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Abstract—Federated Learning (FL) has emerged as a critical 

paradigm in privacy-preserving machine learning, enabling 

collaborative model training across decentralised devices without 

sharing raw data. While FL enhances privacy by maintaining data 

locality, it remains susceptible to sophisticated adversarial attacks. 

This review systematically analyses the FL threat landscape and 

introduces a novel taxonomy that classifies attack models based on 

their objectives, capabilities, and exploited vulnerabilities. Major 

categories include data poisoning, inference attacks, and 

Byzantine behaviours, each examined in terms of mechanisms, 

assumptions, and system impact. In addition, the paper evaluates 

prominent defence strategies—such as differential privacy, secure 

aggregation, and anomaly detection—by assessing their strengths, 

limitations, and real-world applicability. Key gaps include the lack 

of standardised evaluation metrics and limited exploration of 

adaptive defence mechanisms. Emerging trends such as 

homomorphic encryption, secure multi-party computation, and 

blockchain-based verifiability are also discussed. This review is a 

comprehensive resource for researchers and practitioners aiming 

to design resilient, privacy-aware FL systems that withstand 

evolving threats. 
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I. INTRODUCTION 

The healthcare sector has experienced significant 
technological advancements, underscoring the need to protect 
sensitive patient data [1]. Federated Learning (FL), a 
decentralised machine learning approach, offers promising 
privacy benefits by enabling local data processing. However, 
this decentralisation also introduces novel security 
vulnerabilities that require thorough investigation [2]. Despite 
its advantage in preserving data locality, FL remains susceptible 
to attacks from malicious participants [2]. Its ability to enable 
collaborative model training without compromising raw data 
makes FL particularly valuable in privacy-critical domains. This 
includes fields such as healthcare and finance, where leveraging 
distributed datasets without violating privacy regulations is 
essential [1]. 

Although interest in FL security has grown, existing 
literature often focuses on isolated aspects of the threat 
landscape, resulting in a fragmented understanding of its 
vulnerabilities and corresponding defence mechanisms [3]. A 
more holistic and structured review is needed to address this gap, 
integrating technical, regulatory, and ethical perspectives on 
safeguarding federated systems. 

This paper addresses this need by providing a systematic 
taxonomy of FL attack vectors and a comparative evaluation of 
defence strategies. The review classifies attacks based on threat 
models—including data and model poisoning—and analyses 
their operational mechanisms. It further assesses defence 
methods such as differential privacy and secure aggregation in 
terms of their effectiveness, trade-offs, and applicability. 
Finally, the paper identifies open research challenges and 
proposes directions for future work to enhance the resilience, 
trustworthiness, and scalability of FL systems [4]. The main 
contributions of this paper are as follows: 

 A novel taxonomy of FL attack models, classifying them 
based on attack goals, vectors, and system 
vulnerabilities. 

 A comparative evaluation of defence strategies regarding 
performance, scalability, and security robustness. 

 Identifying research gaps, including a lack of 
standardised evaluation frameworks and limited 
exploration of adaptive defences. 

 Discuss emerging trends such as hybrid defence 
approaches and blockchain-based accountability 
mechanisms. 

  The remainder of the paper is organised as follows: 
Section II outlines the literature selection and analysis 
methodology. Section III presents the taxonomy of FL 
attacks. Section IV evaluates existing defence strategies. 
Section V discusses current research gaps and future 
directions. Section VI and Section VII concludes the 
paper with a summary of findings and recommendations. 

To guide this review, the following research question is 
posed: What are the key adversarial attack vectors that threaten 
Federated Learning (FL) systems, and how effective are current 
defence strategies—such as differential privacy, secure 
aggregation, and blockchain-based mechanisms—in mitigating 
these threats across different attack surfaces and system 
configurations? This question frames the scope of the analysis 
presented in this paper, which aims to systematically categorise 
existing FL attacks and critically evaluate the corresponding 
defence mechanisms based on their applicability, strengths, and 
limitations. To contextualise this study, Section II reviews 
foundational and recent research on FL threats and defences. 
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II. RELATED WORK 

Federated Learning (FL) has emerged as a prominent 
privacy-preserving machine learning framework, attracting 
increasing attention from academia and industry. Numerous 
studies have examined its security vulnerabilities and mitigation 
strategies, but many existing reviews are either narrowly scoped 
or lack updates to reflect the fast-evolving threat landscape. 
Pioneering works by Shokri et al. [23] and Melis et al. [24] 
introduced foundational concepts such as membership inference 
and property inference attacks, exposing the privacy risks 
inherent in collaborative learning environments. Bagdasaryan et 
al. [6] further demonstrated the feasibility of model poisoning 
and backdoor attacks, showing that even minor manipulations 
can compromise global model integrity. These studies laid the 
groundwork for analysing adversarial risks in decentralised 
learning systems. 

Subsequent reviews by Hallaji et al. [2] and Nguyen et al. 
[11] broadened the threat taxonomy to include Byzantine 
behaviours and gradient leakage. However, their discussions 
often stop short of connecting these threats to comprehensive, 
layered defence architectures. Other researchers have explored 
isolated countermeasures—such as differential privacy [39] and 
homomorphic encryption [1]—but rarely assess their real-world 
performance in heterogeneous, large-scale FL deployments. 

To address concerns over trust and transparency, 
blockchain-based FL frameworks (e.g., ShareChain [1], PPBFL 
[33]) have been proposed. These aim to decentralise trust 
management, offering tamper-evident logging and client 
accountability. Despite their conceptual appeal, such 
frameworks remain in the early stages of development and face 
considerable challenges related to scalability, latency, and 
integration with existing FL protocols [35]. 

This review builds upon previous work by offering a more 
comprehensive taxonomy of FL attacks, explicitly categorised 
by attack surface, timing, and intent. Furthermore, it delivers a 
comparative analysis of defence strategies, focusing on their 
security effectiveness, computational cost, and deployment 
trade-offs. This paper also identifies ongoing research gaps, 
particularly the lack of adaptive, hybrid, and context-aware 
mechanisms that can evolve alongside sophisticated attack 
patterns. 

III. METHODOLOGY 

This study follows a structured literature review approach to 
comprehensively examine Federated Learning (FL) attack 
models and corresponding defence strategies. The methodology 
adopted is outlined as follows. 

A. Literature Search Strategy 

This research employs a systematic literature review 
methodology, complemented by elements of a narrative review, 
to investigate the landscape of security threats and defence 
mechanisms within federated learning systems. The review 
focuses on identifying, classifying, and synthesising existing 
research concerning attacks targeting federated learning and 
corresponding defence strategies designed to mitigate these 
vulnerabilities [1], [5]. The study's primary objective is to 
provide a comprehensive overview of the current state-of-the-

art, highlighting prominent attack vectors, defence approaches, 
and open challenges in the field. 

The following keywords and Boolean combinations were 
used during the search: 

 "Federated Learning" AND "Attack" 

 "Federated Learning" AND "Threat Models" 

 "Federated Learning" AND "Security" 

 "Federated Learning" AND "Privacy Attacks" 

 "Federated Learning" AND "Defence Strategies" 

 "Secure Federated Learning" AND "Robust 
Aggregation" 

Additionally, backwards and forward snowballing 
techniques were applied by reviewing the references of highly 
cited papers to identify additional relevant studies. 

B. Inclusion and Exclusion Criteria 

The literature search encompassed several prominent 
databases, including Scopus, Web of Science, and IEEE Xplore, 
selected for their extensive coverage of computer science, 
engineering, and related disciplines. These databases were 
queried using keywords and Boolean operators to identify 
relevant publications on federated learning security [3]. Search 
terms included variations and combinations of "Federated 
Learning Attack," "Threat Models," and "Federated Learning 
Defence" to capture a broad spectrum of research related to the 
topic. The initial search yielded a substantial number of articles, 
which were subsequently filtered based on predefined inclusion 
and exclusion criteria. To ensure the relevance and currency of 
the review, only peer-reviewed, English-language papers 
published between 2020 and 2025 were considered for 
inclusion. This timeframe was chosen to capture the most recent 
advancements and emerging trends in the federated learning 
security field—the restriction to peer-reviewed publications 
aimed to maintain the quality and rigour of the included studies. 
The English language restriction was applied due to resource 
constraints and the need for consistent linguistic analysis [1]. 

C. Study Selection Process 

The selection process followed a structured approach, 
drawing inspiration from the PRISMA guidelines to enhance 
transparency and reproducibility. The initial screening involved 
reviewing the titles and abstracts of the identified articles to 
assess their relevance to the research question. Articles not 
explicitly addressing security threats or defence mechanisms in 
federated learning were excluded. Subsequently, the full texts of 
the remaining articles were examined in detail to determine their 
eligibility for inclusion based on the predefined criteria. This 
thorough evaluation ensured that only studies directly relevant 
to the scope of the review were considered for further analysis. 
The selected articles were then subjected to a rigorous analysis 
to extract key information regarding attack types, defence 
strategies, evaluation metrics, and experimental settings. 

D. Data Extraction and Synthesis 

The extracted data were organised and synthesised using a 
comprehensive analysis framework to categorise and classify 
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the identified attacks and defences. The categorisation was 
based on the nature of the attack, such as data poisoning, model 
poisoning, inference attacks, and Byzantine attacks [1]. Data 
poisoning attacks involve manipulating the training data to 
compromise the global model, while model poisoning attacks 
target the model aggregation process [4]. Inference attacks, on 
the other hand, aim to extract sensitive information from the 
model or the training data. Byzantine attacks encompass various 
malicious behaviours, including arbitrary data or model 
manipulation by compromised participants. Defence 
mechanisms were categorised based on underlying principles, 
such as differential privacy, secure aggregation, anomaly 
detection, and robust aggregation techniques. Differential 
privacy adds noise to the training data or model updates to 
protect individual privacy, while secure aggregation protocols 
ensure the confidentiality of model updates during the 
aggregation process. Anomaly detection techniques aim to 
identify and filter malicious or abnormal contributions from 
compromised participants. Robust aggregation methods, such as 
median or trimmed mean aggregation, are designed to mitigate 
the impact of outliers or malicious updates on the global model. 
Decentralised federated learning introduces new privacy threats 
[2]. For instance, an inference attack can occur in blockchain-
based federated learning [1]. In this paradigm, security analysis 
is necessary [2]. This categorisation facilitated a structured 
comparison of different approaches and enabled the 
identification of their strengths and weaknesses. Existing 
defences against data poisoning cannot be directly applied to 
federated learning due to the requirement of accessing the 
training data [6]. Adversaries are improving at hiding malicious 
behaviours from benign ones [7]. Sophisticated attackers are 
motivated by very high incentives to manipulate the results of 
the machine learning models [8]. Data owners update their 
models while keeping the data localised, guaranteeing zero 
leakage of individual data since only trained models are shared 
in the proposed model [1]. The absence of a centralised server 
in blockchain-enabled federated learning eliminates the single 
point of failure [1]. By integrating federated learning with 
blockchain technology, auditing machine learning models is 
supported without centralising the training data [7]. 

IV. RESULTS 

This section presents a structured literature analysis on 
Federated Learning (FL) attacks and defence strategies. A 
taxonomy is developed to categorise attack types based on their 
objectives, Timing, and attack surfaces. Defence mechanisms 
are evaluated based on their effectiveness, complexity, and 
applicability. 

A. Taxonomy of Federated Learning Attacks 

Federated Learning (FL) is a distributed machine learning 
paradigm designed to train models collaboratively across 
decentralised data sources without transferring raw data. This 
decentralisation preserves privacy by enabling local 
computation on each client and aggregating model updates on a 
central server [1]. However, despite these inherent privacy 
advantages, FL systems remain vulnerable to a broad spectrum 
of adversarial threats that can undermine model integrity, 
compromise data confidentiality, and disrupt system 
performance [9]. Understanding and classifying these threats is 

essential for developing effective, context-aware defence 
mechanisms [5], [9], [10]. 

Fig. 1 presents a visual taxonomy that categorises FL attacks 
based on three key dimensions: 

 Attack surface (client-side vs. server-side), 

 Timing (during training vs. after training), 

 Objective (e.g., data inference, model disruption, free-
riding). 

This classification provides a structured lens to analyse how 
FL systems are targeted across various operational contexts. 

 
Fig. 1. Overview of attack categories in federated learning. 

This diagram visualises how FL systems are exposed to 
threats across client and server surfaces, during various phases 
(training/post-training), and based on differing attack objectives. 

1) By Attack surface 

a) Client-side attacks: These attacks originate from 

compromised or malicious clients within the FL network. A 

typical example is data poisoning, where adversaries inject 

manipulated training data to introduce specific biases into the 

global model [4]. Another form, model poisoning, involves 

clients altering their model updates before aggregation to 

influence global model behaviour. These threats exploit the 

decentralised nature of FL, making it difficult for the server to 

distinguish between benign and malicious updates [11], [12]. 

b) Server-side attacks: Server-side attacks target the 

central aggregation server, which collects client updates and 

distributes the global model. Adversaries may compromise the 

server to tamper with the aggregation process or launch 

inference attacks to extract sensitive client data from model 

updates. Moreover, the server itself can act maliciously by 

injecting adversarial gradients or modifying aggregation rules 

[13], [14], [15]. 
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2) By Timing 

a) During training: Attacks launched during the training 

process are commonly referred to as poisoning attacks. These 

may involve the injection of malicious data, gradients, or even 

fake client updates (e.g., Sybil attacks) to degrade the model’s 

accuracy or manipulate its outputs [16], [17]. These threats can 

be particularly stealthy and difficult to detect in asynchronous 

FL settings. 

b) After training (after deployment): Once an FL model 

is deployed, it becomes susceptible to inference attacks, such as 

membership inference (determining if a record was part of 

training) or property inference (inferring sensitive aggregate 

attributes). These attacks exploit model outputs or gradients to 

reveal private training data [18], [20]. Attackers can also launch 

Reconstruction attacks to extract private textual data, exploiting 

gradient updates from the clients during the training phase [20]. 

3) By Objective: Federated learning attacks can be 

classified based on their primary objectives, reflecting the 

intended outcome that the attacker seeks. Attacks can also be 

categorised based on their goals, i.e., what the attacker hopes to 

achieve. 

a) Data inference: Data inference attacks aim to extract 

sensitive information about the clients' local datasets from the 

shared model updates or the final global model [21]. 

Membership inference attacks determine whether a specific 

data point was used to train the model, revealing sensitive 

information about individual clients. Property inference attacks 

aim to infer statistical properties of the clients' local datasets, 

such as the distribution of sensitive attributes. 

b) Model disruption: Model disruption attacks, also 

known as model poisoning attacks, aim to degrade the 

performance or functionality of the global model. By injecting 

malicious data or manipulating model updates, attackers can 

cause the model to make incorrect predictions or exhibit 

undesirable behaviour [8]. Such attacks can lead to model 

performance degradation or complete model failure. An 

attacker may compromise the global model by manipulating 

local parameters [22]. 

c) Free-Riding: Free-riding attacks, also known as lazy 

client attacks, occur when malicious clients contribute 

minimally to the training process while benefiting from the 

global model. These clients may submit outdated or irrelevant 

model updates, slowing convergence and reducing the model's 

accuracy [1]. In federated learning, free-riding attacks involve 

lazy clients that do not contribute meaningfully to the training 

process [1]. 

The results are further supported by visual representations, 
including Fig. 1 through Fig. 3 and Table II, which collectively 
illustrate the taxonomy of FL attacks, threat-defence mappings, 
and comparative defence evaluations. These visual aids were 
designed to enhance the clarity and accessibility of the findings, 
enabling a layered understanding of the attack vectors and 
mitigation strategies. Including these diagrams strengthens this 
review's communicative impact and supports readers in grasping 
complex adversarial relationships and defence limitations within 
FL systems. 

Table I summarises the FL attack classification with attack 
surface, Timing, and impact. 

TABLE I.  SUMMARY OF FEDERATED LEARNING ATTACK TYPES 

Attack Type Description Attack Surface Timing Representative Studies 

Membership Inference Determines if a specific data point was in the training set Client Post-training [23] 

Property Inference Infers statistical properties of client data Client Post-training [24] 

Model Poisoning Injects malicious updates to corrupt the global model Client During training [25] 

Backdoor Attacks Embeds hidden misbehaviour triggered by specific inputs Client During training [6] 

Gradient Leakage Reconstructs raw data from shared gradient updates Server During training [26] 

Sybil Attacks Uses fake identities to influence model updates disproportionately Client During training [27] 

Free-Rider Attacks Participates in FL without contributing useful updates Client During training [28] 

Collusion Attacks Multiple adversaries collaborate to subvert learning Multiple During training [2] 

Adaptive Multi-Vector Dynamic use of multiple attack vectors to evade defences Multiple Dynamic [29] 
 

B. Threat Models 

The evolving landscape of Federated Learning (FL) security 
has seen a marked increase in hybrid and adaptive adversarial 
behaviours. Contemporary studies reveal that attacks are no 
longer limited to isolated strategies; adversaries now deploy 
multi-vector approaches that exploit privacy, model integrity, 
and communication weaknesses. Examples include coordinated 
multi-client poisoning, collusion-based inference, and gradient 
inversion attacks augmented with generative models. The 
growing sophistication of these threats necessitates the 
development of layered, context-aware defence mechanisms. 
Fig. 2 illustrates the key threat models encountered in FL 

environments, offering a taxonomy of representative attack 
types based on mechanisms and impact. 

1) Membership Inference Attacks (MIA): Membership 

inference attacks (MIA) pose a fundamental threat to privacy in 

machine learning. In this attack, an adversary attempts to 

determine whether a specific data instance was part of the 

training dataset used to develop the model. The implications are 

severe, especially when dealing with sensitive datasets such as 

electronic medical records or financial transactions [30]. 

These attacks exploit subtle behavioural discrepancies 
between the model’s predictions on seen versus unseen data. For 
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example, models typically return higher confidence scores or 
lower prediction entropy on training data than on unfamiliar 
inputs [31]. By leveraging such output characteristics, attackers 
can infer membership with non-trivial accuracy. Additionally, 
some variants assess model sensitivity to the presence or 
removal of specific samples, thereby detecting overfitting or 
memorisation tendencies. 

Research has demonstrated the feasibility of MIAs across a 
range of model architectures and datasets. Key enabling factors 
include overfitting, model complexity, and the availability of 
public query APIs that allow repeated probing [23]. Attackers 
often rely on shadow models—locally trained replicas 
mimicking the target model's behaviour—to optimise their 
inference strategies. While simple mitigation techniques like 
limiting the number of queries have been proposed [13], these 
alone are insufficient in high-risk applications. 

2) Property inference attacks: Property inference attacks, a 

closely related threat, extend the scope of privacy breaches by 

targeting aggregate properties of the training dataset rather than 

individual data points. In property inference attacks, the 

adversary aims to infer statistical characteristics or sensitive 

attributes of the training data, such as the proportion of 

individuals with a specific medical condition or demographic 

information. These attacks exploit the model's learned 

representations to extract information about the overall 

distribution and characteristics of the training data, potentially 

revealing sensitive information about the population from 

which the data was drawn. For instance, an adversary might try 

to determine a specific disease's prevalence among the 

individuals trained to train a diagnostic model. The 

effectiveness of property inference attacks depends on the 

model's tendency to encode statistical patterns and correlations 

in the training data, which can then be extracted and analysed. 

3) Model poisoning attacks: Model poisoning attacks 

represent a significant threat to machine learning systems, 

where adversaries inject malicious data into the training dataset 

to impair the model's performance or manipulate its behaviour. 

This attack can have devastating consequences, especially in 

critical applications such as fraud detection, spam filtering, and 

medical diagnosis, where the accuracy and reliability of 

machine learning models are paramount [18]. By carefully 

crafting and injecting poisoned data points, attackers can subtly 

alter the model's decision boundaries, leading to incorrect 

predictions or biased outcomes [18]. The success of model 

poisoning attacks depends on the attacker's ability to inject 

enough poisoned data without being detected and the model's 

sensitivity to changes in the training distribution [8]. Security 

companies often rely on crowd-sourced threat feeds to train 

their classifiers, making them a natural injection point for such 

attacks. Furthermore, in federated learning scenarios, where 

multiple parties collaboratively train a model, a malicious 

participant can inject poisoned data, affecting the global 

model's performance. 

4) Backdoor attacks: Backdoor attacks, a particularly 

insidious form of model poisoning, involve injecting specific 

triggers into the training data that cause the model to misbehave 

only when those triggers are present in the input [1]. These 

triggers can be subtle patterns or features imperceptible to 

human observers but easily recognised by the compromised 

model. When a backdoored model encounters an input 

containing the trigger, it will produce a predetermined, 

incorrect output, bypassing the model's intended functionality. 

Backdoor attacks are particularly concerning because they can 

be challenging to detect, as the model performs normally on 

most inputs and only exhibits malicious behaviour when the 

trigger is present. One study notes that backdoor attacks are 

highly effective when applied to computer vision models 

without many poisoned examples [12]. Explanation-guided 

backdoor poisoning attacks have also been investigated for 

malware classifiers. 

5) Gradient leakage attacks: Gradient leakage attacks 

exploit the information contained in the gradients of a model 

during training to infer sensitive information about the training 

data. In distributed learning settings, where model updates are 

shared among multiple participants, attackers can intercept 

these gradients and reconstruct the training data or extract 

sensitive attributes. Gradient leakage attacks can reveal 

individual data points, statistical properties of the data, or even 

the labels associated with specific data points. These attacks 

pose a significant threat to privacy in federated learning and 

other distributed learning scenarios, where data is decentralised 

and sensitive.  

6) Free-rider attacks: Free-rider attacks occur in 

collaborative learning settings, such as federated learning, 

where participants contribute to training a shared model. In a 

free-rider attack, a malicious participant exploits the 

contributions of others without contributing meaningfully to the 

training process. The free-rider may copy the model updates 

from other participants without performing any local training or 

contribute low-quality updates that do not improve the model's 

performance. By exploiting the contributions of others, free-

riders can gain access to a high-quality model without incurring 

the computational costs or expending the effort required for 

training. The proposed framework prevents attribute disclosure, 

homogeneity, and background knowledge threats by using local 

differential privacy, which adds noise to the data [1]. 

7) Sybil attacks: Sybil attacks, also relevant in distributed 

learning scenarios, involve an attacker creating multiple fake 

identities to gain disproportionate influence over the training 

process. By controlling various "Sybil" clients, the attacker can 

manipulate the model's updates, inject bias, or even cause the 

model to learn incorrect patterns. Sybil attacks are particularly 

challenging to defend against because it can be difficult to 

distinguish legitimate clients from fake ones. To solve the 

single point of failure in federated learning, researchers have 

explored a blockchain-assisted decentralised federated learning 

that will completely prohibit malicious clients from poisoning 

the whole learning process or protect the entire process [1]. A 

blockchain-based federated learning model with secure multi-

party computing model verification has been suggested to 
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counter poisoning attacks [1], [19]. Furthermore, secure 

aggregation protocols can be employed to ensure that the global 

model update is computed correctly, even in the presence of 

malicious participants [2], [6]. Federated Learning (FL) 

systems face increasingly complex and adaptive threats, 

including multi-vector and coordinated attacks. These attack 

types vary by mechanism, intent, privacy, or model 

performance impact. Fig. 2 summarises key threat models in 

FL, including membership inference, property inference, model 

poisoning, backdoor attacks, and Sybil attacks, highlighting 

their mechanisms and potential consequences. Understanding 

these models provides the foundation for evaluating appropriate 

countermeasures. 

 
Fig. 2. Threat model of federated learning attacks. 

C. Defence Strategies Against Federated Learning Attacks 

Recent studies have revealed vulnerabilities in federated 
learning, demonstrating that model updates can inadvertently 
leak private information, necessitating robust defence 
mechanisms [9], [32]. A multifaceted approach encompassing 
data-level, model-level, and system-level defences is crucial to 
bolster the security of federated learning systems. Hybrid 
strategies integrate multiple defence mechanisms and offer a 
promising avenue for enhanced security and resilience against 
diverse attacks [2]. Multiple defence mechanisms have been 
proposed to combat various threats in FL, each addressing 
specific vulnerabilities. These include privacy-preserving 
techniques, robust aggregation methods, and decentralised trust 
frameworks. Fig. 3 maps common FL attack vectors to 
corresponding defence strategies and highlights the limitations 
associated with each countermeasure. This visual summary 
helps clarify the relationships between threats and mitigation 
approaches, allowing a deeper evaluation of specific techniques. 

1) Data-level defences: Data-level defences constitute the 

first line of protection, focusing on safeguarding individual data 

points before they contribute to the global model [9]. Local 

Differential Privacy is a prominent technique, injecting noise 

into the client's local updates to obscure the contribution of 

individual data points [1]. Homomorphic Encryption offers 

another layer of protection by allowing computations on 

encrypted data, ensuring that the server only processes 

encrypted model updates, thus preventing access to raw data 

[19]. Applying these approaches can effectively mitigate 

privacy risks associated with sensitive training data [19]. 

Employing these methods can substantially diminish the risk of 

privacy breaches, reinforcing the protection of sensitive 

training data. 

2) Model-level defences: Model-level defences operate at 

the aggregation stage, aiming to mitigate the impact of 

malicious or noisy updates on the global model [5]. Robust 

aggregation techniques, such as Krum, Median, Bulyan, and 

Trimmed Mean, identify and discard or down-weight 

potentially malicious updates, ensuring the global model 

remains robust despite adversarial clients. On the other hand, 

certified defences provide provable guarantees on the model's 

robustness against specific attacks, offering higher security 

assurance. These strategies play a key role in mitigating 

malicious influence and preserving the integrity of the global 

model. 

3) System-level defences: System-level defences fortify the 

overall federated learning infrastructure, addressing potential 

vulnerabilities in the communication and coordination 

processes. Blockchain technology can be leveraged to create a 

decentralised and immutable record of model updates, 

enhancing transparency and preventing tampering [1]. Learning 

model on the distributed ledger [7]. 

a) Blockchain-based validation: Hybrid approaches 

represent the most promising avenue for defending against 

federated learning attacks, combining multiple defence 

mechanisms to provide comprehensive protection. Integrating 

privacy-preserving techniques, such as Local Differential 

Privacy or Homomorphic Encryption, with robust aggregation 

methods can protect data privacy and mitigate the impact of 

malicious updates. This multi-layered approach creates a 

synergistic effect, enhancing the overall security and resilience 

of the federated learning system. For instance, incorporating 

differential privacy with blockchain can improve privacy 

management, allowing data owners to manage their privacy 

preferences [1]. This combination balances data privacy and 

model accuracy, making federated learning a viable option for 

sensitive applications [33]. 

b) Client verification protocols: Client verification 

protocols authenticate clients before they participate in training, 

mitigating the risk of unauthorised or malicious clients joining 

the federation. By verifying participants' identities on the 

blockchain, frameworks can prevent single points of failure and 

poisoning attacks [1]. Blockchain helps trace malicious attacks 

by storing model participation, user fingerprints, and other key 

information. A permissioned blockchain-based federated 

learning method can chain incremental updates to an anomaly 

detection machine. 

Developing effective defence strategies against federated 
learning attacks is an ongoing area of research, with new 
techniques and approaches emerging regularly. These 
techniques help ensure federated learning systems’ privacy, 
security, and reliability, enabling their deployment in real-world 
applications where data privacy is paramount [34]. It is essential 
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to address these challenges to unlock the full potential of 
federated learning and ensure its responsible and secure 
deployment across various domains [35]. 

As summarised in Table II, which supports a structured 
comparison of defences across attack vectors, validation 
metrics, and deployment constraints. Vectors, validation 
metrics, and deployment constraints.

TABLE II.  COMPARATIVE SUMMARY OF FL DEFENCE STRATEGIES 

Defence Type Technique Targeted Attacks Strengths Limitations 

Data-Level Local Differential Privacy Gradient leakage, inference Decentralised, lightweight Privacy-utility trade-off 

Data-Level Homomorphic Encryption Server-side attacks Strong privacy, data never exposed Heavy computation 

Model-Level Krum / Trimmed Mean Model poisoning, backdoor Effective against outliers Not Sybil-proof 

Model-Level DP-RFA Poisoning + privacy attacks Formal robustness guarantees Requires a trusted setup 

System-Level Secure Aggregation Gradient leakage Aggregated updates only Poisoning still possible 

System-Level Blockchain Validation Free-riders, Sybil, poisoning Immutable audit trail, client trust 
Computational & consensus 
latency 

 

4) Hybrid and emerging strategies: Hybrid defence 

strategies are gaining prominence in federated learning as they 

comprehensively address the multifaceted security challenges 

in decentralised machine learning. These strategies combine 

multiple defence mechanisms to create a layered security 

architecture that is more resilient to attacks than any single 

defence alone. For instance, combining differential privacy 

with secure aggregation can provide robust protection against 

inference and model poisoning attacks [10]. Differential 

privacy adds noise to the model updates to protect individual 

client data, while secure aggregation ensures that the server 

only receives the aggregated model updates without revealing 

individual contributions [1]. Furthermore, hybrid defence 

strategies can adapt to different attack scenarios and data 

distributions, providing a more flexible and effective defence 

mechanism [1]. This method is more suitable for sophisticated 

real-world situations because it combines the advantages of 

various defence strategies. The resilience of federated learning 

systems can be significantly increased by combining the 

benefits of blockchain technology with differential privacy 

techniques. 

Emerging trends in federated learning defence strategies 
focus on developing more adaptive and intelligent defence 
mechanisms that automatically detect and respond to evolving 
attack patterns. These strategies leverage anomaly detection, 
reinforcement learning, and meta-learning to identify and 
mitigate attacks in real-time. Anomaly detection algorithms can 
identify suspicious model updates or client behaviour that 
deviates from the norm. Reinforcement learning can be used to 
train a defence agent that learns to adjust defence parameters 
based on the observed attack patterns adaptively. Meta-learning 
can be used to train a model that can quickly adapt to new attack 
scenarios by learning from previous attacks. Through a case 
study on federated intrusion detection systems, the capabilities 
in detecting anomalies and securing critical infrastructure 
without exposing sensitive network data can be demonstrated 
[4]. Such cutting-edge strategies hold tremendous promise for 
improving federated learning's security and resilience in the face 
of constantly changing threats. To stay ahead of the attackers, 
companies should use the most advanced technology and work 

together in a way that allows them to contribute their insights 
securely. 

Advanced encryption techniques, such as homomorphic 
encryption, safeguard data privacy during federated learning. 
Homomorphic encryption allows computations on encrypted 
data without decrypting, ensuring that sensitive information 
remains protected throughout the learning process [1]. This is 
particularly useful in federated learning scenarios where data is 
distributed across multiple devices and cannot be shared in 
plaintext. By leveraging homomorphic encryption, the server 
can aggregate client model updates without seeing the 
underlying data, preventing potential privacy breaches [15]. The 
advent of sophisticated encryption strategies guarantees that 
sensitive data is protected during federated learning activities, 
thus increasing confidence in the technology's use across various 
industries. 

To enhance clarity and summarise the defensive landscape, 
Fig. 3 visually maps key attack vectors in Federated Learning 
(FL), the vulnerabilities they exploit, corresponding defence 
mechanisms, and their associated limitations. This diagram 
supports textual taxonomy and comparative tables by providing 
a holistic view of how threats are addressed and where residual 
risks remain. 

 
Fig. 3.  Threat–defence–limitation mapping in federated learning security. 

This flowchart visualises the relationship between common 
attack types in FL (e.g., model poisoning, inference attacks), the 
system vulnerabilities they exploit, corresponding mitigation 
strategies (e.g., differential privacy, secure aggregation), and 
each defence mechanism's inherent trade-offs or limitations. 
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V. DISCUSSION 

A. Key Findings 

Current security frameworks often lack the sophistication to 
discern subtle anomalies indicative of malicious intent, 
highlighting the need for intelligent, context-aware systems [2]. 
Such systems should integrate real-time monitoring of client 
activities, employing statistical analysis and machine learning 
techniques to identify deviations from expected behaviour [3]. 
Furthermore, the dynamic adjustment of privacy budgets, 
aggregation rules, or trust scores based on the assessed risk level 
is crucial for maintaining data privacy while preserving model 
accuracy. This adaptive approach requires sophisticated 
algorithms that balance the trade-off between security and 
utility, ensuring that defensive measures do not unduly impede 
learning [36]. 

The structured use of figures and summary tables was 
intentional to enhance reader comprehension, particularly given 
the complex multi-dimensional nature of threats and defences in 
FL systems. These visual tools complement the narrative 
synthesis and provide a concise reference for practitioners 
evaluating real-world applicability. 

Decentralised trust infrastructures, potentially leveraging 
blockchain and distributed ledger technologies, offer a 
promising avenue for enhancing accountability and security in 
large-scale FL systems [1]. The inherent immutability and 
transparency of blockchain provide a robust platform for 
validating client updates, auditing model evolution, and 
establishing tamper-proof records of all transactions [1]. By 
decentralising the trust mechanism, the reliance on a central 
aggregator is reduced, mitigating the risk of single points of 
failure and bolstering the overall resilience of the FL system [1]. 
Smart contracts can further automate and enforce security 
policies, ensuring participant compliance with predefined rules 
[1]. However, implementing blockchain-based solutions in FL 
environments presents challenges related to scalability and 
computational overhead [1]. Innovative approaches are needed 
to optimise the performance of blockchain networks in the 
context of FL, such as using consortium blockchains or sharding 
techniques [35]. 

Addressing the resource constraints of edge devices and IoT 
deployments is paramount for the widespread adoption of FL in 
diverse application domains. Lightweight cryptographic and 
differential privacy mechanisms must be developed to minimise 
the computational burden on these devices, enabling them to 
participate effectively in the learning process without 
compromising their performance or battery life. Techniques 
such as homomorphic encryption and secure multi-party 
computation can provide strong security guarantees, but often 
incur significant computational costs. Therefore, research is 
needed to develop more efficient variants of these techniques 
tailored to the specific requirements of FL. Moreover, novel 
approaches to differential privacy, such as local and distributed 
differential privacy, can offer enhanced privacy protection while 
minimising the impact on model accuracy. Integrating 
Blockchain, LDP, and FL enables stronger protection of trained 
models' integrity by preventing several attacks, such as 
poisoning attacks, background knowledge, and inference attacks 
[1]. 

The robustness of federated models can be significantly 
enhanced through adversarial training techniques that 
incorporate adversarial examples and simulated attacks into the 
training phase. Exposing the model to diverse potential threats 
can improve its ability to generalise to unseen data and resist 
malicious inputs. This approach generates adversarial examples 
to fool the model into making incorrect predictions. These 
examples can be crafted using various techniques, such as 
gradient-based methods and generative adversarial networks. 
Furthermore, simulated attacks can evaluate the model's 
resilience to adversarial behaviours, such as data poisoning and 
model poisoning. By incorporating these adversarial examples 
and simulated attacks into the training process, the model can 
learn to defend itself against a broader range of threats. 

Establishing standardised evaluation frameworks is essential 
for facilitating reproducibility and consistent comparisons of 
different FL security techniques. Open-source benchmarks and 
evaluation metrics should be developed to provide a common 
platform for assessing the performance of FL systems under 
various attack scenarios. These benchmarks should include a 
diverse range of datasets, model architectures, and attack 
strategies, reflecting the complexity and heterogeneity of real-
world FL deployments. Furthermore, the evaluation metrics 
should capture not only the accuracy and efficiency of the model 
but also its privacy and robustness. Differential privacy is often 
implemented to protect data privacy by obscuring model 
parameter data that each client transmits. This helps improve 
system security and preserve user data privacy [37] while 
enhancing model robustness and confidentiality [1]. However, 
current FL setups make it difficult for participants to verify the 
machine learning model's authenticity [19]. Standardised 
evaluation frameworks would enable researchers and 
practitioners to objectively compare security techniques and 
identify the most effective solutions for specific FL applications 
[11]. Recent studies demonstrate that an adversarial attacker 
may raise privacy concerns by launching inference attacks 
against other participants, even when the iterations are 
performed only a few times [30]. These attacks can be defended 
against by methods such as differential privacy. Compared to the 
taxonomy proposed by Nguyen et al. [11], which broadly 
classifies attacks into data and model categories, our model 
introduces a finer-grained surface-based classification. This 
facilitates more precise identification of attack entry points and 
informs layered defence design. Furthermore, our comparative 
defence summary (Table II) validates the practicality of 
proposed strategies by mapping them to real-world limitations 
such as computational cost and detection accuracy—current 
Research Gaps. 

A significant gap in current research is the lack of effective 
defences against complex multi-client collusion attacks, where 
multiple malicious participants coordinate their actions to 
compromise the global model [2]. These attacks pose a 
substantial threat, as they can be challenging to detect and 
mitigate due to their distributed nature and the potential for 
subtle manipulation of the learning process. Further 
complicating the landscape is the trade-off between robustness 
and model performance, where defences designed to enhance 
robustness against adversarial attacks can inadvertently degrade 
the accuracy and generalisation capabilities of the model [19]. 
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This trade-off requires careful consideration and the 
development of adaptive defence strategies that can dynamically 
adjust their strength based on the detected threat level and the 
desired level of model performance. The lack of comprehensive 
scalability testing in real-world federated learning scenarios also 
presents a challenge, as many existing defences have not been 
rigorously evaluated under large-scale deployments with 
heterogeneous data and diverse client capabilities. Addressing 
these gaps is essential for building trustworthy and reliable 
federated learning systems that can be confidently deployed in 
real-world applications. 

Within the intricate domain of contemporary technological 
progression, the convergence of artificial intelligence (AI) and 
cloud computing has emerged as a transformative paradigm, 
revolutionising data processing, analysis, and dissemination 
across diverse sectors. According to study [38], federated 
learning decentralises AI model training by enabling 
computations directly on edge devices, enhancing model 
personalisation while preserving user privacy. As discussed by 
[39], cloud infrastructure provides scalable and elastic 
computational resources that support real-time AI workloads 
and large-scale model deployment. Additionally, the study [40] 
emphasises the role of this convergence in enabling privacy-
aware and latency-efficient learning systems, particularly in 
applications involving sensitive or distributed datasets. 

This convergence is not merely a confluence of technologies 
but rather a synergistic amalgamation that amplifies the 
capabilities of both domains, fostering innovation and driving 
efficiency gains across a spectrum of applications. The essence 
of this convergence lies in the ability of cloud computing to 
provide a scalable and cost-effective infrastructure for AI 
algorithms, enabling them to process vast datasets and execute 
complex computations with unprecedented speed and 
efficiency. As we navigate an era defined by the exponential 
growth of data, fueled by the proliferation of interconnected 
devices, the need for robust and scalable data processing 
solutions has become paramount. With its inherent elasticity and 
ability to dynamically allocate resources, cloud computing 
offers an ideal platform for AI algorithms to thrive, providing 
the necessary computational power and storage capacity to 
handle the ever-increasing volume of data. 

The traditional paradigm of AI development, characterised 
by centralised data processing and algorithmic training, often 
encounters limitations regarding scalability, generalisation, and 
real-time responsiveness. To address these challenges, federated 
learning has emerged as a groundbreaking approach, enabling 
collaborative model training across decentralised devices while 
preserving data privacy [38]. Federated learning empowers AI 
models to learn from vast amounts of data distributed across 
numerous edge devices without centralising sensitive 
information. Federated learning, in essence, brings the learning 
process to the edge, directly onto devices, harnessing the 
computational capabilities of heterogeneous devices to enhance 
model quality [38], [39]. This distributed approach to machine 
learning addresses critical challenges associated with data 
privacy, security, and access in traditional centralised systems. 

Federated learning operates on the principle of distributed 
model training, where each participating device locally updates 

a shared model using its data, subsequently transmitting the 
model updates to a central server for aggregation. This iterative 
process of local model training and global model aggregation 
ensures that the learned model generalises well to the diverse 
data distributions across different devices, without 
compromising the privacy of individual datasets [38]. Federated 
learning distinguishes itself through its ability to train models 
across decentralised devices, offering a solution to privacy 
concerns and scalability challenges inherent in centralised 
systems [38]. By keeping data localised on devices, federated 
learning minimises the risk of data breaches and misuse, while 
utilising vast datasets distributed across numerous sources [41]. 
Moreover, federated learning enhances model generalisation by 
leveraging the diversity of data across different devices, 
resulting in more robust and accurate AI models that can 
effectively address real-world problems. 

Federated learning, a burgeoning technique in distributed 
machine learning, facilitates model training across many 
decentralised devices, obviating the need for centralised data 
collection. This approach is particularly salient in scenarios 
where data privacy is paramount, such as healthcare, finance, 
and IoT applications [38]. By enabling collaborative model 
training without direct access to sensitive data, federated 
learning upholds user privacy and complies with stringent data 
protection regulations [38]. The core tenet of federated learning 
lies in its ability to train models across diverse data distributions, 
enhancing generalisation and robustness. The decentralised 
nature of federated learning obviates the need to consolidate data 
in a central repository, which can be daunting due to logistical 
hurdles, regulatory constraints, and security considerations [38]. 
Synchronous federated learning requires all participants to 
complete local computations before updates are sent to a central 
server. In contrast, asynchronous federated learning allows the 
central server to immediately integrate updates from any ready 
participant [39]. 

To further enhance the privacy guarantees of federated 
learning, differential privacy techniques can be integrated to 
obfuscate individual contributions during model training [39]. 
Differential privacy introduces carefully calibrated noise to the 
model updates, ensuring that the presence or absence of any 
single data point has a negligible impact on the final model, 
thereby protecting the privacy of individual users. Federated 
learning not only addresses privacy concerns but also improves 
the efficiency and scalability of machine learning models. This 
approach is beneficial when data are located in multiple clinical 
systems or when learning from sensitive personal data. 

The convergence of federated learning and differential 
privacy holds immense promise for many applications, 
particularly in domains where data privacy and security are 
paramount. Differential privacy enhances data privacy in 
federated learning by adding noise during data queries and 
model updates [39]. These areas include healthcare, finance, and 
the Internet of Things. 

VI. FUTURE DIRECTIONS 

Future research directions should prioritise the development 
of adaptive, context-aware defences that can dynamically adjust 
their parameters and strategies based on the specific 
characteristics of the data, the threat environment, and the 
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available resources. By tailoring the defences to the particular 
context, it becomes possible to optimise their effectiveness and 
minimise their impact on model performance [3]. Combining 
secure aggregation with differential privacy dynamically 
represents another promising avenue for future research. Secure 
aggregation ensures that individual client updates are aggregated 
without revealing the underlying data, while differential privacy 
adds noise to the aggregated updates to protect against inference 
attacks [19]. Dynamically adjusting the parameters of these 
techniques based on the detected threat level and the desired 
privacy-utility trade-off can further enhance the security and 
performance of federated learning systems. Decentralised, 
blockchain-supported federated learning security offers a novel 
approach to improving trust and transparency in federated 
learning systems [7]. Attack detection and early warning 
systems in federated learning are crucial for proactively 
identifying and mitigating potential threats before they can 
cause significant damage. Integrating federated learning with 
blockchain technology allows for creating immutable audit trails 
and decentralised governance mechanisms, improving the 
learning process's accountability and trustworthiness [33]. A 
consortium blockchain-based federated learning framework 
enables decentralised, reliable, and secure federated learning 
without a centralised model coordinator [42]. Blockchain can 
address key challenges, propel the field forward, and potentially 
enhance data privacy and improve trust and security [35]. 

VII. CONCLUSION 

Federated Learning (FL) represents a transformative 
approach in privacy-preserving machine learning, enabling 
decentralised model training across distributed clients without 
exposing raw data. However, the shift from centralised to 
federated paradigms introduces novel vulnerabilities that 
adversaries can exploit to compromise model integrity, data 
privacy, and system reliability. 

Despite the comprehensive scope of this review, several 
limitations should be acknowledged. First, the analysis is 
constrained by the availability and maturity of published studies 
between 2020 and 2025, which may not fully capture the most 
recent developments or unpublished techniques in FL security. 
Second, while the taxonomy and comparative evaluation 
provide structured insights, they rely on secondary data rather 
than experimental benchmarking. Furthermore, the real-world 
effectiveness of many proposed defences—especially in large-
scale, heterogeneous FL deployments—remains underexplored 
due to a lack of unified validation frameworks. These limitations 
highlight the need for ongoing empirical evaluation and 
longitudinal studies to assess defence robustness in dynamic 
adversarial settings. 

To advance the field, future research must prioritise the 
development of adaptive, intelligent defence mechanisms 
capable of responding dynamically to evolving threats. 
Emphasis should also be placed on achieving a balance between 
security, privacy, and performance, particularly in large-scale, 
heterogeneous environments. Hybrid defence architectures, 
federated adversarial training, and lightweight cryptographic 
techniques hold promise in addressing these challenges. 
Ultimately, the continued evolution of FL security requires 
collaborative efforts across disciplines, integrating insights from 

cryptography, distributed systems, artificial intelligence, and 
regulatory policy. Ensuring robust, trustworthy FL systems will 
support privacy-aware innovations across critical sectors such as 
healthcare, finance, and autonomous systems. 

Limitations: While this review provides a comprehensive 
classification of FL attack vectors and defence mechanisms, it is 
limited by the scope of current literature and the lack of unified 
benchmarking datasets. Furthermore, the practical deployment 
challenges—such as computation overhead, privacy-utility 
trade-offs, and client heterogeneity—require empirical 
validation in future work. 
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