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Abstract—Ensuring firefighter safety in high-risk 

environments requires strict adherence to Personal Protective 

Equipment (PPE) protocols. This study presents an automated 

real-time detection system for PPE using deep learning and 

computer vision techniques, aiming to improve PPE compliance 

and overall safety monitoring. The research employs advanced 

object detection models, specifically YOLOv10 and YOLOv11 

(You Only Look Once), to identify critical PPE components such 

as helmets, gloves, boots, and self-contained breathing apparatus 

(SCBA) units. A custom-annotated dataset of firefighter images 

was developed to train and evaluate both models using standard 

performance metrics such as precision, recall, mAP, F1-score, and 

Intersection over Union (IoU). The results show that YOLOv11 

outperformed YOLOv10, achieving a higher mAP@0.5 score of 

0.646 compared to 0.586, with improved detection of small and 

partially occluded objects and a reduction in training time by 

11%. YOLOv11 showed improved detection accuracy for small 

and partially blocked objects and reduced training time by 11%, 

while maintaining real-time efficiency. The system generates 

instant alerts when PPE is missing, minimizing reliance on manual 

monitoring and improving situational awareness in real-time. This 

research reinforces the role of AI in public safety and AI-powered 

automation in enhancing critical public safety operations. By 

integrating deep learning and computer vision into PPE 

monitoring systems, the study contributes to developing 

intelligent, responsive solutions aligned with modern safety 

standards. 

Keywords—Firefighter safety; Personal Protective Equipment 
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I. INTRODUCTION 

Firefighting is a highly demanding and dangerous profession 
where the safety of personnel relies heavily on their ability to 
wear all necessary personal protective equipment (PPE) 
correctly. Essential equipment such as helmets, gloves, fire-
resistant clothing, boots, and self-contained breathing apparatus 
(SCBA) shields firefighters from extreme heat, toxic gases, 
falling debris, and hazardous environments. Ensuring that this 
gear is worn properly is not only a matter of regulation but also 
a life-saving necessity. 

However, during emergency responses, ensuring complete 
PPE compliance becomes difficult due to high-pressure 
conditions, time constraints, and human error. Manual checks 
are often rushed or incomplete, exposing firefighters to 
avoidable risks. Although safety standards exist in Saudi Arabia 
under the General Directorate of Civil Defense [1], ensuring 

real-time PPE compliance remains a challenge—especially 
before deployment into active zones. 

Recent advances in artificial intelligence and computer 
vision have created new opportunities for enhancing safety 
protocols in the firefighting domain. Deep learning models—
particularly object detection algorithms like YOLO—have 
shown impressive real-time performance in detecting and 
classifying objects across various sectors, including medical 
applications [2], construction [3], [4], and public safety systems 
[5]. These technologies offer a promising solution for 
automatically verifying the presence of PPE using image or 
video input prior to emergency deployment. This approach 
reduces reliance on manual inspection, increases accuracy, and 
enables faster decision-making in critical moments. 

Despite existing research in PPE detection across various 
fields such as construction and industry, a significant research 
gap remains in applying AI-based systems to the firefighting 
sector—especially in Saudi Arabia. Most current solutions are 
limited to laboratory settings or narrow use cases, often lacking 
generalizability to real-world firefighting scenarios or focusing 
on only certain PPE components. 

To address this gap, this paper presents an AI-driven solution 
specifically designed for firefighting services in Saudi Arabia. 
Leveraging YOLOv10 and YOLOv11 models, the system 
detects missing PPE components from real-time visual inputs, 
thereby enhancing emergency preparedness and reducing the 
risk of injury. This work offers a novel application of deep 
learning in the public safety domain by providing a practical, 
real-time solution for monitoring PPE compliance. 

The remainder of this paper is organized as follows: Section 
II reviews recent developments in PPE detection using deep 
learning. Section III describes the data collection process and 
research methodology. Section IV presents the experimental 
results and performance evaluation. Section V provides a 
discussion of the findings, including a comparison with other 
models across various domains. Finally, Section VI concludes 
the study and outlines directions for future work. 

II. LITERATURE REVIEW 

Deep learning has demonstrated strong potential for 
automating PPE compliance monitoring in high-risk 
environments such as firefighting, construction, and industrial 
operations. These techniques aim to minimize human error by 
enabling real-time visual detection of safety equipment. In the 
firefighting domain, Sesis et al. [6] applied YOLOv5 with a 
custom, domain-specific dataset to detect four key PPE 
components including helmets, gloves, masks, and insulated 
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protective clothing. By using transfer learning, they achieved 
high detection accuracy, highlighting the model's suitability for 
emergency response scenarios. 

Delhi et al. [3] applied YOLOv3 to construction sites, 
achieving 96% precision and recall in detecting hard hats and 
jackets, demonstrating its effectiveness in active work 
environments. Similarly, Isailovic et al. [7] benchmarked 
YOLOv5, MobileNetV2-SSD, and Faster R-CNN for detecting 
head-mounted PPE using a diverse dataset, where YOLOv5 
achieved the best results. Wang et al. [4] introduced a real-world 
construction site dataset (CHV) and compared various YOLO 
models, showing YOLOv5x had the highest mAP (86.55%), 
while YOLOv5s demonstrated the fastest inference speed—
highlighting the trade-off between accuracy and efficiency. In 

industrial settings, Chen and Demachi [5] combined OpenPose 
with YOLOv3 to monitor PPE at the Fukushima nuclear station, 
achieving high precision and recall for helmets and masks. In 
healthcare, Loey et al. [2] used YOLOv2 with ResNet-50 to 
detect medical masks, further illustrating the role of deep 
learning in public safety applications. 

While previous studies demonstrate the potential of deep 
learning in PPE detection, they are largely confined to controlled 
or domain-specific environments. Therefore, this study seeks to 
extend his body of work and build upon these foundations by 
developing a real-time, AI-powered PPE compliance 
monitoring system specifically tailored to the operational needs 
of firefighters in Saudi Arabia. Comparison of studies is given 
in Table I.

TABLE I.  COMPARISON OF STUDIES ON PPE DETECTION USING DEEP LEARNING MODELS 

Study Research Title Focus Algorithm Performance Dataset size and type 

Sesis et al. [6] 
AI-based Firefighting PPE 

Detection using YOLOv5 

Detection of four 

Firefighting PPE 

(helmet, gloves, mask, 
and insulated protective 

clothing) 

YOLOv5 with 

transfer learning 

mAP@0.5 = 0.834, 

Precision = 0.914, 
Recall = 0.735 

Custom dataset (342 

samples), tailored to 
firefighting scenarios. 

Delhi et al. [3] 

Detection of PPE 

Compliance on 
Construction Sites Using 

YOLOv3 

Construction site PPE 
(hard hats, jackets) 

YOLOv3, transfer 
learning 

Precision and recall: 
96% 

Self-collected dataset from 
video feeds, 2,509 images 

Isailovic et al. [7] 

The Compliance of Head-
mounted Industrial PPE 

using Deep Learning 

Object Detectors 

Industrial PPE, head-

mounted 

YOLOv5, 

MobileNetV2-SSD, 
Faster R-CNN 

YOLOv5 achieved 

best precision (0.920), 
recall (0.611) 

Public dataset (Roboflow, 

Pictor PPE), 12,682 
images 

Wang et al. [4] 

Fast PPE Detection for Real 

Construction Sites Using 
Deep Learning Approaches 

Construction site PPE 

(helmets, vests) 

YOLOv5x (best 
mAP), YOLOv5s 

(fastest speed, 52 

FPS) 

YOLOv5x mAP: 

86.55%, faster with  
YOLOv5s 

Public dataset (CHV), 

1,330 images, real 
construction site 

 

III. DATA COLLECTION AND RESEARCH METHOD 

A. Dataset Collection 

High-quality image data is essential for effectively training 
deep learning models in firefighter PPE detection. Since no 
publicly available datasets met the specific requirements for 
detecting firefighter PPE in operational scenarios, we 
constructed a custom dataset tailored to this task. The initial 
internal dataset we collected exhibited limited variability and 
contained redundant samples, although the image clarity and 
framing were sufficient. To enhance diversity and address these 
limitations, we manually collected an additional 574 images 
from the official social media channels of the Saudi Civil 
Defense and other publicly available resources. All selected 
images adhered to the standards defined in the official firefighter 
PPE guidelines [1], ensuring accurate representation of required 
equipment. 

The final dataset captures firefighters from varied angles, 
distances, and operational contexts to provide a broad visual 
representation of real-world scenarios. Further expansion of the 
dataset is planned to improve representation of diverse 
environmental conditions—particularly in low-light, crowded, 

or partially obstructed situations—to enhance the model’s 
generalizability and robustness in real-world deployments. 

B. Dataset Annotation 

To enable accurate detection of PPE, all images in the 
constructed dataset were manually annotated by our team using 
bounding boxes to identify five critical equipment components: 
boots, fire suit, gloves, helmet, and SCBA. We used the 
Roboflow platform [8] to facilitate efficient and consistent 
annotation. Each bounding box precisely localized the 
corresponding PPE item within the image, allowing the model 
to recognize multiple equipment types simultaneously. Many 
images featured multiple equipment components, enabling the 
model to distinguish between them effectively. This annotated 
dataset provides a reliable foundation for training and evaluating 
detection models, ultimately supporting improved firefighter 
safety and system performance. 

Representative annotation scenarios include a fully equipped 
firefighter (Fig. 1), absence of the SCBA (Fig. 2), and absence 
of both the SCBA and gloves (Fig. 3). These examples 
demonstrate the system’s capacity to identify compliance gaps 
prior to deployment, thereby reducing risk and enhancing real-
time situational awareness. 
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Fig. 1. A firefighter fully equipped with all necessary gear. 

 
Fig. 2. A case of the absence of the SCBA. 

 

Fig. 3. A case of the absence of the SCBA and gloves. 

C. Dataset Augmentation 

In object detection tasks, dataset quality and class balance 
are critical to model performance. Class imbalance—where 
certain PPE components are underrepresented—can lead to 
biased predictions. To address this, we employed data 
augmentation techniques to expand the dataset and mitigate 
class imbalance. We experimented with both generic and class-
specific augmentation strategies to improve class distribution 
and data diversity. Despite these efforts, achieving perfect 
balance was challenging due to the inherent nature of the 
collected data. Class distributions for each dataset split are 
summarized below: 

 Training Split: 465 images, 2,124 total objects 

o Boots: 314 (14.8%) 

o Fire Suit: 415 (19.5%) 

o Gloves: 283 (13.3%) 

o Helmet: 700 (33.0%) 

o SCBA: 412 (19.4%) 

 Validation Split: 53 images, 250 total objects 

o Boots: 39 (15.6%) 

o Fire Suit: 48 (19.2%) 

o Gloves: 34 (13.6%) 

o Helmet: 79 (31.6%) 

o SCBA: 50 (20.0%) 

 Test Split: 56 images, 283 total objects 

o Boots: 37 (13.1%) 

o Fire Suit: 59 (20.8%) 

o Gloves: 34 (12.0%) 

o Helmet: 91 (32.2%) 

o SCBA: 62 (21.9%) 

Our augmentation pipeline improved data balance and 

diversity while maintaining high-quality, realistic examples. 

This enhanced the model’s ability to generalize and detect all 

PPE components reliably across different scenarios. 

D. YOLO Algorithms 

Deep learning approaches in computer vision have yielded 
highly promising results across various applications. Among 
these, the YOLO algorithm has emerged as one of the most 
efficient and accurate methods for real-time object detection 
tasks, particularly in critical environments such as emergency 
response and industrial safety scenarios. YOLO operates by 
dividing an input image into a grid and performing detection in 
a single forward pass through a neural network. This design 
enables it to balance speed and accuracy, making it well-suited 
for real-time PPE inspection tasks. 
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YOLO has undergone several iterations over the years, with 
each version introducing architectural improvements that 
enhance performance. This study focuses on two of the latest 
versions—YOLOv10 and YOLOv11—selected for their 
advanced detection performance, computational efficiency, and 
applicability to safety-critical tasks [9], [10]. YOLOv10 is a 
recent advancement in the YOLO series, engineered to deliver 
high-speed detection with strong accuracy. The model is 
structured into three major components: a backbone network for 
feature extraction, a neck for generating multi-scale feature 
maps, and a detection head for object classification and 
localization. The architecture includes multiple variants 
designed to provide a flexible trade-off between inference speed 
and detection precision. In this research, YOLOv10 was adopted 
for its capability to reliably detect firefighting PPE—including 
helmets, gloves, boots, protective suits, and SCBA devices—in 
real-time. Additionally, transfer learning and data augmentation 
techniques were employed during training to improve 
robustness across various environmental conditions [9]. 

YOLOv11 represents the latest iteration in the YOLO 
family, incorporating state-of-the-art enhancements in feature 
extraction, model optimization, and real-time inference. Like its 
predecessor, YOLOv11 features a backbone, neck, and 
detection head; however, it introduces a more refined 
architecture with improved module design to achieve higher 
mAP while maintaining low latency. The model was selected in 
this study for its superior balance of accuracy and computational 
efficiency. YOLOv11 proved particularly effective in detecting 
multiple PPE components across a range of visual conditions, 
including occlusion, variable lighting, and different camera 
angles. These capabilities ensure reliable performance in 
operational environments where rapid and precise safety 
inspections are essential [10]. 

E. Training Methodology 

The YOLOv10 and YOLOv11 models were trained using a 
custom pipeline designed to address class imbalance and 
enhance detection performance. Class weights were 
incorporated into the training configuration to ensure 
underrepresented categories like boots and gloves received 
higher attention. The training utilized the AdamW optimizer 
with a weight decay of 0.0005 and was conducted over 200 
epochs with a batch size of 16. 

A Cosine Learning Rate Scheduler was employed, starting 
at 0.001 and decaying to 0.000001, with a 15-epoch warmup 
phase. Data augmentation techniques such as Mosaic, Mixup, 
Copy-Paste, and geometric/colour transformations were applied 
to increase data diversity. Additionally, dropout (0.25) was used 
for regularization. To enhance accuracy and efficiency, 
strategies like multi-scale training, test-time augmentation 
(TTA), automatic mixed precision (AMP), and half-precision 
training were integrated. Early stopping was triggered after 150 
epochs without validation improvement, and all results were 
logged for evaluation. 

F. Training Environment 

Training deep learning models for object detection requires 
substantial computational resources, particularly for tasks 
involving large datasets and complex architectures like 
YOLOv10 and YOLOv11. In this study, model training was 

initially conducted using Google Colab’s free-tier environment, 
which offers access to an NVIDIA T4 GPU with 12 GB of 
VRAM. While suitable for early experimentation, the limited 
computational capacity resulted in slower training cycles. To 
overcome these limitations, the training environment was 
upgraded to Google Colab Pro, which provides access to more 
advanced GPUs such as the NVIDIA V100 and A100. This 
upgrade significantly improved the training process, enabling 
faster iterations, support for larger batch sizes, and greater 
stability during extended sessions. The combination of free and 
Pro-tier resources allowed for efficient and cost-effective 
training, supporting iterative development and comprehensive 
model evaluation. 

G. Evaluation Metrics 

To accurately evaluate the performance of the proposed PPE 
detection models for firefighters, a set of fundamental object 
detection metrics was utilized. These metrics were chosen to 
reflect the model's effectiveness in identifying and classifying 
multiple PPE components, including small and partially 
obscured items such as gloves or mask straps, which are critical 
in firefighting environments. The core evaluation indicators 
include Average Precision (AP) and mAP. These values are 
derived by comparing the model's predictions against the actual 
annotated labels in the dataset. AP is calculated as the area under 
the precision-recall (PR) curve for a given class, whereas mAP 
represents the average of AP across all detected PPE categories, 
as shown in Eq. (1) and Eq. (2). 

𝐴𝑃 =  ∫ 𝑝(𝑟) 𝑑𝑟
1

0
                                (1) 

𝑚𝐴𝑃 =  
1

𝑁
 ∑ 𝐴𝑃𝑖

𝑁
𝑖=1                            (2) 

Using the prediction results, three additional classification 
metrics were calculated: 

 Precision, which quantifies the ratio of correctly 
predicted positive cases to the total predicted positives: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                          (3) 

 Recall, which measures the ratio of correctly predicted 
positives to all actual positives: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                            (4) 

 F1-Score, the harmonic mean of precision and recall: 

𝐹1 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
                  (5) 

These metrics—Eq. (3), Eq. (4), and Eq. (5)—are critical in 
understanding the trade-off between missing detections and 
generating false alarms, particularly in safety-critical scenarios 
such as firefighting. Furthermore, IoU was used to evaluate the 
spatial accuracy of predicted bounding boxes. IoU calculates the 
overlap between the predicted and ground-truth boxes relative 
to their union, as expressed in Eq. (6): 

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
                     (6) 

This metric is essential for assessing how well the model 
localizes PPE elements in complex visual scenes. 
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By leveraging this set of metrics, the evaluation framework 
ensures a comprehensive, balanced, and realistic analysis of 
model performance under the challenges posed by real-world 
firefighting environments. 

IV. RESULTS  

A. Mean Average Precision and Model Size 

YOLOv11 demonstrated a notable improvement in mAP 
compared to YOLOv10, making it more effective for detecting 
firefighter PPE in real-world conditions. Specifically, 
YOLOv11 achieved an mAP@0.5 of 64.6%, outperforming 
YOLOv10, which reached 58.6%, as shown in Fig. 4 and Fig. 5. 
This indicates YOLOv11's stronger ability to accurately detect 
PPE elements such as helmets, gloves, and SCBA gear. 
Additionally, despite YOLOv11 having a slightly larger 
architecture with 20 million parameters compared to 
YOLOv10’s 16.5 million, its efficiency in detection accuracy 
justifies the additional model size, especially for safety-critical 
applications. YOLOv11 maintained a practical balance between 
model complexity and performance, which positions it as a more 
reliable choice for deployment in environments requiring high 
detection accuracy and consistency. 

 
Fig. 4. YOLOv10: mAP@0.5 and mAP@0.5:0.95 over 200 training epochs. 

 
Fig. 5. YOLOv11: mAP@0.5 and mAP@0.5:0.95 over 200 training epochs. 

Furthermore, YOLOv11 showed consistent improvement in 
detecting underrepresented PPE classes, particularly gloves and 
boots. This can be attributed to the refined data augmentation 
strategies and class-weighted training techniques, which 
addressed the earlier dataset imbalance. The better mAP results 
across all categories affirm the model's enhanced generalization 
ability in real-world, unstructured firefighting scenarios. 
YOLOv11 also demonstrated greater resilience under 
challenging visual conditions, such as varying lighting, partial 
occlusions, and dynamic backgrounds. Its performance 
remained stable in scenarios with overlapping gear or 
unconventional viewing angles, where YOLOv10 occasionally 
faltered. The enhanced feature extraction pipeline in YOLOv11 
likely contributed to this robustness. 

In practical deployment simulations, YOLOv11 also 
exhibited lower false negative rates, particularly in safety-
critical gear detection. This reliability is crucial when 
monitoring firefighter readiness, as missing even one critical 
item (e.g., SCBA) can be life-threatening. The trade-off in 
model size for higher accuracy is justified in operational settings 
where real-time decisions depend on detection outcomes. Lastly, 
the precision-recall tradeoff and confidence calibration of 
YOLOv11 indicate that it is better suited for integration into 
alert systems. It provides more consistent outputs that can be 
used as triggers for decision-support tools or automated 
gatekeeping mechanisms in firefighting stations. 

Collectively, these results underline that while both models 
are viable, YOLOv11 offers tangible advantages that support its 
deployment in real-world safety monitoring systems. 

B. F1-Confidence, Precision-Confidence, PR Curve, and 

Recall-Confidence 

These curves provide deeper insight into the reliability of 
both models across different confidence thresholds. 

1) F1-Confidence: YOLOv11 consistently maintains a 

higher F1-score across all confidence levels. At the default 

threshold (0.25), it reached 0.74, compared to YOLOv10’s 

0.69. This indicates a better balance between precision and 

recall, especially in more uncertain detections. 

2) Precision-Confidence: YOLOv11 sustains over 80\% 

precision until the threshold drops below 0.18, while 

YOLOv10’s precision begins to degrade earlier, around 0.24. 

This shows YOLOv11’s robustness in maintaining accuracy 

even with lower confidence predictions. 

3) PR Curve: YOLOv11 achieved a noticeably higher area 

under the curve (AUC = 0.59) compared to YOLOv10 (AUC = 

0.51). It maintains higher precision across a broader range of 

recall values, indicating more stable performance as the model 

tries to capture all ground truth objects, as shown in Fig. 6 and 

Fig. 7. 

4) Recall-Confidence: YOLOv11 demonstrated higher 

recall values across confidence thresholds, especially for 

harder-to-detect classes like gloves. It achieved 0.37 recall for 

gloves at the 0.25 threshold, compared to YOLOv10’s 0.29. 
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Fig. 6. YOLOv10 Precision and Recall by class. 

 
Fig. 7. YOLOv11 Precision and Recall by class. 

C. IoU Performance Analysis 

IoU was used to assess the spatial alignment between 
predicted and ground-truth bounding boxes across different PPE 
classes. The following breakdown highlights the performance of 

YOLOv10 and YOLOv11 in detecting key equipment 
components: 

1) YOLOv10 IoU Performance: 

a) Helmet: YOLOv10 achieved a mean IoU of 0.681, 

with 88.5% of predictions exceeding the 0.5 IoU threshold. This 

reflects reliable bounding box alignment for helmets, which are 

relatively easier to detect due to their distinct features. 

b) Gloves: The mean IoU for gloves was 0.220, with only 

28.1% of predictions above the 0.5 threshold. This highlights 

the model’s struggle with accurately localizing smaller and less 

distinct objects like gloves. 

As shown in Fig. 8, YOLOv10 demonstrated solid 
performance for prominent gear like helmets but had significant 
difficulty with smaller items such as gloves. 

2) YOLOv11 IoU Performance: 

a) Helmet: YOLOv11 recorded a mean IoU of 0.700, 

with 90% of predictions exceeding the 0.5 IoU threshold. This 

demonstrates improved spatial accuracy for helmet detection 

compared to YOLOv10. 

b) Gloves: The mean IoU for gloves improved to 0.350, 

with better alignment accuracy. This reflects YOLOv11’s 

enhanced capability in detecting and localizing smaller objects 

more precisely than YOLOv10. 

Fig. 9 illustrates the improved bounding box accuracy of 
YOLOv11, particularly for challenging classes such as gloves, 
showing clear gains over its predecessor. 

D. Speed 

Speed is critical in real-time PPE detection systems for 
firefighting, where decisions must be made instantaneously. 
While YOLOv11 offers better accuracy, it operates slightly 
slower than YOLOv10, achieving 0.04 seconds per frame 
compared to YOLOv10’s 0.033 seconds. This minor speed 
trade-off is acceptable given the improved detection precision 
and recall, which outweighs the marginal delay in processing. 

 
Fig. 8. IoU metrics for YOLOv10. 
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Fig. 9. IoU Metrics for YOLOv11.

V. DISCUSSION 

The results confirm that YOLOv11 significantly 
outperforms YOLOv10 in most evaluation metrics relevant to 
real-time PPE detection. This performance boost is particularly 
critical when working with safety-critical gear such as SCBA 
and gloves, which are harder to detect due to occlusion or small 
size. The increase in mAP, F1-score, and IoU, especially for 
underrepresented classes, reflects the effectiveness of class-
weighted training strategies and augmentation pipelines tailored 
to firefighter environments. YOLOv11 also demonstrated 
greater consistency in handling complex backgrounds and 
overlapping equipment, suggesting its stronger generalization to 
real-world firefighting scenarios. 

The detailed analysis reveals that while both models provide 
valuable performance, YOLOv11’s architectural enhancements 
lead to improved detection of small and occluded PPE items. 
The incorporation of advanced augmentation and training 
strategies further boosted model robustness. However, 
increasing model complexity slightly impacts inference speed, a 
common trade-off in deep learning applications. As shown in 
Fig. 10 and Fig. 11, YOLOv11 was able to correctly recognize 
all critical equipment components, including the fire suit, 
gloves, boots, and helmet—demonstrating its superior reliability 
in safety-critical scenarios. In contrast, YOLOv10 failed to 
detect the fire suit, which is crucial for ensuring firefighter 
readiness and personal safety in hazardous conditions. 

Moreover, the visual results affirm that YOLOv11 can 
identify all PPE components with high accuracy, making it 
suitable for integration into real-time alert systems or automated 
PPE compliance gates. This could reduce manual inspection 
errors and accelerate firefighter readiness verification. 

Despite its slightly lower speed, YOLOv11’s advantages in 
accuracy, localization, and class coverage outweigh the 
performance trade-off, making it more practical for deployment 
in Saudi Arabia’s civil defense operations, where precision and 
speed are both mission-critical. 

The proposed system, based on YOLOv10 and YOLOv11, 
is specifically optimized for image-based data in the visual 
modality, particularly RGB images captured in real-world 
firefighting environments. The models are best suited for high-
resolution still images or video frames where PPE components 
are visible under variable lighting, motion blur, partial 
occlusions, or cluttered backgrounds. Due to their architecture, 
YOLO models excel in object detection tasks on spatial data 
with well-defined bounding box annotations. The system 
performs reliably on moderate-sized datasets (e.g., ~600–1,000 
images), particularly when enhanced through data augmentation 
to account for class imbalance and variability in pose, angle, and 
context. 

 
Fig. 10. YOLOv10 detection results: The fire suit was missed in the predictions. 
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Fig. 11. YOLOv11 detection results: All PPE components including the fire suit were correctly detected. 

However, the models are not directly applicable to non-
visual modalities such as audio or text, and their performance 
may degrade with extremely low-resolution images, thermal 
images, or infrared unless retrained on domain-specific datasets. 
Additionally, performance is affected by data distribution. The 
model achieves its best results when trained on datasets that 
reflect the same environmental and cultural conditions (e.g., 
firefighter uniforms and gear used in Saudi Arabia) as the 
deployment context. This emphasizes the importance of 
domain-specific data for generalization and accuracy. 

This study offers several key advantages over existing deep 
learning-based PPE detection models across construction, 
industrial, and healthcare domains: 

1) Domain-specific adaptation to firefighting scenarios: 

Unlike previous research primarily focused on industrial or 

construction environments [3][4][7], the current work is 

specifically tailored to the unique challenges of firefighting, 

including variable lighting, smoke, occlusions, and high-stress 

environments. The model was trained on a custom dataset 

collected from real-world footage of Saudi Civil Defense 

operations, offering higher ecological validity than  laboratory-

based datasets. 

2) Comprehensive multi-class PPE detection: Prior studies 

often target a limited subset of PPE items—typically one to four 

items, such as helmets or vests [4], [5], [6]. In contrast, our 

model simultaneously detects five critical PPE components: 

helmet, fire suit, gloves, boots, and SCBA. This multi-label 

detection approach ensures full compliance verification and 

strengthens overall situationalreadiness. 

3) Improved detection for small and occluded items: 

YOLOv11 achieved significantly higher mAP, F1-score, and 

IoU, especially for underrepresented and smaller items like 

gloves and SCBA units, compared to YOLOv10 and prior 

benchmarks such as MobileNetV2-SSD and Faster R-CNN [7]. 

Our class-weighted training and targeted augmentation pipeline 

led to a 59% improvement in glove recall over YOLOv10. 

4) Real-time monitoring capability with alert integration: 

While existing models may offer high accuracy, many lack real-

time alerting or decision-support integration. Our proposed 

solution maintains an inference speed under 0.04 seconds per 

frame, enabling real-time detection and compatibility with 

automated gatekeeping or alarm systems at fire stations. 

5) Environmental hazard awareness and long-term safety 

enhancements: Beyond immediate PPE detection, this study 

acknowledges long-term firefighter health risks, including 

exposure to harmful substances like PFAS (per- and 

polyfluoroalkyl substances), which are associated with cancer 

and immune system disorders. Our future vision includes 

integrating environmental hazard awareness to create a more 

holistic safety system that enhances both short-term operations 

and long-term health outcomes. 

6) First deployment-ready system for Saudi civil defense: 

This work constitutes the first firefighter-specific PPE 

compliance monitoring system designed for potential 

deployment within Saudi Arabia. It establishes a foundation for 

future research and development in regional safety automation 

and may serve as a replicable framework for other high-risk 

sectors. 

VI. CONCLUSION AND FUTURE WORK 

This study represents a notable advancement in enhancing 
firefighter safety by developing an AI-based system for PPE 
compliance. As the first implementation of its kind in Saudi 
Arabia, the proposed model integrates deep learning techniques 
with real-time computer vision to detect missing or improperly 
worn protective gear with high precision. This capability enables 
timely intervention in hazardous environments, potentially 
preventing serious injuries or fatalities. 

By leveraging advanced YOLO architectures trained on a 
domain-specific dataset, the system demonstrates robust 
performance and reliability, setting a new benchmark for 
automated safety enforcement in high-risk operational contexts. 
The findings underscore the feasibility and effectiveness of 
applying artificial intelligence to critical occupational safety 
challenges, particularly in sectors where real-time monitoring 
and rapid decision-making are essential. 

Beyond its technical contributions, this research illustrates 
the broader implications of AI-driven automation in promoting 
safer work environments. It highlights how intelligent systems 
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can augment human oversight and institutional safety protocols, 
contributing to a more proactive and data-informed approach to 
risk management. As such, the study provides a foundation for 
future exploration of similar technologies across other high-risk 
domains, including industrial operations, emergency response, 
and construction, where adherence to safety standards is equally 
vital. 

 Future enhancements will focus on expanding dataset 
diversity through advanced augmentation methods and 
synthetic data generation, particularly to improve 
detection of underrepresented PPE classes such as gloves 
and boots. Model performance can be further optimized 
by leveraging transfer learning with pre-trained networks 
and incorporating adaptive training techniques for 
advanced detection use cases. Additionally, optimizing 
the system for deployment on edge devices by adopting 
lightweight architectures will facilitate broader 
scalability and real-time performance in operational 
settings. 

 To extend system functionality, an automated timing 
feature will be implemented to monitor the duration 
firefighters take to fully equip themselves, providing 
valuable insights into response readiness. Finally, the 
system will be integrated with safety management 
platforms and wearable technologies to support 
comprehensive, real-time monitoring and decision-
making in critical firefighting environments. 
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