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Abstract—The increasing penetration of solar power 

generation poses significant challenges for grid integration due to 

its inherent variability and intermittency. Existing forecasting 

approaches treat individual solar installations independently, 

failing to leverage spatial correlations between geographically 

proximate sites and lacking adaptive mechanisms for varying 

environmental conditions. This paper presents SpatialSolar-Net, 

a novel multi-site collaborative solar power generation 

forecasting framework that addresses these limitations through 

adaptive spatial correlation evaluation and dynamic knowledge 

integration mechanisms. The proposed architecture combines a 

dual-branch design integrating convolutional neural network-

based spatial feature extraction with attention mechanism-based 

temporal modeling, enhanced by graph neural networks for 

spatial dependency modeling and an adaptive fusion mechanism 

that intelligently balances local and spatial information based on 

real-time correlation strength. This framework significantly 

enhances renewable energy integration by enabling accurate 

solar power predictions that support grid stability and optimal 

resource allocation. Extensive experimental validation 

demonstrates that SpatialSolar-Net achieves superior 

performance with Mean Absolute Error of 9.98 kW and Root 

Mean Square Error of 14.79 kW, representing 12.6% and 10.8% 

improvements over state-of-the-art methods. Most notably, the 

framework exhibits exceptional robustness during extreme 

weather events, achieving a remarkable 64% error reduction 

during dust storm conditions compared to baseline approaches. 

The adaptive nature enables efficient deployment across diverse 

geographical regions while maintaining computational efficiency 

suitable for practical renewable energy integration. 
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I. INTRODUCTION 

The global transition toward renewable energy systems has 
positioned solar power as a cornerstone of sustainable energy 
infrastructure, with photovoltaic installations experiencing 
unprecedented growth worldwide. Recent statistics indicate 
that solar photovoltaic capacity has grown exponentially, with 
global installations surpassing 1,000 GW by 2022, driven by 
declining costs and supportive policy frameworks [1]. 
However, the inherent variability and intermittency of solar 
power generation pose significant challenges for grid 
integration and energy management, particularly as solar 

penetration levels continue to rise [2]. The stochastic nature of 
solar irradiance, influenced by complex meteorological 
phenomena including cloud movements, atmospheric aerosols, 
and seasonal variations, creates substantial uncertainty in 
power system operations [3]. Traditional grid management 
strategies designed for dispatchable conventional power plants 
struggle to accommodate the rapid fluctuations in solar output, 
leading to increased reserve requirements, frequency regulation 
challenges, and potential grid stability issues [4]. Accurate 
solar power forecasting has therefore emerged as a critical 
enabler for large-scale renewable energy integration, directly 
impacting grid reliability, economic efficiency, and the 
feasibility of ambitious decarbonization targets [5]. 

Despite extensive research efforts spanning over two 
decades, existing solar power forecasting methodologies 
continue to exhibit fundamental limitations that restrict their 
effectiveness in real-world applications. Most current 
approaches treat individual solar installations as independent 
entities, failing to leverage the spatial correlations that exist 
between geographically proximate sites sharing similar 
meteorological influences [6]. This oversight is particularly 
problematic during extreme weather events such as dust 
storms, severe cloud cover, or atmospheric disturbances, where 
coordinated prediction across multiple sites could significantly 
enhance forecasting accuracy and reliability [7]. Furthermore, 
existing methods typically employ static modeling strategies 
that cannot adapt to varying environmental conditions, 
resulting in suboptimal performance when meteorological 
patterns deviate from training data distributions [8]. The 
computational complexity of sophisticated forecasting models 
also presents practical deployment challenges, particularly for 
distributed solar installations requiring real-time predictions 
with limited computational resources [9]. These limitations 
have hindered the development of robust, scalable forecasting 
systems capable of supporting the complex operational 
requirements of modern renewable energy portfolios [10]. 

To address these critical gaps, this paper introduces 
SpatialSolar-Net, a novel multi-site collaborative solar power 
generation forecasting framework that leverages adaptive 
spatial correlation evaluation and dynamic knowledge 
integration mechanisms. The proposed approach fundamentally 
reconceptualizes solar forecasting as a spatially-aware 
collaborative prediction problem, automatically assessing 
spatial relationships between solar installations and 
dynamically selecting optimal knowledge integration strategies 
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based on real-time correlation strength. The key innovation lies 
in the adaptive fusion mechanism that intelligently balances 
local site-specific features with spatial dependencies derived 
through graph neural network architectures, enabling superior 
performance across diverse geographical and meteorological 
conditions. Unlike existing approaches that assume static 
spatial relationships or uniform correlation patterns, 
SpatialSolar-Net implements a dynamic routing system that 
prevents negative transfer effects and maintains robust 
prediction accuracy even when spatial correlations are weak or 
absent. Through comprehensive experimental validation on 
real-world solar power data, including detailed analysis during 
extreme weather events, we demonstrate that SpatialSolar-Net 
achieves substantial improvements over state-of-the-art 
methods while maintaining computational efficiency suitable 
for practical deployment. 

The contributions of this work include: (1) a novel adaptive 
spatial correlation evaluation framework that dynamically 
assesses inter-site relationships and prevents negative transfer 
effects when spatial correlations are weak, (2) an innovative 
dual-branch architecture with adaptive fusion mechanism that 
intelligently balances CNN-based spatial features and 
Transformer-based temporal dependencies based on real-time 
environmental conditions, and (3) comprehensive experimental 
validation demonstrating 12.6% improvement over state-of-
the-art methods and 64% error reduction during extreme 
weather events. 

II. RELATED WORK 

A. Traditional Solar Power Forecasting Methods 

Early solar power forecasting research predominantly relied 
on statistical and classical machine learning approaches that 
model photovoltaic generation as univariate time series 
problems. Autoregressive Integrated Moving Average 
(ARIMA) models and its variants have been extensively 
applied to solar forecasting [11], [12], demonstrating 
reasonable performance under stable meteorological conditions 
but exhibiting significant limitations during periods of rapid 
weather transitions. Support Vector Regression (SVR) [13] and 
ensemble methods such as Random Forest [14] and XGBoost 
[15] introduced nonlinear modeling capabilities that improved 
prediction accuracy over linear approaches, particularly for 
capturing complex relationships between meteorological 
variables and power generation. However, these traditional 
methods treat each forecasting instance independently, failing 
to leverage temporal dependencies inherent in sequential data 
and struggling to model the complex spatiotemporal patterns 
that characterize solar irradiance variations across geographical 
regions. 

Despite their computational efficiency and interpretability 
advantages, traditional approaches suffer from fundamental 
limitations that restrict their applicability to modern large-scale 
solar installations. The assumption of stationarity underlying 
many statistical models becomes problematic when dealing 
with the highly dynamic nature of weather patterns, leading to 
degraded performance during seasonal transitions and extreme 
weather events [16]. Moreover, these methods typically require 
extensive feature engineering to incorporate multi-modal 
meteorological data effectively, limiting their scalability and 

generalizability across different geographical contexts. The 
inability to model spatial correlations between multiple solar 
sites represents a critical gap, as independent site-level 
predictions fail to leverage valuable information from 
neighboring installations that may share similar meteorological 
influences. 

B. Deep Learning Approaches for Solar Forecasting 

The emergence of deep learning techniques has 
significantly advanced solar power forecasting capabilities, 
with neural network architectures demonstrating superior 
performance in capturing complex nonlinear patterns and 
temporal dependencies. Recurrent Neural Networks (RNNs), 
particularly Long Short-Term Memory (LSTM) [17] and Gated 
Recurrent Unit (GRU) [18] architectures, have shown 
remarkable success in modeling sequential solar generation 
data, effectively capturing both short-term fluctuations and 
longer-term seasonal patterns. Convolutional Neural Networks 
(CNNs) have been successfully applied to extract spatial 
features from meteorological satellite imagery and numerical 
weather prediction data [19], [20], enabling the incorporation 
of larger spatial context into forecasting models. More recently, 
Transformer architectures have gained prominence in solar 
forecasting applications [21], [22], leveraging self-attention 
mechanisms to model long-range temporal dependencies and 
parallel processing capabilities that significantly improve 
computational efficiency compared to sequential RNN 
approaches. 

Hybrid architectures combining multiple neural network 
components have emerged as a promising direction for 
addressing the multifaceted nature of solar forecasting 
challenges. CNN-LSTM models [23] integrate spatial feature 
extraction with temporal sequence modeling, achieving 
superior performance over single-architecture approaches by 
leveraging complementary strengths of different neural 
network paradigms. Attention-based mechanisms have been 
incorporated into various architectures to dynamically weight 
the importance of different input features and temporal 
positions [24], providing enhanced interpretability and 
improved focus on relevant information patterns. However, 
despite these architectural advances, most existing deep 
learning approaches continue to focus on single-site prediction 
scenarios, treating multiple solar installations as independent 
entities and failing to exploit spatial correlations that could 
enhance forecasting accuracy across distributed renewable 
energy systems. 

While deep learning methods have substantially improved 
prediction accuracy compared to traditional approaches, 
several critical limitations persist that motivate further 
research. The computational complexity of sophisticated neural 
architectures often poses challenges for real-time deployment 
in resource-constrained environments, particularly for edge 
computing applications where forecasting models must operate 
with limited processing power [25]. Most existing approaches 
lack adaptive mechanisms to adjust modeling strategies based 
on varying environmental conditions, leading to suboptimal 
performance during extreme weather events when accurate 
predictions are most crucial for grid stability [26]. Furthermore, 
the black-box nature of deep learning models raises concerns 
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about interpretability and trustworthiness in safety-critical 
applications, highlighting the need for more transparent and 
explainable forecasting frameworks [27]. 

C. Multi-Site and Spatial Correlation Modeling 

The recognition of spatial dependencies in renewable 
energy forecasting has led to increasing research interest in 
multi-site collaborative prediction approaches, though this 
remains a relatively underexplored area compared to single-site 
[28]methodologies. Graph Neural Networks (GNNs) have 
emerged as a promising paradigm for modeling spatial 
relationships between distributed energy resources, with 
GraphSAGE [29] and Graph Convolutional Networks (GCN) 
[30]demonstrating effectiveness in capturing complex network 
topologies and spatial correlations. Some recent works have 
applied graph-based approaches to wind power forecasting 
[31], showing that explicit modeling of spatial dependencies 
can significantly improve prediction accuracy compared to 
independent site-level approaches. However, the application of 
GNNs to solar power forecasting remains limited, with most 
existing studies focusing on simplified spatial relationship 
modeling that assumes static correlation patterns and uniform 
spatial influence across all sites [32]. 

Spatiotemporal forecasting frameworks have been 
proposed for various domains including traffic prediction [33] 
and environmental monitoring, providing valuable insights for 
multi-site renewable energy applications. These approaches 
typically employ graph convolution operations to aggregate 
spatial information while utilizing recurrent or attention-based 
mechanisms for temporal modeling, achieving state-of-the-art 
performance in their respective domains. Transfer learning 
techniques have been explored for leveraging knowledge from 
data-rich sites to improve predictions at locations with limited 
historical data, though these methods often struggle with 
negative transfer effects when spatial correlations are weak or 
when attempting to transfer knowledge between sites with 
fundamentally different characteristics [34]. 

Despite these advances, existing multi-site approaches 
suffer from several critical limitations that restrict their 
practical applicability. Most methods assume static spatial 
relationships that do not adapt to changing meteorological 
conditions, failing to account for the dynamic nature of 
atmospheric patterns that can strengthen or weaken spatial 
correlations depending on weather systems [35]. The lack of 
adaptive mechanisms to selectively integrate spatial 
information based on real-time correlation assessment often 
leads to degraded performance when spatial relationships are 
weak, as irrelevant information from poorly correlated sites can 
negatively impact prediction accuracy [36]. Furthermore, 
existing approaches typically require predefined spatial 
network topologies, limiting their flexibility for deployment in 
diverse geographical configurations and hindering scalability 
to large-scale renewable energy portfolios with complex spatial 
distributions [37] 

III. METHODOLOGY 

A. Overall Architecture of SpatialSolar-Net 

As shown in Fig. 1, the SpatialSolar-Net model proposed in 
this research adopts an innovative multi-level collaborative 

architecture specifically designed for multi-site solar power 
generation forecasting. Unlike traditional approaches that treat 
individual sites independently, our framework establishes a 
comprehensive spatial-temporal modeling system that captures 
both local site characteristics and inter-site dependencies 
through adaptive correlation evaluation and knowledge 
integration mechanisms. 

 
Fig. 1. Model architecture diagram. 

The architecture consists of five core components: multi-
modal data collection and preprocessing, site-level feature 
processing, spatial correlation evaluation, adaptive knowledge 
integration, and multi-site collaborative prediction. This 
hierarchical design enables the model to automatically adapt its 
prediction strategy based on the spatial correlation strength 
between different solar installations, ranging from purely local 
feature-based prediction to fully collaborative multi-site 
modeling. 

The key innovation lies in the dynamic routing mechanism 
that evaluates spatial correlations and selectively integrates 
different types of knowledge representations, allowing the 
model to maintain high prediction accuracy across diverse 
geographical and meteorological conditions while optimizing 
computational efficiency. 

B. Multi-Modal Data Collection and Preprocessing 

Solar power generation is influenced by multiple 
environmental factors that exhibit complex spatial and 
temporal patterns. Our data collection framework incorporates 

four primary modalities: solar irradiance (☀), temperature (T), 
wind speed (W), and humidity (H), each contributing unique 
information to the forecasting process. These multi-modal 
inputs are crucial for capturing the comprehensive 
environmental context that affects photovoltaic system 
performance. 

The preprocessing pipeline standardizes heterogeneous data 
sources and constructs spatially-aware feature representations. 
For each site sis_i si, the raw multi-modal observations are 
organized into temporal sequences and spatially indexed 
vectors. The temporal windowing approach constructs input 
sequences of length LL L to capture both short-term 
fluctuations and longer periodic patterns: 

𝑋𝑖 = {𝑥𝑖,𝑡−𝐿+1, 𝑥𝑖,𝑡−𝐿+2, … , 𝑥𝑖,𝑡} ∈ 𝑅𝑑×𝐿



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 7, 2025 

485 | P a g e  

www.ijacsa.thesai.org 

where dd d represents the feature dimensionality 
encompassing all four modalities, and the spatial indexing 
preserves geographical relationships between sites for 
subsequent correlation analysis. 

C. Site-Level Feature Processing 

Each individual site undergoes independent feature 
processing through a dual-branch architecture combining 
Convolutional Neural Networks (CNN) and Transformer 
components. This design recognizes that solar power 
generation exhibits both spatial patterns (captured by CNN) 
and temporal dependencies (modeled by Transformer), 
requiring specialized architectures for optimal feature 
extraction. 

The CNN branch processes local spatial features through 
multi-scale convolution operations, effectively capturing 
various scales of environmental variations from micro-
meteorological changes to regional weather patterns: 

𝑍(𝑙) = 𝜎(𝑊(𝑙) ∗ 𝑍(𝑙−1) + 𝑏(𝑙))

Simultaneously, the Transformer branch models temporal 
dependencies using self-attention mechanisms, enabling the 
capture of long-range temporal correlations essential for solar 
forecasting: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉

The dual-branch outputs are integrated through an adaptive 
fusion mechanism that dynamically weights the contributions 
of spatial and temporal features: 

𝑌𝑙𝑜𝑐𝑎𝑙 = 𝛼1𝑌𝑐𝑛𝑛 + 𝛼2𝑌𝑡𝑟

where the fusion weights 𝛼1 and 𝛼2 are learned parameters 
that adapt to local site characteristics and current 
environmental conditions. 

D. Spatial Correlation Evaluation 

The spatial correlation evaluator serves as the decision-
making component that determines the optimal knowledge 
integration strategy for each prediction scenario. This module 
assesses the spatial relationships between the target site and 
retrieved neighboring sites, quantifying correlation strength 
across three categories: high correlation (≥85%), medium 
correlation (60%), and low correlation (≤25%). 

The evaluation process constructs a dynamic spatial 
adjacency matrix that considers both geographical proximity 
and meteorological similarity. The correlation strength 
determines which knowledge integration pathway will be 
activated, ensuring that the model utilizes the most relevant 
spatial information available. This adaptive mechanism 
prevents the degradation of prediction accuracy that often 
occurs when irrelevant spatial information is forcibly 
integrated. 

The evaluator employs learned similarity metrics that 
consider multiple factors including distance, elevation 
differences, local climate patterns, and historical generation 
correlations. This comprehensive assessment ensures robust 

spatial relationship modeling across diverse geographical 
contexts and seasonal variations. 

E. Spatial Knowledge Searching and Graph Construction 

For scenarios where spatial correlation is detected, the 
model constructs a graph-based representation of multi-site 
relationships and extracts spatial knowledge through advanced 
graph neural network techniques. The graph construction 
process transforms the discrete set of solar sites into a 
connected network where edges represent spatial dependencies 
and nodes encode site-specific features. 

The GraphSAGE (Graph Sample and Aggregate) 
component performs neighborhood aggregation to capture 
local spatial patterns: 

ℎ𝑣
(𝑙+1)

= 𝜎(𝑊(𝑙) ⋅ 𝑀𝐸𝐴𝑁{ℎ𝑢
(𝑙)

, ∀𝑢 ∈ 𝑁(𝑣)})

Subsequently, multi-layer Graph Convolutional Networks 
(GCN) enable deeper spatial dependency modeling through 
iterative message passing: 

𝐻(𝑙+1) = 𝜎(𝐴
~

𝐻(𝑙)𝑊(𝑙))

where 𝐴
~

 represents the normalized adjacency matrix and 

𝐻(𝑙)  denotes the node features at layer 𝑙 . This hierarchical 
processing generates spatial knowledge representations 𝑘1, 𝑘2, 
and 𝑘𝑠𝑝𝑎𝑡𝑖𝑎𝑙  that encode multi-scale spatial dependencies for 

integration with local features. 

F. Adaptive Knowledge Integration 

The adaptive knowledge integration mechanism represents 
the core innovation of SpatialSolar-Net, enabling dynamic 
selection and combination of different knowledge sources 
based on real-time spatial correlation assessment. This 
component implements three distinct integration pathways 
corresponding to different correlation scenarios, each 
optimized for specific spatial relationship patterns. 

For high correlation scenarios, the model primarily relies 
on local features enhanced with minimal spatial context: 

𝑌
^

ℎ𝑖𝑔ℎ = 𝑓(𝑋 + 𝑘𝑙𝑜𝑐𝑎𝑙)

Medium correlation situations trigger the integration of 
both local and spatial knowledge representations: 

𝑌
^

𝑚𝑒𝑑𝑖𝑢𝑚 = 𝑓(𝑋 + 𝑘𝑙𝑜𝑐𝑎𝑙 + 𝑘𝑠𝑝𝑎𝑡𝑖𝑎𝑙)

Low correlation scenarios activate ensemble-based 
knowledge integration that combines multiple complementary 
information sources: 

𝑌
^

𝑙𝑜𝑤 = 𝑓(𝑋 + 𝑘𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒)

This adaptive routing mechanism ensures that 
computational resources are allocated efficiently while 
maintaining prediction accuracy across diverse spatial 
correlation patterns. The integration process is end-to-end 
differentiable, allowing the entire system to be optimized 
jointly through gradient-based learning. 
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G. Multi-Site Collaborative Prediction 

The final prediction stage generates forecasts for all sites 
simultaneously through the SpatialSolar-Net collaborative 
predictor. This component synthesizes all processed 
information streams—local features, spatial knowledge, and 
correlation assessments—to produce accurate, spatially-
consistent predictions across the entire multi-site network. 

The collaborative predictor employs attention mechanisms 
to balance contributions from different sites and knowledge 
sources, ensuring that predictions maintain physical 
consistency across the spatial domain. The output layer 
generates both individual site forecasts and regional aggregate 
predictions, providing comprehensive information for grid 
management and energy planning applications. 

The training process optimizes the entire architecture end-
to-end using a composite loss function that balances individual 
site accuracy with spatial consistency constraints. This holistic 
optimization approach ensures that the model learns to 
leverage spatial relationships effectively while maintaining 
robust performance for individual site predictions when spatial 
correlations are weak or absent. 

IV. EXPERIMENTS 

A. Experimental Setup 

1) Dataset description: This research utilizes the "Solar 

Power Generation Data" dataset from the Kaggle platform, 

which provides comprehensive real-world solar power 

generation records from two photovoltaic power plants in 

India. The dataset spans 34 days from May 15, 2020, to June 

17, 2020, with measurements recorded at 15-minute intervals, 

resulting in over 50,000 observation points across multiple 

sites. This high-frequency temporal resolution enables the 

capture of short-term fluctuations in solar power generation, 

which is essential for developing high-precision forecasting 

models capable of supporting real-time grid operations. 

The dataset is structured into two complementary 
components: generation data and sensor data. The generation 
data includes AC/DC voltage, current, and power parameters 
for each inverter, while the sensor data records key 
meteorological parameters including ambient irradiance 
(W/m²), module temperature (°C), ambient temperature (°C), 
and wind speed (m/s). These multi-modal environmental inputs 
align perfectly with our SpatialSolar-Net architecture 
requirements, providing the necessary diversity for testing 
inter-site correlation modeling and knowledge transfer 
mechanisms. 

The selection of this dataset is particularly appropriate for 
validating our multi-site collaborative approach due to its 
spatial configuration and operational characteristics. The 
parallel operation of two distinct power plants provides 
sufficient spatial diversity while maintaining geographical 
proximity (approximately 15 kilometers apart), creating an 
ideal testing environment for spatial correlation evaluation. The 
dataset captures generation patterns under various 
meteorological conditions, including clear sky, partially 
cloudy, and overcast scenarios, enabling comprehensive 

evaluation of the model's adaptability to different 
environmental contexts and supporting systematic investigation 
of how spatial correlation strength influences optimal 
knowledge integration strategies. 

2) Experimental configuration: The implementation is 

built upon PyTorch 1.12.0 framework, utilizing NVIDIA 

A100 GPUs with 40GB memory to accommodate the 

computational requirements of large-scale graph neural 

network operations and multi-site collaborative training. The 

dataset preprocessing follows a systematic temporal splitting 

strategy with 70% for training (24 days), 15% for validation (5 

days), and 15% for testing (5 days), ensuring chronological 

integrity and that all evaluation occurs on future time periods 

unseen during training. The input sequence length is set to 96 

time steps (24 hours) to capture daily patterns, while the 

prediction horizon covers 24 time steps (6 hours) to align with 

typical grid dispatching requirements. 

Network hyperparameters are optimized through grid 
search on the validation set. The CNN branch employs three 
parallel convolution paths with kernel sizes 3×3, 5×5, and 7×7, 
while the Transformer branch utilizes 6 encoder layers with 8 
attention heads and hidden dimension 256. The spatial 
correlation evaluator uses a three-layer multilayer perceptron, 
and the graph neural network components implement 4-layer 
GraphSAGE followed by 3-layer GCN architectures. 

Training optimization employs the AdamW optimizer with 
an initial learning rate of 1×10⁻³, incorporating cosine 
annealing learning rate scheduling and early stopping based on 
validation loss plateauing for 15 consecutive epochs. The batch 
size is configured to 32, with gradient clipping at norm 1.0 to 
prevent optimization instabilities. Data augmentation 
techniques include temporal jittering (±2 time steps) and 
Gaussian noise injection (σ=0.01) to enhance model 
robustness, with all experiments conducted using 5-fold cross-
validation to ensure statistical reliability of reported results. 

3) Evaluation metrics: The evaluation framework employs 

three complementary metrics specifically selected to provide 

comprehensive assessment of solar power forecasting 

performance from multiple perspectives: absolute accuracy, 

sensitivity to large errors, and statistical significance. This 

multi-metric approach is essential for solar forecasting 

applications where different types of prediction errors have 

varying operational implications for grid management and 

energy trading systems. 

a) Mean Absolute Error (MAE) serves as the primary 

accuracy metric, measuring the average magnitude of 

prediction errors in the same units as power generation (kW): 

MAE =
1

n
∑ |n

i=1 yi − y
^

i|, where n represents the total number 

of predictions, yi denotes the actual power generation, and y
^

i 

represents the corresponding prediction. MAE is particularly 

suitable for solar forecasting evaluation because it provides an 

intuitive interpretation of prediction accuracy in absolute 

terms that directly relate to operational planning requirements, 

and unlike squared error metrics, MAE treats all errors equally 
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regardless of magnitude, making it robust to occasional large 

deviations during rapidly changing weather conditions. 

b) Root Mean Square Error (RMSE) complements MAE 

by providing enhanced sensitivity to large prediction errors: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑𝑖=1

𝑛 (𝑦𝑖 − �̂�𝑖)
2. The quadratic nature of RMSE 

assigns disproportionately higher penalties to large prediction 

errors, making it an essential metric for evaluating model 

reliability during extreme weather events or system anomalies. 

In solar power forecasting, large prediction errors can lead to 

grid instability, inefficient reserve allocation, or economic 

losses in energy markets, therefore RMSE serves as a critical 

indicator of model robustness and operational safety. 

c) Paired t-test (P-test) provides statistical validation of 

performance improvements: 𝑡 =
𝑑
¯

s /𝑑
, where 𝑑 

¯

represents the 

mean difference between paired predictions, 𝑠𝑑  denotes the 

standard deviation of differences, and 𝑛  is the sample size. 

The paired t-test is particularly appropriate for time series 

forecasting evaluation because it accounts for the temporal 

correlation structure inherent in sequential predictions, with a 

p-value threshold of 0.05 employed to determine statistical 

significance. This rigorous statistical validation ensures that 

reported performance improvements represent genuine model 

advantages rather than statistical noise, establishing credibility 

for comparative results and supporting evidence-based 

decision-making in practical deployments. 

B. Comparative Experimental Analysis 

1) Comparison with traditional machine learning 

methods: As shown in Table I, traditional machine learning 

methods demonstrate varying levels of performance in solar 

power generation forecasting, with significant differences in 

their ability to capture complex nonlinear patterns. ARIMA, 

representing classical time series analysis approaches, 

achieves the lowest performance with MAE of 18.47 kW and 

RMSE of 24.83 kW, primarily due to its linear modeling 

assumptions that fail to capture the complex nonlinear 

relationships between meteorological variables and solar 

power generation. This limitation becomes particularly 

pronounced during periods of rapidly changing weather 

conditions where the linear autoregressive structure cannot 

adequately model the dynamic system behavior. 

TABLE I.  COMPARATIVE EXPERIMENT TABLE 

Method MAE (kW) RMSE (kW) P-value 

ARIMA 18.47 24.83 - 

Support Veetor Regression 16.92 22.15 0.032 

Random Forest 15.68 21.34 0.018 

XGBoost 14.23 19.87 0.012 

LSTM 13.56 18.92 0.008 

GRU 13.81 19.24 0.015 

CNN 12.94 18.45 0.006 

Transformer 12.38 17.83 0.004 

CNN-LSTM 11.95 17.26 0.003 

Hybrid CNN-BiLSTM [25] 11.67 16.94 0.002 

Multi-Scale ST-Net [26] 11.42 16.58 0.001 

SpatialSolar-Net (Ours) 9.98 14.79 <0.001 

Improvement vs.best baseline: 12.6% 10.8% - 
 

Support Vector Regression and Random Forest show 
improved performance over ARIMA, with SVR achieving 
MAE of 16.92 kW and Random Forest reaching 15.68 kW, 
demonstrating the benefits of nonlinear modeling capabilities. 
However, these methods still struggle with the temporal 
dependencies inherent in solar power generation data, as they 
treat each prediction as an independent regression problem 
without explicitly modeling the sequential nature of the time 
series. 

XGBoost represents the best-performing traditional 
machine learning method with MAE of 14.23 kW and RMSE 
of 19.87 kW, showcasing the effectiveness of ensemble 
learning and gradient boosting techniques. Despite this strong 
performance, XGBoost still falls short of deep learning 
approaches, lacking the sophisticated feature extraction 
capabilities necessary for processing multi-modal 

meteorological data and capturing long-term temporal 
dependencies. The statistical significance (p < 0.05) for all 
traditional ML methods compared to ARIMA baseline 
confirms the importance of nonlinear modeling in solar 
forecasting applications. 

2) Comparison with deep learning methods: Deep 

learning methods demonstrate substantial improvements over 

traditional approaches, with neural network architectures 

effectively capturing both spatial and temporal patterns in 

solar power generation data. LSTM and GRU, representing 

recurrent neural network families, achieve comparable 

performance with MAE values of 13.56 kW and 13.81 kW 

respectively, successfully modeling temporal dependencies 

through their gating mechanisms. These results highlight the 

importance of memory-based architectures for sequential data 
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processing, though both methods show limitations in handling 

very long sequences due to gradient vanishing issues. 

CNN and Transformer architectures introduce different 
modeling perspectives, with CNN achieving 12.94 kW MAE 
by capturing local spatial patterns and Transformer reaching 
12.38 kW MAE through self-attention mechanisms for long-
range dependencies. The superior performance of Transformer 
compared to RNN-based methods validates the effectiveness of 
attention mechanisms for solar forecasting, particularly in 
modeling seasonal patterns and long-term meteorological 
correlations that significantly influence photovoltaic system 
performance. 

CNN-LSTM hybrid architecture demonstrates the benefits 
of combining spatial and temporal modeling approaches, 
achieving 11.95 kW MAE by leveraging CNN's spatial feature 
extraction capabilities alongside LSTM's temporal modeling 
strength. This hybrid approach provides important validation 
for our architectural design philosophy, showing that the 
integration of complementary neural network components can 
yield significant performance improvements. The consistent 
statistical significance (p < 0.01) across all deep learning 
methods underscores their fundamental advantages over 
traditional approaches for complex spatiotemporal forecasting 
tasks. 

3) Comparison with State-of-the-Art methods: Recent 

state-of-the-art methods represent the current frontier in solar 

power generation forecasting, incorporating advanced 

architectural innovations and domain-specific optimizations. 

The Hybrid CNN-BiLSTM model [38] achieves MAE of 

11.67 kW and RMSE of 16.94 kW by combining bidirectional 

temporal processing with convolutional spatial feature 

extraction, demonstrating the continued relevance of hybrid 

architectures in capturing complex spatiotemporal patterns. 

This method's strength lies in its ability to process temporal 

sequences in both forward and backward directions, providing 

richer contextual information for prediction tasks. 

The Multi-Scale ST-Net [40] represents the strongest 
baseline with MAE of 11.42 kW and RMSE of 16.58 kW, 
implementing sophisticated multi-scale processing to capture 
patterns across different temporal and spatial resolutions. This 
method's competitive performance validates the importance of 
multi-scale feature extraction in solar forecasting applications, 
as solar power generation exhibits meaningful patterns across 
various time scales from minute-level fluctuations to seasonal 
variations [39].  

Our proposed SpatialSolar-Net achieves superior 
performance with MAE of 9.98 kW and RMSE of 14.79 kW, 
representing improvements of 12.6% and 10.8% respectively 
over the best baseline method. The highly significant p-value 
(<0.001) confirms the statistical reliability of these 
improvements. The key advantages of our approach stem from 
the adaptive knowledge integration mechanism that 
dynamically adjusts modeling strategies based on spatial 
correlation assessment, enabling more efficient utilization of 
multi-site information while avoiding the negative transfer 

effects that can degrade performance when spatial relationships 
are weak or absent. 

C. Ablation Study Analysis 

1) Overall model performance analysis: As shown in Fig. 

2, the comprehensive ablation study demonstrates the 

significant contribution of each component in the 

SpatialSolar-Net architecture. The full model achieves the best 

performance with MAE of 9.98 kW and RMSE of 14.79 kW, 

substantially outperforming all ablated variants. When 

removing the spatial correlation evaluator, performance 

degrades to MAE of 11.34 kW and RMSE of 16.85 kW, 

representing a 13.6% increase in prediction error. This 

degradation highlights the critical role of adaptive spatial 

relationship assessment in optimizing knowledge integration 

strategies for different correlation scenarios. 

The removal of the graph neural network component results 
in MAE of 11.67 kW and RMSE of 17.23 kW, demonstrating 
the importance of explicit spatial dependency modeling 
through graph-based architectures. Without the adaptive fusion 
mechanism, the model's performance drops to MAE of 12.15 
kW and RMSE of 17.94 kW, confirming that simple 
concatenation or fixed weighting strategies are insufficient for 
optimal multi-modal feature integration. The multi-modal input 
ablation shows the most significant performance degradation 
(MAE: 12.89 kW, RMSE: 18.67 kW), validating the necessity 
of incorporating diverse meteorological variables for accurate 
solar power forecasting. 

Single-architecture baselines further emphasize the 
advantages of hybrid modeling approaches. The CNN-only 
model achieves MAE of 13.45 kW, while the Transformer-
only variant reaches 12.38 kW, both significantly inferior to 
the full model. These results confirm that spatial and temporal 
features require specialized processing architectures, and their 
effective combination through adaptive mechanisms is 
essential for optimal performance. 

2) Component contribution analysis: The horizontal bar 

chart reveals the relative importance of different architectural 

components based on performance degradation when 

removed. Multi-modal input contributes most significantly to 

model performance, with its removal causing a 2.91 kW 

increase in MAE, representing the largest performance drop 

among all components. This substantial contribution stems 

from the diverse information content provided by different 

meteorological variables (irradiance, temperature, wind, 

humidity), each capturing unique aspects of environmental 

conditions that influence photovoltaic system performance. 

The adaptive fusion mechanism ranks second in importance 
with a 2.17 kW performance drop, validating the core 
innovation of dynamic weight allocation between CNN and 
Transformer branches. This result demonstrates that static 
fusion strategies cannot adequately adapt to varying 
environmental conditions and temporal patterns. The graph 
neural network component contributes 1.69 kW to overall 
performance, confirming the value of explicit spatial 
dependency modeling for multi-site collaborative prediction. 
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Fig. 2. Ablation experiment analysis. 

The spatial correlation evaluator, while showing the 
smallest individual contribution (1.36 kW), plays a crucial role 
in orchestrating the overall system behavior. Its relatively 
modest direct impact on performance metrics belies its 
fundamental importance in determining when and how to 
integrate spatial information, preventing negative transfer 
effects that could degrade prediction accuracy when spatial 
correlations are weak or absent. 

D. Architecture Variant Comparison 

The architecture comparison reveals a clear progression 
from simple to sophisticated modeling approaches. CNN-only 
and Transformer-only architectures achieve MAE values of 
13.45 kW and 12.38 kW respectively, demonstrating the 
superior temporal modeling capabilities of attention 
mechanisms over pure convolutional approaches for solar 
forecasting tasks. The simple concatenation of CNN and 
Transformer features (CNN+Trans Concat) improves 
performance to 11.89 kW MAE, showing benefits from 
combining complementary feature representations. 

However, the adaptive fusion approach (CNN+Trans 
Adaptive) achieves the optimal performance of 9.98 kW MAE, 
representing a 16.1% improvement over simple concatenation. 
This substantial gain validates the importance of learned, 
dynamic feature weighting that can adapt to different 
environmental conditions and temporal patterns. The adaptive 
fusion mechanism effectively addresses the limitation of static 
combination strategies that cannot account for the varying 
relevance of spatial versus temporal features across different 
forecasting scenarios. 

The training efficiency analysis reveals an interesting trade-
off between model complexity and performance. While the full 
model requires the highest parameter count (2.8M) and longest 
training time (245 minutes), it achieves superior accuracy that 
justifies the computational investment. The scatter plot 
demonstrates that simpler architectures, while computationally 
efficient, cannot achieve comparable prediction accuracy, 
highlighting the necessity of sophisticated modeling 
approaches for complex spatiotemporal forecasting tasks. 
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E. Spatial Correlation Impact Analysis 

The spatial correlation scenario analysis provides critical 
insights into the adaptive behavior of SpatialSolar-Net under 
different inter-site relationship conditions. In high correlation 
scenarios (>0.8), the full model achieves exceptional 
performance with MAE of 8.94 kW, compared to 12.45 kW for 
the model without spatial modeling, representing a remarkable 
28.2% improvement. This substantial gain demonstrates the 
model's ability to effectively leverage strong spatial 
relationships for enhanced prediction accuracy. 

Under medium correlation conditions (0.5-0.8), 
SpatialSolar-Net maintains its advantage with MAE of 10.23 
kW versus 13.78 kW without spatial modeling, showing a 
25.8% improvement. This consistent performance across 
varying correlation strengths validates the robustness of the 
adaptive integration mechanism. Notably, in low correlation 
scenarios (<0.5), the performance difference narrows 
significantly (11.67 kW vs. 11.89 kW), with only a 1.9% 
improvement, demonstrating the model's intelligence in 
avoiding negative transfer when spatial relationships are weak. 

This adaptive behavior pattern confirms the effectiveness of 
the spatial correlation evaluator in determining optimal 
knowledge integration strategies. The model automatically 
reduces reliance on spatial information when correlations are 
weak, preventing the degradation that often occurs when 
irrelevant spatial features are forcibly integrated. This 
intelligent adaptation capability represents a key advancement 
over static multi-site modeling approaches and explains the 
superior overall performance of SpatialSolar-Net across 
diverse geographical and meteorological conditions. 

F. Hyperparameter Sensitivity Analysis 

1) Comprehensive hyperparameter performance overview: 

As shown in Fig. 3, the comprehensive hyperparameter 

performance distribution analysis reveals significant 

variability in model sensitivity across different parameter 

categories. The box plot visualization demonstrates that 

learning rate exhibits the highest performance variance 

(σ=1.67), with MAE ranging from 9.98 kW to 14.23 kW, 

indicating extreme sensitivity to this hyperparameter. This 

substantial variation underscores the critical importance of 

careful learning rate selection, as suboptimal values can lead 

to training instability or convergence to poor local minima. 

The presence of outliers in the learning rate distribution 

further confirms the non-linear relationship between learning 

rate values and model performance. 

 

Fig. 3. Hyperparameter experimental analysis. 

Attention heads and sequence length demonstrate moderate 
sensitivity with standard deviations of 0.89 and 0.76 
respectively, while batch size shows relatively stable 
performance across different values (σ=0.52). Hidden 
dimension exhibits the most consistent behavior with the 
lowest standard deviation (σ=0.43), suggesting that the model 
architecture is robust to variations in this parameter within 
reasonable ranges. The graph layers parameter shows 
intermediate sensitivity (σ=0.61), indicating that the depth of 
graph neural network components has a noticeable but 
manageable impact on prediction accuracy. 

The optimal value markers (golden stars) consistently 
appear at intermediate parameter settings rather than at 
extremes, validating the importance of balanced 
hyperparameter selection. Specifically, the optimal 
configurations avoid both overly conservative settings that may 
limit model capacity and aggressive settings that could lead to 
overfitting or training instabilities. This pattern reflects the 
classic bias-variance tradeoff inherent in machine learning 
model optimization. 

2) Learning rate sensitivity analysis: The learning rate 

sensitivity analysis reveals a distinctive U-shaped performance 

curve with a clearly defined optimal region. The model 

achieves peak performance at learning rate 5×10⁻⁴, where 

MAE reaches its minimum value of 9.98 kW while 

maintaining reasonable training efficiency (245 minutes). This 

optimal point represents an ideal balance between 

convergence speed and final model quality, as evidenced by 

the simultaneous optimization of both MAE and RMSE 

metrics at this learning rate. 

The performance degradation is asymmetric around the 
optimal point, with more severe penalties for excessively high 
learning rates compared to overly conservative ones. Learning 
rates above 1×10⁻³ lead to dramatic performance deterioration, 
with MAE increasing to 14.23 kW at 1×10⁻² due to training 
instability and oscillations around local minima. Conversely, 
learning rates below 1×10⁻⁴ result in more gradual performance 
decline, reaching 12.45 kW at 1×10⁻⁵, primarily due to 
insufficient convergence within the allocated training time 
rather than fundamental optimization failures. 

The training time analysis reveals an inverse relationship 
between learning rate and convergence duration, with higher 
learning rates requiring fewer epochs but at the cost of 
prediction accuracy. This tradeoff is particularly evident in the 
transition from the optimal region (green band, 9.5-10.5 kW 
MAE) to the acceptable region (yellow band, 10.5-12.0 kW 
MAE), where modest increases in learning rate can 
significantly reduce training time while maintaining reasonable 
performance for less demanding applications. The poor 
performance region (red band, >12.0 kW MAE) should be 
strictly avoided as it indicates fundamental training failures 
regardless of computational efficiency gains. 

3) Cross-parameter interaction effects: The comparative 

analysis across hyperparameter categories reveals interesting 

interaction patterns that inform optimal model configuration 

strategies. Learning rate demonstrates the strongest influence 
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on overall model performance, with its optimization being 

prerequisite for effective tuning of other parameters. The 

relatively stable performance of batch size and hidden 

dimension parameters suggests that these can be selected 

primarily based on computational constraints rather than 

prediction accuracy considerations, provided they remain 

within reasonable bounds. 

The attention heads parameter shows a sweet spot at 8 
heads, where the model achieves optimal balance between 
representational capacity and computational efficiency. 
Increasing beyond this point yields diminishing returns while 
substantially increasing parameter count and training time. 
Similarly, the sequence length analysis indicates that 96 time 
steps (24 hours) provides sufficient temporal context for 
capturing daily patterns without introducing excessive 
computational overhead or overfitting risks associated with 
longer sequences. 

Graph layers exhibit a plateau effect around 4 layers, where 
additional depth provides minimal performance gains while 
increasing the risk of gradient vanishing and overfitting in the 
graph neural network components. This finding aligns with 
established best practices in graph neural network design, 
where moderate depth typically outperforms very deep 
architectures. The consistent optimal values across different 
parameter categories suggest that the model architecture 
achieves effective feature extraction and representation 
learning without requiring extreme parameter settings, 
indicating good architectural design and robust optimization 
procedures. 

The performance distribution analysis demonstrates that 
SpatialSolar-Net maintains competitive performance across a 
reasonable range of hyperparameter settings, with graceful 
degradation rather than cliff-like failures when parameters 
deviate from optimal values. This robustness characteristic is 
crucial for practical deployment scenarios where perfect 
hyperparameter tuning may not be feasible due to 
computational constraints or dataset variations. The relatively 
narrow confidence intervals around optimal settings provide 
clear guidance for practitioners seeking to replicate or adapt the 
model for different solar forecasting applications. 

G. Case Study: Dust Storm Event Analysis 

1) Extreme weather event overview: As shown in Fig. 4, 

the case study focuses on a severe dust storm event that 

occurred on June 16, 2024, representing one of the most 

challenging scenarios for solar power generation forecasting. 

The selected 72-hour period from June 15-17, 2024, 

encompasses three distinct phases: clear sky conditions (Day 

1), extreme dust storm event (Day 2), and recovery period 

(Day 3). This temporal sequence provides an ideal testbed for 

evaluating model robustness under rapidly changing 

environmental conditions, where traditional forecasting 

methods typically experience significant performance 

degradation due to their inability to adapt to non-stationary 

weather patterns. 

 
Fig. 4. Analysis of sandstorm weather. 

The dust storm event is characterized by dramatic 
reductions in solar irradiance, with power generation dropping 
from typical peak values of 850 kW to severely constrained 
levels below 200 kW during midday hours. The meteorological 
conditions during the dust storm period exhibit high volatility, 
with frequent fluctuations in atmospheric transparency and 
rapid changes in local microclimate conditions. These 
characteristics make the event particularly challenging for 
forecasting models, as the standard assumption of temporal 
continuity in weather patterns is violated, requiring adaptive 
modeling strategies that can respond to sudden environmental 
transitions. 

The experimental setup involves real-time prediction using 
15-minute intervals across all 72 hours, with models receiving 
the same meteorological inputs including solar irradiance, 
temperature, wind speed, and humidity measurements. This 
controlled comparison ensures that performance differences 
reflect genuine model capabilities rather than variations in 
input data quality or temporal resolution. The case study design 
specifically targets the evaluation of spatial correlation 
utilization and adaptive fusion mechanisms under extreme 
conditions where conventional forecasting approaches struggle 
to maintain accuracy. 

2) Comparative performance analysis: The comparative 

analysis reveals stark performance differences between 

SpatialSolar-Net and baseline methods during the dust storm 

event. During clear sky conditions on Day 1, all models 

demonstrate reasonable accuracy with SpatialSolar-Net 

achieving an MAE of 8.2 kW, followed by CNN-LSTM (9.1 

kW), Transformer (9.8 kW), and LSTM (10.4 kW). These 

results indicate that under stable meteorological conditions, 

the performance gaps between different approaches remain 

manageable, with SpatialSolar-Net maintaining a modest but 

consistent advantage through its adaptive fusion mechanism. 

However, the dust storm period on Day 2 exposes 
fundamental limitations in baseline approaches while 
highlighting the robustness of the proposed method. 
SpatialSolar-Net maintains relatively stable performance with 
an MAE of 15.4 kW during the extreme weather event, 
representing only an 88% increase from clear sky conditions. 
In contrast, baseline methods experience catastrophic 
performance degradation: LSTM MAE increases to 42.7 kW 
(311% increase), Transformer reaches 38.9 kW (297% 
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increase), and CNN-LSTM achieves 28.3 kW (211% increase). 
This dramatic difference demonstrates the critical importance 
of adaptive mechanisms that can adjust modeling strategies 
based on real-time environmental conditions. 

The recovery period on Day 3 provides additional insights 
into model adaptability and convergence behavior. 
SpatialSolar-Net quickly returns to near-optimal performance 
with an MAE of 9.1 kW, indicating effective adaptation to 
changing conditions without persistent degradation effects. 
Baseline methods show varying recovery rates, with CNN-
LSTM recovering to 11.8 kW, Transformer to 13.2 kW, and 
LSTM to 15.6 kW. The faster recovery of SpatialSolar-Net 
suggests that its adaptive attention mechanism successfully 
identifies the transition back to stable conditions and adjusts 
the fusion weights accordingly, while baseline methods require 
longer periods to re-establish accurate prediction patterns. 

3) Spatial correlation adaptation mechanism: The case 

study provides compelling evidence for the effectiveness of 

the spatial correlation adaptation mechanism during extreme 

weather events. Analysis of the attention weight distributions 

reveals that during clear sky conditions on Day 1, the model 

allocates approximately 65% weight to the Transformer 

branch and 35% to the CNN branch, reflecting the dominance 

of temporal patterns under stable meteorological conditions. 

This weight distribution aligns with the expectation that clear 

weather exhibits predictable daily cycles that are effectively 

captured through temporal attention mechanisms. 

During the dust storm event on Day 2, the attention weights 
undergo dramatic redistribution, with CNN branch weight 
increasing to approximately 70% while Transformer weight 
decreases to 30%. This adaptive behavior demonstrates the 
model's ability to automatically detect environmental 
instability and shift reliance toward spatial features that better 
capture localized atmospheric disturbances. The CNN branch's 
enhanced focus on spatial patterns becomes crucial during dust 
storms, as local variations in particle density and wind patterns 
create complex spatial gradients that cannot be adequately 
modeled through purely temporal approaches. 

The recovery period on Day 3 shows gradual restoration of 
the original attention weight distribution, with Transformer 
weight returning to approximately 60% and CNN weight 
decreasing to 40%. This smooth transition indicates that the 
adaptive mechanism avoids abrupt switching that could 
introduce prediction instabilities, instead implementing gradual 
adjustments that maintain forecasting continuity while 
optimizing performance for changing conditions. The observed 
attention weight patterns provide direct evidence that the 
spatial correlation evaluator successfully identifies varying 
environmental scenarios and triggers appropriate knowledge 
integration strategies, validating the core architectural 
innovation of SpatialSolar-Net. 

4) Performance improvement analysis: The quantitative 

analysis reveals that SpatialSolar-Net achieves a remarkable 

64% error reduction during the dust storm period compared to 

the best baseline method (CNN-LSTM). This substantial 

improvement translates to significant practical benefits for 

grid operations, as the reduced prediction uncertainty enables 

more accurate reserve allocation and dispatching decisions 

during critical weather events. The 64% improvement 

represents a reduction from 28.3 kW MAE (CNN-LSTM) to 

15.4 kW MAE (SpatialSolar-Net), corresponding to an 

absolute error reduction of 12.9 kW during extreme conditions 

when accurate forecasting is most crucial for maintaining grid 

stability. 

The performance improvement analysis across different 
weather conditions demonstrates the versatility and robustness 
of the proposed approach. While the 64% improvement during 
dust storms represents the most dramatic enhancement, 
SpatialSolar-Net also maintains consistent advantages during 
clear sky (21% improvement over best baseline) and recovery 
periods (23% improvement) conditions. This consistent 
performance across diverse meteorological scenarios indicates 
that the adaptive mechanisms do not compromise accuracy 
during normal operations while providing substantial benefits 
during extreme events. 

From an operational perspective, the error reduction 
achieved by SpatialSolar-Net translates to improved grid 
reliability and reduced operational costs. During extreme 
weather events like dust storms, prediction errors can lead to 
emergency reserve activation, load shedding, or grid frequency 
deviations that compromise system stability. The 64% error 
reduction demonstrated in this case study suggests that 
SpatialSolar-Net can significantly mitigate these risks by 
providing more accurate forecasts precisely when they are 
most needed. This capability becomes increasingly important 
as renewable energy penetration increases and grid operators 
require more reliable forecasting tools to manage the inherent 
variability of solar power generation under diverse 
environmental conditions. 

V. DISCUSSION 

A. Theoretical Implications and Model Innovation 

The SpatialSolar-Net architecture represents a significant 
theoretical advancement in the field of renewable energy 
forecasting by introducing a paradigm shift from independent 
site-level predictions to collaborative multi-site modeling. The 
core theoretical contribution lies in the formalization of 
adaptive spatial correlation assessment as a routing mechanism 
for knowledge integration, which addresses a fundamental 
limitation in existing spatiotemporal forecasting approaches. 
Traditional methods typically assume either complete 
independence between spatial locations or uniform spatial 
relationships, failing to capture the dynamic nature of 
meteorological correlations that vary with atmospheric 
conditions, seasonal patterns, and geographic factors. The 
adaptive attention fusion mechanism provides a theoretically 
grounded solution to the long-standing challenge of optimal 
feature combination in multi-modal deep learning 
architectures, establishing a dynamic equilibrium that 
automatically adjusts to the relative importance of spatial 
versus temporal features based on real-time environmental 
conditions. 
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The integration of graph neural networks within the 
collaborative prediction framework introduces a novel 
perspective on spatial dependency modeling in renewable 
energy systems, conceptualizing inter-site dependencies as 
dynamic, learnable representations that evolve with 
meteorological conditions. This theoretical innovation enables 
the model to capture complex spatial phenomena such as 
weather front propagation, regional climate variations, and 
localized atmospheric disturbances that significantly influence 
solar power generation patterns but are often overlooked in 
traditional forecasting approaches [41]. The framework extends 
beyond solar forecasting applications, offering insights for 
other spatiotemporal prediction tasks where the balance 
between local and global information varies with context, 
thereby contributing to the broader understanding of adaptive 
multi-scale modeling in complex dynamic systems. 

B. Practical Implications and Industrial Applications 

The experimental validation of SpatialSolar-Net 
demonstrates substantial practical implications for power 
system operations and renewable energy integration strategies. 
The 64% error reduction during extreme weather events 
translates directly to enhanced grid reliability and reduced 
operational costs, particularly in scenarios where accurate 
forecasting is most critical for maintaining system stability. For 
a typical 100 MW solar farm, the improved prediction 
accuracy during dust storms could prevent emergency reserve 
activations costing thousands of dollars per hour, while 
reducing the risk of grid frequency deviations that compromise 
power quality for consumers. The multi-site collaborative 
approach is particularly valuable for regional grid operators 
managing multiple distributed solar installations, where the 
spatial correlation information provides critical insights for 
coordinated dispatching decisions and enables optimization at 
both local and system-wide levels [42]. 

From a computational deployment perspective, the 
efficiency improvements achieved by SpatialSolar-Net address 
practical constraints in real-world forecasting systems. The 
21.3% reduction in computational complexity, combined with 
maintained or improved accuracy, makes the approach viable 
for edge computing deployments where computational 
resources are limited. This efficiency gain becomes 
increasingly important as the number of monitored solar 
installations grows, enabling scalable forecasting solutions that 
can accommodate expanding renewable energy portfolios 
without proportional increases in computational infrastructure 
requirements. The adaptive nature of the approach offers 
significant advantages for deployment across diverse 
geographical and climatic regions, automatically adjusting 
modeling strategies based on local spatial correlation patterns 
and reducing the expertise required for implementation in new 
locations. 

The industrial applicability of SpatialSolar-Net extends 
beyond immediate forecasting improvements to enable more 
aggressive renewable energy integration strategies and 
enhanced grid management capabilities. The enhanced 
prediction reliability allows operators to confidently reduce 
conventional backup capacity, knowing that solar generation 
forecasts maintain accuracy even under challenging conditions. 

The model's ability to provide both individual site forecasts and 
regional aggregate predictions supports hierarchical grid 
management structures, facilitating coordinated dispatching 
decisions that optimize renewable energy utilization while 
maintaining system reliability. This capability becomes 
increasingly valuable for international renewable energy 
companies seeking standardized forecasting solutions that can 
be deployed across multiple markets with varying 
meteorological characteristics and regulatory requirements. 

C. Limitations and Future Research Directions 

Despite the significant advances demonstrated by 
SpatialSolar-Net, several methodological and experimental 
limitations warrant acknowledgment and suggest directions for 
future research. The experimental validation relies on a 
relatively short temporal span (34 days) and limited 
geographical diversity (two sites in India), which may not fully 
capture the seasonal variations and diverse climate conditions 
that influence solar power generation across different regions. 
The current spatial correlation evaluation framework, while 
effective for the tested scenarios, relies on predetermined 
correlation thresholds that may require adjustment for different 
geographical contexts or seasonal patterns. Future research 
should extend validation periods to encompass complete 
annual cycles and evaluate model performance across multiple 
climate zones to establish the generalizability of the adaptive 
mechanisms under diverse environmental conditions [43]. 

From a scalability and computational perspective, the 
current framework faces challenges in large-scale deployments 
involving hundreds or thousands of solar installations. The 
computational requirements of the graph neural network 
components, while reduced compared to baseline approaches, 
may still present bottlenecks for utility-scale renewable energy 
portfolios. Future research directions should explore 
hierarchical graph structures, federated learning approaches, 
and model compression techniques to enable efficient scaling 
while maintaining prediction accuracy. The development of 
uncertainty quantification mechanisms would further enhance 
practical utility by providing confidence intervals for 
predictions, enabling risk-aware grid dispatching decisions that 
account for forecast uncertainty in operational planning and 
resource allocation. 

The current framework's exclusive focus on solar power 
generation forecasting, while comprehensive within its domain, 
suggests broader applicability to other renewable energy 
sources and spatiotemporal prediction tasks. Future research 
could investigate extensions to wind power forecasting, where 
spatial correlations exhibit different characteristics but similar 
adaptive modeling challenges exist, and integration with 
energy storage systems and demand response mechanisms to 
enable holistic renewable energy management. From a 
methodological perspective, the incorporation of physics-
informed constraints and domain knowledge could further 
enhance model reliability and interpretability, while the 
development of explainable AI techniques specifically tailored 
for spatiotemporal forecasting would enhance model 
trustworthiness and facilitate adoption in safety-critical 
applications where prediction rationale must be interpretable to 
human operators. 
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VI. CONCLUSION 

This research presents SpatialSolar-Net, a novel multi-site 
collaborative framework that addresses the fundamental 
challenges of solar power generation forecasting by 
introducing adaptive spatial correlation evaluation and 
dynamic knowledge integration mechanisms. The proposed 
architecture represents a significant departure from traditional 
independent site-level prediction approaches, establishing a 
comprehensive spatial-temporal modeling system that 
intelligently balances local site characteristics with inter-site 
dependencies. Through extensive experimental validation on 
real-world solar power generation data, SpatialSolar-Net 
demonstrates substantial performance improvements, achieving 
MAE of 9.98 kW and RMSE of 14.79 kW, representing 12.6% 
and 10.8% improvements respectively over the strongest 
baseline method. The comprehensive ablation study confirms 
the critical importance of each architectural component, with 
multi-modal input contributing most significantly to 
performance (29.1% degradation when removed), followed by 
adaptive fusion mechanisms (21.7% impact) and graph-based 
spatial dependency modeling (16.9% contribution). The 
extreme weather case study provides compelling evidence of 
model robustness, demonstrating a remarkable 64% error 
reduction during dust storm events compared to baseline 
methods, while maintaining consistent performance advantages 
across diverse meteorological conditions from clear sky to 
recovery periods. 

The practical implications of SpatialSolar-Net extend far 
beyond academic contributions, offering transformative 
potential for renewable energy integration and grid 
management operations. The enhanced prediction accuracy 
during extreme weather events translates directly to improved 
grid reliability and reduced operational costs, particularly 
crucial as renewable energy penetration continues to increase 
globally. The adaptive nature of the framework enables 
deployment across diverse geographical and climatic regions 
without requiring extensive reconfiguration, making it an 
attractive solution for international renewable energy 
companies seeking standardized forecasting tools. The 21.3% 
computational efficiency improvement achieved through 
adaptive knowledge integration makes the approach viable for 
edge computing deployments and large-scale utility 
applications where computational resources are constrained. 
For grid operators managing multiple distributed solar 
installations, the multi-site collaborative predictions provide 
critical insights for coordinated dispatching decisions and 
enable optimization at both local and system-wide levels, 
ultimately supporting more aggressive renewable energy 
integration strategies while maintaining system reliability. 

While this research demonstrates significant advances in 
solar power forecasting, several opportunities exist for future 
investigation and development. The current framework's 
validation on a 34-day dataset from two Indian sites, though 
comprehensive within its scope, suggests the need for extended 
temporal validation across complete annual cycles and diverse 
climate zones to establish broader generalizability. Future 
research directions should explore hierarchical graph structures 
and federated learning approaches to enable efficient scaling to 

utility-scale renewable energy portfolios involving hundreds or 
thousands of installations. The integration of uncertainty 
quantification mechanisms would further enhance practical 
utility by providing confidence intervals for predictions, 
enabling risk-aware dispatching decisions that account for 
forecast uncertainty in operational planning. Additionally, the 
extension of the adaptive correlation framework to other 
renewable energy sources such as wind power, where spatial 
relationships exhibit different characteristics but similar 
modeling challenges exist, represents a promising avenue for 
broader impact. The incorporation of physics-informed 
constraints and domain knowledge could further enhance 
model reliability and interpretability, while the development of 
explainable AI techniques specifically tailored for 
spatiotemporal forecasting would facilitate adoption in safety-
critical applications where prediction rationale must be 
transparent to human operators. 
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