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Abstract—The current intelligent logistics vehicle scheduling 

faces challenges, including the difficulty of obtaining real-time 

location data and the need for manual intervention in emergencies. 

To address these issues, a modified multi-population hybrid 

genetic algorithm is proposed, along with an intelligent scheduling 

model constructed through the reconstruction of domain 

generation strategies. Experimental results show that the model 

stabilizes the total cost at 7864 yuan within 49 iterations, whereas 

the dual-population hybrid genetic algorithm requires 51 

iterations, making convergence more time-consuming. Moreover, 

when the scheduling frequency is two, the research model 

successfully allocates three company vehicles, whereas the 

comparison algorithm can only allocate two. Overall, the research 

model offers significant advantages in reducing operating costs 

and enhancing dynamic response capabilities, providing effective 

technical support for the digital transformation of logistics 

companies. 
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I. INTRODUCTION 

With rapid technological advancements, intelligent systems 
are increasingly integrated into various industries. Intelligent 
vehicle management is a key factor in improving operational 
efficiency in logistics and transportation [1]. Scientific 
scheduling of logistics vehicles optimizes routes and vehicle 
allocation, while also enabling real-time tracking of logistics 
resources, thus improving efficiency based on vehicle status 
and road conditions [2,3]. Although current intelligent logistics 
vehicle scheduling uses machine learning and big data analysis 
to predict demand fluctuations and optimize route selection, 
challenges remain [4]. Data silos significantly affects overall 
scheduling performance, while factors such as weather changes 
and uneven resource distribution make it harder to matching 
vehicles with cargo [5]. Some intelligent logistics vehicle 
scheduling systems cannot fully monitor and manage vehicle 
safety, limiting their ability to provide comprehensive data 
reports and statistics, which limits enterprises in conducting in-
depth analysis and optimization [6]. To address these challenges, 
this study integrates the Domain Generation Algorithm (DGA) 
with the Multi-Population Hybrid Improved Genetic Algorithm 
(MPHIGA). The proposed model aims to improve intelligent 
logistics vehicle scheduling. DGA generates random domain 
names, which are introduced into MPHIGA for population 
initialization and mutation operations, enhancing the 
algorithm’s global search capability. This study aims to 
improve real-time monitoring and positioning in logistics 
vehicle scheduling, enhance the profitability of logistics 

enterprises, and support the transformation of the logistics 
industry. 

This study consists of four sections. Section II summarizes 
domestic and international research on MPHIGA and logistics 
vehicle scheduling. Section III focuses on optimizing MPHIGA 
with DGA to develop the scheduling model. Section IV 
evaluates the performance and practical application of the 
proposed model. Finally, Section V presents the study's 
conclusions. 

II. RELATED WORKS 

MPHIGA is an improved genetic algorithm that uses 
multiple populations for simultaneous optimization, enhancing 
global search capabilities and preventing premature 
convergence. Many researchers have explored its core 
characteristics. For example, Yu et al. proposed an algorithm 
based on a hybrid genetic algorithm to reduce the total response 
time between cloud data centers and medical devices. By 
combining the genetic algorithm with a hybrid metaheuristic 
method and conducting simulation experiments, the study 
demonstrated the effectiveness of this approach [7]. Sun H’s 
team introduced a particle swarm optimization method based 
on genetic algorithms for inverse lithography technology. This 
method improved lithographic imaging performance through 
iterative optimization. Experimental results showed that it had 
better convergence capability compared to traditional genetic 
algorithms [8]. Additionally, DGA enhances search efficiency 
and solution quality through the cooperation of two populations. 
Its strong search ability has led to its adoption by some 
researchers. Fang et al. developed a novel interval prediction 
method for photovoltaic power generation to improve 
forecasting timeliness. Applying an integral dual-domain 
decomposition method for learning and prediction, the study 
found that the error values were significantly reduced [9]. 
Zhang’s team proposed a wave source localization method for 
harmonic analysis. By analyzing harmonic and non-harmonic 
sources from a time-domain perspective, simulation 
experiments verified the effectiveness of this approach [10]. 
Zhan et al. investigated the freshness of sensory data in 
unmanned aerial vehicles and introduced a domain generation 
algorithm-based strategy to obtain near-optimal solutions. By 
enabling rapid decision-making, this approach improved 
computational efficiency. Results showed that the algorithm 
exhibited strong flexibility [11]. 

Intelligent logistics vehicle scheduling plays a key role in 
transportation and has been widely applied by logistics 
enterprises in recent years. Effective scheduling models allows 
for efficient resource allocation. Cho’s team addressed the 
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limitations of traditional logistics research by proposing a 
heuristic scheduling algorithm. By introducing various cost 
functions to evaluate scheduling results, experiments showed 
that this method effectively reduced delivery costs [12]. 
Elgharably et al. developed a hybrid search algorithm based on 
the vehicle routing problem in operations research. This 
algorithm solves solve multi-objective problems with balance 
trade-offs. Simulation experiments verified its feasibility and 
effectiveness [13]. Berghman et al. introduced a general model 
for outbound vehicle routing and conducted a review of 
comprehensive scheduling problems using an integrated 
approach. The study confirmed that this method provided 
valuable data references for future research directions [14]. 
Ding’s team proposed a novel vehicle scheduling method to 
recommend optimal routes for electric vehicles, aiming to 
mitigate traffic congestion. By integrating multiple interactive 
modules for iterative decision-making, results demonstrated the 
feasibility of this approach [15]. Shen and Yan examined the 
impact of bus services on traffic and introduced a dynamic 
vehicle scheduling method. Using hybrid dynamic control, the 
method handled abnormal operating conditions effectively. 
Experimental results indicated strong flexibility and timeliness 
[16]. 

Existing research has made progress in reducing logistics 
costs and optimizing logistics services. However, challenges 
such as information delays and inaccuracies remain. To address 
these limitations, this study integrates DGA with MPHIGA to 
develop a novel intelligent logistics vehicle scheduling model. 
Each scheduling scheme undergoes a fitness function, and 
individuals are selected for genetic and crossover operations 
based on fitness values. The study employs a multi-population 

hybrid improved genetic algorithm, primarily addressing the 
issues of traditional genetic algorithms in logistics scheduling, 
such as falling into local optima and insufficient population 
diversity. By introducing domain name generation algorithms 
to optimize dynamic coding strategies, it resolves the decoding 
efficiency bottleneck under complex constraints. Compared to 
existing models, its multi-population co-evolution mechanism 
simultaneously optimizes vehicle allocation and route 
generation, making it suitable for high-dimensional logistics 
scheduling. This approach aims to enable rapid adjustments to 
scheduling strategies in response to changing logistics demands, 
providing flexible logistics solutions. 

III. THE MULTI-POPULATION HYBRID IMPROVED VEHICLE 

SCHEDULING MODEL FOR INTELLIGENT LOGISTICS 

A. Intelligent Logistics Vehicle Scheduling Strategy Based on 

MPHIGA 

Compared with the traditional genetic algorithm, MPHIGA 
breaks away the framework of single-population genetic 
evolution and assigns different control parameters to different 
populations through simultaneous optimization searches [17]. 
In MPHIGA, multiple populations achieve collaborative 
evolution through specific operational factors, enhancing 
global search capability and prevents premature convergence 
compared to the traditional genetic algorithm [18,19]. 
MPHIGA is applied to intelligent vehicle scheduling strategies, 
automatically calculating the optimal vehicle scheduling plan 
based on multiple factors such as vehicle location, real-time 
road conditions, and cargo volume. The workflow of MPHIGA 
is shown in Fig. 1. 
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Fig. 1. Schematic diagram of MPHIGA workflow. 

As shown in Fig. 1, MPHIGA first initializes the population 
size and the scale of each population randomly. The number of 
sub-populations is set according to the problem complexity and 
resource constraints. The fitness function evaluates each 
individual in the sub-population based on the problem 
requirements. In the selection process, individuals with higher 
fitness values are more likely to be selected. The crossover and 
different crossover strategies can be used to maintain diversity. 
The fitness function is given in Eq. (1). 
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In Eq. (1), ( )ejF G  and 1x   represent the objective 

function value and the feasibility of the decoded solution as a 
binary variable, respectively. 

0M  is assigned a finite integer. 

x  and 0x   are binary variables and represent an 

infeasible decoded solution. When applying MPHIGA to the 
intelligent logistics vehicle scheduling strategy, the intelligent 
scheduling dynamically adjusts the transportation plan based on 
demand, reducing empty mileage and transportation time. The 
key components of intelligent logistics vehicle scheduling are 
shown in Fig. 2. 
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Fig. 2. Schematic diagram of the components of intelligent logistics vehicle scheduling. 
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As shown in Fig. 2, the key components of intelligent 
logistics vehicle scheduling consist of five main parts. The data 
collection and monitoring technology uses sensors and onboard 
intelligent devices. Sensors collect real-time key data from 
logistics vehicles, while onboard intelligent devices monitor 
vehicle status to ensure accurate execution of scheduling 
instructions and enhance transportation safety. The intelligent 
scheduling algorithm uses big data and artificial intelligence to 
optimize logistics scheduling, with cloud computing and big 
data analysis providing efficient data storage and processing 
capabilities. The dispatch center and system platform include 
the intelligent dispatch center, user interface, and operating 
system. The dispatch center receives and processes data from 
sensors and onboard devices, generating scheduling 
instructions based on intelligent algorithms and transmitting 
them in real-time to drivers and vehicles. The evaluation 
function for the total path length in logistics vehicle scheduling 
is given in Eq. (2) [20]. 

In Eq. (2), IX  and l  represent the midpoint of the line 

segment connecting the start and end points and the path, 

respectively. num  and 1punishp  are the number of 

infeasible segments in the path and the penalty value. Iy  

represents the vertical coordinate when the two-dimensional 
path encoding is converted into one-dimensional encoding. By 
sorting the selection probabilities assigned to individuals, the 
cumulative probability equation is given in Eq. (3). 
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Transportation equipment and logistics networks ensure the 
execution of logistics transportation tasks and support the 
implementation of intelligent logistics vehicle scheduling. 
Other key elements include real-time detection and early 
warning systems, which reduce transportation risks. The 
intelligent logistics vehicle scheduling strategy based on 
MPHIGA is shown in Fig. 3. 
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Fig. 3. Intelligent logistics vehicle scheduling strategy based on MPHIGA. 

As shown in Fig. 3, in the MPHIGA-based intelligent 
logistics vehicle scheduling strategy, each individual represents 
a potential scheduling plan. After setting the basic parameters 
of the genetic algorithm, each sub-population is randomly 
initialized. The fitness function defines and evaluates 
individuals and scheduling plans based on the vehicle 
scheduling problem requirements and multiple indicators. 
Within each sub-population, the crossover operation generates 
new offspring. The mutation operation is usually random, and 
individuals from different sub-populations exchange 
information to enhance capabilities. The exchange strategies 

include both synchronous and asynchronous communication. 
The threshold value in the exchange strategy is given in Eq. (4). 
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In Eq. (4), if , N , and avgf  represent the fitness value 

of the i -th individual in the population, the number of 

individuals in the population, and the average fitness value. The 
crossover probability equation is given in Eq. (5). 
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In Eq. (5), maxf  and 1cp  represent the fitness value of 

the optimal individual in the population and the maximum 

mutation probability. f    and 2cp  represent the larger 

fitness value and the minimum mutation probability of the two 
chromosomes to be crossed. 

B. Construction of the Intelligent Logistics Vehicle 

Scheduling Model with DGA 

Although applying MPHIGA to intelligent logistics vehicle 

scheduling allows precise environmental recognition through 
high-precision sensors and visual recognition technologies, it 
may still prematurely converge to local optima when facing 
complex problems due to ineffective selection strategies. For 
large-scale problems, MPHIGA requires multiple iterations to 
generate and evaluate populations, which leading to increased 
computational time and resource consumption [21]. Therefore, 
DGA is introduced to optimize MPHIGA, allowing the search 
process to adapt dynamically and avoid premature convergence. 
DGA is an algorithm that generates a large number of random 
and short-lived domain names. It can generate different domain 
names as needed, offering flexibility and adaptability. The 
domain generation process of DGA is shown in Fig. 4. 
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Fig. 4. Schematic diagram of DGA domain name generation. 

As shown in Fig. 4, DGA initializes a pseudo-random 
algorithm using one or more specific parameters as seeds, 
which typically include key values, time, and random numbers. 
Different seeds generate different domain sequences. During 
the execution of the pseudo-random algorithm, DGA generates 
a series of numerical sequences based on the input seed, 
forming part of the domain names. The generated sequences are 
then combined into one or more domain names. These domain 
names are often used by malware or attackers to communicate 
with servers or other targets. DGA-generated domain names 
exhibit high unpredictability and randomness, allowing 
attackers to periodically change the seed to alter the generated 
domain sequences. The calculation method for the consecutive 
number ratio is given in Eq. (6). 
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In Eq. (6), cdN  and L  represent the number of 

consecutive number pairs and domain name length, respectively. 
The equation for domain name length is given in Eq. (7). 

( )L len domain    (7) 

In Eq. (7), domain  and ()len  represent the domain 

name string and its length. The dynamic generation mechanism 
of DGA is used to adjust the search strategy of MPHIGA, and 
the optimization process is shown in Fig. 5. 

As shown in Fig. 5, DGA generates a large number of 
random domain names through its randomness generation 
mechanism. This randomness is introduced into MPHIGA for 
population initialization and mutation operations, enhancing 
the global search capability. MPHIGA already has strong global 
search capabilities through hybrid improvement strategies, and 
introducing DGA further strengthens the ability to explore 
optimal solutions in a broader solution space. The entropy value 
of domain names is given in Eq. (8). 
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In Eq. (8), zp  represents the frequency of character z . 

The number of numeric characters is calculated using Eq. (9). 
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In Eq. (9), digits  represents the set of numeric character 

z . The user interface provides an intuitive interface for 
seamless integration with other logistics management systems, 
facilitating monitoring, collaboration, and data sharing. The 
randomness of DGA helps prevent MPHIGA based on 
premature convergence to local optima. By continuously 
introducing new random elements, the algorithm maintains 
exploration within the solution space and ultimately finds the 
optimal solution. The intelligent logistics vehicle scheduling 
model based on DGA-MPHIGA is shown in Fig. 6. 
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Fig. 5. Schematic diagram of DGA optimization of MPHIGA. 
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As shown in Fig. 6, the random generation mechanism of 
DGA produces an initial set of scheduling plans. After 
evaluating the fitness of each scheduling plan, the best 
individuals are selected for genetic and crossover operations. 
Mutation operations are usually random, with their probability 
and intensity adjusted according to the scenario. Within sub-
populations, replacement strategies ensure continuous 
optimization of the population. DGA enables non-standard 
crossover and mutation operations with a certain probability, 
and the migration operator facilitates information exchange and 
collaborative evolution among populations. The model 
terminates when the stopping condition is met or the preset 
iteration count is reached, ultimately obtaining the optimal 
logistics vehicle scheduling plan. The equation for computing 
the probability distribution of chromosomes in the population 
is given in Eq. (10). 
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In Eq. (10), i  and NP  represent the individual’s 

ranking and the population size. p  represents a constant 

within the range of (0,1) . The optimal path equation is given 

in Eq. (11). 
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In Eq. (11), wA  and wk  represent the number of 

customer points served by vehicle w  and the w -th path, 

respectively. wik  and 0wk  are the sequence positions of 

customer points in path w , while WC  and D  represent 

the cost per unit travel distance of vehicle w  and the 
maximum allowable travel distance. The vehicle transportation 
cost equation is given in Eq. (12). 
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In Eq. (12), h  and sqd  represent the transportation cost 

per unit distance and the transportation distance between 

customer s  and customer q . m  represents the total 

number of customers. 

IV. PERFORMANCE VERIFICATION OF THE DGA-MPHIGA 

INTELLIGENT SCHEDULING MODEL 

A. Performance Analysis of the Intelligent Logistics Vehicle 

Scheduling Model 

To analyze the performance of the intelligent logistics 
vehicle scheduling model based on DGA-MPHIGA, the study 
used intelligent logistics vehicle scheduling models based on 
MPHIGA, Simple Genetic Algorithm (SGA), and Dual 
Population Hybrid Genetic Algorithm (DPHGA) as 
comparison models. The experiments were conducted on a 
Windows XP SP3 operating system with a Pentium(R) 4 2.66 
GHz CPU and 12 GB of RAM. The experimental datasets 
included the TSPlib dataset and the Solomon dataset. The 
TSPlib dataset was used as the training set, containing specific 
city coordinates and distance matrix information for solving the 
traveling salesman problem and routing problems in vehicle 
scheduling. The Solomon dataset was used as the test set, 
providing detailed parameters such as customer location 
coordinates, time windows, and demand quantities. The study 
first compared the scheduling costs of the four models on the 
training and test sets, and the results are shown in Fig. 7. 
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As shown in Fig. 7(a), when the scheduling frequency 
reached five times, the cost of the proposed model was only 
0.112 million yuan. However, the cost of the MPHIGA 
scheduling model had already reached 0.128 million yuan when 
the scheduling frequency was three times. Fig. 7(b) shows that 
the DGA-MPHIGA scheduling model maintained lower cost 
consumption than the comparison models in the test set. When 
the scheduling frequency was four times, the cost of the 
MPHIGA and DPHGA scheduling models was 0.137 million 

yuan and 0.159 million yuan, respectively, while the cost of the 
SGA scheduling model was the highest among the four models 
at 0.188 million yuan. These results indicated that the DGA-
MPHIGA scheduling model exhibited lower cost consumption 
in both the training and test sets, demonstrating higher resource 
utilization. Next, the study conducted a comparative analysis of 
the scheduling time of the four models on the TSPlib dataset, 
with results shown in Fig. 8. 
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Fig. 7. Comparison of the scheduling costs of four models in training and test sets. 
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Fig. 8. Comparison of the scheduling time of four models in the TSPlib dataset. 

As observed in Fig. 8, when the number of scheduled 
vehicles was two, the scheduling time of the DGA-MPHIGA 
and MPHIGA models was 1.24 minutes and 2.67 minutes, 
respectively. When the number of scheduled vehicles reached 
ten, the scheduling time of the DGA-MPHIGA model was 3.98 
minutes, while the scheduling time of the SGA model was 5.94 
minutes longer than that of the proposed model. Meanwhile, the 
scheduling times of the MPHIGA and DPHGA models were 
7.31 minutes and 7.98 minutes, respectively. These results 

indicated that the DGA-MPHIGA model achieved the shortest 
scheduling time among the four models. The model was 
capable of computing the optimal vehicle scheduling solution 
in a shorter time, significantly improving overall logistics 
efficiency. Additionally, the shorter scheduling time allowed 
the model to quickly adapt to new order demands and traffic 
conditions. Finally, the study analyzed the vehicle distribution 
route length and time of the four models on the training and test 
sets, with results shown in Table I. 
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TABLE I COMPARISON OF VEHICLE DELIVERY ROUTE LENGTH AND TIME 

Data set Scheduling model 
Average calculated path 

length (km) 

Optimal path distance length 

(km) 
Running time (s) 

Training set 

DGA-MPHIGA 411.32 410.84 9.54 

MPHIGA 423.15 419.27 14.36 

DPHGA 435.81 425.33 18.24 

SGA 449.25 437.41 21.39 

Test set 

DGA-MPHIGA 412.94 408.57 9.21 

MPHIGA 427.35 424.35 14.17 

DPHGA 436.87 431.23 19.34 

SGA 451.29 439.78 22.17 

As presented in Table I, in the training set, the average 
computed path length and optimal path length of the DGA-
MPHIGA model were 411.32 km and 410.84 km, respectively, 
both lower than those of the comparison models. The SGA 
model exhibited the highest average computed path length at 
449.25 km, with a runtime of 21.39s. The optimal path length 
of the MPHIGA model in the training set increased compared 
to previous results, reaching 424.35 km, with a runtime of 
14.17s. At this point, the optimal path length of the DGA-
MPHIGA model was only 408.57 km, with its runtime being 
the shortest among the four models, at just 9.21s. These results 
demonstrated that the DGA-MPHIGA model had the shortest 
average computed path length and optimal path length, leading 
to faster delivery speeds and enabling the rapid computation of 
optimal logistics routes. 

B. Evaluation of the Practical Effectiveness of the Intelligent 

Scheduling Model 

To further validate the effectiveness of the intelligent 
logistics vehicle scheduling model in real-world applications, 
the study set the number of foreign trade enterprise vehicles to 
ten, along with ten loading points and thirteen unloading points. 
The transportation time was set to two hours, and the unit 
transportation cost was adjusted based on 5 yuan/km. The 

penalty coefficients for exceeding the time window and the 
vehicle’s rated load were set to 200 and 10,000, respectively. 
The study first analyzed the scheduling range of the four models 
when scheduling ten enterprise vehicles, with results shown in 
Fig. 9. 

As shown in Fig. 9, the DGA-MPHIGA model achieved a 
significantly wider scheduling range than the other three 
comparison models under the same scheduling frequency. 
When the scheduling frequency was two times, the DGA-
MPHIGA model scheduled three enterprise vehicles. When the 
scheduling frequency increased to four times, the SGA model 
scheduled three enterprise vehicles, while the DPHGA and 
MPHIGA scheduling models scheduled five and six enterprise 
vehicles, respectively. At this point, the DGA-MPHIGA model 
was capable of scheduling eight enterprise vehicles. When the 
scheduling frequency reached five times, the model 
successfully scheduled all ten enterprise vehicles. These results 
indicated that the DGA-MPHIGA model demonstrated 
excellent vehicle scheduling capabilities, handling broader and 
more complex logistics transportation tasks. The study then 
analyzed the total cost optimization iterations of the four 
models under different vehicle demand scenarios, with the 
iterative change curves shown in Fig. 10. 
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Fig. 9. Result diagram of scheduling range for dispatching enterprise vehicles. 
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Fig. 10. Total cost optimization iteration curve under different requirements. 
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Fig. 11. Comparison of average running time under different requirements. 

As shown in Fig. 10(a), when the vehicle demand was four, 
the DGA-MPHIGA model exhibited a shorter convergence 
time. When the iteration count reached 37, the total scheduling 
cost of the model gradually stabilized, converging faster than 
the comparison models. The DPHGA model had the longest 
convergence time, reaching 51 iterations. Fig. 10(b) shows that 
when the vehicle demand was eight, the total scheduling cost 
optimization curves of all four models exhibited a downward 
trend as the iteration count increased, eventually stabilizing at 
different iteration points. The convergence time and iteration 
count of the DGA-MPHIGA model were both shorter than 
those of the comparison models. These results indicated that the 
DGA-MPHIGA model learned data patterns faster and reached 
stability with lower computational resource consumption. 
Finally, the study compared the scheduling time of the four 
models under different vehicle demand scenarios, with results 
shown in Fig. 11. As summarized in Fig. 11, the average 
runtime of the DGA-MPHIGA model under different vehicle 
demand scenarios was the lowest among the four models. When 
the vehicle demand was four, and the number of cities was ten, 
the shortest average runtime of the DGA-MPHIGA model was 
0.87 seconds. At this point, the average runtime of the SGA 
model was 3.02 seconds, while those of the MPHIGA and 
DPHGA models were 1.97 seconds and 2.28 seconds, 
respectively. When the vehicle demand reached eight, the 

average runtime of all four models increased as the number of 
cities increased. When the number of cities reached 25, the 
average runtime of the DGA-MPHIGA and SGA models was 
3.94 seconds and 6.89 seconds, respectively, while the runtime 
of the DPHGA model was 4.86 seconds. The SGA model 
exhibited an average runtime of 9.03 seconds when the number 
of cities reached 30. These results indicated that the DGA-
MPHIGA model made scheduling decisions more quickly when 
handling different vehicle demands, ensuring faster delivery of 
goods from the starting point to the destination. 

V. CONCLUSION 

To address the shortcomings of current intelligent logistics 
vehicle scheduling methods in dynamic data acquisition and 
managing security, this study combined DGA and MPHIGA in 
an intelligent logistics vehicle scheduling model. By leveraging 
the dual-population mechanism of DGA and the hybrid strategy 
of MPHIGA, the model achieved information sharing and co-
evolution, balancing global search and local exploitation with 
the feasible vehicle scheduling solution is represented as an 
individual in genetic algorithm by chromosome coding. The 
results showed that the optimal path length of the MPHIGA 
model in the training set increased, reaching 424.35 km, with a 
running time of 14.17s. At this point, the optimal path length of 
the DGA-MPHIGA model is only 408.57km, with the shortest 
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running time among the four models, at just 9.21s. When the 
number of scheduling instances reaches 5, the cost of the 
research model is only 0.112 million yuan. However, when the 
MPHIGA scheduling model has 3 instances, the cost has 
already reached 0.128 million yuan. Based on the above results, 
the proposed DGA-MPHIGA model outperformed the 
comparison models in scheduling time, cost, and range, 
demonstrating excellent vehicle scheduling capability and 
handling more complex logistics transportation tasks. The 
proposed model overcomes the limitations of traditional 
algorithms in multi-model scheduling and dynamic order 
response through multi-population co-evolution and dynamic 
coding optimization, provides an expandable decision 
framework for building highly flexible intelligent logistics 
systems, and helps reduce the empty load rate of cold chain 
transportation. The differences in results between various 
datasets stem from the structural characteristics of the TSPlib 
and Solomon datasets. The TSPlib dataset focuses on classic 
path optimization, while the Solomon dataset includes complex 
constraints such as time windows and dynamic demands, better 
reflecting the challenges of real-time logistics scenarios. The 
proposed algorithm enhances global search capabilities through 
multi-population co-evolution mechanisms, combined with 
domain generation algorithms to dynamically adjust coding 
rules, demonstrating significant advantages when handling 
high-dimensional constraints. However, as the number of cities 
increased, the average runtime of the model continued to rise, 
indicating that its performance still required improvement. 
Future work will focus on further optimizing the model. 
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