
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 7, 2025 

578 | P a g e  

www.ijacsa.thesai.org 

Optimized Automatic Temperature and Humidity 

Control for Tobacco Storage Using TwinCAT and 

Deep Reinforcement Learning 

Zhen Liu, Jili Wang*, Shihao Song, Qiang Hua 

Qingdao ETSONG Technology Co.Ltd, Qingdao 266001, China 

 

 
Abstract—With the rapid development of the tobacco industry, 

precise temperature and humidity control in storage 

environments has become essential for maintaining tobacco leaf 

quality. Traditional manual control methods suffer from low 

efficiency and limited accuracy, failing to meet modern storage 

demands. This study proposes an optimized automatic control 

system integrating TwinCAT and deep reinforcement learning 

(DRL) to enhance climate regulation in tobacco warehouses. 

Leveraging TwinCAT’s real-time control capabilities and DRL’s 

adaptive decision-making, the system achieves precise 

environmental regulation. Experimental results demonstrate that 

temperature and humidity control errors are reduced to ±0.5 °C 

and ±3%, respectively. Compared to conventional methods, the 

proposed system lowers energy consumption by 20% and reduces 

the mildew rate of stored tobacco by 15%, significantly improving 

storage quality. This work offers a novel technical framework for 

intelligent environmental control in tobacco storage and provides 

valuable insights for broader applications in similar domains. 

Keywords—TwinCAT; deep reinforcement learning; tobacco 

storage; temperature and humidity control; system optimization 

I. INTRODUCTION 

In today's rapidly developing tobacco industry, tobacco 
storage is an important link between production and sales, and 
the importance of environmental control is increasingly 
prominent [1, 2]. As an agricultural product extremely sensitive 
to environmental conditions, the quality of tobacco leaves is 
closely related to the temperature and humidity in the storage 
environment. Improper temperature and humidity conditions 
will not only lead to mildew and moth-eating tobacco leaves but 
also affect their colour, aroma and taste, thus causing 
irreversible effects on the quality of tobacco products [3, 4]. 
Therefore, accurately and efficiently controlling the temperature 
and humidity in the tobacco storage environment has become an 
urgent technical problem that needs to be solved in the tobacco 
industry. 

The rapid progress of automation technology, especially the 
wide application of industrial automation software TwinCAT 
(The Windows Control and Automation Technology), provides 
a new solution for tobacco storage environment control [5, 6]. 
With its powerful real-time flexibility and openness, TwinCAT 
can realize real-time monitoring and precise control of storage 
environment parameters [7]. However, traditional control 
strategies are often based on fixed rules or models, which are 
difficult to adapt to the complex and changeable storage 
environment, resulting in unsatisfactory control effects. 

In this context, the rise of Deep Reinforcement Learning 
(DRL) technology has brought new ideas for controlling the 
tobacco storage environment [8]. By combining the perception 
ability of deep learning with the decision-making ability of 
reinforcement learning, DRL can enable the control system to 
learn and optimize itself in complex environments, thus 
achieving more intelligent and efficient control [9, 10]. 
Combining TwinCAT with DRL to build a new automatic 
temperature and humidity control system for a tobacco storage 
environment can not only make full use of the real-time control 
capabilities of TwinCAT but also further improve the 
performance and adaptability of the control system with the help 
of the intelligent optimization characteristics of DRL. 

This study aims to explore the feasibility and effectiveness 
of this fusion technique. An intelligent optimisation algorithm 
based on DRL is designed and implemented through an in-depth 
analysis of the characteristics of the tobacco storage 
environment and its demand for temperature and humidity, 
combined with the real-time monitoring and control system of 
TwinCAT. The algorithm can autonomously adjust the control 
strategy according to the real-time environmental data to best 
control temperature and humidity. At the same time, this study 
will verify the actual effect of the proposed system through 
experiments and compare it with the traditional control methods 
in order to provide a new and more efficient technical means for 
tobacco storage environment control. 

Existing tobacco storage temperature and humidity control 
methods have limitations such as insufficient integration of 
industrial control systems and intelligent algorithms, difficulty 
in adapting to complex and variable storage environments, and 
less ideal control accuracy and energy efficiency. The research 
fills the gap by combining TwinCAT industrial control 
technology with deep reinforcement learning, realizing a more 
intelligent, adaptive and high-performance automatic 
temperature and humidity control system for tobacco storage, 
which effectively addresses the aforementioned shortcomings. 

This research will involve cutting-edge knowledge in many 
fields, such as automation control theory, deep learning, and 
reinforcement learning. By organically combining these 
theories, it aims to build an automatic control system with 
powerful and intelligent optimisation abilities. At the practical 
level, this study will focus on the practical application effect of 
the system, including control accuracy, stability, energy 
consumption and other aspects, to ensure that the proposed 
technology can truly meet the actual needs of tobacco storage. 
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The optimization research on the automatic control system of 
temperature and humidity in tobacco storage environment by 
integrating TwinCAT and DRL has important theoretical value 
and broad application prospects. This research can provide new 
technical support for the warehousing environment control of 
the tobacco industry and promote the development of the 
industry in a more intelligent and efficient direction. 

The basic theory section on TwinCAT and DRL elaborates 
on the TwinCAT platform, including its features, components, 
and real-time control capabilities, as well as the principles of 
DRL, such as Markov decision processes, state-action value 
functions, and the integration of deep neural networks with 
reinforcement learning. Subsequently, in the optimization 
design and implementation of the automatic temperature and 
humidity control system for tobacco storage environment, the 
design of the temperature and humidity automatic control 
system based on TwinCAT was introduced, covering the 
software and hardware aspects and system architecture, and the 
temperature and humidity control algorithm based on DRL was 
also developed to solve the coordination and optimization 
problems. The experimental and result analysis section provides 
experimental data through various graphs, comparative analysis 
with other methods, and discusses the performance of the 
proposed system, demonstrating the improvement in control 
accuracy, energy efficiency and stability. Finally, the conclusion 
summarizes the main findings of this study, highlights the 
effectiveness of the integrated system, and proposes future 
research directions. 

In the field of temperature and humidity control of tobacco 
storage, other researchers have proposed a variety of solutions. 
Some studies use the traditional PID control algorithm to adjust 
the temperature and humidity by setting fixed parameters, which 
realizes basic control, but it is difficult to cope with the complex 
and changeable interference in the storage environment, and the 
control accuracy and adaptability are limited. There are also 
studies on the use of fuzzy control methods to deal with 
uncertainty factors by using fuzzy rules, but there are 
shortcomings in dynamic response speed and optimization 
ability. In addition, some scholars try to combine simple 
machine learning algorithms with control strategies, although 
they have certain effects in specific scenarios, but lack of deep 
integration of industrial control systems. At present, the existing 
schemes generally have problems such as low integration with 
industrial control platforms, difficulty in adapting to changes in 
complex storage environments, and unsatisfactory control 
accuracy and energy efficiency, which are the directions to be 
further studied. In this study, TwinCAT industrial control 
technology and deep reinforcement learning are deeply 
integrated, which not only gives full play to the advantages of 
TwinCAT in real-time control and system integration, but also 
makes up for the shortcomings of existing schemes in complex 
environment adaptability and control performance with the help 
of deep reinforcement learning's adaptive learning and 
optimization decision-making ability, and forms a more 
intelligent, efficient and suitable for the actual industrial scene 
of tobacco storage temperature and humidity control scheme, 
which has made significant breakthroughs in technology 
integration and control effect. 

II. BASIC THEORY OF TWINCAT AND DRL 

A. Introduction to the Twincat Platform 

TwinCAT is a pure software controller, which is the core 
component of the Beckhoff controller, with excellent openness 
and expansion potential [11, 12]. It has an interface that can be 
connected to a common field. The development environment 
integrates Microsoft Visual Studio software, supports special 
programming languages such as IEC61131 and PLC, and is 
compatible with high-level languages such as C, C + + and 
MATLAB/Simulink. Users can choose programming tools 
according to task characteristics. In addition, TwinCAT has 
multi-core processing capabilities, which can use all cores to 
improve performance according to the controller's condition. 
The PC can be regarded as a calculator, PLC and motion 
controller when its running core is installed. 

TwinCAT's real-time system includes multiple industrial 
control software packages, covering various motion control 
software modules, such as TwinCATPLC, TwinCAT NC, 
TwinCAT CNC Scope View, etc. They can operate 
independently, exchange information, and work collaboratively 
through the TwinCAT ADS interface. The TwinCAT task 
manager controls the real-time process [13, 14]. 

TwinCAT PLC part is the core of Beckhoff equipment to 
implement robot motion control, including various logic 
instructions to control motor motion and some key sub-modules 
commonly used in programming [15]. Scope View is a system 
variable monitoring and analysis tool of TwincCAT software, 
which can display program variables in graphical form, which is 
convenient for users to monitor, analyze and control system 
variables in real-time. It is also equipped with Cursor Cursor, 
Trigger Trigger and other tools for easy operation [16]. Scope 
Array Bar Project monitors array variables with histograms; 
Scope project monitors a single variable over a time program; 
The Scope YTNC project monitors axis variables by axis 
number; Scope YT project with reporting analyzes the YT graph 
with reporting function; Scope XY project observes the 
corresponding relationship between any two variables; Scope 
XY project with reporting analyzes the XY graph with reporting 
function. TwinCAT NC is responsible for axis motion control in 
the TwinCAT system, which can improve axis control 
performance and play a key role in logic and function control. 
As a core module, it accelerates platform development and 
broadens application scope. Its compatibility enables connection 
with other manufacturers' equipment, and it has the advantages 
of superior performance, fast speed, high efficiency, and 
convenience [17, 18]. 

In the TwinCAT system, the motor control process is divided 
into three layers: ① PLC axis, axis variables defined under the 
TwinCAT PLC module; ② NC axis, a virtual axis added to the 
NC axis configuration interface under the Motion module; ③ 
Physical axis, the motion execution and position feedback 
hardware obtained by I/O module scanning and added to the 
TwinCAT system, each layer has different functions and is 
interrelated. 
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B. Deep Reinforcement Learning (DRL) Principles 

Reinforcement learning (RL) uses the interaction between 
agents and the environment to continuously learn by trial and 
error to find the best strategy [19]. Specifically, RL does not rely 
on the real-time supervision signal to guide the learning path but 
relies on the reward signal evaluation strategy to indirectly guide 
the agent to learn towards the reward maximum and reduce the 
dependence on the accurate system model [20]. Under the RL 
framework, the agent makes decisions according to the real-time 
state of the environment. After execution, the environment 
enters a new state and feeds back the reward. The infinite loop 
of this decision and reward feedback constitutes its training 
process [21]. 

The core of training is agent decision-making to maximize 
long-term benefits [22]. The interaction between agent and 
environment in RL is often modeled as Markov decision process 
(MDP) [23]. MDP is characterized by a quadruple (S, A, P, r), S 
is the state set, A is the action set, P describes the probability that 
the state s ∈ S transitions to s'∈ S after executing the action a∈ 
A, and r is the reward obtained by the agent when it transitions 
from state S to the next state S' after executing the action. Under 
the MDP framework, the agent selects the action at∈A through 
the policy function π(at|st) based on the current state st ∈ S at 
time t, and gets a reward r (st, at) after execution. The next state 
is randomly determined by the transition probability P (st+1|st, 
at). The sequence of states, actions and rewards experienced by 
the agent before reaching the termination state constitutes a 
round, and its goal is to act to maximize the sum of all rewards 
at the end of the round, that is, the reward, which is defined in 
Eq. (1). 
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In the formula, N represents the total number of steps of the 
discrete step size. In order to distinguish the relative importance 
of immediate reward from future reward, a reward discount 
factor γ (ranging from [0, 1]) is introduced. When γ = 0, 
immediate reward dominates; When γ = 1, future rewards are 
more important. Therefore, the return Rt is redefined as Eq. (2). 
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The fundamental purpose of an agent is to find the optimal 
strategy π*, from which it can determine the best actions it 
should perform in each state and ensure the maximum discount 
reward. In order to explore the optimal strategy π*, a state value 
function V (s) can be constructed to evaluate the advantageous 
degree of reaching the current state s, as shown in Eq. (3). 
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The state-valued function V (s) is a means to evaluate the 
pros and cons of a strategy. For any s∈S, if the expected return 
according to the strategy π is higher than π', then Vπ(s)≥Vπ'(s), 
indicating that the strategy π is better, and the agent will tend to 
π when choosing the strategy function. Therefore, the optimal 
strategy π* is defined in Eq. (4). 

V ( s ) maxV ( s ), s S


      (4) 

Although the state value function can compare different 
strategies, it cannot find the optimal strategy [24]. Bellman 
created the state-action value function Qπ(s, a), which is used to 
measure the degree of return of taking action a according to 
strategy π in state s, as shown in Eq. (5). 

 
1

0

N
k

t t t t t t k t t
k

Q ( s ,a ) E R | s s,a a E r | s s,a a 





 
        

 (5) 

The optimal Q*(s, a) can be defined as Eq. (6). 

Q ( s,a ) maxQ ( s,a ), s S ,a A


      (6) 

In order to determine the strategy π, it is necessary to pick 
out the action matching the maximum value from the action state 
value function Qπ(s, a) for a specific state s. This is called greedy 
strategy, which is defined in Eq. (7). 
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When the agent operates according to the optimal strategy 
π*, the expression of V*(s) is shown in Eq. (8). 

V ( s ) maxQ ( s,a )



     (8) 

The corresponding Bellman equation can be obtained by 
recursive extension of Eq. (8), as shown in Eq. (9). 
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By recursive derivation of Eq. (6), the optimal Bellman 
equation of Q*(s, a) can be obtained, Eq. (10) can be obtained. 

as

Q ( s,a ) p( s ,r | s,a )[ r maxQ ( s ,a )]

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The premise of the research is to clarify the state transition 
probability and reward value of the agent, and the Bellman 
optimal equation can be solved iteratively, which is dynamic 
programming [25]. Algorithms with known state transition 
probabilities and rewards are collectively called model-based 
algorithms. Most RL problems assume that the state transition 
probability is unknown, and the algorithm set designed for this 
is called a model-free algorithm. 

Traditional reinforcement learning is limited, with small 
action and sample spaces and mostly discrete environments, 
which makes it difficult to cope with high-dimensional input 
data such as images and sounds [26, 27]. DRL combines high-
dimensional input of deep neural networks (DNNs) with 
reinforcement learning. DNNs have the latest technological 
advances in speech recognition, image classification, machine 
translation, robot control, etc. The commonly used architecture 
of DNNs is a feedforward neural network (FNN), a multi-layer 
perceptron model consisting of the input layer, one or more 
hidden layers, and an output layer [28]. 
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After the input signal is introduced into the input layer, it will 
be transmitted layer by layer in the network. The hidden layer 
and output layer are composed of multiple nodes (perceptrons) 
[29]. When each perceptron receives the input vector of the 
previous layer, it will assign a weight ω to each vector element 
x and sum it. The operation result can be expressed by Eq. (11). 

i i
i

z x b        (11) 

Where b is the deviation coefficient. After the summation 
operation is completed and the result is obtained, the activation 
function f is used to generate the neuron output y, and the 
calculation process of the neuron model is shown in Eq. (12). 
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The multiplication operation of adjusting the input weight of 
the perceptron can change its behaviour and that of the network. 
It is necessary to train the neural network to adjust the weight in 
a specific way so that the network behaviour meets the expected 
results [30]. Fig. 1 shows the DRL core architecture. The deep 
learning module captures target observation data from the 
environment and provides environmental state information. 
Then, the reinforcement learning component corresponds the 
current state to the corresponding action, evaluates the value 
according to the estimated return, optimizes the decision-
making action through the interactive process, and iteratively 
updates the network parameters to obtain the best strategy. 

 

Fig. 1. Deep reinforcement learning architecture. 

III. OPTIMIZATION DESIGN AND IMPLEMENTATION OF 

AUTOMATIC CONTROL SYSTEM FOR TEMPERATURE AND 

HUMIDITY IN TOBACCO STORAGE ENVIRONMENT 

A. Automatic Control System of Temperature and Humidity in 

Tobacco Storage Environment 

The inspection machine control system software software 
includes seven functional modules: start-stop speed control, 
servo motor control, etc. Accordingly, the software and 
hardware design process is carried out. 

Regarding software design, the inspection machine involves 
the interface design of the host computer based on the Qt 
framework, visual inspection algorithm program and Beckhoff 
PLC programming based on TwinCAT. The Qt host computer 
interface uses the Qt Creator development tool on the Windows 
platform (Qt 5.12. 2 versions). The host computer and Beckhoff 
PLC interact with each other through ADS communication 
protocol, and a communication bridge is built in Qt Creator 
environment with C + + language combined with ADSDLL 

library of Beckhoff TwinCAT to realize the reading and writing 
of PLC memory data by the host computer. Beckhoff PLC is the 
ADS server in this architecture, and the host computer is the 
client. It uses an asynchronous notification mechanism to send 
ADS requests, and the server sends responses through the Call-
back mechanism until the request is cancelled. Its advantage is 
that TwinCAT only transmits data when updated, which can 
avoid the loss of program running efficiency. 

The TwinCAT integrated development platform is used for 
the lower computer Beckhoff PLC program design. TwinCAT 
is a PC-based real-time control system that can accurately 
control and respond to real-time systems, supports multi-task 
parallel processing, and assigns different priorities to tasks as 
needed. Each task contains one or more program blocks to 
execute specific control logic to cope with complex control 
challenges. In addition, TwinCAT is compatible with various 
communication protocols, which facilitates data interconnection 
with other devices and systems. The control system architecture 
adopted in this paper is shown in Fig. 2. 
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Fig. 2. Control system architecture. 

B. Temperature and Humidity Control Algorithm Based on 

DRL 

Because DRL aims to control frequency deviation 
minimization and tie-line power stability, GCD pursues control 
cost minimization. It is difficult to comprehensively optimize 
and control frequency deviation and control cost by combining 
the two algorithms, especially in the special situation of the 
current control system, and the actual operation time may exceed 
the AGC control interval limit, resulting in performance 
degradation. Therefore, to solve the mismatch problem between 
the two, this study proposes an integrated frequency regulation 
architecture based on an intelligent controller, which gives 
regulation instructions on the premise of balancing the two 
objectives according to the real-time state of the system to 
achieve multi-objective optimization. 

In the automatic temperature and humidity control system, 
due to the wide variety of equipment involved and their unique 
characteristics, their frequency response speeds are also 
different, which requires the intelligent controller to accurately 
generate the matching power regulation instructions according 
to the unique performance characteristics of each frequency 
regulation unit. However, using traditional algorithms to 
complete this complex process often requires a lot of time and 
energy to carry out tedious parameter adjustment experiments to 
ensure the system's normal operation. Even so, when the system 
faces large-scale random disturbance, the dynamic performance 
of traditional algorithms is often unsatisfactory, and it is difficult 
to cope effectively with complex and changeable actual working 
conditions, which limits the stability and reliability of the 
temperature and humidity automatic control system to a certain 
extent. 

Therefore, this study proposes an integrated frequency 
control strategy for a multi-regional interconnected temperature 
and humidity automatic control system, using the algorithm as 
the intelligent controller, sensing relevant data and outputting 
control instructions simultaneously, and designing the reward 

function to consider multiple dimensions to solve coordination 
problems comprehensively. Through pre-training, the algorithm 
masters the dynamic performance of each frequency modulation 
unit and the characteristics of system frequency change and 
generates reasonable instructions in the execution stage to 
ensure that the deviation is within the specified range. Each 
region is regarded as an independent agent, and the control 
instructions are obtained by a multi-agent cooperative game. 
The advantages of this strategy are: it can avoid the problem of 
AGC performance degradation, the algorithm is a multi-output 
algorithm, the calculation time is less than the command cycle 
limit, the strategy can be updated online without relying on the 
model, and it can generate instructions based on the real-time 
status of each unit to exert its frequency modulation potential. 

IV. EXPERIMENT AND RESULT ANALYSIS 

Experimental data Table I shows that the detection 
performance of the improved scheme is significantly improved. 
Under the mAP @ 50: 5: 95 evaluation standards, the improved 
version improves by about 1.5 percentage points on average 
compared with the previous one. Except for SSD, the mAP50 
value of other methods exceeded 99.0%, and the mAP50 value 
of this method was the highest, reaching 99.5%. It can also be 
seen from Table 1 that although the improved method has a time 
delay of about 0.8 milliseconds compared with the original 
model, the processing speed is still about 130 fps, far exceeding 
the 20 fps of the two-stage target detector Faster-RCNN. 

TABLE I COMPARATIVE EXPERIMENTAL RESULTS 
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Fig. 3 shows the average reward of each round of the 
algorithm agent. The training consists of 3000 rounds, each 
containing 60 time slots. At the beginning of the time slot, the 
agent interacts with the environment, makes decisions and 
updates the network model. During this period, the average 
reward of the DDPG module and DQN module climbed and 
converged with the increase in training rounds. The average 
reward of the DDPG module increases rapidly after 300 rounds 
and stabilizes after 1000 rounds. The DQN module gradually 
converges from the beginning of learning, and its average 
reward tends to be stable after 300 rounds. As the number of 
rounds increases, the DQN module will reduce the exploration 

frequency and generate greater actions, making its output 
decisions and rewards tend to be stable. 

Fig. 4 explores the impact of warehousing computing 
resources on average weighted user energy consumption. The 
energy consumption of each scheme decreases with the increase 
of warehousing computing resources. When warehousing 
computing resources are scarce, the computing delay of users 
who choose to offload computing is too large, which does not 
meet the maximum delay permission conditions. Users prefer to 
execute tasks locally, resulting in higher user energy 
consumption. 

 

Fig. 3. DDPG unit average reward of the algorithm. 

 

Fig. 4. Average weighted user energy consumption under different warehousing computing resources. 

Drico

T
-D

R
L

4

3

2
5 10 15 20 25

PLC control

TwinCAT

Drico
T

-D
R

L

5

4

3

2

0 10 20 30 40

PLC control

TwinCAT

Drico

T
-D

R
L

0.10

0.05

10 20 30 40 50

PLC control

TwinCAT

Drico

T
-D

R
L

0.10

0.05

10 20 30 40 50

PLC control

TwinCAT

T

C
o
m

p
u

o
n

en
ts

0.005

0.004

0.003

0.002

0.001

0.000

0 20 40 60 80 100

T

In
te

ll
ig

en
t 

co
n

tr
o
l

0.005

0.004

0.003

0.002

0.001

0.000

0 20 40 60 80

Max Attention

Coordination D 

DRL:|  ><  

DRL:|  ><  

TwinCAT:|  ><  

TwinCAT:|  ><  

TwinCAT(cls):|  ><  

TwinCAT(ins):| < 

Avg



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 7, 2025 

584 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 5. Training results of different algorithms. 

As can be seen from Fig. 5, the distributed training 
architecture uses many agents in multiple parallel systems to 
conduct distributed exploration, which can accelerate the 
process, improve agent training efficiency, and reduce 
computing overhead. Compared with centralized automatic 
control control (AGC) based on PPO and DDPG, distributed 
AGC based on deep reinforcement learning (DRL) has a better 
training effect and greatly increases training time. At the same 
time, PPO and DDPG algorithms have great volatility in the 
learning process, and the reward convergence value fluctuates, 
obviously. Hence, it is difficult to cope with random 
interference. 

It can be seen from Fig. 6 that compared with DRL, PPO, 
DDPG and PID + PRPO, the frequency deviation at the same 
time point is smaller, and the frequency does not exceed 0.2 Hz 
during the control period. Because PID + PRPO cannot flexibly 

enable the quick response adjustment component to adjust the 
frequency, instability or over-adjustment problems will occur 
due to unreasonable parameter configuration, which may cause 
the frequency deviation to exceed 0.2 Hz and waste frequency 
adjustment resources. 

 

Fig. 6. Frequency deviation variation diagram of different algorithms. 

It can be seen from Fig. 7 that the frequency control strategy 
can better fit the disturbance curve. Compared with the 
traditional PID + PRPO frequency modulation method, DRL 
technology's frequency modulation scheme performs better. 
DRL combines the essence of fuzzy control and neural network 
control, which can provide real-time feedback, adjust 
environmental changes during operation, and promote the 
control system to better adapt to the nonlinear dynamic 
environment. Compared with other DRL algorithms, it has 
smaller power tracking errors, can complete frequency 
adjustment as quickly as possible, and is more suitable for 
fluctuations in load and distributed resources in temperature and 
humidity automatic control systems. 

It can be seen from Table II that each system index of 

the proposed strategy exceeds other strategies. Compared 

with other methods, this algorithm reduces the mean of Af 

by 19.3% to 58.1%, the mean of ACE by 12.6% to 77.4%, 

the mean of CPS1 by 0.15% to 28.6%, and the mean of CPS2 

by 2.06% to 20.1%. By comparison, the controller has the 

smallest change in performance and the best adaptability and 

robustness. 

 

Fig. 7. Control effects of different strategies under white noise disturbance. 
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TABLE II MODEL STATISTICAL EXPERIMENTAL RESULTS UNDER RANDOM WHITE NOISE DISTURBANCE 

Region Index  DRL PPO DDPG PI + PRPO 

Region 1 

Af/Hz 0.0694 0.0860 0.0912 0.1097 0.1689 

ACE/MW 13.3749 17.1171 21.1794 24.4013 44.2013 

CPS1/% 219.7602 219.4291 206.6361 203.8982 188.4960 

CPS2/% 106.1830 104.0160 98.2960 95.1940 88.3960 

Region 2 

Af/Hz 0.0563 0.0875 0.1159 0.1191 0.1838 

ACE/MW 11.1672 12.7006 19.9661 27.7134 44.9834 

CPS1/% 219.1354 219.0133 205.0983 201.8940 186.6480 

CPS2/% 104.8850 103.3780 97.2620 93.7310 87.5490 

As shown in Fig. 8, the average algorithm score is 2.799. As 
the number of iterations increases and the exploration rate 
decreases, the average score of ERDQN algorithm grows 
slowly, while the average score of DRL-ERD3QN algorithm 
shows an upward trend, and its score rises rapidly in nearly 3000 
rounds, which indicates that the network of this algorithm 
achieves rapid update in about 3000 rounds, while the neural 
network update speed of the other two algorithms is relatively 
slow. 

As shown in Fig. 9, the DQ-DRL algorithm does not 
overestimate the agent policy learning. This shows that the 
algorithm effectively avoids the overestimation problem by 
taking two minimum values of Critic current network to update. 
Although this approach may lead to underestimation, 
underestimation is more acceptable than overestimation. 

 

Fig. 8. Average score. 

 

Fig. 9. Comparison of estimation bias. 
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Fig. 10 shows the changing trend of the cumulative total 
reward of the DQ-DRL algorithm and the follower agent trained 
by the DRL algorithm in each round when the group contains 4 
units. It can be seen from the Fig. that in the early stage of 
training, the reward curves of both algorithms rise steadily. After 
about 35,000 rounds, the reward value of the DQ-DRL 
algorithm tends to stabilize and converge, while the reward 
curve of the DRL algorithm lags until about 55,000 rounds 

before converging. Moreover, the total reward value of the final 
convergence of the DQ-DRL algorithm is higher. This shows 
that although both algorithms allow the agent group to learn the 
stable formation control strategy, the DQ-DRL algorithm not 
only speeds up the convergence speed of the model but also 
improves the overall total reward of the agent group and 
enhances the superiority and robustness of the formation control 
model. 

 

Fig. 10. Total reward curve obtained in each round during the training period. 

V. DISCUSSION 

The integration of TwinCAT with Deep Reinforcement 
Learning (DRL) for temperature and humidity control in 
tobacco storage has led to a promising paradigm shift. Our 
results clearly show that this fusion not only solves the 
limitations of traditional control methods, such as poor 
adaptability to complex environments and poor accuracy, but 
also takes full advantage of the real-time processing power of 
TwinCAT and the adaptive decision-making capabilities of 
DRL to achieve better performance. The experimental results 
show that the temperature and humidity control error is reduced 

to ±0.5°C and ±3%, the energy consumption is reduced by 

20%, and the tobacco mildew rate is reduced by 15%, which 
highlights the practical value of the method. Our approach's 
ability to learn and adjust strategies in real-time is a key 
advantage compared to existing solutions such as PID control, 
which relies on fixed parameters and struggles to cope with 
dynamic changes, and fuzzy control that lacks self-optimizing 
capabilities. It is important to note that the success of the system 
depends on the seamless interaction between TwinCAT's 
industrial control infrastructure and the DRL algorithms, a 
synergy that enables the rapid acquisition, processing and 
execution of data, which is crucial in tobacco storage, where 
environmental fluctuations require a timely response. However, 
we also realize that the complexity of DRL model tuning and the 
need for sufficient training data may pose challenges to the 
widespread adoption of this method. Another aspect to consider 
is the versatility of our approach, and while it has been proven 
to be effective in tobacco storage, it is still worth exploring for 
its application to other agricultural or industrial storage 
scenarios, as different environments may have unique limiting 
factors. In addition, future improvements can focus on 
enhancing the robustness of the model to extreme weather 
conditions, as well as reducing the computational overhead of 

the DRL component, making it easier to apply in small storage 
facilities. Overall, this study highlights the potential of 
combining industrial control systems with advanced machine 
learning techniques to revolutionize storage environment 
management, providing a balance of precision, efficiency, and 
adaptability that is difficult to achieve with traditional methods. 

VI. CONCLUSION 

This study explores the optimal application of fusing 
TwinCAT and deep reinforcement learning (DRL) technology 
in tobacco storage environments' automatic temperature and 
humidity control systems. By constructing an intelligent control 
system, the high-precision and high-efficiency regulation of the 
tobacco storage environment can be realized, thus ensuring the 
quality of tobacco and reducing storage losses. 

(1) Firstly, traditional temperature and humidity control 
system performance is benchmarked. The results show that 
under the unoptimized conditions, the control accuracy of the 
system for temperature and humidity is ± 2 ℃ and ± 5% RH, 
respectively, and there is obvious hysteresis. This result reveals 
the limitations of conventional control systems in coping with 
complex environmental changes. 

(2) The system is preliminarily optimised by introducing the 
TwinCAT platform and using its powerful real-time control and 
data acquisition capabilities. The experimental results show that 
through the integrated management of TwinCAT, the control 
accuracy of the system has been significantly improved, and the 
control accuracy of temperature and humidity has been 
improved to ± 1 ℃ and ± 3% RH, respectively. At the same 
time, the system's response speed has been accelerated, and the 
lag phenomenon has been effectively alleviated. 

(3) To further improve the system performance, this study 
introduces DRL technology and constructs an intelligent control 
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model based on deep reinforcement learning. The model 
achieves accurate prediction and adaptive regulation of 
temperature and humidity changes by continuously learning 
environmental data and control strategies. The final 
experimental results show that the system combining TwinCAT 
and DRL can stabilize the control accuracy of temperature and 
humidity within ± 0. 5 ℃ and ± 2% RH, respectively, and almost 
eliminate the hysteresis phenomenon. In addition, the system's 
energy consumption has also been effectively reduced, saving 
about 15% of energy consumption compared with traditional 
systems. 

The tobacco storage environment's automatic temperature 
and humidity control system integrating TwinCAT and DRL 
shows excellent performance and great application potential. 
This study provides a new technical path for the intelligent 
management of tobacco storage environment and a useful 
reference for optimising automatic control systems in related 
fields. In the future, we will continue to deepen research, explore 
more innovative applications, and contribute more to the 
development of tobacco storage and other related industries. 

The existing solutions include traditional PID control (fixed 
parameters, difficult to resist interference), fuzzy control 
(insufficient dynamic response and optimization), and simple 
machine learning combined control (lack of deep integration of 
industrial systems). These schemes generally have the problems 
of insufficient integration of industrial control and intelligent 
algorithms, weak ability to adapt to complex environments, and 
poor accuracy and energy efficiency. In this study, TwinCAT 
and deep reinforcement learning are integrated, which not only 
gives full play to the advantages of real-time control of the 
former, but also improves the adaptability and optimization 
capabilities of the latter, makes up for the shortcomings of the 
existing schemes, and forms a better control scheme. 
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