniques [14], and a

synthetic domain-specific text generation, we augment the

dataset to enhance both the diversity and quantity of the

training data and solve class imbalances while preserving

semantic coherence while enabling in addition flexible and

transparent text preprocessing.

3) Semantic quality assurance: We use semantic

similarity checks employing the metric Word Mover's

Distance (WMD) [15] to confirm that augmented samples

maintain meaning and contextual relevance rather than

depending just on cosine similarity operating on fixed vector

representations and may overlook semantic changes

introduced by paraphrasing.

4) Model optimization and evaluation: we use Bayesian-

optimized Optuna [16] hyperparameter tuning, and k-fold

cross-validation [17] to guarantee strong evaluation of model

performance, providing a more reliable assessment of

generalization across different data subsets. This method

enhances the reliability of our systematically fair comparison

of GCNs and GATs, in order to guarantee that the models

reach their maximum potential on the augmented dataset.

Our approach yields GCN achieving an accuracy of
95.42% and GAT achieving 93.46% on 6.57x larger Cora
dataset while supporting semantic fidelity (WMD scores: 0.27-
0.34) showing the effectiveness of models with our flexible
pipeline.

This paper is organized as follows: Section II reviews
related work on GNNs and recent advancements in node
classification. Section III details our methodologies. Section IV
presents experimental results and analysis. Finally, Section V
concludes with limitations and future research directions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

392 | P a g e

www.ijacsa.thesai.org

II. RELATED WORKS

Recent advancements in Graph Neural Networks (GNNs)
have propelled the field of graph-based node classification
forward in addressing various limitations. Key developments
include:

1) Spectral graph convolutions: The groundwork for

spectral graph convolutions was established by Bruna et al.

(2014) [6], which was further advanced by Defferrard et al.

(2016) [8] through ChebNet, utilizing Chebyshev polynomials

to approximate convolutions on graphs. Kipf and Welling

(2017) [5] simplified these methods by introducing Graph

Convolutional Networks (GCNs), achieving state-of-the-art

performance while maintaining computational efficiency.

2) Attention mechanisms in GNNs: Veličković et al.

(2018) [11] introduced Graph Attention Networks (GATs),

employing self-attention mechanisms to dynamically weigh

the significance of neighboring nodes, facilitating more

flexible feature aggregation. This model has shown particular

efficacy in heterogeneous graph settings, enhancing model

adaptability.

3) Scalability and efficiency: Addressing scalability

issues, Chen et al. (2018) [18] proposed FastGCN, which

employs importance sampling to minimize computational

complexity. Huang et al. (2018) [19] further refined this with

Adaptive Sampling GCN (AS-GCN), improving performance

for large-scale graphs.

4) Handling heterogeneity: The Heterogeneous Graph

Attention Network (HAN), proposed by Wang et al. (2019)

[20], tackles challenges in heterogeneous graph data,

demonstrating notable improvements in tasks like author

identification and paper classification.

5) Mitigating over-smoothing: The issue of over-

smoothing in deeper GNN architectures was addressed in

study [21] with DeepGCNs, which integrated residual

connections and dilated convolutions, facilitating the training

of much deeper networks.

6) Data augmentation for graphs: Zhao et al. (2021) [22]

proposed GraphSMOTE, a modification of the SMOTE

algorithm tailored for graph-structured data to tackle class

imbalance. Ding et al. (2022) [23] introduced a comprehensive

data augmentation framework specifically for GNNs, showing

significant improvements in performance across multiple

tasks. Additionally, Zhang et al. (2020) [13] highlighted the

effectiveness of PEGASUS for paraphrasing and synonym

replacement in augmenting text data for GNN applications.

7) Hyperparameter optimization: Recent work by (Akiba

et al., 2019) [16] emphasized automated hyperparameter

tuning for GNNs, achieving notable enhancements in model

performance across various datasets. R. Kohavi (1995) [17]

further explored the application of k-fold cross-validation,

emphasizing robust model evaluation practices necessary for

ensuring generalizability in GNN contexts.

To overcome previously cited limitations and build upon
these architectural advances. Our work focuses on combining
architectural strength with data-centric approaches.

III. METHODOLOGY

A. Graph Convolutional Networks

GCN is a fundamental component of our approach to text
classification using graph-based data. This section outlines the
GCN architecture, explains the mathematical foundations, and
highlights its role in our methodology.

1) Architecture overview: The GCN [1] operates like a

layer that receives a set of input vectors representing the

nodes, in conjunction with the graph structure, producing a

new set of node mappings. In the context of a directed graph,

denoted:

𝐺 = (𝑉, 𝐸) (1)

where V represents the set of vertices (nodes), while E the
set of edges (see Fig. 1).

Fig. 1. Structure of a directed graph illustrating node-edge relationships in

Cora dataset.

The purpose is to glean insights from the graph by the
features function. This function uses as its input:

A description of the features xi for each node I, summed in
a feature matrix N × D X (N: nodes, D: input features).

A graph structure description embodied in a matrix form;
specifically, as an adjacency matrix A (or a function of A).

The output Z (an N × F matrix, F: output features at each
node). Every layer unfurls as a unique non-linear function:

H(l+1) = f(H(l),A) (2)

H(0) initialized as X , as for I: the layers number. The
patterns vary solely in choosing and parameterizing the
function, so it can capture the transformation performed on the
node representations in each layer, and A is a matrix attained
through the normalization process applied to the adjacency
matrix of the graph G.

2) Message passing: As its name suggests, it refers to the

neighbor of the destination node. The general concept is to

exchange message (insights) constantly with its neighbors to

reach a steady balance. Fig. 2 exhibits an illustration of the

message passing process that consists of two key steps:

a) Aggregation: each node transmits feature information

(messages) to the target node from its neighbors.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

393 | P a g e

www.ijacsa.thesai.org

b) Update: the functionality of each node according to

the "Message" received to form an embedded representation

(Embedded).

Message passing guarantees consistent dimensions for all
representations, allowing easy further processing. A final
integrated representation is achieved after many layers of
message passing, capturing the complex relationships within
the graph structure. Eq. (2) gives the rule for passing messages
from a GCN to a layer for an undirected graph, G.

H = σ (AXW) (3)

H represents the updated node representations, X the matrix
that wraps the characteristics of the nodes, where W embodies
weight parameters, and σ functions as the non-linear activation
coordinator. Meanwhile, A appears as a matrix built using a
process of normalization of the rows of the adjacency matrix of
the complex graph to add richer feature representation of the
model. The following Fig. 2 exhibits the message passing
mechanism throw layers.

Fig. 2. Message passing mechanism.

In summary individual nodes aggregate information from
their interconnected nodes, applying an aggregation function,
which ensures that all representations result in equal size. Next,
the vector undergoes a transformation through a dense neural
network layer, together with a non-linear activation function to
refine the vector's mapping. These steps are repeated according
to how many layers are in the model. In particular, GCNs
feature distinct representations at each layer:

At the zeroth layer, the representation is aligned with the
node's specific characteristics.

At k layer, the node's mapping is calculated by going
through its neighbors, aggregating their mappings from the
preceding layer (k-1), averaging them and subjecting the result
to a transformation via a parameter matrix. This process
extends to include the node's proprietary messages from k-1
onwards. This value is then subjected to a non-linear function,
such as ReLU in our case.

Eventually, when the node’s mappings pass through the
transformations in the hidden layers conclusive integration is
achieved. In summary, GCNs work via iterative message
transmission among nodes, allowing them to leverage
representations capturing their structural context, both local
and global, in the graph.

B. Graph Attention Networks

GATs offer an excellent opportunity for the development of
graphical neural networks. With Graph Convolutional
Networks (GCN), every neighbor has the same importance.
Yet, some nodes are more essential than others. Graph
Attention Networks solve this issue with the self-attention
mechanism that regards significance of individual neighbors,
an attention mechanism granting a weight coefficient per

connection. The following section illustrates GAT architecture,
provides an overview of its mathematical background, and
outlines its contribution to our methodology.

1) Architecture Overview: GAT [11] architecture consists

of various key elements, designed to contribute to its

performance in graph-based neural networks:

Self-attention mechanism lies at the core of GAT, this
mechanism assigns a weighting factor (attention score) to each
connection, allowing the nodes to target the most relevant
neighbors. GAT applies mathematical equations to aggregate
node characteristics based on attention, the embedding of node
1 is calculated as the equation below shows, W: shared weight
matrix:

ℎ1 = 𝛼11𝑤𝜘1 + 𝛼12𝑤𝜘2 + 𝛼13𝑤𝜘3 + 𝛼14𝑤𝜘4 (4)

αᵢⱼ the attention scores across nodes i and j.

The calculation of these attention scores proceeds through
three stages:

a) Linear transformation: To calculate the importance

of each connection, pairs of hidden vectors are needed (see

Fig. 3). A straightforward approach to forming these pairs

involves concatenating the vectors of the respective nodes.

Moving on from this step, a new linear transformation is

applied using trainable attention vector a:

𝑎𝑖𝑗 = 𝑎𝑡[𝑊 ℎ𝑖|| 𝑊ℎ𝑗] (5)

Where:

W·hᵢ and W·hⱼ are the transformed node features,

‖ Indicates vector concatenation,

aᵗ is a transposed attention vector (learned during training).

Fig. 3. Linear transformation process.

b) Activation function: Since the aim is to build a neural

network, the activation is the second stage. In this context, the

LeakyReLU function is added (see Fig. 4).

𝑒ⅈ𝑗=
′ 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑢(𝑒𝑖𝑗) (6)

Fig. 4. Computing attention coefficient.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

394 | P a g e

www.ijacsa.thesai.org

c) SoftMax normalization: The output of the neural

network does not undergo normalization. To assess the

relative relevance of node 2 to node 1 to node 3 (α₁₂ > α₁₃), the

same scale should be shared. A frequently employed method

in neural networks involves the SoftMax function (see Fig. 5).

The equation below shows how it is applied to every

neighboring node:

α𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖𝑗) =
𝑒𝑥𝑝(𝑒𝑖𝑗)

∑ 𝑒𝑥𝑝(𝑒𝑖𝑗)
𝑘∈𝑁𝑖

 (7)

Fig. 5. SoftMax normalization.

We can calculate every αᵢⱼ. However, self-attention can
exhibit instabilities. To enhance robustness, multi-head
attention was introduced into the architecture of the
transformer.

d) Multi-head attention: The multi-head attention (see

Fig. 6) involves repeating three identical steps repeatedly, with

the aim of calculating the average or recombine outputs. Here,

rather than obtaining a unique hidden h₁, a separate hidden

vector h₁ᵏ is generated for each attention head. We can then

apply one of two schemes:

Average: add together each of the hᵢᵏ. Normalize via the
total number n of heads of attention.

ℎ𝑖 =
1

𝑛
∑ ℎ𝑖

𝑘𝑛

𝑘=1
 (8)

Concatenation: concatenate the different hᵢᵏ.

ℎ𝑖 = ||𝑘=1
𝑛 ℎ𝑖

𝑘 (9)

Fig. 6. Multi-head attention.

In summary, attention-graph networks define self-attention
as a mechanism that allows nodes nearby to be accorded levels
of importance. Mathematically, this self-attention is
characterized by linear transformations, activation functions,
and SoftMax normalization. Multi-headed attention adds to the
model's performance by considering multiple perspectives
during the aggregation process.

C. Data Preprocessing and Augmentation

1) Original Cora dataset description: The Cora dataset

published by Andrew McCallum and his research group at the

University of Massachusetts Amherst [12] (see Fig. 7) as a

compressed zip file containing .ps files containing metadata,

abstracts and citations for 2,708 academic publications

distributed across seven classes. The accompanying citation

grid comprises 5,429 links. Cora’s established benchmark

status in graph neural network literature enables meaningful

performance contextualization, while its citation network

structure provides the graph topology essential for GCN and

GAT evaluation. We selected Cora for three reasons aligned

with our objectives:

 Availability of original PostScript text to support
sophisticated, meaning‑preserving augmentation.

 Moderate size (2 708 nodes) that allows comprehensive
k‑fold validation without prohibitive compute demands.

 Pronounced class imbalance (Neural Networks: 30 %,
Rule Learning: 6 %), making it an ideal benchmark for
evaluating imbalance‑aware graph learning strategies.

Fig. 7. Original Cora dataset classes distribution.

This dataset was subjected to a comprehensive
preprocessing and augmentation protocol to enhance its utility
and mitigate inherent limitations and was systematically
expanded to a more robust dataset of 17,780 samples through a
multifaceted augmentation strategy.

e) Semantic-preserving multi-modal augmentation

framework: Theoretical motivation: data expansion traditional

methods regularly introduce semantic leakage in which

synthetic input samples deviate increasingly far from the

domain's original pattern. This issue is also pronounced in

datasets like Cora that are already heavily pre-processed to a

simplified representation removing much of its contextual

richness that GAT and GCN are meant to capture. To solve

this problem, instead of developing a costly new augmentation

algorithm we propose a combination of existing methods with

a semantic control level mechanism following this pipeline:

 Preprocessing Cora original raw dataset: The initial
phase was data preprocessing. It involved a meticulous
examination and refinement of the raw Cora dataset,
originally distributed in PostScript (ps) file format. This
process was executed through a series of sophisticated
steps to preserve data quality, relevance and semantic
integrity.

Content Extraction and Metadata Removal: we isolate
essential textual content directly from the PostScript file one by
one using a custom rule-based string parser we implemented in

Neural_Networks, 818

Probabilistic_Methods, 426

Genetic_Algorithms, 418

Theory, 363

Case_Based, 286

Reinforcement_Learning, 217

Rule_Learning, 180

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

395 | P a g e

www.ijacsa.thesai.org

Python while systematically removing extraneous metadata,
such as (e.g. author names and institutional affiliations, links,
etc.). Abstracts were retained, as they serve as the primary
textual representation of each paper.

Text Cleaning: A multi-tiered protocol to text cleaning has
been used taking into consideration benchmark practices to not
roughly eliminate semantic senses: custom regular expressions
were employed to remove non-alphanumeric characters,
normalize whitespace, and standardize formatting.

 Data augmentation Pipeline (Methodologies)

Let D = {(x₁, y₁), (x₂, y₂), ..., (xₙ, yₙ)} (10)

D represent the original dataset, where xᵢ is the feature
vector and yᵢ is the label that correspond to the feature in
question. The generated D' is the result of the augmentation
process such that |D'| > |D| while preserving the label condition

distribution P(x', y')≈P(x,y).

PEGASUS-based Textual Transformation: We employed
the PEGASUS (Pre-training with Extracted Gap-sentences for
Abstractive Summarization) model, specifically fine-tuned for
paraphrasing [13], as the primary method for generating
diverse textual variations. This approach allows us to create
semantically equivalent but linguistically diverse versions of
the original text:

𝑃 = 𝑓𝜃𝑝
(𝑥) (11)

where P is the paraphrased text, x is the paper textual
content, and f_(θ_p)

is the PEGASUS paraphrasing function with parameters.
This technique effectively doubles the dataset size while
introducing linguistic variations that can improve model
robustness.

Subject-Aware Lexical Substitution via Synonym
Replacement: We used synonym replacement algorithm [13]
while enforcing controlled lexical variations through filtering
according to subject domain, thereby maintaining thematic
coherence while expanding vocabulary:

𝑥aug = ℎ(𝑥orⅈg, 𝜆) (12)

Where x_aug is the augmented paper content, x_orig is the
original or previously augmented content, h is the synonym
replacement function, and λ is a parameter controlling the
degree of replacement.

Conditional restrictions are applied so that only
substitutions that met semantic and label constraint were
retained (Samples exceeding the WMD threshold were
rejected)

WMD(xorig , xaug) ≤ τwmd = 0.35 (13)

Class-balanced custom Generation Pattern: we devised a
sophisticated syntactic generation framework characterized by
a meticulously curated lexicon of action-oriented verbs and
descriptive adjectives. Enabling the formulation of new
sentences that are both semantically rich and consistent with
the underlying class distributions of the original text, this
pattern was applied specifically to limited set of isolated nodes

with no connection in the network and particularly those with
the shortest text content that lack sufficient presentation.

N = g(X, V) (14)

where N is the new synthetic sample, X is the original text,
V encapsulates our curated vocabulary and advanced
terminological construct, and g is our custom generation
function that generates suitable terms from V while respect
part-of-speech to maintain correctness. This combinatorial
approach allows for controlled growth of even smaller
contributor nodes in the dataset with semantic check through
the threshold τwmd.

 Parameter Sensitivity: The choice of crucial parameters
in our augmentation pipeline has an important impact
on performance. While a lower Learning rate (Lr)
produces nearly duplicate paraphrases with little
advantage, a higher PEGASUS (Lr) introduces
semantic drift that reduces classification accuracy.
Raising the synonym rate beyond its optimal point
disrupts domain-specific terminology, damaging
coherence, while too low a rate limits new lexical
variety. Temperature values above 0.8 produce
semantically inconsistent text that misleads the
classifier, and values below 0.6 result in repetitive,
uninformative samples. While lowering the WMD
threshold allows for excessive semantic divergence,
raising it over-filters advantageous variations. These
findings underscore how sensitive the augmentation
process is to parameter choices and highlight the
importance of systematic tuning, as even minor
deviations from optimal settings can significantly
degrade semantic quality.

 Methodological Validation: Semantic Preservation: For
each newly augmented node inherits the original node’s
edges to preserve citation relationships so that the
structural semantics of the graph remain intact after
augmentation. To support the integrity of the
augmented dataset, we implement: Automated intra-
category semantic similarity checks between original
and augmented document embeddings for each
category. We computed the Word Mover's Distance
(WMD) [15] and set threshold for strict filtering; this
validation mechanism prevents the semantic drift
commonly seen in synthetic data generation. In addition
to analyzing repetitiveness in sentence structure and
phrase.

Class Balance: The data were augmented to realize equal
class distributions (approximately 14% each) drops the bias in
the original Cora, where Neural Networks represented 30% of
samples while Rule Learning only 6%, Neural Networks now
present more equitable 16% reduced dominance. This balance
guarantees fair model evaluation.

Computational Efficiency: compared to the improvement of
ensemble methods or attention mechanism. This pipeline
provides better graph learning preserved semantically, enabling
models to achieve better performance without architectural
modifications, reducing computational overhead and more
accessible to any individual.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

396 | P a g e

www.ijacsa.thesai.org

IV. EXPERIMENTAL RESULTS

A. Dataset Description

In this study, we have created a customized augmented
dataset from Cora [12] using various methods, each with
critical parameter settings. The Pegasus model utilized a
learning rate of 0.01 selected following several tests and
monitoring continuously steady convergence without
overshooting, a maximum input length of 512 tokens, a beam
search size of 5, and was trained for 5 epochs to ensure
effective learning. For synonym replacement, we set a
replacement probability of 0.3 and a maximum of 3 synonyms
per word, maintaining semantic integrity while promoting
variability. In the text generation phase, we used a temperature
of 0.7 for balanced creativity, top-k sampling with k=50 to
restrict predictions to the most probable words, and to reduce
repetitive phrases we used a repetition penalty of 1.2. These
carefully chosen parameters, and many others significantly
preserved the quality and diversity of the generated data.

The New customized Cora dataset (see Fig. 8) cumulative
generated by the augmentation techniques resulted in the
important expansion of our dataset from the original 2,708
samples to 17,780 samples, an increase in the factor of
approximately 6,57x. This expansion not only increased the
training data volume but also preserved the diversity of
linguistic variations and synthetic samples, all while
maintaining semantic coherence and domain.

Fig. 8. Customized dataset classes distribution.

The quality and relevance of the augmented samples shows
a similarity threshold of 0,8 was maintained. Additionally,
WMD calculated scores intra classes (see Table I) values
around 0.3 to 0.34 suggest moderate similarity between
original and augmented texts within each category introducing
meaningful variation.

TABLE I. WMD SCORES

Category WMD scores

Case-Based 0.3389

Genetic Algorithms 0.3049

Probabilistic Methods 0.3044

Reinforcement Learning 0.3309

Rule Learning 0.3283

Theory 0.2773

B. Hyperparameter Tuning Configuration

We adopted to conduct Naive Bayesian hyperparameters
tuning with adopted Optuna [16], because of its empirical
ability to efficiently navigate high-dimensional search spaces
and typically generalize better, even in contexts like ours
involving data imbalance and augmentation where stability is
critical. The full set of optimized hyperparameter
configurations for both GCN and GAT models is summarized
in Table II, which lists ranges for learning rates, dropout, and
architectural elements.

This probabilistic approach enabled us to model the
relationship between hyperparameters and model performance.
In addition to ensuring the robustness and generalizability of
our hyperparameter configurations, we employed a k-fold
cross-validation strategy. This approach partitioned our
augmented dataset into k subsets, allowing for multiple training
and validation cycles. The cross-validation procedure not only
provided a more reliable estimate of model performance but
also mitigated the risk of overfitting to specific data partition.

TABLE II. OPTIMIZED HYPERPARAMETER CONFIGURATIONS

Elements Values Model

Optimization framework 100-400 trials

GCN-

GAT

Hidden features 8 to 128

Activation
["relu", "relu"], ["relu", "softmax"],

["elu", "softmax"]

Dropout 0.1 to 0.8

Learning rate 1e-5 to 1e-1 (Log-uniform)

Weight decay 1e-6 to 1e-2 (Log-uniform)

Cross-Validation 5-fold cross-validation

Early Stopping
Patience of 20 epochs, monitored on

validation set's F1 score

Attn_heads 1 to 16
GAT

attn_dropout 0.2 to 0.8

The hyperparameter tuning process aimed to maximize the
mean cross-validated F1 score. The best-performing
hyperparameters for each model were selected based on this
metric. We then compared the optimized GAT and GCN
models to determine which architecture was more suitable for
our specific graph classification task.

C. Evaluation Metrics

Classification models are evaluated using well-established
metrics to quantify their performance and effectiveness. These
metrics are essential in determining how well a model can
predict outcomes based on the given data. Below are the key
metrics used in evaluating GCN and GAT classification [5]
[11]:

True Positives (TP): Instances where the model correctly
predicts positive outcomes (i.e., both the actual and predicted
results are positive).

True Negatives (TN): Instances where the model correctly
predicts negative outcomes (i.e., both the actual and predicted
results are negative).

Case-Based, 14%

Genetic_Algorithms, 14%

Neural_Networks, 16%

Probabilistic_Methods, 14%

Reinforcement_Learning, 14%

Rule_Learning, 14%

Theory, 14%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

397 | P a g e

www.ijacsa.thesai.org

False Positives (FP): Occurrences where the model predicts
a positive result, but the actual result is negative (also known as
a Type I error).

False Negatives (FN): Occurrences where the model
predicts a negative result, but the actual result is positive (also
known as a Type II error).

Accuracy: Conversely, false negatives occur if the model
predicted a negative result, while the real result proved
positive.

Accuracy =
TPi+TNi

TPi+TNi+FPi+FNi
 (15)

Loss: Loss measures the discrepancy between predicted
values and actual values. Cross-entropy is a common loss
function in deep neural networks. It quantifies how well the
predicted probabilities match the actual class labels.

𝐂rossEntropy = − ∑ 𝑙𝑜𝑔 (𝑃𝑖,𝑖)𝑦𝑖,𝑗

𝑛

𝑖=1
 (16)

where yi,j is the true value, i.e. 1 if sample I is in class j and
0 otherwise. Pi,j the likelihood forecast via the model that
sample I is part of class j.

Precision: is the ratio between the True Positives and all the
Positives.

Precision =
TPi

TPi+FPI
 (17)

Recall: the extent to which our model correctly identifies
true positives.

Recall =
TPi

TPi+FNI
 (18)

F1 Score is the harmonic mean of Precision and Recall. It
provides a balanced measure that considers both false positives
and false negatives, making it particularly useful when dealing
with imbalanced datasets. The F1 Score ranges from 0 to 1,
with 1 indicating perfect precision and recall.

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (19)

D. Results and Discussion

1) Model settings: In this experiment we adapted across

all models the same following configurations:

a) Data preparation: The textual preprocessed data was

transformed into TF-IDF vectors, with a maximum of 1000

features for each record. Class labels were encoded using

LabelEncoder, ensuring numerical representation for

classification. We created an adjacency matrix from citation

data, representing relationships between papers, and

normalized it to ensure proper scaling in the graph model.

Stratified Data Splitting We employed stratified k-fold
cross-validation with 5 splits to ensure balanced class
distributions across training and validation sets. A random state
with a fixed seed of 42 was used for reproducibility throughout
the data splitting and model training. For each fold, data was
split into training and validation sets, without using a k-fold
throught cross-validation.

Following comprehensive hyperparameter tuning and
testing, we identified a set of configurations for the
foundational models as detailed in Table III. These
configurations were meticulously selected to enhance the
performance of the respective models.

The results yielded by the individual models, GCN and
GAT, were rigorously analyzed. Fig. 9 depicts the outcomes of
numerous testing and fine-tuning iterations, providing a
summary of the average performance metrics from the 5 folds
that are broken down per model, and summarized in Table IV
including key metrics: validation accuracy, precision, recall,
and F1 score.

The results of our analysis reveal that GCN is consistently
better than GAT across all evaluated metrics. Specifically,
GCN achieves a validation accuracy of 95.42%, which is a
higher overall correct classification rate than GAT's 93.46%. In
terms of precision, GCN achieves a score of 95.45%, compared
to GAT's 93.50%, suggesting a lower false positive rate for
GCN. In addition, GCN's recall of 95.42% above GAT's
93.46%. This shows that GCN's improved capability in
identifying true positives. The F1 score shows GCN at 95.42%,
while GAT scores 93.47% which reflects the balance between
precision and recall.

TABLE III. GRAPH CONVOLUTIONAL NETWORK AND GRAPH ATTENTION NETWORK SETTINGS

Model GCN Instance Model GCN Average Model GAT Instance Model GAT Average Model

Model architecture
layer_sizes =108 activated by

ReLU

layer_sizes = 116 activated by

ReLU

layer_sizes = 106 activated by

ELU

layer_sizes = 106 activated

by ELU

Epochs 200 200 200 200

Optimizer Adam Adam Adam Adam

Learning Rate 0.04401160472 0.06507184668
0.00066108710

step_size=50, gamma=0.5

0.000661087

Step_size=50, gamma=0.5

Early Stopping
Stagnant F1 score validation for

200 epochs

Stagnant F1 score validation for

200 epochs

Stagnant F1 score validation for

200 epochs

Stagnant F1 score validation

for 200 epochs

Patience 20 20 20 20

Activation
ELU (hidden layers), Log

Softmax (output)

ELU (hidden layers), Log

Softmax (output)

ELU (hidden layers), Log

Softmax (output)

ELU (hidden layers), Log

Softmax (output)

Dropout Rate 0.44934028857 (45%)
0.53708280317
(50%)

0.29109068673 (30%) 0.2910906867 (30%)

Weight Decay 3.602702935945202e-05 3.602702935945202e-05 0.00010625787460334993 0.00010625787460334993

Attention Heads None None 16 16

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

398 | P a g e

www.ijacsa.thesai.org

Fig. 9. Performance metrics comparison.

The GCN model performed better than the GAT model
across all evaluation measures, with accuracy being
approximately 1.96% higher (95.42% vs. 93.46%) and
statistical significance with the paired t-tests showing (p <
0.05, t = 2.89, df = 4) also shows a 95% confidence interval:
(94.77%, 96.07%) vs. (92.83%, 94.08%). The strong
performance of both models, with low standard deviations,
indicating stable learning over different data distributions.

TABLE IV. COMPARATIVE PERFORMANCE ANALYSIS OF GCN AND GAT

MODELS ACROSS KEY EVALUATION METRICS

Model Folds
Validation

accuracy

Validation

precision

Validation

recall

Validation

F1 score

GCN

F1 95,05% 95,06% 95,05% 95,04%

F2 96,26% 96,27% 96,26% 96,26%

F3 95,02% 95,09% 95,02% 95,03%

F4 95,61% 95,61% 95,61% 95,60%

F5 95,16% 95,23% 95,16% 95,18%

GAT

F1 92,69% 92,73% 92,69% 92,70%

F2 93,64% 93,69% 93,64% 93,65%

F3 93,25% 93,30% 93,25% 93,27%

F4 93,98% 94,01% 93,98% 93,99%

F5 93,73% 93,75% 93,73% 93,74%

Based on cross-validation findings, detailed performance
showed that the GCN maintains an accuracy of 95.42%
(±0.47%) with a precision of 95.45% (±0.45%), a recall of
95.42% (±0.47%) and an F1 score of 95.42% (±0.47%). While
GAT also manifests the corresponding performance levels of
93.46% (±0.45%), 93.50% (±0.45%), 93.46% (±0.45%) and
93.47% (±0.45%). We kept track of validation loss across folds
to determine model convergence and confidence level were
balanced. GCN showed a consistently lower average validation
loss of ~0.18 compared to GAT’s ~0.21. Both models
demonstrated small standard deviations, indicating a good level
of stability as well as reproducibility across different data
partitions.

However, there is a variation between the study datasets
and data refinement methodologies, confronted with these
limitations the establishment of internal reference measures
was undertaken. To this end, we trained GCN and GAT on the
original Cora dataset (2,708 samples) using identical

architecture but without augmentation. The resulting accuracy
rates were 83.39% and 82.24%, respectively, aligning with
existing literature on the subject such as [5][11], where
standard Cora benchmarks rarely go above 85% in the absence
of architectural refinement. While this comparison does not
represent a strictly controlled ablation, it is still useful to
understand the potential impact of our semantic preservation,
class balanced augmentation pipeline. The augmented and
optimized models exhibited an accuracy rate of over 95%,
these results show how important it is to preserve the semantics
of the dataset during the engineering process. The findings of
this study provide an indicative—but not strictly controlled—
comparison, which is developed in the limitations section.

 Class-wise Performance Analysis: To further
investigate per-class performance, we computed F1-
scores for each class across all folds (see Table V).

TABLE V. AVERAGED F1-SCORES RESULTS ACROSS THE FIVE FOLDS FOR

EACH CLASS WITH STANDARDS DEVIATIONS

Class GCN F1-Score GAT F1-Score
(GCN-

GAT)
Support

Case-Based 0.9575 ± 0.0073 0.9378 ± 0.0029 +0.0197 500

Genetic_Alg
orithms

0.9726 ± 0.0037 0.9584 ± 0.0039 +0.0142 500

Neural_Netw

orks
0.9194 ± 0.0097 0.8898 ± 0.0115 +0.0296 556

Probabilistic
_Methods

0.9504 ± 0.0081 0.9284 ± 0.0054 +0.0220 500

Reinforceme

nt_Learning
0.9733 ± 0.0057 0.9608 ± 0.0135 +0.0125 500

Rule_Learnin

g
0.9737 ± 0.0068 0.9590 ± 0.0081 +0.0147 500

Theory 0.9364 ± 0.0096 0.9140 ± 0.0086 +0.0224 500

Weighted
Avg

0.9542 ± 0.0047 0.9347 ± 0.0045 +0.0195 3556

As detailed in Table V the analyses by class highlight
notable aspects. Overall, all seven classes are consistently well
managed by the GCN model, with a performance variance
between 1.25% (Reinforcement Learning) and 2.96% (Neural
Networks). The Neural Networks category shows the most
difficulties in classification with both models, particularly due
to the conceptual overlap and semantic ambiguity inherent in
the literature on neural networks affecting many areas of
artificial intelligence. Probabilistic Methods and Theory exhibit
relatively significant performance differences (2.20% and
2.24%), suggesting that GCN's aggregation process is effective
in capturing the particularities of these domains. However, the
relatively smaller difference between the two models in
reinforcement learning (1.25%) clearly illustrates how well the
two models deal with this specific domain.

The plots shown in Fig. 10 and Fig. 11 provide an overview
of the learning history that gives a further indication of the
convergence and stability of GCN and GAT performance over
the course of the learning process with second fold as the
representative fold. We can observe that the learning process
for both models GAT and GCN presents some notable
differences, particularly during the early training stages. GAT,
for instance, is more unstable at the beginning, especially in the
initial starting epochs. This instability likely comes from the
way attention mechanism that GAT uses, as it requires more

95.42%

93.46%

95.45%

93.50%

95.42%

93.46%

95.42%

93.47%

GCN GAT

 Validation accuracy

 validation precision

 validation recall

 validation F1 score

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

399 | P a g e

www.ijacsa.thesai.org

time to adjust and optimize the importance of edges within the
graph. Learning how to prioritize different node connections
adds more complexity, which in turn causes performance to
initially fluctuate.

How GAT manages isolated nodes is one of its main
challenges. While GCN works best in treating all neighboring
nodes equally, GAT's effectiveness is more dependent on the
topology of the graph. The presence of isolated nodes, which
lack neighboring information, makes it harder for GAT to fully
benefit from its attention mechanism. This has likely
contributed to the early performance issues and slower
convergence compared to GCN.

Fig. 10. GAT Fold 2 training and validation accuracy fit history.

Fig. 11. GCN Fold 2 training and validation accuracy fit history.

Despite these challenges at the beginning, both models
eventually ended up achieving high-performance levels. While
it takes longer to converge for GAT, that frequently matches or
even outperforms GCN in the end. This suggests that although
GAT works in a more complex optimization environment, its
ability to learn which edges are most important can offer
important advantages as training continues.

Overall, the consistent results across the five cross-
validation folds show that both models are robust, especially
GCN, which was less variable across different data splits. The
slight differences in GAT’s performance could be due to its
sensitivity to specific graph structures within each fold.
Compared to baseline models, both GCN and GAT perform
very well on the expanded dataset, suggesting their
architecture’s strength in handling complex graph data. This
analysis underlines the unique strengths of each model and the
importance of giving GAT sufficient training time to fully
optimize its performance, particularly in scenarios with diverse
graph connectivity.

V. CONCLUSION

This study represents a notable advancement in graph-
based node classification, effectively addressing key challenges
related to data quality in preserving semantic aspect, class
imbalance, and model performance generalization constraints.
Our approach enhanced the Cora dataset by extracting content
from its original PostScript files and applying a systematic
implementation of a tripartite augmentation framework
combination of benchmark techniques: a combination of
textual transformation PEGASUS-based, subject aware
synonym replacement and customized class-balanced
generation pattern function on isolated nodes to expand the
dataset to 17,780 nodes, achieving a 6.57x scaling factor while
maintaining semantic fidelity as evidenced by Word Mover's
Distance scores ranging from 0.27 to 0.34. In addition the use
of Optuna-driven hyperparameter optimization using Naïve
Bayesian with k-fold cross-validation, to make sure achieving
optimal model performance. Both the GCN and GAT models
performed effectively, achieving accuracy of 95.42% and
93.46% respectively. This analysis highlights how is consistent
is GCN alongside GAT more intricate learning pattern, where
early fluctuation gave way to competitive results. These results
show the potential of attention mechanisms to capture complex
graph dynamics with sufficient training. The models’
resilience, validated across five folds, further demonstrates
motivation of our approach. Importantly, this work illustrates
how advanced data augmentation and optimization techniques
can boost the performance and scalability of graph-based
models by preserving important semantic aspect that can be
lost in rough engineering, also shows the ability of these
models on larger datasets without compromising accuracy.

Despite overall good classification performance, there are
some limitations that should be acknowledged, particularly in
distinguishing between overlapping classes such as neural
networks. The attention mechanism of GAT also introduced
computational costs without corresponding gains. In
conclusion, results demonstrate that performance obtains
equivalent to architectural complexity alone can be obtained
through strategic dataset augmentation, this principle provides
a cost-effective alternative, making advanced graph neural
networks accessible to researchers with limited computational
resources.

A. Limitations and Future Work

While our approach has shown good results as discussed
earlier in the previous section, we acknowledge different
limitations that present opportunities for future improving:

1) Domain specificity: Our validation focuses on

academic paper classification that the Cora dataset provides.

Future work should explore the practical applicability across

variety of text domains and languages.

2) Comparative evaluation: Direct comparison with

existing methods is challenging due to the characteristics of

the new dataset and the difference in engineering approaches.

Future work should establish a more standardized evaluation

protocol.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

400 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] Y. Kim, "Convolutional neural networks for sentence classification,"
arXiv preprint arXiv:1408.5882, 2014.

[2] H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen, and R. Ward,
"Semantic modelling with long-short-term memory for information
retrieval," arXiv preprint arXiv:1412.6629, 2014.

[3] H. Peng, J. Li, Y. He, Y. Liu, M. Bao, L. Wang, and Q. Yang, "Large-
scale hierarchical text classification with recursively regularized deep
graph-cnn," in Proc. 2018 World Wide Web Conf., 2018, pp. 1063-
1072.

[4] H. Cai, V. W. Zheng, and K. C. C. Chang, "A comprehensive survey of
graph embedding: problems, techniques, and applications," IEEE Trans.
Knowl. Data Eng., vol. 30, no. 9, pp. 1616-1637, Sept. 2018.

[5] T. N. Kipf and M. Welling, "Semi-supervised classification with Graph
Convolutional Networks," arXiv preprint arXiv:1609.02907, 2017.

[6] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, "Spectral networks and
locally connected networks on graphs," arXiv preprint arXiv:1312.6203,
2014.

[7] M. Henaff, J. Bruna, and Y. LeCun, "Deep convolutional networks on
graph-structured data," arXiv preprint arXiv:1506.05163, 2015.

[8] M. Defferrard, X. Bresson, and P. Vandergheynst, "Convolutional neural
networks on graphs with fast localized spectral filtering," in Advances in
Neural Information Processing Systems, vol. 29, 2016.

[9] D. Marcheggiani and I. Titov, "Encoding sentences with graph
convolutional networks for semantic role labeling," arXiv preprint
arXiv:1703.04826, 2017.

[10] Y. Li, R. Jin, and Y. Luo, "Classifying relations in clinical narratives
using segment graph convolutional and recurrent neural networks (Seg-
GCRNs)," J. Amer. Med. Inform. Assoc., vol. 26, no. 3, pp. 262-268,
2019.

[11] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y.
Bengio, "Graph attention networks," arXiv preprint arXiv:1710.10903,
2018.

[12] McCallum, A., Rennie, J., & Nigam, K. (2000). Cora Research Paper
Classification Dataset. University of Massachusetts Amherst. Available
at: https://people.cs.umass.edu/~mccallum/data/cora-classify.tar.gz

[13] J. Zhang, Y. Zhao, M. Saleh, and J. Liu, "PEGASUS: pre-training with
extracted gap-sentences for abstractive summarization," in Proc. 37th
Int. Conf. Machine Learning (ICML), 2020.

[14] J. Wei and K. Zou, “EDA: Easy Data Augmentation Techniques for
Boosting Performance on Text Classification Tasks,” in Proc. EMNLP
IJCNLP, Hong Kong, Nov. 2019, pp. 6382–6388.

[15] M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q. Weinberger, “From Word
Embeddings to Document Distances,” in Proc. 32nd Int. Conf. Machine
Learning (ICML), 2015, pp. 957–966.

[16] T. Akiba, S. Sano, T. Yanase, T. Ohta, and Z. Kira, "Optuna: a next-
generation hyperparameter optimization framework," in Proc. 25th
ACM SIGKDD Int. Conf. Knowledge Discovery & Data Mining, 2019.

[17] R. Kohavi, "A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection," Proc. 14th Int. Joint Conf. Artificial
Intelligence (IJCAI), vol. 2, pp. 1137–1143, 1995.

[18] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast learning with graph
convolutional networks via importance sampling,” arXiv preprint
arXiv:1801.10247, 2018.

[19] M. Yoon Huang T. Zhang, Y. Rong, J. Huang "Performance-Adaptive
sampling towards fast and accurate graph neural networks," in Proc.
27th ACM SIGKDD Int. Conf. Knowledge Discovery & Data Mining
(KDD), 2021, pp. 2046–2056.

[20] X. Wang, H. Ji, C. Shi, B. Wang, P. Cui, P. Yu, Y. Ye, "Heterogeneous
graph attention network," in Proc. World Wide Web Conf., 2019.

[21] G. Li, M. Müller, G. Qian, C. Delgadillo, A. Abualshour, A. Thabet, B.
Ghanem, "DeepGCNs: Making GCNs Go as Deep as CNNs" in Proc.
IEEE/CVF International Conference on Computer Vision (ICCV),
Seoul, South Korea, Oct. 2019, pp. 9266–9275.
DOI: 10.1109/ICCV.2019.00936

[22] T. Zhao, X. Zhang, S. Wang, "GraphSMOTE: imbalanced node
classification on graphs with graph neural networks" in Proc. ACM
WSDM, 2021, pp. 833–841. DOI: 10.1145/3437963.3441720
(arXiv:2103.08826)

[23] K. Ding, Z. Xu, H. Tong, and H. Liu, “Data Augmentation for Deep
Graph Learning: A Survey,” arXiv preprint arXiv:2202.08235, 2022.

