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Abstract—Rapid digitisation in communication and online 

platform growth have transformed information dissemination 

and facilitated rapid access while simultaneously amplifying the 

spread of fake news. This widespread issue undermines public 

trust, destabilises political systems, and threatens economic 

stability. Machine learning techniques have been widely applied 

to fake news detection, but comparative analyses across specific 

domains such as health, politics, and economics remain limited. 

Existing reviews tend to focus on supervised learning methods, 

frequently excluding unsupervised and hybrid approaches, along 

with unique challenges and dataset requirements of each domain. 

This study conducted a systematic literature review of machine 

learning applications for detecting fake news across the three 

domains. The methodologies and metrics used were evaluated, 

while key challenges and opportunities were explored. The 

results revealed a strong reliance on supervised learning 

techniques, particularly in health-related contexts, where 

misinformation presented significant risks to public health 

outcomes. Deep learning methods were promising for processing 

complex data. Nonetheless, hybrid and unsupervised approaches 

were underexplored, which presented opportunities to address 

data scarcity and adaptability. Most datasets originated from 

social media platforms and news outlets. The common evaluation 

metrics included accuracy, but advanced measures were rarely 

applied, which indicated the possibility of enhancing such 

methods. Persistent challenges include poor data quality, bias, 

and ethical concerns highlighted the necessity for bias-mitigating 

algorithms and improved model interpretability. Specifically, 

economic misinformation has received less attention despite its 

potential to cause large-scale financial disruptions. This study 

highlighted that more effective, ethical, and context-specific 

machine learning solutions are needed to address fake news and 

enhance digital information credibility. 
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I. INTRODUCTION 

Technological breakthroughs and the digital era have 
transformed global communication and news production, 
distribution, and consumption methods at incomparable rates. 
These advancements have been supported by prominent social 
media platforms and online news portals and cultivated a 

connected global community, which has facilitated the rapid 
dissemination of news across geographical and accessibility 
boundaries [1, 2]. Nevertheless, these positive advancements 
are accompanied by a corresponding negative regression. One 
of the most alarming examples of negative regression is 
increased fake news, which creates negative sociological 
situations. These situations range from decreased trust and 
reliability to election result manipulation and global health 
crises exacerbation [3-5]. 

Fake news in health, politics, and economics can lead to 
severe and negative outcomes. For example, spreading false 
health information establishes the basis for adverse outcomes. 
The recent indications include false narratives around the 
COVID vaccine, hydroxychloroquine efficiency as a cure, 
claims that bleach treats conditions, and smear campaigns 
against vaccines [6-8]. These fraudulent statements have 
caused public health issues, which have confused the public 
and encouraged it to adopt unsafe health practices, such as 
avoiding vaccinations after misleading information has been 
disseminated. 

In politics, misinformation produces false perceptions and 
fosters public discontent against politicians and democracy, 
which distorts electoral outcomes. Misinformation is aimed at 
causing division, disseminating falsehoods about individuals 
and matters that damage reputations, disrupting discussions, 
and subsequently creating distrust against respected media 
outlets [9, 10]. Ultimately, misinformation is divisive and 
exacerbates conflict. 

Fake news is also prevalent in economic news. Prevalent 
misinformation on the economy or inaccurate economic 
reporting induces stock market fluctuations, personal financial 
crises, and a deterioration of faith in financial assets. 
Furthermore, economic misinformation undermines investor 
trust and disrupts economic system stability. 

Traditional methods for detecting fake news, such as 
manual fact-checking and rule-based detection, have been 
insufficient due to their inability to address the scale, speed, 
and complexity of modern misinformation [11, 12]. The 
current proliferation of fake news is broadly diverse, spreads 
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rapidly, and is high-volume. Hence, an efficient and scalable 
generalized detection system has become necessary. Thus, 
machine learning has emerged as an effective tool among 
researchers and practitioners for addressing misinformation. 
The ability of machine learning to analyse enormous datasets, 
identify trends, and provide accurate predictions has been used 
in advanced automated solutions to identify fake news. These 
platforms use various techniques, which include natural 
language processing (NLP), sentiment analysis, and deep 
learning, to detect and classify fake news accurately [13, 14]. 

Although numerous studies have applied ML techniques to 
fake news detection, comparative reviews that assess the 
performance of these methods across specific domain such as 
health, politics, and economics remain limited. Moreover, 
existing reviews often emphasize supervised learning, 
frequently failing to consider unsupervised and hybrid 
approaches, as well as the distinct challenges and dataset 
requirements unique to each domain. Thus, this study 
conducted a comprehensive systematic literature review (SLR) 
to examine the application of machine learning techniques for 
detecting fake news detection across the health, politics, and 
economics domains. 

This study synthesized the results to advance the 
development of more effective, ethical, and domain-specific 
solutions to address fake news. Specifically, three research 
questions (RQ) were addressed: 1) the machine learning 
approaches utilized within these domains was investigated to 
provide insights into their methodologies and domain-specific 
applications (RQ1); 2) the performance and effectiveness of 
these techniques were evaluated by analyzing the commonly 
used evaluation metrics (RQ2); 3) key trends, challenges, and 
opportunities in the field were identified, limitations in these 
approaches were highlighted, and potential future research 
directions were proposed (RQ3). 

II. METHODOLOGY 

A. Research Questions 

This study explored the application of machine learning in 
identifying fake news across the health, politics, and 
economics domains, guided by the following Research 
Questions (RQs): 

 RQ1: How is machine learning applied for detecting 
fake news in the health, political, and economics 
domains? 

 RQ2: What are the evaluation metrics commonly used 
in the health, political, and economics domains? 

 RQ3: What are the key trends, challenges, and future 
directions in the health, political, and economics 
domains? 

B. Literature Search Strategy 

The literature search was conducted using the Web of 
Science, Scopus, IEEE Xplore, and SpringerLink databases. 
The literature search was performed using a combination of 
keywords and Boolean operators to ensure comprehensive 
retrieval of relevant studies to fake news detection. Table I 
details the search terms used across the three domains. 

TABLE I.  THE SEARCH TERMS FOR IDETIFYING FAKE NEWS DETECTION 

ACCORDING TO THE DOMAIN 

Domain Search Term 

Politics 

((“fake news detection*” OR “misinformation”) AND (“social 

media”) AND (“politics” OR “bureaucracy”) AND (“machine 
learning*” OR “deep learning” OR “hybrid learning”)) 

Economy 

((“fake news detection*” OR “misinformation”) AND (“social 

media”) AND (“economy”) AND (“machine learning*” OR 
“deep learning” OR “hybrid learning”)) 

Health 

((“fake news detection*” OR “misinformation”) AND (“social 

media”) AND (“health” OR “healthcare” OR “medical care”) 

AND (“machine learning*” OR “deep learning” OR “hybrid 

learning”)) 

C. Inclusion and Exclusion Criteria 

Table II outlines the inclusion and exclusion criteria 
applied to ensure the quality and relevance of the selected 
studies. 

TABLE II.  THE INCLUSION AND EXCLUSION CRITERIA 

Inclusion Exclusion 

 Studies published in peer-
reviewed journals or conferences; 

 Publications written in English; 

 Fully accessible articles; 

 Research focusing on the 
application of machine learning 

techniques for fake news 

detection in health, political, or 
economics domains; 

 Publications from the last 10 

years to ensure relevance and 

reflect current trends and 
advancements. 

 Non-peer-reviewed any articles; 

 Non-English publications; 

 Articles that are inaccessible and 

or lack full text; 

 Studies without a clear focus on 
machine learning applications in 

detecting fake news. 

D. Study Selection and  Screening 

The study selection followed the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines [15] (see Fig. 1). The studies were selected through 
identification (initial search results were exported to a 
reference management tool and duplicates were removed), 
screening (titles and abstracts were reviewed to identify 
potentially relevant studies), eligibility assessment (full-text 
articles were assessed against the inclusion and exclusion 
criteria), and inclusion (the remaining studies were selected for 
detailed analysis and synthesis). 

E. Data Extraction and  Screening 

Data were extracted from the selected studies using a 
standardised data extraction form. The key information 
collected included: 

 Publication type: The data source (whether published in 
a journal or presented at a conference); 

 Domain-specific applications: The focus area of the 
fake news (categorised into health, politics, or 
economics domains); 

 Research type: The methodological approach of the 
study (qualitative or quantitative research); 
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 Study objectives and contributions: The study goals and 
specific contributions; 

 Dataset: The name and description of the fake news 
corpus used in the study; 

 Data preparation and preprocessing: Details on any data 
cleaning, transformation, or preprocessing techniques 
applied to the dataset; 

 Machine learning techniques used: A description of the 
machine learning algorithms or methods implemented 
in the study; 

 Performance measures: The evaluation metrics used to 
assess the effectiveness of proposed machine learning 
models, such as accuracy, precision, and F-measure; 

 Findings, limitations, and future work: Key insights 
from the study, the identified limitations, and 
recommendations for future research directions. 

Appendix A presents the articles included in this systematic 
review (n = 173). 

 
Fig. 1. Flow chart of search process adapted from PRISMA diagram 

(Adapted from [15]). 

III. RESULTS 

A. RQ1: How is Machine Learning Applied for Detecting 

Fake News in the Health, Political, and Economics 

Domains? 

This study addressed RQ1 by examining machine learning 
techniques for detecting fake news and their application across 
the health, economics, and political domains. Five primary 
categories of machine learning approaches were reviewed: 
supervised learning, unsupervised learning, deep learning, 
ensemble learning, and hybrid approaches. 

Fig. 2 illustrates the distribution of the machine learning 
techniques used in the included studies. Most studies used 
supervised learning (n = 86 studies), where Support Vector 
Machine (SVM) was the most widely used method (50 
studies), followed by random forest (37 studies), logistic 
regression (37 studies), and naïve Bayes (35 studies). Deep 
learning was the second most utilised technique (n = 73 
studies), which reflected its increasing importance in 
addressing fake news detection challenges. Transformer-based 
models were the most frequently applied deep learning models 
(45 studies), followed by long short-term memory (LSTM) 
networks (31 studies) and CNNs (26 studies). Hybrid learning 
was used in 35 studies and represented a moderately adopted 
approach. Lastly, ensemble and unsupervised learning were the 
least used techniques, where each was used in only five 
studies, which suggested their limited applicability in this 
context. 

 
Fig. 2. Distribution of machine learning techniques in reviewed studies. 

The review process was enhanced by examining the 
application of machine learning techniques across the health, 
economic, and political domains. Fig. 3 highlights that the 
health sector led in machine learning applications, particularly 
in deep learning (56 instances) and supervised learning (58 
instances), which dominated. For example, studies such as [38, 
83, 141] used deep learning models, such as CNNs, LSTM, 
and bidirectional LSTM (BiLSTM). These advancements have 
been driven by the increasing availability of medical datasets, 
which include X-ray images. The accessibility of such data has 
enabled deep learning models to achieve high accuracy in 
diagnosing disease, classifying medical images, and predicting 
patient outcomes. Nevertheless, ensemble learning was rarely 
applied, with only five instances reported in the health domain. 
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Fig. 3. Usage of machine learning techniques across domains. 

The political domain demonstrated a moderate level of 
machine learning adoption, which was mainly in supervised 
learning (25 instances), with a smaller but notable use of deep 
learning (17 instances). Studies in [48, 185] used supervised 
models, such as Naïve Bayes and SVM to analyse sentiment, 
detecting political stances, and predicting election outcomes. 
These models were commonly used due to their effectiveness 
in processing text-based data, such as social media posts, 
political speeches, and news articles. In comparison, the 
economics domain demonstrated limited machine learning 
adoption. The included studies contained only a few references 
to deep, hybrid, supervised, and unsupervised learning.  

B. RQ2: What are the Evaluation Metrics Commonly used in 

the Health, Political and Economic Domain? 

The RQ2 was addressed by examining the evaluation 
methodologies used in applying machine learning to detect 
fake news. The commonly used datasets for evaluating the 
proposed machine learning and the data pre-processing 
techniques that enhance data quality were explored. The data 
preparation methods were reviewed to ensure accuracy and 
reliability, hyperparameter tuning strategies for optimising 
model performance are discussed, and a comprehensive 
analysis of the evaluation metrics used to assess model 
effectiveness is provided. 

Fig. 4 presents the most frequently used datasets in fake 
news detection across health, politics, and economics. The 
results highlight the prevalence of these datasets in the 
included studies and the tools designed for identifying fake 
news. Twitter was the most frequently used dataset, where it 
was featured in 78 studies by a wide margin. This dominance 
highlighted the role of Twitter as a major platform in public 
discussions and real-time misinformation spread. A common 
research strategy involved manipulating various types of 
Twitter data, including raw tweet text [25, 55, 85] user IDs [16, 
112, 132], tweet and retweet counts [19, 33, 60, 78, 154, 174], 
likes and reply counts [37, 66, 173], hashtags [54, 64, 78, 123]. 
Twitter metadata [22, 167, 182], URLs [20, 121], and specific 
keywords [54, 64, 78]. 

 
Fig. 4. Commonly used datasets in fake news detection in the included 

studies. 

News datasets were the second most frequently used 
dataset (n = 28 studies). Their importance lies in their 
structured format, which typically includes headlines, body 
text, and publication dates. This structure renders them suitable 
for text classification and information extraction tasks, 
including fake news detection. For example, the FakeNewsNet 
dataset [42, 59, 86, 115], BuzzFeed News [44, 172], and local 
newspapers such as China Times [106] and The Star [169] 
were commonly used for analysis. 

The third most frequently used dataset was the Kaggle 
dataset, a machine learning platform (n = 11 studies). 
Moderately used datasets included Facebook datasets (n = 9 
studies) and other sources such as blogs and forums (n = 5 
studies). Specialised datasets, including those focused on 
COVID-19 healthcare misinformation, PubMed, and APIs 
(used as data collection tools), were used less frequently, 
appearing in 3 studies [83, 89, 118], 2 studies [84, 178], and 2 
studies [40, 181], respectively. Celebrity-related datasets were 
identified in only one study [150], indicating a niche research 
area. 

Fig. 5 illustrates the frequency of commonly used 
preprocessing techniques in the included studies. These 
techniques are important for data preparation to enhance the 
accuracy and reliability of the proposed machine learning 
models. Tokenisation was the most frequently used 
preprocessing technique (n = 77 studies), which highlighted its 
importance in splitting text into meaningful units for analysis. 
The included studies used tokenisation in English [55, 60, 116, 
145, 153], Chinese characters [18, 100, 102], Arabic [35, 74, 
105, 134, 156], Turkish [110, 188], and Korean [78]. 

The second most common preprocessing technique was 
stop word removal (n = 68 studies), which highlighted its role 
in eliminating non-informative words, such as “and” or “the.” 
While stop word removal was mostly used in English, it was 
also applied in Chinese [18, 69, 100], Brazilian Portuguese [48, 
54], Arabic [74, 134] and Urdu [188]. Data filtering was the 
third most frequently used preprocessing technique (n = 51 
studies). The other frequently used techniques were 
punctuation removal (44 studies) and URL removal (37 
studies), which both aimed to reduce noise in textual data. 
Additionally, lowercasing text and stemming were each used in 
33 studies. 
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Fig. 5. Commonly used preprocessing techniques in detecting fake news. 

The less commonly used preprocessing techniques were 
lemmatisation (25 studies), normalisation (22 studies), and 
special character removal (22 studies), which focus on 
improving text structure and uniformity. Specialised 
preprocessing steps, such as data annotation, duplicate 
removal, and word embedding (each, n = 8 studies), were 
utilised less frequently but were important in certain contexts. 
Furthermore, the snowball sampling and geolocation cleaning 
preprocessing techniques were minimally applied (n = 3 
studies). Lastly, the least frequently used techniques were data 
standardisation (four studies) and bipartite network 
construction (two studies). 

This distribution reflected the relative importance and 
applicability of preprocessing techniques in detecting fake 
news. Tokenisation, stop word removal, and data filtering were 
the most critical techniques. Additionally, the choice of 
preprocessing techniques depends on the dataset language, as 
different languages require specific methods to handle word 
forms, writing systems, and grammar. 

The data preparation techniques used to evaluate fake news 
detection models were examined. Fig. 6 demonstrates that data 
splitting was the most frequently used technique and 
represented 55% of the methods used. This result emphasises 
the importance of data splitting in dividing datasets into 
training and testing subsets to assess model performance. Most 
of the studies applied 80:20 data splitting [29, 31, 42, 65, 67, 
110, 126, 134, 136, 145, 159, 161, 168, 179, 181] and 70:30 
data splitting [17, 35, 54, 59, 74, 81, 99, 124, 131, 160] 
techniques. 

Cross-validation was the second most frequently used data 
preparation technique, representing 37% of the total. This 
method improves model evaluation by dividing the data into 
multiple folds and rotating the training and testing phases. For 
example, 10-fold cross-validation was used in several studies 

[19, 20, 25, 26, 55, 83, 85, 102, 114, 122, 132, 139, 188] and 
[22, 48, 97, 117, 130, 173, 184, 186] used five-fold cross-
validation. Sampling accounted for 6% of the methods, where 
stratified sampling [84, 137] was a prominent example. 
Stratified sampling aids the selection of representative subsets 
to address class imbalances or reduce dataset size for analysis. 
The less common techniques were clustering [108, 148] and 
temporal splitting [128, 147], which each represented 1% of 
the methods. 

 
Fig. 6. Data preparation techniques for evaluation in fake news detection 

models. 

Fig. 7 illustrates the frequency of the classification metrics 
used to evaluate the performance of the fake news detection 
models. Accuracy was the most frequently used metric (n = 
116 studies), followed by precision and recall (n = 109 and 103 
studies, respectively), which highlighted their importance in 
assessing prediction quality and true positive detection. The 
F1-score, which is a harmonic mean of precision and recall, 
was applied in 108 studies, which emphasised its role in 
balancing these two measures. Contrastingly, specificity and 
the Matthews correlation coefficient (MCC) were less 
commonly used (n = 3 studies). Receiver operating 
characteristic (ROC) curve and area under the curve (AUC) 
metrics were reported in 28 studies, which underscored their 
usefulness in evaluating classification performance across 
varying thresholds. 

 
Fig. 7. Classification metrics used for evaluating fake news detection 

models. 
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C. RQ3: What are the Key Trends, Challenges, and Future 

Directions in the Health, Political, and Economics 

Domains? 

The RQ3 was addressed by examining the key trends, 
challenges, and future directions across the health, political, 
and economics domains. Fig. 8 illustrates the machine learning 
technique use trends (deep learning, ensemble learning, hybrid 
learning, supervised learning, and unsupervised learning) 
between 2017 and 2024. Deep learning and supervised learning 
usage increased steadily from 2017 and peaked in 2021. 

 

Fig. 8. Machine learning techniques trend over time. 

Deep Learning usage frequency was highest at 
approximately 75 instances. Nonetheless, both techniques 
experienced a decline after 2022. Hybrid learning gained 
traction in 2019, peaked in 2021 (40 instances), and then its 
usage declined in subsequent years. Similarly, unsupervised 
learning grew significantly from 2019 and peaked in 2022 (60 
instances) before decreasing. Contrastingly, ensemble learning 
demonstrated modest growth, where it peaked in 2021 but 
maintained a consistently lower frequency compared to the 
other techniques. The graph highlighted that the adoption of 
machine learning techniques increased significantly beginning 
in 2017, with most methods peaking between 2021 and 2022, 
followed by a noticeable decline in 2023 and 2024. This trend 
suggested that the use of these techniques either stabilised as 
research matured or shifted toward new approaches and 
alternative methodologies. 

Fig. 9 presents the challenges of applying machine learning 
across various domains, which are categorised into six areas. 
Dataset issues were the most common challenge (124 
instances), which highlighted concerns regarding data quality, 
availability, and relevance in machine learning applications. 
Contrastingly, ethical concerns were the least reported concern 
(n = 1 study), while interpretability issues, which relate to 
understanding and explaining model decisions, were recorded 
in two instances. Model-related bias, which affects fairness and 
accuracy, appeared eight times and indicated a moderate level 
of concern. Handling rapid data evolution was a challenge 
cited twice, which reflected the occasional challenges in 
maintaining up-to-date models. Platform-specific issues, which 

involved technical barriers or limitations in specific machine 
learning platforms, were reported in seven studies. Overall, 
dataset issues dominated the challenges significantly and 
highlighted the need for robust and relevant data, while other 
challenges were observed less frequently. 

 
Fig. 9. Distribution of machine learning challenges across domains. 

Fig. 10 highlights the key future research directions in 
machine learning, which are categorised into five areas. Data 
expansion, which involves increasing and diversifying data 
was the most prominent area (n = 22 studies), followed by 
theory exploration, which is aimed on investigating underlying 
principles and frameworks (n = 18 studies). Fourteen studies 
mentioned methodology, which involves refining and 
enhancing machine learning techniques. Eight studies 
mentioned audience or context analysis, which focuses on 
understanding the audience and contextual factors and 
indicated moderate representation. 

Contrastingly, technology development, which relates to 
machine learning technological advancements, was mentioned 
least frequently (n = 2 studies). Overall, the data expansion, 
theory exploration, and methodology improvement as major 
future research focus areas, while audience or context analysis 
and technology development received comparatively less 
attention. 

 
Fig. 10. Future research directions in machine learning. 
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IV. DISCUSSION 

This review highlighted the dominance of the supervised 
and deep learning approaches, particularly in the health 
domain. The two approaches recorded the highest application 
frequency and exhibited domain-specific patterns. This trend 
highlighted the urgent need for effective misinformation 
detection mechanisms in health-related contexts, especially 
during crises, such as the COVID-19 pandemic, where accurate 
information dissemination is critical. The political domain 
demonstrated moderate machine learning adoption, which 
focused primarily on election misinformation. The economics 
domain had minimal engagement with machine learning, 
which suggested significant potential. These results revealed an 
imbalanced focus across the three domains and emphasized the 
need to expand research into under-represented areas, such as 
economic misinformation. 

The prevalence of supervised and deep learning highlighted 
their leading role in detecting fake news (86 and 73 instances, 
respectively). The extensive use of supervised learning can be 
attributed to its simplicity and adaptability, particularly when 
labelled datasets are available. Deep learning has emerged as a 
powerful tool as it can process large datasets and capture 
complex patterns in textual and multimedia data, especially 
within the health domain. Hybrid approaches were less 
frequent (n = 35 studies) but were promising approaches that 
integrated the strengths of different methodologies. 
Contrastingly, the limited use of unsupervised and ensemble 
learning highlighted the need for innovation in using these 
techniques for unlabeled and heterogeneous data sources. 

The dominance of Twitter datasets (n = 78 studies) 
highlighted the influence of the platform in misinformation 
analysis. Real-time interactions in Twitter, broad user 
engagement, and accessible API render it a valuable resource 
for studying misinformation trends, virality, and public 
response. Nevertheless, this reliance raises concerns about 
dataset bias, as Twitter does not fully represent online 
discourse across all demographics. Expanding research to other 
platforms, such as Facebook, TikTok, and WhatsApp can yield 
a more comprehensive understanding of fake news 
dissemination across different digital ecosystems. Nonetheless, 
the underutilization of domain-specific datasets, such as 
PubMed and COVID-19 healthcare datasets, suggested missed 
opportunities to develop specialized detection tools. 

Dataset-related challenges were the most significant barrier 
in misinformation research, where 124 studies highlighted 
issues regarding data quality, availability, and 
representativeness. These challenges were evident in the health 
and political domains, where misinformation evolves rapidly. 
Health misinformation spreads quickly, especially during 
crises, such as pandemics, as false claims regarding treatments, 
vaccines, and diseases frequently emerge. Similarly, political 
misinformation shifts due to elections, policy changes, and 
global events and require continuous updates to detection 
models. Enhancing the accuracy and effectiveness of 
misinformation research requires up-to-date and diverse 
datasets. Outdate or biased data can lead to inaccurate 
predictions and reduce generalizability. Hence, ensuring high-
quality, representative datasets is essential for improving model 

performance and effectively detecting fake news across 
different platforms and contexts. 

The fake new detection models widely used evaluation 
metrics (accuracy, precision, recall, and F1-score), which 
reflected their reliability in assessing performance. 
Nevertheless, these metrics may not always provide a complete 
picture, especially in imbalanced datasets, where fake news 
instances are significantly outnumbered by real news. Less 
commonly used metrics (MCC and AUC-ROC) can provide 
deeper insights by accounting for class imbalances and 
assessing model discrimination ability. Incorporating these 
additional metrics can improve machine learning model 
evaluation and ensure a more comprehensive understanding of 
their effectiveness in detecting misinformation. 

The temporal trends indicated that the adoption of machine 
learning techniques for detecting fake news peaked between 
2021 and 2022, and declined in 2023 and 2024. This decline 
suggested that research in this area is either stabilizing 
(existing models are maturing) or shifting toward alternative 
approaches (hybrid models, explainable artificial intelligence, 
or ethical considerations in misinformation detection). Interest 
in hybrid and unsupervised learning approaches has grown 
since 2019, particularly where labelled data is scarce. 
Nonetheless, limited attention to ethical concerns and 
interpretability has highlighted the gaps in ensuring fairness 
and transparency in machine learning models. Future research 
should address these challenges by prioritizing theoretical 
advancements, methodology refinement, and dataset 
expansion, especially in underrepresented domains. 
Additionally, enhancing model interpretability and mitigating 
bias will be crucial for enhancing trust, fairness, and real-world 
applicability in detecting misinformation. 

There were minimal reports of ethical concerns and 
interpretability issues, which were cited in one and two studies, 
respectively. This result highlighted a significant gap in 
addressing the broader implications of machine learning 
models in detecting fake news, particularly in the health and 
politics domains. The future research directions identified in 
this review emphasized the need for theory exploration (22 
studies) and methodology improvement (20 studies). Dataset 
expansion and diversification (19 studies) was another critical 
area, especially in under-represented domains, such as 
economics. Context analysis and technology development 
received comparatively less attention, which highlighted 
opportunities for further interdisciplinary research and 
technological advancements. 

V. CONCLUSION 

Machine learning has become essential in combating 
misinformation. This SLR critically examined the role of 
machine learning techniques in detecting fake news across the 
health, political, and economics domains. Supervised learning 
was the most commonly used approach as it is effective in 
environments with high-quality labelled data. Deep learning 
techniques excel at extracting nuanced features from complex 
data structures, which rendered them valuable in the dynamic 
landscape of fake news detection. The hybrid, ensemble, and 
unsupervised learning techniques were underutilised, which 
presented opportunities for future research directions. The 
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analysis revealed an uneven research focus distribution, with 
health-related misinformation receiving the most attention, 
while political and economic fake news remained less 
explored. The results underscored the need for more targeted 
explorations in these areas. Data quality issues, model bias, and 
ethical concerns highlighted the necessity of bias-mitigating 
algorithms and improved interpretability to enhance trust in 
these technologies. Machine learning application frequency in 
detecting fake news peaked in 2021–2022, and then stabilised, 
which suggested that while the field is maturing, further 
methodological and theoretical advancements are needed. 
Despite the widespread use of datasets, such as Twitter, 
specialised resources (PubMed) lack engagement, which could 
enhance detection capabilities in domain-specific 
misinformation. While accuracy, precision, and recall are 
commonly used evaluation metrics, incorporating broader 
measures (MCC and AUC-ROC) could assess model 
performance more comprehensively. Future research can 
explore unsupervised and semi-supervised learning methods, 
which require less human intervention and adapt more 
efficiently to evolving misinformation. Additionally, the under-
representation of machine learning in economic fake news 
detection is a critical area for exploration. In conclusion, while 
using machine learning to detect fake news has progressed 
significantly, continuous research is essential to address 
emerging challenges and adapt to the rapidly evolving digital 
landscape. Ensuring information credibility is vital for public 
trust and safety and requires constant technological 
advancements to counter misinformation effectively. 
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