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Abstract—Object recognition in complex scenes is challenging 

due to cluttered backgrounds, overlapping objects, and degraded 

image quality. Another difficulty arises from sparse label 

presence, as most images contain only one to three active labels 

despite the dataset being balanced across 20 object classes. This 

intra-sample sparsity complicates binary classification by 

exposing models to a high proportion of inactive classes. This 

work aims to improve recognition accuracy, robustness under 

sparse multi-label conditions, and interpretability in visually 

complex environments. The objective is to help models focus on 

relevant visual features, suppress background noise, and better 

distinguish objects that are rare or overlapping. To address these 

challenges, we introduce an attention aware dual-path 

autoencoder that enhances image features while learning to 

classify multiple objects. The model uses asymmetric loss to 

reduce the influence of easy negatives and emphasize rare or 

difficult labels. It also integrates an attention mechanism in the 

reconstruction path to improve object clarity. The proposed 

model achieves 96.72 percent accuracy, 0.0328 Hamming Loss, 

0.9809 macro ROC-AUC, and 0.8925 macro mAP, along with 

0.9372 SSIM and 7.1012 dB PSNR in reconstruction. These 

results confirm its effectiveness for robust classification and 

enhanced visual understanding in complex scenes. 

Keywords—Component; autoencoder; attention aware; feature 
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I. INTRODUCTION  

In real-world applications, object recognition systems often 
must contend with complex scenes which are characterized by 
varied backgrounds, overlapping objects, and degraded image 
quality such as noise, blur, and low brightness [1]. These 
conditions reduce the effectiveness of conventional 
convolutional neural networks, which often assume clean, 
well-segmented inputs. Cluttered environments with sensor 
noise or motion blur, for example, can lower classification 
accuracy by over 10% in multi-label recognition tasks [2]-[3]. 
While previous work has explored pre-processing techniques 
such as denoising and deblurring prior to recognition [4]-[6], 
these modular approaches introduce computational overhead 
and suffer from inefficient feature usage, as enhancement and 
recognition are handled separately. Although the dataset is 
balanced across 20 object categories, each image includes only 
1 to 3 active labels, creating label sparsity during training. 
This, combined with frequent object overlaps, makes 
classification more challenging, especially with standard binary 
loss functions. This work proposes a unified framework that 
enhances image quality and improves multi-label recognition 
in complex scenes with sparse, overlapping labels. The model 

is designed to operate in cluttered environments while learning 
effectively from limited active labels per image. 

We propose an end-to-end architecture that combines 
image reconstruction and classification into a single unified 
pipeline. A DenseNet-based convolutional autoencoder, 
enhanced with a Convolutional Block Attention Module 
(CBAM), is used to suppress noise and focus on salient object 
regions during image enhancement [7]. The reconstructed 
output is processed by a second DenseNet classifier, while 
latent features from the autoencoder are fused with 
classification features using multiplicative fusion to integrate 
both structural and semantic information [8], [9]. To address 
the challenge of label sparsity, the model is trained using a 
composite loss function consisting of Mean Squared Error 
(MSE) for reconstruction and either Binary Cross-Entropy 
(BCE) or Asymmetric Loss (ASL) for classification. ASL is 
particularly effective in multi-label settings with few active 
classes per image, as it down-weights easy negatives and 
emphasizes difficult positive enhancing discrimination in 
overlapping or infrequent categories. 

The proposed method is evaluated against two baselines, a 
standard convolutional autoencoder without any transfer 
learning, CBAM or feature fusion and a standalone DenseNet-
121 classifier without image enhancement. Results show that 
the attention-aware dual-path model trained with ASL 
outperforms both reconstruction quality and classification 
accuracy, proving its robustness in complex scene recognition. 
The rest of the paper is organized as follows. Section II reviews 
related work. Section III outlines the methodology. Section IV 
presents the experimental setup. Results and discussions are 
given in Section V. Section VI discusses the results. Section 
VII concludes and suggests future directions. 

II. RELATED WORK 

A. Complex Scene Object Recognition 

Object recognition in complex scenes has been widely 
studied, especially under clutter, occlusion, and image 
degradation. Cheng et al. reviewed deep learning methods for 
remote-sensing scene classification, highlighting robust feature 
extraction in noisy settings [10]. Fu et al. demonstrated that 
classification accuracy in astronomical imaging can be 
improved using denoising autoencoders to recover from noise 
and blur [11]. In medical imaging, autoencoder-based 
architectures have also been employed to extract salient 
features from visually noisy data [12]. Lu et al. introduced a 
co-attention Siamese network for video segmentation, utilizing 
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co-attention mechanisms to better segment overlapping objects 
in complex backgrounds [13]. 

In more domain-specific research which using kitchen 
utensils dataset, Yusro et al. compared Faster R-CNN and 
YOLOv5 on kitchen datasets with overlapping utensils, 
reporting YOLOv5’s superior accuracy of 89.12% compared to 
83.92% [14]. Building on this, Hashim applied YOLOv5 with 
different deep learning backbones to manage image 
degradation, achieving strong performance under noisy 
conditions [15]. Gallego et al. developed the Kurcuma dataset, 
comprising over 6,800 annotated images ranging from isolated 
objects to cluttered domestic scenes, designed for evaluating 
domain-adaptive recognition methods [16]. 

B. Multitask Image Enhancement with Object Recognition 

Integrating image enhancement and classification in unified 
architecture has improved recognition in challenging visual 
environments. Hami and JameBozorg showed that using a 
denoising autoencoder as preprocessing significantly increased 
accuracy when paired with VGG16 and InceptionV3 for defect 
detection tasks [17]. Liu et al. proposed a DenseNet-based 
denoising self-encoder for image dehazing, which enhanced 
both image clarity and object detection in outdoor scenes [18]. 
In medical applications, CNN autoencoders have been paired 
with classification heads for tasks such as brain tumor 
diagnosis, achieving strong results on degraded images [19]. 
Rahimzadeh and Attar combined DenseNet and ResNet 
features via a shared latent space, improving classification 
performance on COVID-19 chest X-ray datasets [9]. 

Attention-aware enhancement mechanisms have also 

gained increasing traction in improving object recognition 

tasks across various domains. Fu [11] demonstrated that 

incorporating a denoising autoencoder significantly enhanced 

classification accuracy on noisy galaxy imagery. Praharsha 

and Poulose [20] introduced CBAM-VGG16 for distracted 

driver detection, achieving over 98% accuracy on the AUCD2 

dataset. In remote sensing, Hu et al. [21] developed a CBAM-

integrated hybrid network combining residual and dilated 

convolutions, which improved hyperspectral image 

classification in spectrally cluttered conditions. 

C. Transfer Learning Based Autoencoders 

Transfer learning has been widely adopted in autoencoder-
based systems to improve generalization and representation 
learning across domains. Fu [11] utilized a denoising 
convolutional autoencoder built on DenseNet-121 to enhance 
galaxy images, resulting in notable classification 
improvements. In histopathology, Lee and Lah [22] fine-tuned 
a DenseNet encoder within an autoencoder-classifier pipeline 
for multi-task slide analysis, demonstrating increased learning 
efficiency. Praharsha and Poulose [20] embedded CBAM into 
VGG16 to support attention-based classification in distracted 
driving scenarios. Tran et al. [23] evaluated multiple encoder 
backbones, including ResNet-50, EfficientNet-B3, and 
DenseNet-121, for lung cancer detection using DICOM 
images. 

Xie et al. [24] introduced MEEAFusion, an architecture 
that integrates CBAM-like attention and multi-scale fusion 

within an autoencoder framework for infrared-visible image 
fusion. DenseNet-121 has been commonly employed as a 
preferred encoder across these efforts due to its densely 
connected layers and feature reuse capabilities, proving 
effective in domains such as astronomy [11] medical imaging 
[22], [24], and spectral fusion tasks [23]. 

D. Multi-label Classification and Label Sparcity Handling 

Multi-label classification assigns multiple class labels to 
each image, with each label represented as a binary indicator of 
presence or absence. In this context, standard loss functions 
such as Binary Cross-Entropy (BCE) are commonly used, but 
their performance has been analyzed for scenarios involving 
label sparsity. For example, Wang et al. [25] discussed how 
BCE treats active and inactive labels equally, which may lead 
to suboptimal learning when most labels are negative. Yessou 
et al. [26] further evaluated several loss functions, identifying 
similar limitations when applied to satellite imagery datasets. 

To address class imbalance, various alternative loss 
functions have been proposed. Asymmetric Loss (ASL), 
introduced by Ben-Baruch et al. [27], adjusts gradient 
contributions by down-weighting easy negatives and 
emphasizing hard positives, leading to improved mAP scores 
across datasets such as MS-COCO, Pascal-VOC, NUS-WIDE, 
and Open Images. Huang et al. [28] later refined this with 
Asymmetric Polynomial Loss (APL), incorporating polynomial 
coefficients for further control over gradient scaling. Ji et al. 
[29] applied these loss functions in remote sensing, while 
similar techniques have also been adopted in medical imaging 
to enhance detection of rare labels and performance on sparsely 
annotated data. 

E. Gaps and Limitation 

Although prior studies have advanced object recognition, 
image enhancement, and multi-label classification, several 
limitations remain. Few existing models integrate enhancement 
and recognition into a unified architecture, especially for 
visually complex scenes with occlusion, noise, and clutter. 
While encoder-decoder structures and attention mechanisms 
have been explored independently, their combined use in 
multitask pipelines is limited. Additionally, many approaches 
are domain-specific and lack generalizability across different 
real-world environments. Most models focus on either low-
level enhancement or high-level classification, missing the 
performance gains of joint optimization. 

Another limitation is the challenge of label sparsity in 
multi-label classification. Standard loss functions like Binary 
Cross-Entropy often struggle when most classes are inactive, 
making it harder to learn from rare but important labels. 
Although advanced losses such as Asymmetric Loss (ASL) and 
Asymmetric Polynomial Loss (APL) have shown success in 
other domains, they are still rarely applied in complex scene 
recognition. Additionally, while DenseNet-121 and attention 
modules like CBAM perform well individually, their 
integration into autoencoder-based multitask frameworks 
remains limited. Addressing these gaps requires a unified, 
attention-aware model that applies transfer learning and 
specialized loss functions for more robust performance in 
cluttered, degraded environments. 
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III. ARCHITECTURE 

The proposed architecture in Fig. 1 employs a pre-trained 
DenseNet121 as a feature extraction backbone. This backbone 
serves dual purposes: (1) encoding the noisy input into a latent 
representation for clean image reconstruction, and (2) 
extracting discriminative features for classification. We extract 
intermediate feature maps from four major transition layers of 
the DenseNet, capturing hierarchical spatial information. To 
preserve spatial resolution and semantic depth, we remove the 
classification head of the backbone and use the feature pyramid 
as input to the decoder. All batch normalization layers remain 
trainable to adapt to the domain distribution, while the initial 
training phase freezes the rest of the backbone to stabilize 
learning. 

 
Fig. 1. Overall model pipeline showing the training objectives, autoencoder 

structure, classification paths, and gradient flow during training and inference. 

A. Encoder Backbone 

Let the input image be denoted as 𝒙 ∈ ℝ64×64×3 , 
representing a three-channel red, green and blue (RGB) image. 
We adopted a DenseNet-121 encoder ( 𝑬 ), pretrained on 
ImageNet and used here without its classification head to 
extract hierarchical representations. DenseNet-121 is well-
suited for feature extraction because its layers are densely 
connected, allowing each layer to reuse feature maps from all 
previous layers in the same block, which improves feature 
propagation and reduces vanishing gradients [30]. As 𝒙 passes 
through successive dense blocks and transition layers, we 
collect feature maps from five key stages, denoted as (1), 
where each 𝒇𝒊  is the output of the 𝑖 -th dense block within 
DenseNet-121. These feature maps are progressively deeper 
and semantically richer, capturing spatial context at multiple 
scales. The final representation  𝒇𝟓  serves as the encoder's 
bottleneck output. To generate a compact semantic descriptor, 
a global average pooling operation (𝐺𝐴𝑃) is applied to 𝒇𝟓 in 
Eq. (2). 

𝒇𝒊 = 𝑬𝒊(𝒇𝒊−𝟏), 𝒇𝟎 = 𝒙, 𝑓𝑜𝑟 𝒊 = 1,2,3,4,5 

𝒛 = 𝐺𝐴𝑃(𝒇𝟓) ∈ ℝ1024 

The final output of the encoder produces a 1024-
dimensional vector 𝒛  that summarizes the spatial content of 
each channel. This latent representation is used to drive the 
reconstruction in the decoder, and, in parallel, informs 
downstream classification tasks. During the initial training 
phase, the encoder weights are frozen to retain robust 
pretrained features, allowing the decoder and classifier to adapt 
without perturbing the foundational representations. 

B. Attention Aware Decoder 

The decoder’s primary objective is to reconstruct a clean 
version of the input image, denoted as 𝒙 ∈ ℝ64×64×3, from the 
latent vector (𝒛). This step is essential for removing noise and 
enhancing image quality before classification. Structurally, the 
decoder is paired with a DenseNet-121 encoder, where skip 
connections, 𝒇𝒊 are extracted by encoder to paired with decoder 
blocks. These skip connections significantly improve their 
ability to preserve fine spatial details and reduce reconstruction 
errors. Notably, Ham et al. [31] theoretically and empirically 
analyzed linear denoising autoencoders with skip connections, 
showing that bypass pathways stabilize reconstruction 
performance. To further refine reconstruction, the decoder 
integrates the Convolutional Block Attention Module (CBAM) 
[7] which enhances feature selection through two types of 
attention, channel and spatial located after the last decoder 
block in Fig. 2. 

 
Fig. 2. Detailed architecture of the DenseNet-based encoder used in the 

autoencoder. Features from various depths are extracted and passed to the 

decoder through skip connections. 

Channel attention learns a map 𝑴𝒄 ∈ ℝ1×1×𝐶
 to assign 

importance weights to each feature channel, emphasizing those 
that contribute most to accurate reconstruction. Spatial 

attention computes a map 𝑴𝒔 ∈ ℝ𝐻×𝑊×1
 to focus on the most 

relevant spatial regions of the image, such as edges and 
textures. These attention mechanisms are applied to the 

intermediate feature map 𝑭 ∈ ℝ𝐻×𝑊×𝐶
, producing a refined 

feature map 𝑭𝒂𝒕𝒕 through element-wise multiplication 
calculated in Eq. (3). To preserve the original feature 
representation while enriching it with attention aware 
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enhancements, a residual connection is applied between the 
input feature map 𝑭 and the refined output 𝑭𝒂𝒕𝒕, yielding the 
final attended feature map 𝑭𝒐𝒖𝒕  in Eq. (4). This combined 
representation is then passed through the final convolutional 
layer with a 𝑡𝑎𝑛ℎ activation to produce the decoded image 𝒙. 
Finally, the output image 𝒙 is generated using a convolutional 
layer followed by a 𝑡𝑎𝑛ℎ activation, ensuring that pixel values 
fall between –1 and 1, and match the original input’s shape and 
color space for loss computation in Eq. (5). 

𝑭𝒂𝒕𝒕  =  𝑭 ⊙  𝑴𝒄  ⊙  𝑴𝒔 

𝑭𝒐𝒖𝒕 = 𝑭𝒂𝒕𝒕 +  𝑭 

𝒙 = 𝑡𝑎𝑛ℎ(𝐶𝑜𝑛𝑣(𝑭𝒐𝒖𝒕)) 

C. Classification from Reconstructed Inputs 

The classification module uses the reconstructed image 𝒙, 
instead of the original noisy input, to benefit from improved 
visual quality during prediction. To prevent classification 
gradients from affecting the decoder, a stop-gradient operation 
is applied, treating 𝒙 as a fixed input during backpropagation 
and isolating the reconstruction learning. This detached image, 
𝒙𝒔𝒕𝒐𝒑_𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕  is then passed through a new DenseNet-121 as 

decoded image’s feature extractor, identical in architecture but 
with independent weights to extract a classification feature 
vector, 𝒛𝒄  as described in Eq. (6). To enhance robustness, 
feature fusion is performed by element-wise multiplication of 
the latent vectors, 𝒛 from the autoencoder and decoded image’s 
extracted feature, 𝒛𝒄  as shown in Eq. (7). This operation 
amplifies shared information while suppressing noise and 
inconsistencies. 

𝒛𝒄 = 𝐺𝐴𝑃(𝑬(𝒙𝒔𝒕𝒐𝒑_𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕)),   𝒛𝒄  ∈  ℝ¹⁰²⁴ 

𝒛𝒇𝒖𝒔𝒆𝒅 =  𝒛 ⊙  𝒛𝒄 

The fused feature vector 𝒛𝒇𝒖𝒔𝒆𝒅 is then fed into fully 

connected layers with nonlinear activations and dropout 
regularization to generate the final multi-label classification 
prediction at Eq. (8) where W and B are learnable parameters 
of the classifier, and σ is the sigmoid activation function 
applied elementwise, mapping the outputs to probabilities 

between 0 and 1 for each class. The output ŷ ∈  [0,1]C 

represents predicted probabilities across C classes. 

ŷ =  𝜎(𝑊ᵀ𝒛𝒇𝒖𝒔𝒆𝒅 +  𝑏) 

D. Multitask Hybrid Loss 

The proposed model is optimized through a multitask 
learning framework that jointly addresses image reconstruction 
and multi-label classification. A hybrid loss function is 
formulated to guide the network in learning both low-level 
structural details and high-level discriminative features for 
accurate classification. This is achieved by minimizing 
reconstruction and classification losses simultaneously, each 
weighted within the final objective. As a result, the network 
preserves semantic content while improving its ability to 
differentiate object categories. This integration of learning 
signals helps the model build richer, more generalizable feature 

representations essential for robust recognition in complex 
visual scenes. 

𝓛𝒕𝒐𝒕𝒂𝒍 = (𝜆𝑟𝑒𝑐𝑜𝑛 ∙ 𝓛𝒓𝒆𝒄𝒐𝒏) + (𝜆𝑐𝑙𝑎𝑠𝑠 ∙ 𝓛𝒄𝒍𝒂𝒔𝒔) 

In Eq. (9) formulation, ℒ𝑡𝑜𝑡𝑎𝑙 denotes the complete training 
loss used to optimize the network parameters. The term 
ℒ𝑟𝑒𝑐𝑜𝑛  corresponds to the image reconstruction loss, which 
guides the autoencoder decoder to regenerate the clean image 
from the latent representation. The term ℒ𝑐𝑙𝑎𝑠𝑠  represents the 
classification loss, used to supervise the semantic 
categorization based on the reconstructed features. The scalar 
coefficients 𝜆𝑟𝑒𝑐𝑜𝑛  and 𝜆𝑐𝑙𝑎𝑠𝑠  are hyperparameters used to 
weigh the influence of each loss. In our experiments, we set 
𝜆𝑟𝑒𝑐𝑜𝑛  = 1.5 and 𝜆𝑐𝑙𝑎𝑠𝑠  = 0.5, which prioritizes structural 
reconstruction while maintaining a significant emphasis on 
classification. 

To quantify the reconstruction performance, we employ the 
Mean Squared Error (MSE) loss [32], a standard measure for 
evaluating image similarity in pixel space. This loss is defined 
as Eq. (10). Here, xᵢ denotes the i-th original input image in a 
batch, while x̂ᵢ is its corresponding reconstructed output 
produced by the decoder. Both are assumed to be RGB images 

with dimensions 64×64×3. The notation ‖·‖²₂ refers to the 

squared L2 norm computed over all pixel values, which 
penalizes deviations between each input pixel and its 
reconstruction. The term N represents the batch size. This 
formulation encourages the decoder to generate outputs that are 
visually and numerically close to the original clean image 
inputs. 

𝓛𝒓𝒆𝒄𝒐𝒏(𝑥, �̂�)  =  (1/𝑁) ∑‖𝑥ᵢ −  �̂�ᵢ‖²₂ 

For the classification task, we evaluate two loss functions, 
the Asymmetric Loss (ASL) by Ridnik et al. [27] and the 
conventional Binary Cross-Entropy (BCE). The ASL is 
designed for multi-label classification with severe label 
imbalance, where it emphasizes hard negatives while 
suppressing easy ones through focusing parameters and a 

threshold margin. It is defined as in (11). Here, y ∈ {0,1}C and 

ŷ ∈ [0,1]C denote the ground truth and predicted probability 

vectors across C classes. γ⁺ and γ⁻ are focusing factors for 
positives and negatives, m is the margin that suppresses low-
confidence negatives, and ε ensures numerical stability. We use 
γ⁺ = 0, γ⁻ = 2, m = 0.01, and ε = 1e−8 as recommended in [27]. 
In contrast, the BCE loss [32], given by Eq. (12) treats each 
class independently and penalizes incorrect predictions equally, 
regardless of imbalance. We compare both losses to evaluate 
their influence on classification performance within our 
multitask framework. 

𝓛𝒄𝒍𝒂𝒔𝒔_𝑨𝑺𝑳(𝑦, ŷ) = −[𝑦 · log (ŷ) · (1 − ŷ)𝛾+
+ (1

− 𝑦) ·

𝑙𝑜𝑔(1 − ŷ + 𝜀) · (ŷ − 𝑚)𝛾⁻]



𝓛𝒄𝒍𝒂𝒔𝒔_𝑩𝑪𝑬(𝑦, ŷ) = −∑[𝑦ₖ log (ŷₖ) + (1 − 𝑦ₖ) 

𝑙𝑜𝑔(1 − ŷₖ)]



By combining the two loss components in Eq. (9), the 
model learns to perform both tasks within a unified process. A 
key implementation detail is the use of a stop-gradient 
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operation between the reconstruction and classification 
branches. This ensures the classification loss does not 
backpropagate through the decoder, keeping its training 
focused solely on reconstruction. Meanwhile, the encoder is 
shared across both branches, enabling learning of joint features 
useful for both semantic discrimination and visual 
reconstruction. This separation of gradient flow, along with 
shared encoder supervision, promotes stable, task-specific 
optimization and allows both branches to converge effectively 
while reinforcing the shared representations. 

IV. EXPERIMENTAL SETUP 

A. Dataset and Simulation of Complex Scenes 

The dataset used in this work originates from the 
Edinburgh Kitchen Utensil Database (EKUD), which consists 
of isolated images of kitchen objects with plain backgrounds. 
The original EKUD dataset, however, presents two major 
limitations which are class imbalance, where some classes have 
significantly fewer instances than others, and lack of scene 
complexity, with only single-object images and minimal 
background variation. To address these limitations and 
generate a more realistic, complex training dataset, we 
developed a Complex Scene Generator pipeline in Fig. 3. First, 
all object images from EKUD were preprocessed by removing 
their backgrounds and converting them to transparent PNGs. 
This enabled spatial transformations and compositing onto new 
backgrounds. 

 
Fig. 3. Complex scene generator. 

Each object was augmented using geometric 
transformations such as flipping, rotation, and translation to 
increase diversity. To simulate realistic environments, objects 
were overlaid on random background images of counters or 
tabletops, mimicking domestic kitchen scenes. To add 
complexity, 2–3 objects from different classes were randomly 
combined with spatial overlap, creating occlusions typical of 
real-world clutter. These composites then underwent image 
degradation, including resizing to 64×64 pixels, brightness 
reduction, Gaussian blurring, and added noise to mimic 
conditions like low light or motion blur. This process produced 
a balanced dataset of 6,000 images with equal class 
distribution. Each image contained one to three overlapping 
objects from different classes, introducing intra-class variation 
and inter-class spatial relationships vital for robust 
classification and reconstruction. Finally, the dataset was split 
into training and testing sets using an 80:20 ratio with stratified 
class distribution. 

B. Model Training 

The proposed dual-branch architecture was optimized using 
a two-phase training strategy to enhance image reconstruction 
and multi-class classification. To improve evaluation reliability 
and reduce overfitting, 5-fold StratifiedKFold cross-validation 
was applied to the training set, generating five training runs 
with preserved class distribution. In the first phase, the 
DenseNet encoder was frozen, allowing the decoder and 
classifier to learn task-specific features without altering 
backbone representations. A composite loss combined Mean 
Squared Error (MSE) for reconstruction and Sparse Categorical 
Crossentropy for classification, weighted 1.5 and 0.5, 
respectively. The model trained for 30 epochs using the Adam 
optimizer with a 0.001 learning rate. This phase aimed to 
stabilize reconstruction and extract semantically rich latent 
features. Structural Similarity Index (SSIM) assessed 
reconstruction quality, while standard metrics tracked 
classification accuracy. 

In the second phase, the full model was unfrozen for end-
to-end fine-tuning to enable joint optimization of low-level and 
high-level features across both branches. The learning rate was 
reduced to 0.0001 to support stable convergence and prevent 
disruption of previously learned features. This phase refined 
the encoder-decoder synergy and strengthened the alignment 
between reconstructed structures and class-relevant semantics. 
Following the completion of training with Asymmetric Loss, a 
parallel experiment was conducted using Binary Cross Entropy 
as the classification loss, while retaining the same optimizer 
settings, loss weights, and training schedule. This allowed a 
direct performance comparison under controlled conditions, 
highlighting the impact of loss design on multi-label 
recognition in cluttered scenes. 

Pseudocode 1: Dual-Phase Training 

Input: Noisy images Inoisy, (Clean Target Image Iclean, Clean labels 
Ltrue) 

Output: Trained model with decoder output D and classifier C 

1: Initialize encoder with DenseNet121 (frozen), decoder blocks, 
and classification branch 

2: Compile model with: 

       - Losses: MSE, ASL 

       - Loss weights: D: 1.5, C: 0.5} 

       - Optimizer: Adam (lr = 0.001) 

3: Train model for N₁ (30) epochs, freezing encoder 

4: Save best weights based on highest validation accuracy 

5: Unfreeze all layers of model 

6: Compile model with: 

       - Updated optimizer: Adam (lr = 0.0001) 

7: For epoch = N₁ to N₂(100) do 

8:     For each batch (Inoisy, Ltrue) in training set do 

9:          Compute decoder output Dpred and classifier output Cpred 

10:        Compute: 

                   - MSE loss between Dpred and Iclean 

                   - ASL loss between Cpred and Ltrue 
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                   - SSIM metric for Dpred 

11:        Backpropagate total loss = 1.5 × MSE + 0.5 × ASL 

12:        Update weights 

13:    Evaluate on validation set 

14:    Save model if validation accuracy improves 

15: End for 

The dual-phase training strategy in Pseudocode 1 reflects a 
common practice in transfer learning and multi-task deep 
learning. Freezing the pretrained encoder early allows the 
decoder and classifier to learn task-specific features without 
modifying core representations. Once stabilized, full fine-
tuning with a reduced learning rate improves alignment 
between reconstructed outputs and classification. Deepankan 
and Agarwal found that freezing the backbone initially and 
unfreezing later boosted accuracy and reduced overfitting on 
limited data [33]. Likewise, Taha et al. employed staged fine-
tuning with pretrained language models, showing that freezing 
phases improved learning stability and generalization in 
imbalanced tasks [34]. In remote sensing, Khotimah et al. used 
a dual-stage framework combining masked autoencoder 
pretraining and few-shot learning to enhance hyperspectral 
image classification with limited supervision  [35]. These 
studies support phased training as a reliable strategy for 
stabilizing early optimization and enhancing global feature 
refinement. 

C. Evaluation Metrics 

To assess model performance, five-fold Stratified K-Fold 
cross-validation was applied to the training data to ensure 
balanced class representation and generalizability. All metrics 
are reported as averages across the five folds. Since the model 
performs both tasks jointly, each output was evaluated using 
suitable criteria. For reconstruction, evaluation focused on 
perceptual similarity and signal fidelity between input and 
reconstructed images. Structural Similarity Index Measure 
(SSIM) was used to compare luminance, contrast, and 
structural details, as defined in Eq. (13), where 𝜇𝑥 and 𝜇𝑦 are 

the means, 𝜎𝑥  and 𝜎𝑦  their standard deviations, 𝜎𝑥𝑦  the cross-

covariance, and 𝐶1, 𝐶2 are constants for stability. Additionally, 
Peak Signal-to-Noise Ratio (PSNR) was used to measure 
reconstruction quality based on the ratio of maximum signal to 
noise power. As shown in Eq. (14), PSNR uses 𝑀𝐴𝑋𝐼 as the 
maximum pixel value and MSE as the mean squared error. 
Combined, these metrics evaluate perceptual quality and pixel-
level accuracy. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦)  =  
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)




𝑃𝑆𝑁𝑅 = 10 ∙ log10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
)



For the multi-label classification component, an adaptive 
top-T₁ binarization scheme was applied. Each output prediction 
vector was binarized by retaining the top-T₁ elements with the 
highest predicted probabilities, where T₁ corresponds to the 
number of positive ground truth labels in the input, as shown in 
Eq. (15). This approach ensured prediction-ground truth 

cardinality alignment, enabling fair comparisons across 
samples with varying label sparsity. After binarization, 
classical metrics such as precision, recall, and F1-score were 
computed using Eq. (16), Eq. (17), and Eq. (18), respectively. 
These metrics were evaluated under both macro and micro 
averaging. Macro-averaging calculates per-class metrics and 
averages them, while micro-averaging aggregates all class 
contributions before computing the metric, capturing overall 
performance. To assess label-wise correctness, we also 
reported standard accuracy Eq. (19) and Hamming Loss (20), 
which quantify the fraction of misclassified labels. 

𝑇1 =∥ 𝑦𝑡𝑟𝑢𝑒 ∥0 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃




𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁




𝐹1 =  
2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙




𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁




𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝐿𝑜𝑠𝑠 =  
1

𝑁 ⋅ 𝐶
∑ ∑ 1[𝑦𝑖𝑗 ≠ �̂�𝑖𝑗]

𝐶

𝑗=1

𝑁

𝑖=1




To assess ranking quality, which is important in multi-label 
tasks with overlapping label distributions, we computed the 
Area Under the Receiver Operating Characteristic Curve 
(ROC-AUC) and Mean Average Precision (mAP) in micro 
settings. These metrics, based on raw prediction scores without 
thresholding, evaluate the model’s ability to rank relevant 
labels above irrelevant ones, following best practices in recent 
multi-label research [36]. Macro metrics average performance 
across classes, while micro metrics aggregate true and false 
positives globally. A multi-label confusion matrix was 
generated using the MLCM (Multi-Label Confusion Matrix) 
library [37], enabling per-class analysis of co-occurrence 
between true and predicted labels. The matrix was visualized 
as a heatmap to expose common misclassifications and 
confusion patterns. MLCM offers sparse-aware, normalized 
outputs well suited for complex multi-label data, following 
protocols from [38]. Finally, a classification report summarized 
per-class precision, recall, and F1-scores for detailed 
performance interpretation. 

V. RESULTS AND DISCUSSION 

A. Multi-Labeled Classification 

The classification performance of the proposed model in 
Table I was compared with two baselines: a standard 
convolutional autoencoder and a standalone DenseNet-121 
classifier. All models used binary cross-entropy loss, while the 
proposed model was also evaluated with asymmetric loss to 
test sensitivity to label imbalance. Metrics included accuracy, 
Hamming Loss, macro-averaged ROC-AUC, and macro mean 
average precision (mAP). The autoencoder achieved 88.99% 
accuracy, 0.1101 Hamming Loss, 0.8803 ROC-AUC, and 
0.5278 mAP. The standalone DenseNet-121 reached 95.37% 
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accuracy, 0.0463 Hamming Loss, 0.9678 ROC-AUC, and 
0.8366 mAP. The proposed model, combining reconstruction 
and classification, reached 96.41% accuracy, 0.0359 Hamming 
Loss, 0.9805 ROC-AUC, and 0.8862 mAP. 

The highest performance was achieved when the proposed 
model was trained using the asymmetric loss function. 
Accuracy increased to 96.72%, and Hamming Loss decreased 
to 0.0328. The macro ROC-AUC reached 0.9809, while the 
macro mAP peaked at 0.8925. To further evaluate 
classification performance, Table II reports macro and micro 
averages of precision, recall, and F1-score. The standard 
convolutional autoencoder yielded a macro F1-score of 0.4296 
and a micro F1-score of 0.4496. The DenseNet-121 baseline 
achieved a macro F1-score of 0.7637 and a micro F1-score of 
0.7683. The proposed model with binary cross-entropy 
achieved a macro F1-score of 0.8196. When trained with 
asymmetric loss, the model attained a macro F1-score of 
0.8350 and a micro F1-score of 0. 8362. 

TABLE I.  EVALUATION OF CLASSIFICATION RESULT 

Model 

Classification 

Loss 

Function 

Evaluation 

Accuracy 
Hamming 

Loss 

Macro 

ROC-

AUC 

Macro 

mAP 

Standard 

Convolutional 
Autoencoder 

(CAE) 

BCE 88.99% 0.1101 0.8803 0.5278 

DenseNet-

121 (Alone) 
BCE 95.37% 0.0463 0.9678 0.8366 

Proposed 

Model 

BCE 96.41% 0.0359 0.9805 0.8862 

ASL 96.72% 0.0328 0.9811 0.8925 

TABLE II.  PERFORMANCE MATRICS OF CLASSIFICATION RESULT 

Model 

Performance Matrics 

Macro 

Precisio

n 

Macr

o 

Recall 

Macr

o F1 

Micro 

Precisio

n 

Micro 

Recall 

Micro 

F1 

Standard 

CAE 

BC

E 
0.5658 

0.449

6 

0.429

6 
0.4496 

0.449

6 

0.449

6 

DenseN

et -121 
(Alone) 

BC

E 
0.7798 

0.768

3 

0.763

7 
0.7683 

0.768

3 

0.768

3 

Propose

d Model 

BC

E 
0.8311 

0.820

4 

0.819

6 
0.8204 

0.820

4 

0.820

4 

AS

L 
0.8435 

0.836

2 

0.835

0 
0.8362 

0.836

2 

0.836

2 

The evaluation of classification performance using 
Asymmetric Loss (ASL) and Binary Cross-Entropy (BCE) was 
conducted with multi-label ROC-AUC metrics. Although the 
dataset was globally balanced across 20 categories, many 
binary labels had just 1 to 3 positives, causing localized 
imbalance. The micro-average AUC under ASL reached 
0.9811, slightly higher than 0.9802 with BCE. ASL produced 
higher per-class AUCs in 12 of 19 overlapping categories. For 
example, Potato Peeler, Serving Spoon, and Wooden Spoon 
had stronger AUCs under ASL. The ROC curves shown in Fig. 
4 and Fig. 5 further illustrate classifier performance across 
label distributions. Fig. 4, derived from the ASL-trained model, 

exhibits tighter and more consistent ROC curves, especially for 
low-prevalence labels. In contrast, Fig. 5, based on BCE 
training, presents slightly flatter and more variable ROC curves 
for low-activity classes such as Bread Knife (0.9720 ASL vs. 
0.9786 BCE) and Dinner Fork (0.9714 ASL vs. 0.9768 BCE). 
BCE outperformed ASL in a few high-density labels like 
Bottle Opener. 

 
Fig. 4. ROC-AUC Graph of proposed model that uses asymmetric loss 

function. 

 
Fig. 5. ROC-AUC Graph of proposed model that uses binary crossentropy 

loss function. 

B. Enhanced Image Reconstruction 

The reconstruction performance was evaluated using SSIM 
and PSNR, as detailed in Table III. Input images contained 
complex scenes with diverse backgrounds, object occlusion, 
and visual clutter. The decoder consistently generated clean 
object representations over simplified backgrounds, as also 
illustrated in Table IV. The baseline autoencoder, trained using 
mean squared error and binary cross-entropy loss, achieved a 
reconstruction score of 0.9175 SSIM and 6.0670 dB PSNR. 
The proposed dual-path model improved these scores to 0.9213 
SSIM and 7.0028 dB PSNR. When asymmetric loss was 
applied during classification, the model achieved 0.9372 SSIM 
and 7.1012 dB PSNR. The model’s ability to reconstruct clean 
outputs from noisy, cluttered scenes was enhanced by 
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integrating the Convolutional Block Attention Module 
(CBAM) into the decoder. DenseNet-121 was excluded, as it 
lacks a decoding pathway. 

TABLE III.  IMAGE RECONSTRUCTION PERFORMANCE EVALUATION 

Model Loss Function 
Evaluation 

SSIM PSNR (dB) 

Standard 

Convolutional 

Autoencoder (CAE) 
MSE+BCE 0.9175 6.0670 

Proposed Model 
MSE+BCE 0.9213 7.0028 

MSE+ASL 0.9372 7.1012 

TABLE IV.  IMAGE RECONSTRUCTION BASED ON LOSS FUNCTIONS 

Input MSE+BCE MSE+ASL Standard CAE 

    

 
Fig. 6. Confusion matrix from proposed model with loss function 

MSE+ASL. 

The confusion matrix in Fig. 6 shows the best classification 
results of the proposed model using Mean Squared Error 
(MSE) for reconstruction and Asymmetric Loss (ASL) for 
classification. Most object classes exhibit strong diagonal 
dominance, indicating high true positive rates, especially for 
Can Opener, Masher, Peeler, and Wooden Spoon, each 
surpassing 100 correct predictions. These results demonstrate 
the model’s robustness against complex scene conditions such 
as overlapping objects, image degradation, and varied 
backgrounds. Some confusion remains between visually or 
semantically similar classes, like Bread Knife misclassified as 
Can Opener or Peeler, and Serving Spoon overlapping with 
Soup Spoon, underscoring ongoing challenges with intra-class 

similarity in noisy settings. Overall, the matrix supports the 
effectiveness of the multi-task architecture, where combining 
image enhancement and classification via latent fusion 
improves discriminative performance. 

VI. DISCUSSIONS 

A. Interpretation of Multi-Label Classification Results 

The multi-label classification results highlight the clear 
advantage of integrating reconstruction and classification 
within a unified model, particularly when dealing with 
complex data distributions and label sparsity. While the 
standard convolutional autoencoder lacked explicit label 
supervision and performed poorly in classification, the 
standalone DenseNet-121 improved predictive quality through 
deeper, more expressive features. However, DenseNet-121 
operated in a single-task setup and did not benefit from 
auxiliary learning signals provided by image reconstruction. In 
contrast, the proposed dual-path architecture, which combines 
visual reconstruction with classification, consistently 
outperformed both baselines. This outcome suggests that 
reconstruction plays a crucial role in shaping more robust latent 
representations, which in turn support better discrimination, 
especially for less frequent object classes. 

An equally important factor in the model’s success is the 
choice of loss function. The shift from Binary Cross-Entropy to 
Asymmetric Loss introduced a more nuanced training 
dynamic, where the model learned to emphasize informative, 
minority class signals while reducing overfitting to dominant 
negatives. This led to higher macro-averaged metrics and 
stronger per-class AUCs for rare categories. ROC curve 
comparisons further confirmed this behavior, showing tighter, 
more stable curves under ASL for low-prevalence labels. 
Meanwhile, BCE slightly favored common classes due to its 
uniform treatment of all errors. Taken together, these 
observations demonstrate that the model’s strength arises not 
solely from architectural complexity but from a careful 
alignment between task formulation, loss function design, and 
the inherent demands of multi-label learning in imbalanced and 
cluttered visual contexts. 

B. Interpretation of Reconstruction Performance 

The reconstruction results demonstrate that the proposed 
dual-path architecture is not only effective for classification but 
also capable of producing structurally coherent and visually 
clean reconstructions in complex scenes. Compared to the 
baseline autoencoder, the improved SSIM and PSNR scores 
reflect the model’s strong capacity to abstract essential features 
while filtering out background noise and irrelevant details. The 
use of a shared encoder that supports both tasks allows the 
network to capture richer semantic representations, which 
benefit the decoder’s ability to reconstruct meaningful content 
even in visually degraded or cluttered environments. This 
integration shows how multi-task learning encourages a more 
organized and informative latent space that serves both 
enhancement and recognition. 

An unexpected but significant observation was the positive 
influence of asymmetric loss, applied only to the classification 
task, on the quality of reconstructed outputs. This implies that 
learning to better separate hard-to-classify examples also leads 
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to more structured and semantically aligned feature 
embeddings, indirectly supporting the reconstruction process. 
Additionally, the integration of CBAM into the decoder 
reinforced the model’s ability to selectively attend to important 
spatial and channel-specific regions. As a result, 
reconstructions were not only cleaner but also better aligned 
with the salient components of the original input. This 
attention-driven refinement is particularly beneficial in real-
world scenarios where accurate reconstruction supports 
interpretability and aids in downstream decision-making tasks. 

C. Bridging Gaps Through Multi-Task Representation 

The proposed model directly addresses several unresolved 
challenges in existing research by unifying classification and 
reconstruction within a shared encoder-decoder architecture. 
Most prior approaches treat enhancement and recognition as 
separate tasks, limiting their ability to generalize in cluttered or 
degraded scenes. In contrast, the proposed model leverages 
joint optimization to build more expressive and spatially 
consistent latent features. The reconstruction task helps 
maintain structure and denoise complex scenes, while the 
classification branch, guided by asymmetric loss, highlights 
category-specific regions, especially for rare labels. This dual 
influence supports a more semantically aware encoder that 
improves both predictive accuracy and visual clarity in 
reconstructed images. 

By integrating DenseNet-121 and attention modules like 
CBAM into a multi-task framework, the model closes a critical 
gap identified in previous studies where such components were 
rarely combined. Through shared learning, reconstruction helps 
the model preserve spatial structure and object layout, while 
classification encourages it to focus on distinctive features that 
separate one object class from another. Consistent performance 
gains across low-prevalence classes and complex visual 
backgrounds indicate that the model benefits from this 
interdependence. Rather than relying on handcrafted 
decoupling or task-specific heuristics, this approach uses end-
to-end learning to harness the complementary strengths of each 
task. As a result, the model becomes more robust, interpretable, 
and suitable for real-world deployment where visual data is 
often noisy, sparse, and heterogeneous. 

VII. CONCLUSION AND FUTURE WORK 

In this study, we proposed a multi-task deep learning 
architecture that integrates a convolutional autoencoder and 
DenseNet backbone with latent space fusion to tackle object 
classification challenges in complex scenes. These include 
cluttered backgrounds, overlapping objects, and degraded 
image quality due to noise, blur, or low brightness. The 
architecture was designed to jointly enhance visual clarity and 
extract discriminative features within a unified pipeline. 
Trained in two phases and evaluated using diverse 
reconstruction and classification metrics, the model 
outperformed baseline methods. The proposed architecture is 
particularly designed for image data containing overlapping 
objects and visual noise, where conventional classification 
models often underperform. Results showed notable 
improvements in accuracy, macro and micro F1-scores, and 
reduced class confusion, validating the benefit of integrated 

image enhancement and feature learning for robust multi-class 
object recognition in complex scenes. 

Despite improvements, some limitations remain. The model 
still exhibits misclassifications in scenes with visually similar 
or overlapping objects, for example Dessert Spoon versus 
Dinner Spoon, indicating difficulty in distinguishing fine-
grained object boundaries under occlusion. This reflects a 
broader challenge in handling complex scenes involving clutter 
and degraded visual quality, which the proposed architecture is 
specifically designed to address. In addition, the reliance on 
fully supervised learning requires both labeled class data and 
clean reconstruction targets, resources that may be limited or 
noisy in real-world deployments. To improve scalability, future 
work could investigate semi-supervised or weakly supervised 
strategies that reduce dependence on exhaustive annotation. 
Incorporating spatial-aware attention or feature 
disentanglement methods may further improve robustness in 
overlapping object conditions. Finally, expanding the dataset or 
extending the architecture to video inputs could strengthen 
recognition under temporal and contextual variation. 
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