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Abstract—With the continued growth of the electric vehicle 

(EV) fleet, the issue of cross-regional coordinated scheduling for 

charging infrastructure has become increasingly prominent, 

facing challenges such as uneven resource allocation and delayed 

responses. Considering the complex coupling between charging 

stations and the power system in a smart grid environment, this 

paper proposes a distributed scheduling strategy based on multi-

agent deep reinforcement learning (MADRL) to achieve efficient, 

coordinated management of charging infrastructure and power 

resources. The proposed approach constructs a hierarchical 

decision-making architecture to jointly optimize intra-regional 

resource allocation and cross-regional power support, modeling 

the scheduling process as a Markov Decision Process (MDP) and 

treating regional charging stations, power nodes, and material 

units as independent agents. Through the multi-agent deep 

reinforcement learning mechanism, each agent autonomously 

learns optimal scheduling policies in the presence of uncertain 

demand and supply fluctuations, thus enabling rapid response 

and enhancing system robustness. Simulation results 

demonstrate that the proposed method effectively reduces 

scheduling costs and improves resource utilization and service 

quality. This study provides both theoretical support and 

practical pathways for building intelligent, efficient, and 

sustainable charging infrastructure. 
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I. INTRODUCTION 

Driven by the global transition in energy structures and the 
rise of sustainable transportation strategies, the adoption of 
electric vehicles (EVs) is accelerating rapidly, making them a 
cornerstone of future low-carbon mobility. This trend places 
increasing demands on the large-scale deployment and 
intelligent management of charging infrastructure, especially 
charging stations. As the terminal nodes of the power grid, 
charging stations not only provide essential energy 
replenishment for EVs but also significantly influence grid 
security, traffic efficiency, and user experience through their 
operational efficiency, scheduling strategies, and resource 
allocation. 

With the ongoing growth in the number of EVs, charging 
demands have become highly unbalanced across regions and 
exhibit strong spatiotemporal fluctuations. On one hand, 
certain areas have an abundance of charging stations but suffer 

from low utilization rates; on the other, core urban zones face 
resource shortages, severe queuing, and service bottlenecks due 
to concentrated demand. Furthermore, the operation of 
charging station networks is affected by multiple factors, 
including power supply capacity, maintenance resources, and 
traffic conditions, making cross-regional resource coordination 
and scheduling a pressing challenge. 

Existing research has made significant progress in 
optimizing charging station scheduling, covering aspects such 
as queue management, load balancing, dynamic pricing, and 
energy storage integration. However, most approaches are still 
based on single-region, centralized architectures, lacking 
comprehensive consideration for cross-regional resource flows, 
heterogeneous system coordination, and dynamic uncertainties. 
Particularly in multi-region systems, the scheduling problem 
becomes highly complex and strongly coupled. Traditional 
optimization algorithms struggle to address challenges such as 
real-time requirements, large state spaces, and non-convex 
objectives, thus limiting their effectiveness in large-scale, 
practical deployments. 

To address these challenges, this paper proposes a cross-
regional coordinated charging station scheduling method based 
on multi-agent deep reinforcement learning (MADRL). In the 
proposed approach, each node in a multi-region charging 
station network is modeled as an autonomous agent. Through 
environmental perception and policy learning, agents achieve 
both local resource optimization and cross-regional 
coordination. Specifically, the scheduling problem is 
formulated as a Markov Decision Process (MDP), with state 
variables including charging demand, power supply, equipment 
status, and traffic accessibility. Each agent makes decisions 
independently based on local information and optimizes its 
policy collaboratively through a shared reward mechanism. 
This approach offers strosng generalization and adaptability, 
effectively coping with dynamic changes in charging demand 
and power supply, and overcomes the performance bottlenecks 
of traditional methods when faced with uncertainty and high-
dimensional state spaces. 

The main objective of this study is to build a distributed, 
intelligent, self-learning, and collaboratively optimized 
framework for cross-regional charging station resource 
scheduling. The aim is to maximize resource utilization, 
minimize operational costs, and optimize service 
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responsiveness. Compared with existing methods, the main 
innovations of this work include: 

1) Proposing a coordinated scheduling modeling 

framework for cross-regional, multi-node, and multi-resource-

type systems, adaptable to highly complex operational 

environments. 

2) Introducing a multi-agent deep reinforcement learning 

mechanism to enable information exchange and policy 

collaboration among regional agents; 

3) Designing a learning structure based on state sharing 

and reward feedback to enhance responsiveness to charging 

demand uncertainties and power resource fluctuations; 

4) Validating the proposed method through simulation 

experiments, demonstrating significant advantages in 

scheduling efficiency, resource utilization, and system 

robustness. 

This research is of both theoretical and practical 
significance. On one hand, it offers a novel modeling and 
solution paradigm for charging infrastructure scheduling, 
broadening the application scope of multi-agent systems in the 
integration of transportation and energy. On the other hand, it 
provides effective technical support for regional resource 
coordination, optimized energy allocation, and improved user 
charging experience—contributing to the development of smart 
cities, green transportation, and regional energy collaboration. 

The remainder of this paper is organized as follows: 
Section II reviews the progress in charging station scheduling 
and the application of multi-agent reinforcement learning in 
energy management; Section III presents the proposed system 
modeling methodology and the multi-agent learning 
framework is given in Section IV; Section V conducts 
simulation experiments and performance evaluations based on 
a multi-region charging network; and Section VI concludes the 
study and outlines future research directions. 

II. LITERATURE REVIEW 

A. Techniques Based on Acoustic Features Multi-Agent 

Reinforcement Learning Algorithm Development 

According to different decision-making paradigms, multi-
agent reinforcement learning (MARL) algorithms for 
distributed charging scheduling can be categorized into value-
based methods and policy-based methods. 

For value-based methods, agents focus on learning value 
functions to derive optimal strategies. In cooperative MARL 
for distributed charging networks, value-based methods mainly 
address how to decouple the centralized team value function 
for distributed execution. Sunehag et al. [1] proposed value-
decomposition networks that break down the team value 
function into a linear sum of individual agent values, where the 
optimal policy is obtained by greedy selection on the team 
value. Rashid et al. [2] further enhanced algorithm 
performance by representing the joint value function as a 
nonlinear monotonic combination and giving higher weight to 
joint actions with greater rewards, thus extending the approach 
to non-monotonic environments. Son et al. [3] introduced a 
transformation-based factorization that avoids both 

monotonicity and additivity constraints. However, these 
methods often rely on regularization for tractable computation, 
which can hinder performance in complex charging 
environments. Mahajan et al. [4] addressed inefficient 
exploration by proposing multi-agent variational exploration, 
which improves coordination over extended time horizons. 

For policy-based methods, when all agents update their 
strategies simultaneously, the environment becomes non-
stationary, making learning more challenging. Thus, most 
policy-based MARL algorithms adopt the actor–critic (AC) 
framework. To mitigate partial observability, techniques such 
as value function decomposition and the use of centralized 
critics with additional information exchange during training are 
commonly adopted; both types typically employ the CTDE 
(Centralized Training, Distributed Execution) paradigm. For 
value decomposition, Su et al. [5] designed value-
decomposition actor-critic methods using a monotonic 
mapping between the global and local state values, following a 
simple time-difference advantage gradient that improves 
sampling efficiency and converges to local optima. Yang et al. 
[6] implemented a determinant point process-based method for 
unconstrained value function decomposition. 

In centralized critic approaches, Foerster et al. [7] 
developed counterfactual multi-agent policy gradients, where 
centralized critics access joint actions and all agent states, 
while each agent’s policy depends only on its own observation 
history. Pu et al. [8] constructed a decomposed soft actor–critic 
method with discrete probability policies and counterfactual 
advantage functions, supporting efficient policy learning and 
partially resolving credit assignment for both discrete and 
continuous action spaces. Lowe et al. [9] proposed Multi-
Agent Deep Deterministic Policy Gradient (MADDPG), 
assigning centralized critics to each agent to support different 
reward functions in competitive environments. Building on this, 
Wang et al. [10] extended MADDPG to partially observable 
settings, utilizing recurrent neural networks in both actor and 
critic to retain observation history. Li et al. [11] integrated 
minimax optimization into robust multi-agent reinforcement 
learning, enabling agents to learn robust strategies under 
adversarial conditions. 

These MARL algorithms have been applied to complex 
scheduling scenarios in distributed charging networks for 
electric vehicles, enabling agents to collaboratively optimize 
charging schedules and energy management. However, despite 
the effectiveness of CTDE in addressing partial observability, 
issues such as agent privacy and single-point failure risks 
remain unsolved in large-scale distributed charging systems. 

B. Engineering Applications of Multi-Agent Reinforcement 

Learning 

Multi-agent reinforcement learning (MARL) methods have 
been widely extended to optimal control problems in 
engineering, such as traffic control [12], autonomous driving 
[13, 14], and base station communications [15]. As an 
emerging distributed decision-making technique, MARL has 
attracted considerable attention for its ability to address 
nonlinear objectives, which motivates its application in 
distributed charging scheduling and energy management for 
smart grids. 
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In the context of distributed energy (and charging) 
management, most MARL approaches adopt the CTDE 
(Centralized Training, Distributed Execution) paradigm to 
mitigate the adverse effects of partial observability. Zhang et al. 
[16] proposed a novel deep transfer Q-learning algorithm based 
on a virtual leader–follower model to maximize the total 
revenue of all agents while maintaining supply–demand 
balance in smart grid scenarios. Compared to heuristic 
optimization methods, deep transfer Q-learning achieves faster 
convergence, stronger online learning ability, and effective 
privacy protection for users. Wang et al. [10] introduced a 
cooperative fuzzy Q-learning approach for microgrid energy 
management, ensuring stable power supply for independent 
microgrids while considering user demand uncertainty and 
achieving rapid acquisition of management strategies. 

Reinforcement learning-based strategies have also been 
designed for distributed energy and load management in 
competitive and stochastic energy markets, such as microgrid 
auction-based time-sharing markets, where model-free Q-
learning ensures each agent can find its optimal strategy. Zhu 
et al. [17] proposed an attention mechanism and soft actor–
critic-based method for multi-energy-coupled energy 
management under renewable energy and demand uncertainty, 
using counterfactual baselines to accelerate policy learning and 
minimize long-term energy costs while ensuring user needs. 
Sun et al. [18] developed a multi-agent energy management 
optimization framework for integrated energy systems 
considering electricity, natural gas, and carbon trading, using 
MADDPG to provide each agent with an online trading 
strategy that considers individual interests for fair market 
transactions and privacy protection. 

To address deployment challenges in large-scale systems, a 
few studies have explored fully distributed MARL algorithms. 
Li et al. [19] designed a distributed Q-learning method under a 
fully decentralized control framework to solve nonconvex 
economic dispatch problems, though its optimization accuracy 
is limited due to the lack of state-action value function 
approximation. In contrast, Liu et al. [20] used nonlinear 
function approximation for value functions and introduced a 
diffusion strategy to enable agent collaboration, yet the 
convergence range of the value function fitting remains limited. 
Dai et al. [21] combined value-based methods with quadratic 
function approximation to handle decision-making in 
continuous action spaces, but the quadratic approximation is 
most suitable for convex optimization problems. Li et al. [22] 
proposed a fully distributed reinforcement learning algorithm 
for nonconvex economic dispatch, but their stateless design for 
static scheduling problems does not fully exploit the 
generalization power of deep learning. 

For distributed charging and energy management, the 
above CTDE-based methods are difficult to deploy across 
widely-distributed charging infrastructure, and still face 
challenges such as centralized method security, privacy risks, 
and high communication costs. 

C. Research Gaps 

This section analyzes the main strengths and limitations of 
existing multi-agent reinforcement learning (MARL) 
approaches for distributed scheduling of heterogeneous 

charging stations, focusing on decision-making types, handling 
of partial observability, training schemes, and function 
approximation. For methods applied to distributed charging 
scheduling, we further compare their optimization objectives, 
scheduling precision, and generalization capability under 
uncertainty. Overall, MARL demonstrates outstanding 
performance in tackling complex nonlinear scheduling 
objectives and demand uncertainties, offering an effective 
research paradigm for distributed scheduling in intelligent 
charging networks. However, current MARL methods still face 
several challenges when applied to heterogeneous charging 
station systems: 

1) Observability and deployment issues: To address 

information barriers caused by partial observability, most 

existing algorithms adopt a centralized training, distributed 

execution (CTDE) framework. However, this paradigm is 

difficult to deploy efficiently across widely distributed 

charging station network nodes, restricting its practicality and 

scalability. 

2) Constraint handling and sparse rewards: Most current 

methods translate operational constraints into penalty terms 

within the reward function, which often leads to sparse reward 

signals. This sparsity can negatively affect learning efficiency 

and the feasibility of the final scheduling policy. 

Therefore, a key motivation of this paper is to theoretically 
analyze the impact of partial observability on the convergence 
of MARL, design a fully distributed MARL algorithm suitable 
for multi-region charging station systems, and introduce an 
action space mapping mechanism to strictly confine the 
decision-making process within the feasible domain during 
training. These innovations aim to provide more efficient and 
practical technical solutions for intelligent scheduling in large-
scale charging networks. 

III. PROBLEM MODELING 

A. System Structure for Heterogeneous Charging Station 

Scheduling 

This section investigates a coordinated scheduling system 
for multiple regions and heterogeneous charging stations, as 
illustrated in Fig. 1. The system comprises various types of 
charging equipment, including Fast DC Chargers (FDC), AC 
Slow Chargers (ASC), and bidirectional V2G (Vehicle-to-Grid) 
Chargers (V2G). 

As shown in Fig. 1, within the multi-region microgrid 
balancing charging supply and demand, each region can be 
connected to the interregional grid via substations. The system 
considers two types of regions: source-load coordination 
regions (e.g., Region A) and dedicated charging regions (e.g., 
Region D). Source-load coordination regions integrate multiple 
types of charging stations (FDC, ASC, V2G) as well as end-
users (EVs), while dedicated charging regions deploy only a 
single type or a subset of charging stations. 

In the heterogeneous charging station system discussed in 
this chapter, each group of charging stations of the same type 
can be regarded as an independent agent. FDC and ASC can 
autonomously determine their charging power allocation 
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according to real-time demand, while V2G chargers can 
flexibly switch between charging and discharging modes, 
enabling bidirectional energy flow. Operators are able to sense 
the local charging demand of EVs in real time and transmit the 
relevant information to the respective charging station agents. 
For information flow, both intra- and inter-regional 
communication among charging station agents is realized 
through remote point-to-point links, facilitating distributed 
learning and optimal scheduling decisions. 

 
Fig. 1. Schematic diagram of the heterogeneous charging station scheduling 

system. 

The main energy flow in this system is electrical power. 
The internal structure of the regional charging network is 
depicted in Fig. 2, where the Charging Station (CS) serves as 
the core node. 

 
Fig. 2. Integrated heat-electricity network within a region. 

The regional charging network can be subdivided into the 
main grid and the charging subnetwork. Energy flows from the 
main grid to users (EVs) via different types of charging stations, 
achieving efficient power supply based on demand. Power 
demand can be collaboratively met by FDC, ASC, V2G, and 
charging stations in other regions. V2G chargers can also feed 
energy from vehicle batteries back to the main grid, enhancing 
the flexibility of energy regulation. According to the described 

energy flow and conversion processes, the charging 
subnetwork mainly serves intra-regional needs, while the main 
grid supports interregional energy allocation. This setup aligns 
with the actual requirements of power flow and distributed 
scheduling. 

During the charging scheduling process, priority is given to 
meeting the charging needs of local users, and any remaining 
capacity can be used to support grid load balancing. 
Hierarchical scheduling strategies can effectively improve the 
utilization efficiency of renewable energy, reduce grid pressure, 
and advance the goal of green and intelligent mobility. 

B. Multi-Domain Integrated Energy System Component 

Modeling 

Based on the structure of the multi-region, multi-type 
charging station system, the primary components include Fast 
DC Chargers (FDC), AC Slow Chargers (ASC), bidirectional 
V2G Chargers (V2G), and Charging Stations (CS). 
Mathematical models are developed for each component to 
formulate the distributed charging scheduling problem, as 
described below: 

1) Fast DC charger: FDCs serve as the main high-power 

charging facilities in the system, primarily catering to EVs 

with fast-charging needs. The charge/discharge power ratio of 

FDC can be expressed as: 

𝛼𝐹𝐷𝐶 =
𝑃𝐹𝐷𝐶

out 

𝑃𝐹𝐷𝐶
in 

 
(1) 

where 𝑃𝐹𝐷𝐶
out  and 𝑃𝐹𝐷𝐶

in  represent the output and input power 
of the FDC, respectively. The operational cost function is 
modeled as a coupled quadratic function: 

𝐶𝐹𝐷𝐶(𝑃) = 𝑎𝑃𝐹𝐷𝐶
2 + 𝑏𝑃𝐹𝐷𝐶 + 𝑐 (2) 

where 𝐶𝐹𝐷𝐶  denotes the instantaneous operating cost of the 
FDC, and 𝑎 𝑏 𝑐 are intrinsic parameters. The energy constraint 
is: 

0 < 𝑃𝐹𝐷𝐶 < 𝑃𝐹𝐷𝐶
𝑚𝑎𝑥 (3) 

where 𝑃𝐹𝐷𝐶
𝑚𝑎𝑥 is the FDC's maximum output power. 

2) AC Slow charger: ASCs mainly provide charging 

services for EVs with longer dwell times. The cost function is: 

𝐶𝐴𝑆𝐶(𝑃) = 𝛼𝑃𝐴𝑆𝐶
2 + 𝛽𝑃𝐴𝑆𝐶 + 𝛾 (

4) 

where 𝑃𝐴𝑆𝐶  and 𝐶𝐴𝑆𝐶  denote the output power and 
instantaneous cost of ASC, and 𝛼, 𝛽, 𝛾 are intrinsic parameters. 
The power constraint is: 

𝑃𝐴𝑆𝐶
𝑚𝑖𝑛 < 𝑃𝐴𝑆𝐶 < 𝑃𝐴𝑆𝐶

𝑚𝑎𝑥  (5) 

3) Bidirectional V2G charger: V2G chargers enable 

bidirectional energy flow, allowing energy feedback to the 

grid while meeting user demand. The charge/discharge ratio is 

defined as: 

𝛼𝑉2𝐺 =
𝑃𝑉2𝐺

out 

𝑃𝑉2𝐺

 
(6) 
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where 𝑃𝑉2𝐺  is the total V2G power, and 𝑃𝑉2𝐺
out  is the power 

fed back to the grid. The operating cost is: 

𝐶𝑉2𝐺(𝑃) = 𝑔𝑃𝑉2𝐺 + ℎ (7) 

where 𝐶𝑉2𝐺 is the instantaneous cost, and 𝑔, ℎ are intrinsic 
parameters. 

4) Charging station: As the energy dispatch center, CS 

coordinates energy allocation among regional charging 

stations. Its dispatch capacity constraint is: 

0 < 𝑃𝐶𝑆 < 𝑃𝐶𝑆
𝑚𝑎𝑥  (8) 

where 𝑃𝐶𝑆
𝑚𝑎𝑥 is the maximum dispatch capacity. 

C. Distributed Charging Scheduling Problem 

In this study, multi-agent deep reinforcement learning 
(MADRL) is employed to derive optimal economic scheduling 
and energy feedback policies, aiming to minimize overall 
operational costs. The distributed energy management problem 
is formulated as follows: 

Objective Function is as follows: 

𝐶 = ∑  

𝑛

𝑖=1

𝐶𝐹𝐷𝐶,𝑖 + ∑  

𝑚

𝑖=1

𝐶𝐴𝑆𝐶,𝑖 + ∑  

𝑞

𝑖=1

𝐶𝑉2𝐺,𝑖 

(9) 

where 𝐶  is the total operating cost, and n, m, q are the 
numbers of FDC, ASC, and V2G chargers, respectively. 

Capacity Constraints is as follows: 

{

0 < 𝑃𝐹𝐷𝐶,𝑖 < 𝑃𝐹𝐷𝐶,𝑖
𝑚𝑎𝑥 , ∀𝑖 = 1,2, … , 𝑛

𝑃𝐴𝑆𝐶,𝑖
𝑚𝑖𝑛 < 𝑃𝐴𝑆𝐶,𝑖 < 𝑃𝐴𝑆𝐶,𝑖

𝑚𝑎𝑥 ,   ∀𝑖 = 1,2, … , 𝑚

0 < 𝑃𝑉2𝐺,𝑖 < 𝑃𝑉2𝐺,𝑖
𝑚𝑎𝑥 , ∀𝑖 = 1,2, … , 𝑞

 

(10) 

Power Demand Balance Constraint is as follows: 

∑  

𝑐

𝑖=1

𝑃𝐷,𝑖 = ∑  

𝑛

𝑖=1

𝑃𝐹𝐷𝐶,𝑖 + ∑  

𝑚

𝑖=1

𝑃𝐴𝑆𝐶,𝑖

+ ∑  

𝑞

𝑖=1

[(1 − 𝛼𝑉2𝐺,𝑖)𝑃𝑉2𝐺,𝑖] 

(11) 

where 𝑃𝐷,𝑖  is the charging demand of user 𝑖, and c is the 

total number of users. 

Energy Feedback Balance Constraint is as follows: 

∑  

𝑐𝐼

𝑖=1

𝑃𝐷,𝑖
feed = ∑  

𝑞𝐼

𝑖=1

𝑃𝑉2𝐺,𝑖
out , 𝐼 = 1,2, … , 𝑁 

(
12) 

where 𝑃𝐷,𝑖
feed is the feedback energy requirement of user i, 

𝑞𝐼 is the number of V2G chargers in region 𝐼, and N is the total 
number of regions. 

IV. MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR 

DISTRIBUTED ENERGY MANAGEMENT 

The main method proposed in this chapter addresses the 
above distributed charging scheduling problem by developing a 
multi-agent deep reinforcement learning (MADRL) algorithm 
under a partially observable environment. The following 

describes the MADRL algorithm framework for heterogeneous 
charging station systems and discusses relevant technical 
details. 

A. Algorithm Overview 

The multi-agent deep reinforcement learning framework 
developed for heterogeneous charging station systems is 
illustrated in Fig. 3. In this framework, each FDC, ASC, and 
V2G charger group acts as an independent agent, employing a 
static optimization deep learning approach. For each agent 𝑖, 
the POMDP is formalized as < 𝑆𝑖 , 𝐴𝑖 , 𝑃𝑖 , 𝑅𝑖 >, and the Markov 
decision process for each charger type is modeled as follows: 

 
Fig. 3. Multi-agent deep reinforcement learning framework for 

heterogeneous charging station scheduling. 

1) State 

a) FDC agent: State vector includes global total 

charging demand ∑  c
i=1 PD,i, local fast charging demand, and 

total V2G charge/discharge in the region. 

b) ASC agent: State vector includes global total 

charging demand, local slow charging demand, and total V2G 

charge/discharge in the region. 

c) V2G agent: State vector includes global total 

charging demand, available V2G capacity in the region, and 

loads of all charger types in the region. 

2) Action: For agent 𝑖: 

a) FDC agent: The output power 𝑃FDC,𝑖 is the action. 

b) ASC agent: The output power 𝑃ASC,𝑖 is the action. 

c) V2G agent: The action vector consists of 

charging/discharging power 𝑃V2G,𝑖  (positive for charging, 

negative for discharging) and the feedback ratio 𝛼𝑉2𝐺,𝑖. 

3) State transition probability: Due to the stochastic 

nature of charging demand and vehicle arrivals, the state 

transition distribution for all agents 𝑖  is assumed to be 

uniform. 

4) Reward: The local reward of each charging station 

agent is negatively correlated with the objective function 

above. If an agent fails to satisfy constraints such as capacity 

or power, its reward is penalized. 

This framework considers two deep learning approaches: 
Target Value Competition Multi-Agent Reinforcement 
Learning (MADRL-TVC) and Multi-Agent Deep 
Deterministic Policy Gradient (MADDPG). MADRL-TVC is a 
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fully distributed method, while MADDPG requires centralized 
training. Both methods are applied to the distributed charging 
scheduling problem, with the superior approach selected for the 
charging station system scheduling policy. 

B. Algorithm Procedure 

The algorithm used in this chapter is a model-dependent 
continuous decision-making method, not episode-based, and 
does not rely on historical sequences, but only on real-time 
decisions and feedback from the multi-agent system. The 
implementation process of the MADRL algorithm is shown in 
Fig. 4, with the core steps as follows: 

1) Initialization and state acquisition: Each charging 

station agent initializes its parameters and obtains the initial 

state from the environment. State information includes the 

current load demand of each charger type, user arrival 

information, available V2G capacity, etc. At each decision 

step 𝑡, each agent selects action 𝑎𝑖,𝑡 according to its policy. 

2) Hierarchical scheduling and action adjustment: To 

balance different types of demand, a hierarchical control 

framework is designed for high-priority intra-regional 

charging needs and cross-regional energy feedback (V2G). 

Actions are adjusted automatically via distributed binary 

search, prioritizing high-priority charging demand within each 

region. 

For balancing fast and slow charging demands, the initial 
search domain for FDC and ASC agents is set as: 

𝑎𝑖
𝑚𝑖𝑛(0) = 0, 𝑎𝑖

𝑚𝑎𝑥(0) = 𝑃𝐹𝐷𝐶,𝑖
𝑚𝑎𝑥  or 𝑃𝐴𝑆𝐶,𝑖

𝑚𝑎𝑥  

For V2G feedback, the agent's search domain is: 

𝑎𝑖
𝑚𝑖𝑛(0) = −𝑃𝑉2𝐺,𝑖

𝑚𝑎𝑥 , 𝑎𝑖
𝑚𝑎𝑥(0) = 𝑃𝑉2𝐺,𝑖

𝑚𝑎𝑥  

The load demand deviation for region I is defined as: 

𝛿𝑃,𝐼(𝑘) = ∑  

𝑐𝐼

𝑖=1

𝑃𝐷,𝑖 − ∑  

𝑛𝐼

𝑖=1

𝑃𝐹𝐷𝐶,𝑖 − ∑  

𝑚𝐼

𝑖=1

𝑃𝐴𝑆𝐶,𝑖

− ∑  

𝑞𝐼

𝑖=1

𝛼𝑉2𝐺,𝑖𝑃𝑉2𝐺,𝑖 



Running Algorithm 1 with this setup achieves balance 
between regional charging demand and V2G feedback. 

3) Experience collection and network training: Each agent 

observes the immediate reward 𝑟𝑡+1 and the next state 𝑠𝑖,𝑡+1. 

After each decision, the experience is stored in a replay buffer. 

At regular intervals, mini-batches are randomly sampled from 

the buffer to train the deep neural network. 

Based on the above approach, charging station agents 
collaboratively learn optimal energy allocation and economic 
scheduling policies to minimize the overall system operating 
cost. The trained model can respond online to varying charging 
demands, EV arrivals and departures, and random V2G 
availability, providing real-time scheduling strategies. This 
method excels at rapid demand response, accommodating 
renewable energy uncertainty, and improving overall energy 
utilization efficiency. 

 
Fig. 4. Multi-agent deep reinforcement learning algorithm flow for multi-

domain integrated energy systems. 

V. SIMULATION VALIDATION 

In this section, a multi-region, multi-type charging station 
scheduling scenario is constructed. The proposed hierarchical 
decision-making framework and multi-agent reinforcement 
learning method are trained, and the trained models are tested 
using open-source transportation and charging load datasets. 
Their responsiveness to load uncertainty and distributed 
charging demand is analyzed and compared with other 
benchmark scheduling methods, further validating the 
performance advantages of the proposed distributed charging 
scheduling scheme in multi-region scenarios. 

A. Simulation Setup 

The simulation environment is configured as a multi-type 
charging station system spanning four regions, as illustrated in 
Fig. 1. The entire system comprises nine groups of charging 
stations, including four Fast DC Charger (FDC) groups 
(deployed in Area A: 1 group, Area C: 1 group, Area D: 2 
groups), two bidirectional V2G charger groups (deployed in 
Area A and Area C), and three AC Slow Charger (ASC) 
groups (deployed in Area A, Area B, and Area C). Cross-
regional power distribution can be achieved via the main grid. 
Data on vehicle charging demand, EV arrivals and departures, 
and V2G feedback capabilities for each region are sourced 
from open-source transportation and charging datasets (such as 
PEMS, Open Charge Map, etc.). The cost parameters and 
inequality constraints for each type of charging station are 
integrated from previous studies or relevant industry standards. 
All simulation parameters are detailed in Tables Ⅰ, Ⅱ, and Ⅲ. 
The scheduling interval is set to 15 minutes, and the simulation 
covers a 24-hour period. 

TABLE I. FDC UNIT PARAMETERS 

NodeRegion NodeRegion 𝜶𝒊 𝜷𝒊 𝜸𝒊 𝑷𝑭𝑫𝑪
𝐦𝐢𝐧  𝑷𝑭𝑫𝑪

𝐦𝐚𝐱 

1 A 0.0020 10 500 100 600 

2 C 0.0025 8 300 50 400 

3 D 0.0050 6 100 50 300 

4 D 0.0060 5 90 50 200 
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B. Training Process 

Due to the incomparability of immediate rewards across 
different reward functions, it is challenging to directly track the 
cumulative rewards during the training process under random 
states. To evaluate the algorithm's performance during training, 
10 random state points are selected and their corresponding 
rewards are recorded throughout the training. Each observation 
point includes the power demand and heat demand of Areas A, 
B, and C, as well as the wind power output from WT unit 
groups in Areas A and C. To analyze the neural network's 
fitting performance, the total training loss of the Q-network 
estimated by the MADRL-TVC method is also recorded during 
training. 

TABLE II. V2G CHARGER AND CS PARAMETERS 

NodeRegion NodeRegion 𝒈𝒊 𝒉𝒊 𝒌𝑽𝟐𝑮 𝑷𝑽𝟐𝑮
𝐦𝐚𝐱 

5 A 5 15 0.9 90 

6 B 4 20 0.9 90 

TABLE III.  ASC UNIT PARAMETERS 

NodeRegio

n 

NodeRegio

n 
𝒂𝒊 𝒃𝒊 𝒄𝒊 𝑷𝑪𝑯𝑷𝑷

𝐦𝐚𝐱  𝑯𝑪𝑯𝑷𝑷
𝐦𝐚𝐱  𝜶𝑪𝑯𝑷𝑷

𝐦𝐢𝐧  

7 A 
0.005

0 
6 

10

0 
200 100 0.5 

8 B 
0.006
0 

5 90 200 90 0.5 

9 C 
0.007

2 
3 

15

0 
180 80 0.5 

Fig. 5 shows the cumulative rewards and total training loss 
at different observation state points during the training process. 
It can be observed that the cumulative rewards at all state 
points exhibit an upward trend. This indicates that the proposed 
algorithm can improve cumulative rewards through training, 
thus finding the optimal scheduling strategy for each type of 
state. The training loss of the Q-network converges rapidly and 
ultimately becomes very small, demonstrating that the neural 
network can effectively fit the charging scheduling policy. 

 
Fig. 5. Cumulative rewards and total training loss during training. 

C. Full-Day Energy Management Results Analysis 

After extended training under randomly varying states, the 
proposed algorithm achieves a generalizable, complete model 
that can provide optimal charging scheduling strategies in real 

time for arbitrary user demand and V2G capacity availability. 
Within a one-day scheduling cycle, the MADRL-TVC trained 
model outperforms MADDPG, so the following presents the 
optimal strategies under MADRL-TVC scheduling. 

The energy allocation of V2G chargers is shown in Fig. 6. 
For each group of V2G chargers, the energy allocation includes 
charging power output (𝑃𝑉2𝐺 ), energy fed back to the grid 
(𝐹𝑉2𝐺), and energy loss (𝐿𝑉2𝐺). As illustrated in Fig. 6(a) and 
6(b), the V2G chargers in Area A and Area C can fully utilize 
vehicle battery energy for grid feedback during peak load 
periods, effectively alleviating regional power supply pressure. 
The V2G energy utilization rate reaches up to 100%. 

 
Fig. 6. Regional V2G charger energy allocation and feedback rate. 

The scheduling results for charging demand within each 
region are shown in Fig. 7, displaying how different types of 
charging stations meet vehicle charging needs in each region 
for every 15-minute interval throughout the day. 𝑃𝐹𝐷𝐶 , 𝑃𝐴𝑆𝐶 , 
and 𝑃𝑉2𝐺  represent the energy supplied by each type of 
charging station, while  𝑃𝐷𝐴 , 𝑃𝐷𝐵 , and 𝑃𝐷𝐶  denote the total 
demand in each region. The results demonstrate that the 
charging demands in all regions are precisely met. Due to the 
stochastic nature of charging demand and vehicle arrivals, the 
energy allocation structure across regions does not follow a 
fixed pattern. Nevertheless, the algorithm is able to provide 
corresponding scheduling strategies in real time, effectively 
coping with demand and load uncertainty. 

Cross-regional energy scheduling is depicted in Fig. 8, 
showing the overall charging power allocation at each time 
interval throughout the day—that is, how each type of charging 
station and each region jointly respond to the total charging 
demand. 𝑃𝐴𝑟𝑒𝑎𝐴

, 𝑃𝐴𝑟𝑒𝑎𝐵
, 𝑃𝐴𝑟𝑒𝑎𝐶

, and 𝑃𝐴𝑟𝑒𝑎𝐷
 represent the total 

charging output for each region. The charging power is 
balanced at all times of the day, with the FDCs (which have 
higher economic priority) typically handling the main load, 
while ASCs provide supplementary regulation. V2G chargers 
mainly contribute energy feedback during peak load periods. 
The scheduling results indicate that the agents can make 
distributed collaborative decisions to achieve optimal 
economic scheduling. 
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(a) Area  A. 

 
(b) Area  B 

 
(c) Area  C 

Fig. 7.   Regional charging demand scheduling results. 

 
Fig. 8. Overall power scheduling results. 

The total system operating cost is shown in Fig. 9, 
presenting the full-day operating costs for the multi-type 
charging station system. The results show that the algorithm 
can effectively reduce overall operating costs and achieve 
coordinated operation between charging stations and the grid. 

 
Fig. 9. Full-day operating cost. 

D. Comparative Analysis 

To evaluate the performance of the distributed charging 
scheduling method based on multi-agent reinforcement 
learning (MADRL), it is compared with commonly used 
centralized optimization methods, including Particle Swarm 
Optimization (PSO), nonlinear optimization solvers (SCIP, 
NLOPT), and others. Table Ⅳ presents the operating costs of 
different algorithms at a specific observation state (e.g., total 
charging demand 800.0, regional demands [100.0, 120.0, 50.0], 
V2G available power [70.0, 150.0]). Table Ⅴ lists the average 
hourly quantified costs for each method over the entire day. 

As shown in the tables, compared with centralized 
stochastic optimization methods such as PSO, the multi-agent 
deep reinforcement learning approach can effectively reduce 
system operating costs in distributed charging scheduling. In 
particular, the MADRL-TVC method achieves performance 
comparable to mature solvers such as SCIP. Compared with 
the MADDPG (centralized training, distributed execution) 
framework, the fully distributed MADRL-TVC displays better 
convergence in high-dimensional decision spaces, further 
highlighting the advantages of distributed algorithms. 

TABLE IV. OPERATING COST OF DIFFERENT METHODS AT THE 

OBSERVATION STATE 

Algorithm Solver Type Optimal Cost Improvement 

PSO Centralized 12603.94 0 

NLOPT Centralized 12622.88 -0.15% 

SCIP Centralized 12201.77 3.19% 

MADDPG Distributed 12394.07 1.67% 

MADRL Distributed 12202.26 3.19% 

TABLE V. AVERAGE QUANTIFIED COST PER HOUR FOR DIFFERENT 

METHODS 

Algorithm Solver Type Optimal Cost Improvement 

PSO Centralized 52102.92 0 

NLOPT Centralized 52977.84 −1.84% 

SCIP Centralized 49129.07 5.56% 

MADDPG Distributed 50968.13 2.02% 

MADRL Distributed 49146.08 5.53. % 

The results show that MADRL-TVC not only has 
advantages in reducing operating costs, but its distributed 
structure is also better suited to dynamic changes and 
randomness in charging demand and V2G feedback, offering 
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stronger generalization and stability. Therefore, the distributed 
scheduling method based on multi-agent deep reinforcement 
learning has significant application potential and development 
prospects in multi-region, multi-type charging station systems. 

VI. CONCLUSION 

This Paper proposes a distributed charging scheduling 
strategy for multi-region, multi-type charging station systems. 
Different regions and types of charging station groups are 
modeled as independent agents. Based on user charging 
demand and V2G feedback capability, collaborative 
optimization of the multi-agent system enables energy 
allocation and economic scheduling. For intra-regional fast 
charging, slow charging, and cross-regional energy feedback, a 
hierarchical decision-making framework is designed, and the 
charging scheduling problem is formalized as a Markov 
Decision Process, with multi-agent deep reinforcement 
learning employed for collaborative learning. Leveraging the 
generalization capability of deep reinforcement learning, the 
proposed method can not only reduce total system operating 
costs, but also respond in real time to uncertainties in charging 
demand and energy feedback, effectively improving the 
economic efficiency and robustness of distributed charging 
networks. 
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