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Abstract—The demand for robust data-driven classification 

(DDC) techniques remains critical in banking applications, where 

accurate and efficient decision-making is paramount. Artificial 

Neural Networks (ANNs), particularly Multi-Layer Perceptrons 

(MLPs), are widely used due to their strong learning capabilities. 

However, their performance often depends on effective 

hyperparameter tuning and regularisation strategies to avoid 

overfitting. This study aims to enhance the efficiency of the MLP 

training process by introducing a hybrid approach that 

integrates L2 regularisation with Early Stopping (ES) into the 

hyperparameter tuning procedure. The key contribution lies in 

embedding both techniques within a grid search framework, 

thereby streamlining the search for optimal hyperparameters. 

The proposed method was evaluated using three real-world 

banking datasets: two related to loan subscription (16 and 20 

features) and one concerning credit card default payment (23 

features). Experimental results demonstrate that the hybrid 

approach reduces hyperparameter tuning time by over 90% 

while achieving high classification performance. Notably, the 

Receiver Operating Characteristic - Area Under the Curve 

(ROC-AUC) scores of 93.89% and 91.21% were achieved on the 

loan datasets, and 73.28% on the credit card dataset, surpassing 

previous benchmarks. These findings highlight the potential of 

the L2ES hybrid method to improve both the accuracy and 

computational efficiency of DDC in financial applications. 

Keywords—Artificial neural networks; L2 regularisation; early 

stopping; banking; classification 

I. INTRODUCTION 

The financial sector's digital transformation has intensified 
the demand for accurate and efficient data analysis techniques. 
Financial institutions continuously seek innovative strategies to 
enhance operational efficiency, particularly in loan processing, 
risk assessment, and fraud detection. In this context, data-
driven classification (DDC) methods have emerged as essential 
tools for analysing large volumes of banking data to support 
informed decision-making. Among these, machine learning 
(ML)-based DDC techniques stand out because they can learn 
from complex, nonlinear data patterns and improve predictions 
over time. Their application spans multiple domains, including 
medicine, agriculture, and manufacturing, with particularly 
significant adoption in banking for tasks such as loan 
subscription analysis and credit card default prediction. 

Artificial neural networks (ANNs), particularly the multi-
layer perceptron (MLP), have gained recognition as robust 
classifiers within the DDC domain. Numerous studies have 
demonstrated the superior performance of MLPs in banking-
related classification tasks. For example, MLPs have been 
effectively used to model customer decisions on loan 
subscriptions and to predict credit card default risks, as 
summarised in Tables I and II of this study. The robustness and 
adaptability of MLPs are further evidenced in domains such as 
bioinformatics. AbdElsalam et al. [1], for instance, 
significantly improved MLP performance in gene classification 
tasks by integrating the ADASYN technique to address class 
imbalance—an approach yielding high sensitivity and 
accuracy. These developments reaffirm that MLPs, when 
appropriately optimised, remain highly effective across various 
domains, including finance. 

However, overfitting remains a critical challenge in MLPs, 
particularly when working with complex or imbalanced 
datasets. Regularisation techniques, such as L2 regularisation, 
have been widely adopted to mitigate this issue. Prior research 
by Aldelemy et al. [2] and Grosicki [3] demonstrates the 
efficacy of L2 regularisation in MLP-based classification for 
banking loan datasets. L2 regularisation has also been 
successfully applied to other ML models, including logistic 
regression and XGBoost, across both loan and credit card 
datasets [4]–[6]. Despite these applications, current 
implementations often overlook the considerable time and 
effort required for hyperparameter tuning in neural network 
models—an essential yet burdensome aspect of model 
optimisation. 

This study identifies a gap in the literature: while L2 
regularisation has been implemented to reduce overfitting in 
MLPs, limited attention has been given to streamlining the 
hyperparameter tuning process. Most existing approaches 
apply L2 within fixed or manually guided tuning routines, 
without exploring strategies to expedite this phase effectively. 
This oversight hinders the deployment of efficient ML systems 
in time-sensitive financial applications. 

To address this, this paper proposes a hybrid approach that 
combines L2 regularisation with early stopping (ES) within a 
grid search framework. This technique aims to retain the 
regularisation benefits of L2 while simultaneously accelerating 
the hyperparameter tuning process via early termination of 
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underperforming configurations. By integrating ES into the 
grid search routine, the proposed method significantly lowers 
computational overhead and facilitates faster convergence to 
optimal settings, thus making the model development process 
more efficient. 

Unlike conventional methods that treat L2 regularisation 
and hyperparameter optimisation as independent steps, our 
hybrid strategy embeds both into a unified workflow. This 
integration is particularly suitable for banking datasets, where 
rapid model development is critical. The proposed approach 
not only curbs overfitting but also enhances the efficiency of 
hyperparameter exploration—an aspect often neglected in 
previous studies. 

TABLE I.  LIST OF RESEARCH ON THE APPLICATION OF MLPS FOR 

PREDICTING LOAN SUBSCRIPTION THROUGH BANK TELEMARKETING 

CAMPAIGNS 

Research 
ROC-

AUC 
Other Metrics Features 

Moro et al., [7] 0.79 - 22 

Marinakos and Daskalaki 

[8] 
0.87 

Accuracy 79.11%, 
Precision 74.99%, 

Recall 81.44%, F1 

77.86% 

16 

Farooqi and Iqbal [9] 0.89 

Accuracy 89.83%, 
Precision 55.50%, 

Recall 49.00%, F1 

52% 

20 

Ghatasheh et al., [10] - 
Accuracy 84.18%, 

TP 61.4% 
16 

Panigrahi and Patnaik [11] - Accuracy 90.02% 16 

Mokrane [12] - 
Accuracy 98.93%, 

F1 0.95 
20 

Dutta and Bandyopadhyay 
[13] 

- Accuracy 88.32% 16 

Masturoh et al., [14] 0.90 Accuracy 94.27% 20 

Aldelemy and Raed A. 

Abd-Alhameed [2] 
0.92 - 16 

TABLE II.  LIST OF RESEARCH ON THE APPLICATION OF MLPS FOR 

PREDICTING CREDIT CARD DEFAULT PAYMENTS 

Research 
ROC-

AUC 
Other Metrics Features 

Singh and Aggarwal [15] - 
Recall 0.849, 

Precision 0.866 
23 

Liu [16] - 
Accuracy 82.27%, 

F1 0.46 
23 

Vishwakarma et al., [17] 0.5000 - 23 

de Campos Souza and 

Torres [18] 
0.6506 - 23 

Almajid [19] 0.7184 Accuracy 76.50% 23 

Jiang et al., [20] - Accuracy 77.35% 23 

Shazly and Khodadadi 

[21] 
- 

Accuracy 89.45%, 

Recall 0.9967, 

Precision 0.6667, 
F1 0.9288 

23 

Idrees et al., [22] - 

Accuracy 81.96%, 

Recall 0.820, 
Precision 0.803 

23 

Yash et al., [23] - Accuracy 80.50% 23 

Accordingly, this research evaluates the performance of the 
hybrid L2ES (L2 + Early Stopping) approach in banking data 
classification. The primary objectives are to (i) assess the 
effectiveness of integrating L2 regularisation within MLP-
based classifiers, (ii) incorporate L2 into the grid search 
procedure for hyperparameter tuning, and (iii) demonstrate 
how the combination of L2 and ES within grid search can 
enhance training efficiency without compromising model 
accuracy. 

The remainder of this paper is structured as follows: 
Section II introduces the proposed L2ES methodology, 
detailing the experimental setup and the grid search 
configuration. Section III presents the empirical results and 
offers a comparative analysis with conventional approaches. 
Section IV concludes the paper and discusses directions for 
future research. 

II. METHODOLOGY 

A. Materials 

The datasets utilized in this study are derived from the 
banking sector, specifically focusing on loan and default credit 
card datasets. These datasets are publicly accessible through 
the UCI Machine Learning Repository. Table III presents a 
detailed overview of the loan subscription dataset, as 
documented by Moro et al. [24]. This dataset encompasses 16 
features and one label, the latter serving as the target variable. 
The dataset comprises 45,211 records featuring a mix of data 
types, including integers, binary and categorical. The binary 
target variable is imbalanced: 'yes' labels account for 5,289 
records, while 'no' labels constitute 39,922. 

TABLE III.  OVERVIEW OF THE LOAN SUBSCRIPTION DATASET 

DOCUMENTED BY MORO ET AL. [24] 

Num. Variable Name Role Type 

1 age Feature Integer 

2 job Feature Categorical 

3 marital Feature Categorical 

4 education Feature Categorical 

5 default Feature Binary 

6 balance Feature Integer 

7 housing Feature Binary 

8 loan Feature Binary 

9 contact Feature Categorical 

10 day_of_week Feature Date 

11 month Feature Date 

12 duration Feature Integer 

13 campaign Feature Integer 

14 pdays Feature Integer 

15 previous Feature Integer 

16 poutcome Feature Categorical 

17 y Target Binary 

Table IV outlines the characteristics of another loan 
subscription dataset, also studied by Moro et al. [7]. This 
contains 20 features and one label. It includes a mix of integer, 
float, and categorical data types for its features. Like the first, it 
exhibits a binary target with an imbalanced distribution among 
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its 41,188 records: 4,640 are labelled 'yes', and 36,548 are 
labelled 'no'. 

Table V details the dataset concerning bank credit card 
default payments sourced from Yeh and Lien [25]. This dataset 
comprises 23 features and one label, encompassing 30,000 
records. The features are of integer data type, while the label is 
binary. The dataset exhibits label imbalance, with 6,636 
records labelled '1' (indicating default) and 23,364 records 
labelled '0' (indicating no default). 

TABLE IV.  CHARACTERISTICS OF THE SECOND LOAN SUBSCRIPTION 

DATASET STUDIED BY MORO ET AL. [7] 

Num. Variable Name Role Type 

1 age Feature Integer 

2 job Feature Categorical 

3 marital Feature Categorical 

4 education Feature Categorical 

5 credit Feature Categorical 

6 housing Feature Categorical 

7 loan Feature Categorical 

8 contact Feature Categorical 

9 month Feature Categorical 

10 day of week Feature Categorical 

11 duration Feature Integer 

12 campaign Feature Integer 

13 pdays Feature Integer 

14 previous Feature Integer 

15 poutcome Feature Categorical 

16 emp.var.rate Feature Float 

17 cons.price.idx Feature Float 

18 cons.conf.idx Feature Float 

19 euribor3m Feature Float 

20 nr.employed Feature Integer 

21 y Target Binary 

TABLE V.  DATASET ON BANK CREDIT CARD DEFAULT PAYMENTS 

SOURCED FROM YEH AND LIEN [25] 

Num. Variable Name Role Type 

1 X1: limit Feature Integer 

2 X2: gender Feature Integer 

3 X3: education Feature Integer 

4 X4: marital Feature Integer 

5 X5: age Feature Integer 

6 X6: past payment Feature Integer 

7 X7: past payment Feature Integer 

8 X8: past payment Feature Integer 

9 X9: past payment Feature Integer 

10 X10: past payment Feature Integer 

11 X11: past payment Feature Integer 

12 X12: bill statement Feature Integer 

13 X13: bill statement Feature Integer 

14 X14: bill statement Feature Integer 

15 X15: bill statement Feature Integer 

16 X16: bill statement Feature Integer 

17 X17: bill statement Feature Integer 

18 X18: previous payment Feature Integer 

19 X19: previous payment Feature Integer 

20 X20: previous payment Feature Integer 

21 X21: previous payment Feature Integer 

22 X22: previous payment Feature Integer 

23 X23: previous payment Feature Integer 

24 y Target Binary 

B. Preparation 

The experimental setup adhered to past and present 
research's standard data-driven classification methodologies. 
Specifically, this study adopted the methodology illustrated in 
Fig. 1, adapted from A. Almajid [19]. All experiments were 
conducted within the Google Colab server environment, with 
relevant specifications for 2023 to 2025. The MLP model 
development commenced with a data cleaning phase, 
employing mode imputation to address missing data. 
Subsequently, the dataset was split using an 80:20 ratio into 
training and test sets, with the training set used to construct the 
MLP model. Before model creation, the training set 
transformed one-hot encoding for categorical features and 
standard scalar scaling for numerical features. The MLP 
classifier was selected as the machine learning algorithm to 
fulfil the primary objective of this paper, which is to augment 
the performance of the MLP classifier. The baseline model 
incorporated L2 regularisation to mitigate overfitting during 
the hyperparameter tuning process via Grid Search. 
Conversely, the innovative model combined L2 regularisation 
and ES to address overfitting concerns. The rationale behind 
this hybridisation was the anticipation of improved MLP 
classifier performance. 

 

Fig. 1. Methodology for MLP model development and experimentation 

process. 

Table VI outlines an algorithm for the hyperparameter 
tuning process that employs L2 regularisation in MLP models 
using Grid Search. This process is initiated by defining a 
hyperparameter grid, including the regularisation parameter, 
number of hidden layers, neuron range, activation function, and 
solver parameters. 

A Grid Search Loop with 5-fold Cross-Validation follows, 
systematically exploring diverse hyperparameter combinations. 
Each iteration involves initialising and training an MLP model 
with L2 regularisation and monitoring training loss for 
convergence. The model's performance is assessed using the 
Receiver Operating Characteristic - Area Under the Curve 
(ROC-AUC) on held-out folds, with the average ROC-AUC 
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calculated across all folds. Each iteration records and 
accumulates training time from the previous iteration. 
Ultimately, the hyperparameter combination yielding the 
highest average performance metric is selected, resulting in the 
best MLP model with optimised hyperparameters. 

Table VII introduces an innovative algorithm for the 
hyperparameter tuning process in MLP models utilising L2 
regularisation and ES through Grid Search. Initially, a 
hyperparameter grid specifies parameters such as regularisation 
strength, hidden layer configuration, and activation function. 

TABLE VI.  ALGORITHM FOR HYPERPARAMETER TUNING WITH L2 

REGULARISATION IN MULTI-LAYER PERCEPTRON (MLP) USING GRID SEARCH 

Input : Training set 

Output : Best MLP model with optimized hyperparameters 

Step 1 

Define Hyperparameter Grid for MLP: 

− Set regularisation parameter 𝜆 for L2 regularisation to 
0.0001. 

− Set number of hidden layers to 1. 

− Define a range for the number of neurons per hidden layer 
from 5 to 100. 

− Set activation function to ReLU. 

− Set solver to Adam. 

− Set batch size (minibatch) to the minimum of 200. 

− Set initial learning rate to 0.001. 

− Set maximum iterations to 5000. 

− Set shuffle sample to True. 

− Set exponential decay rate for estimates of the first moment 
vector in Adam to 0.999. 

− Set exponential decay rate for estimates of the second 

moment vector in Adam to 1e-8. 

Step 2 

Grid Search Loop with 5-Fold Cross-Validation: 

− For each combination of hyperparameters in the defined 

grid: 

− Initialize an MLP model with the specified architecture 

and hyperparameters. 

− Divide the training data into 5 folds for cross-validation. 

− For each fold: 

o Train the MLP model with L2 regularisation. 
o Monitor the training loss during training and stop 

when the training loss does not improve by more than 

0.0001 for 10 consecutive passes over the training set. 
o Evaluate the model's performance on the held-out fold 

using ROC-AUC. 

− Calculate the average performance metric (i.e., ROC-

AUC) across 5 folds of the combination of 
hyperparameters. 

− Record and accumulate training time from the previous 

loop.  

Step 3 

Select Best Model: 

− Select the combination of hyperparameters that resulted in 
the highest average performance metric. 

A Grid Search Loop with 5-fold Cross-Validation is 
implemented after that. An MLP model is instantiated and 
trained on five folds of the training data for each 
hyperparameter combination, with 10% reserved for validation. 
Training halts using ES when the validation score fails to 
improve by at least 0.0001 for ten consecutive epochs. Model 
performance is assessed using ROC-AUC on held-out folds, 
with the average metric calculated across all folds. Each loop 
records and accumulates training time from the previous loop. 
Finally, the hyperparameter combination yielding the highest 
average performance metric is selected, resulting in the best 
performing MLP model with optimised hyperparameters. 

TABLE VII.  ALGORITHM FOR HYPERPARAMETER TUNING WITH L2 

REGULARISATION AND EARLY STOPPING IN MULTI-LAYER PERCEPTRON 

(MLP) USING GRID SEARCH 

Input : Training set 
Output : Best MLP model with optimized hyperparameters 

Step 1 

Define Hyperparameter Grid for MLP: 

− Set regularisation parameter 𝜆 for L2 regularisation to 

0.0001. 

− Set number of hidden layers to 1. 

− Define a range for the number of neurons per hidden layer 

from 5 to 100. 

− Set activation function to ReLU. 

− Set solver to Adam. 

− Set batch size (minibatch) to the minimum of 200. 

− Set initial learning rate to 0.001. 

− Set maximum iterations to 5000. 

− Set shuffle sample to True. 

− Set exponential decay rate for estimates of the first moment 

vector in Adam to 0.999. 

− Set exponential decay rate for estimates of the second 

moment vector in Adam to 1e-8. 

Step 2 

Grid Search Loop with 5-Fold Cross-Validation: 

− For each combination of hyperparameters in the defined 

grid: 

− Initialize an MLP model with the specified architecture 

and hyperparameters. 

− Divide the training data into 5 folds for cross-validation. 

− For each fold: 

o Set aside 10% (using the stratified approach) of 

training data as validation. 
o Train the MLP model with L2 regularisation. 

o Terminate training using the Early Stopping approach, 

i.e. when the validation score is not improving by at 
least 0.0001 for 10 consecutive epochs. 

o Evaluate the model's performance on the held-out fold 

using ROC-AUC. 

− Calculate the average performance metric (i.e., ROC-

AUC) across 5 folds of the combination of 

hyperparameters. 

− Record and accumulate training time from the previous 

loop. 

Step 3 

Select Best Model: 

− Select the combination of hyperparameters that resulted in 

the highest average performance metric. 

The Cross-Entropy Loss function was employed for binary 
classification in the MLP model, as depicted in Eq. (1). This 
loss function quantifies the discrepancy between predicted and 
actual class labels, penalising misclassifications with 
logarithmic terms. 

𝐿𝑜𝑠𝑠(𝑥𝑖 , 𝑦𝑖) = −[𝑦𝑖 𝑙𝑜𝑔(�̂�𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − �̂�𝑖)]     (1) 

During the hyperparameter tuning phase using Grid Search, 
each cycle involves adjusting parameters such as the number of 
neurons (N) within a range from 5 to 100, alongside L2 
regularisation. Eq. (2) represents the L2 regularisation term, 
penalising large weights to prevent overfitting. 

𝑛 =
𝜆

2
∑ 𝑤𝑖

2𝑁

𝑖=1
   (2) 

Eq. (3) illustrates the cost function combining the Cross-
Entropy Loss with the L2 regularisation term, where lambda 
(λ) is set to 0.0001. This cost function aims to balance 
minimising classification error and controlling model 
complexity, enhancing the model's predictive accuracy and 
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robustness. For the innovative model, the cost function 
includes L2 regularisation hybridised with ES, terminating 
training when the validation set score does not improve by at 
least 0.0001 for ten consecutive epochs. 

𝐶𝑜𝑠𝑡𝑟𝑒𝑔(𝑥𝑖 , 𝑦𝑖) =  𝐿𝑜𝑠𝑠(𝑥𝑖 , 𝑦𝑖) +  𝑛 =
𝜆

2
∑ 𝑤𝑖

2𝑁

𝑖=1
       (3) 

C. Testing 

In this study, the development of MLP models was driven 
by two primary objectives: reducing the hyperparameter tuning 
time to identify the optimal set of hyperparameters for 
maximising classification accuracy and enhancing the model's 
ability to distinguish between classes. These objectives were 
evaluated using various metrics, including tuning time, 
confusion matrix analysis, and the ROC-AUC score. Tuning 
time refers to the duration from the commencement of the Grid 
Search process to its completion. It aims to enhance the model 
by pinpointing the most effective hyperparameters for 
achieving maximal accuracy in classification tasks. This step is 
critical for refining the model's configuration to improve its 
predictive performance. Furthermore, the evaluation process 
entailed an analysis of the confusion matrix to gauge the 
model's accuracy in classifying instances correctly across 
different categories. Additionally, the ROC-AUC score 
provided more profound insights into the model's 
discriminative capacity between classes. 

Accuracy is a foundational metric, offering a high-level 
overview of the model's correctness. It is derived from the 
confusion matrix, as shown in Eq. (4), and calculates the 
proportion of instances correctly classified, irrespective of their 
class. This metric is handy when all classes are equally 
important, and the dataset is balanced. However, in cases of 
class imbalance, accuracy alone may not fully capture the 
model's effectiveness, as the prevalence of the dominant class 
may skew it. Hence, while accuracy is a valuable initial metric 
for evaluation, it is often essential to supplement it with 
additional metrics to obtain a more comprehensive picture of 
model performance, particularly in the presence of uneven 
class distribution. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)
   (4) 

with TP is True Positive, TN is True Negative, FP is False 
Positive, and FN is False Negative. 

Precision offers a more detailed examination of the model's 
performance, concentrating specifically on positive predictions. 
It is defined as the ratio of correctly predicted positive 
instances to the total number of predicted positive instances, as 
illustrated in Eq. (5). Precision is paramount in scenarios with 
significant consequences or costs associated with false 
positives.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑇𝑃)

(𝑇𝑃+𝐹𝑃)
       (5) 

with TP is True Positive and is False Positive. 

In contrast, recall emphasises the model's capacity to 
identify all positive instances within the dataset. It calculates 
the ratio of correctly predicted positive instances to the total 
actual positive instances, highlighting its critical role in 

situations where overlooking positive instances (false 
negatives), could have serious repercussions. Eq. (6) presents 
the formula for calculating recall derived from the confusion 
matrix. 

𝑅𝑒𝑐𝑎𝑙𝑙/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
(𝑇𝑃)

(𝑇𝑃+𝐹𝑁)
    (6) 

with TP is True Positive and is False Negative. 

The F1 score, as presented in Eq. (7), amalgamates 
precision, and recall into a singular metric, offering a balanced 
evaluation of the model's performance. It computes the 
harmonic mean of precision and recall, providing a unified 
measure that accounts for false positives and false negatives, 
thereby preventing inflated scores when a significant 
discrepancy exists between precision and recall. The F1 score 
is particularly beneficial in scenarios involving class imbalance 
or when the costs associated with false positives and false 
negatives vary. By integrating precision and recall, the F1 
score aids in guiding decision-making and model optimisation, 
ensuring a thorough classification performance assessment. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
     (7) 

The ROC-AUC score is widely recognised as a crucial 
metric for evaluating the performance of binary classification 
models. It depicts the likelihood that a randomly selected 
positive instance will be ranked higher than a randomly 
selected negative instance. The ROC curve plots the true 
positive rate (sensitivity) against the false positive rate (1-
specificity) across various threshold settings. A higher ROC-
AUC score signifies superior discrimination between positive 
and negative classes, with a score of 1 denoting a perfect 
classifier and 0.5 indicating a model no better than random 
guessing. The ROC-AUC score's robustness to class imbalance 
and applicability across different threshold configurations 
make it an invaluable tool for evaluating binary classifiers' 
overall performance in practical scenarios. 

III. RESULT AND DISCUSSION 

Table VIII illustrates the performance comparison of the 
MLP model with and without the employment of L2 
regularisation. Implementing L2 regularisation with a 0.05 
alpha value in the MLP model significantly enhanced its 
performance compared to the model devoid of L2 
regularisation. This enhancement was particularly evident 
across three banking datasets, where the influence of L2 
regularisation on the MLP model's performance was 
substantial. For instance, in a loan dataset comprising 16 
features, the ROC-AUC score increased from 0.9133 to 
0.9244. Similarly, for a loan dataset with 20 features, the ROC-
AUC score improved from 0.9285 to 0.9312, and for a banking 
dataset focusing on credit card applications, the ROC-AUC 
score rose from 0.7464 to 0.7696. As observed in this study, 
the emphasis on the ROC-AUC metric in the analysis 
underscores its utility in providing a nuanced interpretation of 
model performance, especially in datasets with imbalanced 
labels. Additionally, results derived from the confusion matrix 
indicated an improvement in the MLP model's performance. 
These findings corroborate the significance of L2 
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regularisation in mitigating overfitting when developing MLP 
models, aligning with insights from prior research. 

TABLE VIII.  COMPARATIVE PERFORMANCE OF MLP MODELS WITH AND 

WITHOUT L2 REGULARISATION ACROSS BANKING DATASETS 

Performance 

Matrices 

Bank Loan 16 

features 

Bank Loan 20 

features 

Bank credit card 

default payments 

No L2 L2 No L2 L2 No L2 L2 

ROC-AUC 0.9133 0.9244 0.9285 0.9312 0.7464 0.7696 

Accuracy 0.8979 0.9027 0.9052 0.9048 0.8021 0.8145 

Precision 

(Positive) 
0.5884 0.6373 0.5812 0.5839 0.5618 0.6072 

Recall 

(Positive) 
0.4384 0.4017 0.5375 0.5114 0.3855 0.4017 

F1 Score 0.5024 0.4928 0.5585 0.5452 0.4572 0.4835 

Table IX showcases the impact of integrating L2 
regularisation into a MLP model, specifically employing a 
hyperparameter value setting as outlined in Table IV for the 
hyperparameter tuning process. This model exhibited 
remarkable performance, consistent with earlier observations 
that L2 regularisation could bolster MLP model performance. 
Specifically, Table IX outlines the results concerning ROC-
AUC and the confusion matrix metrics. The bank loan dataset, 
consisting of 16 features, achieved ROC-AUC of 0.9221. A 
separate dataset, also related to bank loans but encompassing 
20 features, registered ROC-AUC of 0.9455, while the bank 
credit card dataset demonstrated the ROC-AUC of 0.7814. 

TABLE IX.  IMPACT OF L2 REGULARISATION ON HYPERPARAMETER 

TUNING TIME ACROSS BANKING DATASETS 

Dataset 
Tuning Time 

(Sec.) 

ROC-

AUC 
Accuracy F1 Score 

Bank Loan 16 

features 
26,787.75 0.9221 0.9005 0.5233 

Bank Loan 20 

features 
23,714.07 0.9455 0.9189 0.5917 

Bank credit 

card default 

payments 

23,087.06 0.7814 0.8260 0.4847 

The application of L2 regularisation has proven to enhance 
the MLP model's efficacy in classification tasks. Nonetheless, 
identifying the optimal hyperparameter settings with L2 
regularisation application has been revealed to be a time-
intensive endeavour. The hyperparameter tuning phase for all 
three datasets necessitated upwards of twenty-three thousand 
seconds, raising concerns regarding the practicality of 
deploying such models in real-time applications that demand 
frequent updates with new data entries. 

Table X displays the performance of the MLP model 
employing a hybrid L2 regularisation and Early Stopping 
(L2ES) approach. Both techniques aim to mitigate overfitting, 
yet the experimental results indicate a significant reduction in 
hyperparameter tuning time with the hybrid L2ES approach. 
For the bank loan dataset with 16 features, tuning time was 

reduced by 91.44%, from 26,787.75 seconds to 2,424.88 
seconds. Similarly, the dataset with 20 features saw a reduction 
of 90.95%, from 23,714.07 seconds to 2,030.71 seconds. The 
bank credit card dataset experienced a tuning time reduction of 
93.57%, from 23,087.06 seconds to 1,485.15 seconds. The 
efficacy of the hybrid L2 and ES approach lies in its ability to 
shorten hyperparameter tuning time, primarily through the 
advantage offered by ES. This feature ceases the training 
process upon the absence of a minimum improvement of 
0.0001 in the validation set score over ten successive epochs. 
This method is in stark contrast to the termination criteria of 
the baseline model, which discontinues training based on the 
absence of a notable improvement in the training loss over ten 
successive iterations, without consideration for the validation 
set score. Concurrently, L2 regularization is crucial in 
maintaining the classification model's accuracy by averting 
overfitting. 

TABLE X.  IMPACT OF HYBRID L2 REGULARISATION AND EARLY 

STOPPING ON HYPERPARAMETER TUNING TIME ACROSS BANKING DATASETS 

Dataset 
Tuning Time 

(Sec.) 

ROC-

AUC 
Accuracy F1 Score 

Bank Loan 16 

features 
2,424.88 0.9121 0.8966 0.5351 

Bank Loan 20 

features 
2,030.71 0.9389 0.9137 0.5854 

Bank credit 

card default 
payments 

1,485.15 0.7328 0.7877 0.4323 

Fig. 2 presents a comparative analysis of hyperparameter 
tuning time between the MLP model using L2 regularisation 
and the proposed hybrid L2ES approach. The results are 
visually displayed using a bar chart, clearly illustrating a 
substantial reduction in tuning time across all datasets. 
Specifically, the hybrid L2ES method reduced tuning time by 
more than 90% compared to the L2-only approach, which was 
used as the baseline in this study. This represents a notable 
improvement, as such a reduction directly contributes to the 
practicality of implementing data-driven classification (DDC) 
models in real-world banking systems, particularly in scenarios 
requiring rapid model updates and continuous learning. 

Fig. 3 compares the classification performance of the two 
approaches regarding ROC-AUC scores. The performance gap 
between the L2 and L2ES models is minimal, indicating that 
the significant gains in computational efficiency do not come at 
the cost of model accuracy. For the bank loan dataset with 16 
features, the ROC-AUC difference is only 0.70%, while the 
20-feature loan dataset shows a difference of 1.08%. The bank 
credit card dataset exhibits a slightly larger difference of 
6.22%, which remains within an acceptable range of less than 
10%. Although the L2ES approach yields marginally lower 
ROC-AUC scores in some cases, it consistently outperforms 
previous studies in overall performance benchmarks, 
particularly in hyperparameter tuning efficiency. These 
findings support the feasibility and value of the proposed 
hybrid approach for time-sensitive banking applications. 
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Fig. 2. Comparison of hyperparameter tuning time: L2 regularisation vs 

hybrid L2ES approach, 

 

Fig. 3. ROC-AUC performance comparison: L2 regularisation vs hybrid 

L2ES approach across datasets. 

 

Fig. 4. ROC-AUC comparison for bank loan dataset with 16 features: L2 vs. 

hybrid L2ES approach. 

Fig. 4 and Fig. 5 present the ROC-AUC curves for the bank 
loan datasets with 16 and 20 features, respectively, providing 
an alternative visual comparison between the L2 and hybrid 
L2ES approaches. Both graphs clearly show that the 
performance of the MLP model under the two conditions is 
very similar, with no significant differences observed in the 
shape or position of the curves. 

 

Fig. 5. ROC-AUC comparison for bank loan dataset with 20 features: L2 vs. 

hybrid L2ES approach. 

 

Fig. 6. ROC-AUC comparison for bank credit card dataset with 23 features: 

L2 vs. hybrid L2ES approach. 

Fig. 6 displays the ROC-AUC curve for the bank credit 
card dataset. In this case, the hybrid L2ES approach shows a 
slightly lower curve than the model using L2 regularisation 
alone, indicating a marginal reduction in performance. 
However, this difference is relatively minor and does not 
significantly affect the overall effectiveness of the hybrid 
method. Notably, the L2ES approach outperforms previous 
studies, achieving a ROC-AUC score of 0.7328, compared to 
the values reported in Table II, where previous models did not 
exceed a ROC-AUC of 0.7200. 

IV. CONCLUSION 

This study evaluated the effectiveness of hybridising ES 
with L2 regularisation to reduce the time required for 
hyperparameter tuning—conducted via grid search—in 
developing MLP models, while preserving classification 
performance. The proposed L2ES approach significantly 
reduced tuning time without compromising model accuracy, as 
demonstrated by consistently high ROC-AUC scores 
comparable to those obtained using L2 regularisation alone. 
These results indicate that the L2ES technique offers a 
practical solution for streamlining hyperparameter tuning in 
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MLP models, thereby enhancing the efficiency of developing 
data-driven classification models. 

Nevertheless, this study is not without limitations. The 
evaluation was limited to a set of structured banking datasets, 
and further validation is needed across diverse data domains 
and model architectures. Additionally, while grid search was 
used for tuning, other optimisation methods such as random 
search or Bayesian optimisation could offer further 
improvements. 

Future research will aim to extend the proposed hybrid 
approach to other neural network models and investigate its 
compatibility with alternative tuning strategies. Enhancing 
generalisability, automating the hybridisation process, and 
applying it to unstructured or real-time financial data are 
promising directions for continued research. 
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