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Abstract—Channel estimation plays a pivotal role in enhancing 

the reliability and efficiency of 5G wireless communication 

systems, particularly in MIMO-OFDM (Multiple Input Multiple 

Output - Orthogonal Frequency Division Multiplexing) 

architectures under multipath and Doppler-affected conditions. 

Conventional methods such as Least Squares (LS) are widely used 

due to their low computational complexity and lack of 

requirement for prior channel statistics. However, these 

approaches often result in poor estimation accuracy, especially in 

dynamic environments. To overcome these limitations, this study 

introduces a hybrid deep learning-based channel estimation 

framework that integrates Harris Hawks Optimization (HHO), 

Sparrow Search Algorithm (SSA), and Long Short-Term Memory 

(LSTM) networks—referred to as HHO-SSA-LSTM. The 

proposed method is designed to optimize the LSTM parameters 

using HHO and SSA, enhancing learning efficiency and estimation 

accuracy. Additionally, the model employs hybrid pre-coding 

aligned with codebook modeling strategies to preserve angle 

characteristics without disrupting azimuthal distributions. The 

system is evaluated in a 5G MIMO-OFDM setting under realistic 

conditions simulated using Doppler frequency and multipath 

propagation. Performance is assessed using key metrics including 

Bit Error Rate (BER), Mean Square Error (MSE), Symbol Error 

Rate (SER), efficiency, and execution time across different Pilot 

Lengths (PL = 128, 136, and 160). Simulation results demonstrate 

that the HHO-SSA-LSTM framework outperforms LS, LMMSE 

(Linear Minimum Mean Square Error), CNN (Convolutional 

Neural Network), FDNN (Forest Deep Neural Network), and 

standalone LSTM models. Notably, at PL = 160, BER is reduced 

by up to 91% and MSE by 86%, with an efficiency improvement 

exceeding 12% compared to traditional methods. Although the 

model exhibits a slightly higher execution time due to its hybrid 

design, the substantial accuracy gains justify the trade-off. The 

findings validate the effectiveness of the proposed hybrid model 

for robust and efficient channel estimation in 5G networks. 
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I. INTRODUCTION 

The primary issue with the present wireless communication 
system has been its reliance on spectrum expansion or cell 
densification to achieve the desired area throughput. These 
resources have been very limited and will soon reach their 
saturation point. Additionally, the cost and delay of the gear rise 
with spectrum expansion or cell densification. The spectral 
effectiveness, which could increase the throughput in such a 
space, has largely remained unaltered throughout the rapid 

evolution of wireless networks. In order to meet the wireless 
operator's basic needs, a wireless access technique must increase 
the wireless area bandwidth without extending the frequency or 
reinforcing the cell. It has been expected that in the following 
decade, wireless throughput would continue to grow 
exponentially for a variety of user categories with significant 
service quality expectations [1]. In order to manage the rapid 
increase in reliability communications and wireless-data traffic, 
fifth-generation (5G) as well as over wireless communication 
was developed by combining numerous disruptive innovations, 
like reconfigurable intellectual surfaces, Massive MIMO (Ma-
MIMO), and mmWave communications [2], [3]. The usage of 
MIMO techniques improved the communication network's 
performance. Multiple antennas, frequency and time resources, 
and multiple users are all taken into account by MIMO Because 
of its unavoidable accomplishments in wide-band 
communications systems, the OFDM technology was proven to 
be a contribution. In reality, OFDM was still used in 5G 
networks to resist the impacts of frequency selection fading, 
providing acceptable communication reliability in contexts with 
many paths for propagation [4]. In particular, compared to a 
single-carrier solution, the OFDM method greatly improves 
spectrum efficiency. The sent signals were warped by a variety 
of negative factors as they travel across wireless multi-path 
networks. The receiver must assess and correct for the 
implications of the Channel State Information (CSI) in order to 
interpret the required signal properly. Both the sender and 
recipient must be aware of the pilot signals in order for the 
channel estimation to be successful. Based on the various use 
instances in operation in a 5G network, the pilot symbol's 
structure in each dataset may change [5]. 

An exceptional number of intelligent and heterogeneity 
wireless systems have been anticipated to utilize 5G wireless 
connections, which are projected to be a variety of network 
levels with varied sizes, transfer voltages, backhaul 
interconnections, and Radio Access Technologies (RATs) [6]. 
The 5G networks are developed to be 100 times more efficient 
than the 4G networks. To meet the continued challenges 
modeled by 5G, efficient wireless access technologies that could 
boost throughput without expanding bandwidth or densification 
the cell is imperative [7]. The fifth-generation (5G) network is 
the next significant stage of mobile telecommunications 
technologies after the current 4G Long Term Evolution (LTE) 
standard, with a speed of 1-10Gbps. By the end of 2019, 5G 
systems are anticipated to be available for purchase. Within the 
most recent smartphone operating systems, 5G technologies 
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offer remarkable data capacities and infinite data broadcasting. 
Improved mobile broadband, dynamically low latency, higher 
bandwidths, device-centric portability, simultaneous 
redundancy, more dependable device-to-device connectivity are 
additional characteristics of 5G networks [8]. 5G wireless 
networks provide lower prices, shorter battery use, and lower 
latency than 4G wireless connections. Because 5G uses Ultra-
Wide Band (UWB) technologies, which offer a wider bandwidth 
at lower energy levels, this remains the case. The band width of 
4000 Mbps wireless connections is 400 times faster than 4G. 
Furthermore, 5G communications systems may provide a lot of 
machine interaction, hundreds of billions of connections, and 
incredibly fast mobile internet [9]. Moreover, 5G delivers a 
maximum peak high bandwidth transfer speed of 10Gbps, 
exceptionally low delay of 1ms, 90% greater energy efficiency, 
99.9% ultra-reliability, and mobile data quantities of 10Tb [10]. 
The 5G networking technologies standard has two primary 
parts: Non-Stand Alone (NSA) systems have been the first 5G 
systems, and commercial installations have been projected to 
start by the finish of 2019 [11]. The already-existing 4G LTE 
architecture has been used by the Control Plane to manage both 
the signal flow and the Control Plane. It could be contrasted to 
just extending the present 4G LTE connection with a speedier 
data stream. Via the use of NSA, operators would be enabled to 
provide commercial service before the launch of a 5G 
Standalone (SA) specification in 2019. The basic architecture of 
SA, which allows 5G, has been totally revised [12]. It makes 
fundamental adjustments to how networks function and 
relocated the control plane changeover to the 5G Core. 2020 will 
see the introduction of SA, which will offer subcarrier encoding 
and more flexible network slicing. As a consequence of its 
intention to be more effective than 4GLTE and NSA, this would 
consequence in lower rates for the providers and enhanced 
efficiency for the users [13]. 

By removing the multipath channel's fading impact caused 
by obstructions between the sender and recipient, CSI has been 
required on the recipient side to retrieve the broadcast data bits 
consistently [14]. The most popular and effective approaches for 
estimating CSI for any transmitting technologies have been 
pilot-based techniques. With regards to the pilot arrangements, 
there were two different sorts of estimating methods: comb and 
block type. Pilot tones have been periodically introduced into 
every subcarrier of a unique OFDM symbols in a block kind 
pilot configuration [15]. Pilot installation in comb kind pilot 
arrangements has been accomplished by evenly spreading the 
pilots within every OFDM symbol. These two primary pilot 
arrangement techniques have been crucial in determining the 
channel coefficients, which are required to account for the 
multipath networks' fading struggles. Nevertheless, the 
effectiveness of estimate is directly impacted by the pilot tones' 
distribution patterns in comb-kind pilot arrangements. In other 
terms, by optimising the pilot locations, it may be possible to 
reduce estimating mistakes. Although Least Squares (LS) 
estimation doesn't require knowledge of prior channel 
characteristics, it is widely regarded as a classic channel 
estimation technique with minimal computational cost [16]. 
Nevertheless, in many real-world scenarios, particularly for 
multi-path networks, LS estimation yields rather higher network 
estimation errors. Through reducing the average channel 

estimate mistakes, mean square error MSE estimation, an 
alternate approach, produces substantially higher channel 
estimation reliability than LS estimation. Moreover, MIMO is 
portrayed as an upbeat technology, which offers the highest 
wireless communication throughput possible [17]. Larger 
antenna arrays had the capacity to deliver a more focused beam 
in desired directions. A specific user-related beam centering 
process has been performed by precoding the signals. 

Additionally, it should be recognized that the CSI performs 
the pre-coding in BS. In contrast, the recipient of both Mobile 
Station (MS) and BS needs the CSI for exact detection. 
Therefore, it is crucial for the most accurate assessment of CSI 
[18]. Additionally, CSI data uplink estimation has been less 
complicated than CSI data downlink estimation. Multiple users 
send additional data flows to the BS in the upstream, and BS 
having dominant processing power can reliably compute the 
CSI. In Ma-MIMO systems with Time Division Duplex (TDD) 
protocol, the Downlink CSI and channel reciprocal 
characteristic might be effectively reached by utilising the 
uplink estimated network. However, the capability of hardware 
modification to contaminate the channel precision estimation in 
TDD Ma-MIMO networks has been demonstrated [17]. 
Additionally, Frequency Division Duplex (FDD) operations 
were preferable because of its expanded reach and lower 
interference, although channel reciprocity has been not 
preserved in FDD. Moreover, in FDD MIMO, BS transmits 
downstream pilot signals, clients utilize the pilot signals to 
calculate the channel, and customers then direct the CSI 
responses to the BS. Because of the massive number of clients 
and stations, the overhead that results are considerable; 
therefore, effective pilot layout and channel estimate are 
essential to minimize the overhead. Recently, Reinforcement 
Learning (RL) and Deep Learning (DL) have been employed in 
the context of MIMO networks as an emerging technique to 
effectively solve a variety of issues. These techniques have 
provided numerous solutions for various MIMO communication 
issues, including resource distribution, orientation, detecting, 
and localization, as well as signal recognition, categorization, 
and compression. When compared to their equivalents 
predicated on compressive sensing and sparsity, DL-based 
techniques for large MIMO CSI collection shown appreciable 
gains [19], [20]. DL methods in especially have been found to 
be useful in the wireless communication arena, which is also 
characterized by heuristics and algorithms [21]. By enabling 
clever channel design, encoding, estimation, decoding, and 
normalization techniques at the physical level, DL significantly 
increased communication reliability and effectiveness [22]. As 
a consequence, 5G wireless technologies have seen substantial 
advancements [23]. Overall, the Ma-MIMO channel seems to 
have a sparse depiction on DFT concept if BS was set up using 
a large amount of ULA. Nevertheless, there have been two 
drawbacks to DFT-based channels estimate algorithms, 
including performance loss brought on by power leakage 
brought on by orientation mismatch. Additionally, because the 
Discrete Fourier Transform (DFT) basis has been predicated on 
the unique structure of Uniform Linear Arrays (ULAs), only 
ULAs may access them [24]. Thus, this research aimed to 
develop a novel hybrid optimization with DL for effective 
channel estimation. 
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A. Key Contributions 

1) Proposed a novel hybrid channel estimation framework 

(HHO-SSA-LSTM) that combines HHO, Sparrow Search 

Algorithm, and Long Short-Term Memory networks for 

accurate channel estimation in 5G MIMO-OFDM systems. 

2) Achieved significantly lower BER, SER, and MSE 

compared to traditional and deep learning-based estimation 

methods (LS, LMMSE, CNN, FDNN, and LSTM), especially 

under higher pilot lengths and Doppler effects. 

3) Integrated a hybrid metaheuristic-based pre-coding 

strategy aligned with codebook modeling to enhance 

beamforming accuracy without conflicting with azimuth angle 

characteristics. 

4) Demonstrated higher estimation efficiency (up to 

96.92%) across different pilot lengths, showing better 

performance than baseline models even under limited pilot 

overhead. 

5) Conducted detailed complexity and execution time 

analysis against recent methods (e.g., CS, OCEAN, PSO-

Adam-LSTM), showing a justified trade-off between increased 

computation and improved estimation performance. 

B. Rest of the Section 

The section is systematized as follows, Section II the 
literature review of the work is discussed. Section III explains 
the proposed approach. The result and discussion of the study is 
given in Section IV. Finally, the proposed study and its future 
contribution was concluded in Section V. 

II. RELATED WORKS 

Xisuo Ma et al. [25] suggested a Model-Driven Deep 
Learning (MDDL)-based feedback strategy and channel 
estimation that takes benefits of the angle-delay domains 
channel’s sparsity to cut down on overhead. The uplink-based 
channel estimation for TDD systems came first. Another 
suggestion is to simultaneously learn the phase shift system and 
the channel predictor as an auto-encoder in order to decrease the 
uplink pilot latency while predicting high-dimensional networks 
from a Radio Frequency (RF) sequence in small range at the BS. 
In specific, the suggested MMV-LAMP system with the 
developed terminated lexicon can collectively recuperate 
numerous subcarriers' networks with substantially improved 
efficiency by taking advantage of the channels' organized 
sparsity from such a priori prototype and learning the 
incorporated trainable variables from the datapoints. Also taken 
into account were feedback for FDD systems and downlink 
channel estimations. Corresponding to this, channel estimators 
at pilots and users at BS could be cooperatively trained to 
function as a decoder and an encoder, correspondingly. 
Additionally, only the acquired pilots on a portion of the 
subcarriers have been transmitted away to the BS that can use 
the MMV-LAMP system to rebuild the spatial-frequency 
channel matrices, in order to further minimize the network 
feedback cost. The suggested MDDL-based feedback strategy 
and channel estimation outperforms well, according to 
numerical results. However, the model was not tested on fixed-
scattering environments. 

 Mahdi and Deniz [26] presented a Neural Network (NN)-
based combined downlink channel estimation and pilot layout 
approach. The suggested NN structure employs fully connected 
levels for frequency-aware pilot layout, improves LMMSE 
estimation, and utilizes convolutional NN levels to take 
advantage of innate interactions in MIMO channel matrix. In 
order to further enhance the channel estimation effectiveness, 
the suggested NN architecture employs a non-local adulation 
component to acquire longer-range connections in the channel 
matrices. As part of the training process, it was also suggested 
to gradually remove less relevant neurons as from dense NN 
levels. This seems to be a brand-new way to use NN cutting to 
cut down on pilot transmissions overhead. The pruning 
predicated pilot reduction method lowers the cost by non-
uniformly distributing pilots amongst subcarriers and effectively 
utilising the attention module and convolution layer to take use 
of the inter-antenna connections and inter-frequency in the 
channel matrices. However, the computational time is high. 

Omar et al. [27] presented SSA-CoSaMP method, which 
takes advantage of the space-time prevalent sparsity unique to 
Ma-MIMO channels and enhances the CoSaMP method. 
Threshold-predicated repetition control that in turn relies on 
SNR levels, is a special characteristic of it. This research can 
indirectly calculate the sparsity using this method. The 
suggested technique saves spectrum as well as energy resources 
by reducing pilot overhead in addition to optimizing channel 
estimation effectiveness. According to simulation outcomes, the 
suggested technique outperformed the current algorithm in 
terms of both low SNR and low-pilot overhead. However, the 
issue of sparse structure in the area of virtual angles is not 
examined. 

 Lijun et al. [28] offered a unique channel estimation 
methodology that incorporates the Ma-MIMO-imperfect 
OFDM's channel prediction into the Deep Neural Network 
(DNN) method. Relying on algorithm assessment and 
simulation findings, the traditional least square technique 
predicated on interpolation performed worse than the DNN 
channel forecasting technique predicated on the defective 
channel estimate. The channel autocorrelation matrices, prior 
information of noise variation, and complicated matrices 
inversion procedures are not required when compared to lowest 
MSE. DNN is also a successful solution for huge MIMO-OFDM 
systems' imprecise channel estimation. However, the design 
complexity is high. Anughna and Ramesha [29] outline the 
MIMO OFDM system's fundamentals. Also given is a thorough 
performance analysis of several diversity schemes using channel 
equalization and estimation methods. By taking into account the 
BER as well as SNR variables, this could be implemented in the 
MIMO-OFDM system. However, due to utilization of numerous 
diversity schemes, the processing time is higher. 

Lijun Ge et al. [30] suggest a large MIMO channel 
estimation method for 5G systems that is predicated on 
Compression-based Linear MMSE (CLMMSE). The method 
computes channel autocorrelation-matrices by examining the 
channel previous data predicated on compressive sensing (CS) 
concept, utilising the Ma-MIMO channel's block sparsity, and 
reducing the difficulty for acquiring the autocorrelation matrices 
in comparison to the conventional Linear MMSE (LMMSE) 
method. To further minimize the computational burden, it then 
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replaces single value decomposition for matrices inverse 
function. The first stage of the suggested CLMMSE technique 
can be made more effective by using a Block-Sparsity Adaptive 
Matching-Pursuit (BSAMP) technique to flexibly predict the 
network's block sparsity. By establishing a threshold, locating 
the biggest backward divergence, and applying the regularized 
technique to resolve channel prediction as a convex optimization 
issue, the sparsity-adaptive procedure is accomplished. The 
effectiveness of the system is further enhanced by the BSAMP-
based CLMMSE technique, which outperforms existing CS 
method-based algorithms in terms of efficiency and calculation 
time. However, the methodology has complex system 
architecture, which decreases the system effectiveness. 

Yanfeng Zhang et al. [31] therefore suggest a BEM (Basis 
Expansion Model) oriented channel estimation method for 
doubly-selective channels that has a minimal pilot latency and 
simulation burden. For time-varying networks, a mixed-BEM 
has been presented in addition to a Complex-Exponential-BEM 
(CE-BEM), leading in a small number of unknown variables 
needed for estimating the channel. It is possible to construct an 
empirical channel estimation technique from the hierarchy BEM 
architecture. A low-complexity predictor has been suggested to 
effectively retrieve the mixed-BEM parameters by utilising the 
block-structured based sparsity and a limited number of 
integrated-BEM variables in the antenna-time-based BEM field. 
To assess the efficacy of the suggested strategy, the lower 
constraint on the MSE of network estimate is obtained. The 
suggested channel estimating technique performs noticeably 
better than the current strategies in regards of channel 
estimation's MSE and BER, with substantially less pilot latency 
and computing complexity, according to simulation findings. 
However, the developed model has higher computational time. 

Wei Ji et al. [32] developed a multipath retrieval oriented 
uplink/downlink channel estimate method, where OFDM has 
been utilized and the beam squint impact was engaged into 
consideration. In attempt to determine the relationship among 
angle-delay data and the parameters of on-grid pathways, the 
impacts of broadband spatial and frequency ranges have been 
first examined. Secondly, a pilot sequence in uplink training has 
been developed in accordance with the spatial- and frequency-
broadband impacts to guarantee that precise pathways may be 
obtained from constrained possible paths. A M-DBSCAN 
(Modified Density-based Spatial-Clustering of Applications 
with Noise) model has been suggested in conjunction with pilot 
sequence design to attain the on-grid potential pathways. In 
uplink channel retrieval, potential pathways have been 
employed for initialization. The uplink based multipath 
extracting issue could be viewed as an off-grid sparse frequency 
reconstructing problem since the parameters of only a small 
number of putative paths are near to those of genuine paths. An 
Off-grid SAMP (OSAMP) oriented CS approach with minimal 
computing complexity has been presented as a result to this 
issue. In addition to precisely estimating angle-delay data and 

path benefits for exact pathways, OSAMP also takes advantage 
of the angle-delay congruence among downlink and uplink 
networks and uses uplink multipath retrieval to predict the 
downlink network. The efficiency of the suggested minimal 
computational burden channel estimation technique is shown 
through simulation outcomes. However, the model has higher 
processing time. 

High estimation errors, limited adaptability to dynamic 
environments, and inefficient pilot usage are some of the main 
drawbacks of previous approaches that are addressed by the 
suggested HHO-SSA-LSTM framework. The model 
successfully adjusts LSTM parameters for increased accuracy 
under various pilot lengths and Doppler conditions by fusing 
deep learning with hybrid metaheuristic optimization. In 
contrast to previous studies, it uses wavelet-based OFDM to 
improve spectral efficiency without the need for cyclic prefixes, 
adjusts to channel fluctuations, and drastically lowers BER and 
MSE. For 5G MIMO-OFDM systems, this leads to a more 
reliable and effective channel estimate technique. 

III. PROPOSED METHODOLOGY FOR HYBRID CHANNEL 

ESTIMATION 

A. System Model 

The core discrete wavelet transforms MIMO-OFDM 
systems paradigm, in which the Inverse Discrete Wavelet 
Transform tool is employed for modulating and the discrete 
wavelet transform equipment is utilized for wavelet 
decomposition, has been taken into account in the presented 
approach. It is another method for studying signals in the time 
and frequency domains. Due to its superior bandwidth and 
duration localization, the wavelet analysis is a more preferable 
tool than the Fourier analysis. It is thought to be superior for 
studying non-stationary transmissions. They are both utilized as 
carriers in the OFDM system because they both adhere to the 
orthogonality condition. In its simplest form, a wavelet is a tiny 
oscillating wave whose amplitude commences at 0, rises, and 
then falls back to nil. A statistical technique called the wavelet 
transformation is employed to characterize signals in terms of 
both period and frequencies. The analysis of the signal's 
harmonic module's timeframe is helpful. Generally speaking, it 
can be separated into two formats: continuous and discrete 
wavelet transform. Discrete wavelet transform (DWT) doesn't 
really imply that signals assessment is conducted in the discrete 
form; rather, it denotes that signal assessment is performed in 
the linear system while discretizing scalability and translational 
factors. In orthogonal frequency-division multiplexing, the 
Continuous wavelet tool is ignored since it assesses the 
parameters on every scale, resulting in a large number of 
unnecessary factors representing the signals, increasing 
complexities and redundancies at the recipient side. 

The wavelet form functions are defined as follows: 

𝐷(𝑣, 𝛿) = ((
1

√𝑣
)) 𝜑 (

(𝑒−𝛿)

𝑣
)  (1)
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Fig. 1. Signal decomposition and reconstruction utilising discrete wavelet transform and IDWT. 

It enlarges, transversely translations, and scales the wavelet 
transformation  𝜑(𝑒) . Here,  𝑣  is a scalability factor that 
establishes the wavelet's amplitude, and 𝛿 is the length of the 
wavelet was determined by the translational variable. The 
Continuous Wavelet Transform basis function is depicted in the 
expression above. By entering a certain quantity that assesses 
the coefficients for expressing the signals at a particular scaling, 
the experts have used Continuous Wavelet Transform to 
construct the baseline functionality for discrete wavelet 
transform. It adheres to the Heisenberg uncertainty concept that 
stipulates that one could only know the time period in which a 
specific range of frequencies occurs. One cannot determine what 
spectrum components could occur in what circumstances of 
period. In order to examine signals at various scales, discrete 
wavelet transform primarily decomposes the evidence into a 
collection of wavelet basis functions that are perpendicular to 

one another. The signal is divided into categories, each of which 
is continually run through a high pass filter and a low pass filter, 
accordingly [33]. They are referred to as approximated factors 
since the lower passing portion generates an estimate by 
removing the high bandwidth components, cutting out all the 
specifics, and just taking into account an approximates portion 
of the output. In order to analyse the higher harmonics and get 
the specificity factor, the data is transmitted thru a high pass 
filters, which eliminates the approximation portion of the signals 
in favour of the comprehensive portion. Until further signals 
reduction is impossible, every layer provides precise and 
approximated parameters. The fundamental Discrete wavelet 
transform and inverse Discrete wavelet transform structure is 
depicted in Fig. 1, and the signal's 3-layer decomposition with a 
succession of high and low pass filters is shown in Fig. 2. 

 
Fig. 2. Workflow of discrete wavelet transform. 

Here is the expression for the Inverse Discrete Wavelet 
Transform of 𝑞(𝑧) is given by, 

𝑞(𝑧) = ∑ ∑ 𝑄(𝑢, 𝑙)2
𝑢

2∝
𝑙=−∝ 𝜑∝

𝑢=−∝ (2𝑢𝑧 − 𝑙)        (2) 

The following expression represents discrete wavelet 
transform of 𝑞(𝑧) is given by 

𝑄(𝑢, 𝑙) = ∑ 𝑞𝑧 (𝑧)2
𝑢

2  𝜑 (2𝑢𝑧 − 𝑙)             (3) 

Up-sampling and down-sampling techniques alter the 
dimension. It scales back a portion of the signal's sampling. Here 

𝑢 Stands for the translational scaling, and 𝜑(𝑢, 𝑙)  is the wavelet 
function component. The transmitter and receiver architecture 
for the DWT MIMO-OFDM is shown in Fig. 3. The encoder 
initially takes the input bytes before encoding the stream of bits 
at a specific coding frequency. The modulation will then employ 
the encoded flow to turn the incoming binary streaming into a 
waveforms pattern. For additional communication, the symbols 
is once more transmitted thru the serialized to parallelism 
buffering. Utilizing Inverse Discrete Wavelet Transform tool, 
the signal is loaded onto an M-band wavelet carrier. When 
received, the DWT tool is employed to demodulate these signals 
after they have been communicated across the network. 
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Fig. 3. Framework for an OFDM  transmitter system based on DWT.

B. Cyclic Prefix 

 Multiple postponed copies of the identical signal could 
be received by a recipient as a result of signals transmission 
events including reflections, refraction, or multipath. A 
phenomenon known as inter symbol interference occurs when 
many signals are transmitted concurrently and overlay with one 
another at the receiver after all of these multipath propagations 
have been added together. If the sent signal's frequency is 
significantly larger than the channel's throughput, interference 
will have an impact on the signal. However, the impact of Inter 
- symbol interference could be reduced with a rise in signal 
width. The replica of the final portion of the sign is added at the 
beginning of the signal to lengthen it. Each concept's nodes 
could be recognized by the receiver, and it appropriately 
connects the data to aid with intersymbol interference 
elimination. 

𝑀𝑑𝑤  indicates the cyclical prefix's duration, 𝑀𝑑𝑤𝑡  
represents the size of the Inverse Fast-Fourier transform frame, 
and M demonstrate the amount of subordinate carriers. Though 
it uses a lot of bandwidth and energy, it makes up for 
InterCarrier Interference and intersymbol interference. Add a 
feedback path with a duration 𝑧  higher than the channels 
impulsive responder 𝑢, presuming the network has a maximal 
latency of 𝑢. It uses a lot of transmitting power and reduces the 
information throughput by: 

𝐶𝑃(𝑧) × 100%
𝐶𝑃(𝑧) + 𝑁𝑜. 𝑜𝑓 𝑠𝑢𝑏𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠(𝑍)⁄   (4) 

Due to the fact that it lacks any data, it lowers spectrum 
utilization and bit rate. To combat intersymbol interference, 
symbols must be lengthened even further; however, doing so 
lowers total energy effectiveness and spreads out the 
transmission power, which causes a reduction of Signal-to-
Noise Ratio, which would be measured by Eq. (5). 

−10 log10
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑂𝐹𝐷𝑀 𝑠𝑦𝑚𝑏𝑜𝑙 𝑙𝑒𝑛𝑔𝑡ℎ− 𝐶𝑝𝐿𝑒𝑛𝑔𝑡ℎ

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑂𝐹𝐷𝑀 𝑠𝑦𝑚𝑏𝑜𝑙 𝑙𝑒𝑛𝑔𝑡ℎ
 (5) 

Since wavelet transforms are utilized, which have lengthier 
waveforms than standard transforms, discrete wavelet transform 
-OFDM signals overlap in period, which improves frequencies 
localization. As a consequence, extending the signal period to 
reduce intersymbol interference does not need to use a cyclic 
prefix. Additionally, whereas discrete wavelet transform-
OFDM avoids this, Fourier transform signals pass via a 
rectangular waveguide, resulting in wider side lobes. 
Additionally, it lowers the system's difficulty from fast Fourier 
transforms  𝐴 (𝑍𝑙𝑜𝑔2𝑍) 𝑡𝑜 𝐴 (𝑍) . In addition to saving 
frequency by just not inserting Cyclic prefix to the Orthogonal 
Frequency Division multiplexing system signal, DWT-OFDM 
also reduces transmitting energy usage and increases system 
capacity [34]. 

1) Hybrid Pre-coding: It provides a quick overview of 

Fourier transforms and the CP decomposed to keep the article 

self-contained. Users can get additional information on the 

annotation and the fundamentals of Fourier transforms. A 

vector sometimes referred to as a manner or modal, is just a 

generalization of matrices to higher-order dimensions. It is 

possible to think of Fourier transforms including one phase and 

2 modes as being represented by both vectors and matrices, 

accordingly. The Kronecker, outer, and Khatri-Rao products 

are each indicated in °,⊙,⊗ this article by the characters, and, 

correspondingly. 

Let 𝑌 ∈ 𝐷𝑙1 ×𝑙2 ×…×𝑙𝑢 indicate a vector of u−th rank with its 
(𝑙1, 𝑙2, … 𝑙𝑢)th admittance represented by𝑌𝑙1, … 𝑙𝑛. The amount 
of dimensionality is represented by a tensor's order u in this case. 
The column and row of matrices are analogous to fibres at a 
higher form. By setting all indexes other than in, the 𝑚𝑜𝑑𝑒 − 𝑢 
fibres of Y are produced as In-dimensional matrices. A vector 
could be divided into 2-dimensional segments by setting all but 
2 of its indexes. The process that converts a vector into matrices 
is known as unfolding or matricization. The column of the 
resultant matrices is organized by the phase unfolding of a 
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vector𝑌, designated as 𝑌(𝑛) and it is given in Eq. (6) and Eq. 
(7). 

𝑌 = ∑ 𝜇ℎ𝑑ℎ
(1)

°𝑑ℎ
(2)

° … . °𝑠
ℎ=1 𝑑ℎ

(𝑢)
             (6) 

𝑌𝑙1,𝑙2,..𝑙𝑢 = ∑ 𝜇ℎ𝑑ℎ𝑙1
(1)

°𝑑ℎ𝑙2
(2)

° … . °𝑠
ℎ=1 𝑑ℎ𝑙𝑢

(𝑢)
     (7) 

Following Eq. (8) is an expression for Y's mode-u unfolding: 

𝑌𝑢 = 𝐷(𝑢) ∝ (𝐷(𝑢) ⊙ … . 𝐷(𝑢+1) ⊙ 𝐷(𝑢−1) … . 𝐷(1))𝑞 (8) 

Where ∝≅ 𝑑𝑖𝑎𝑔(𝜇1, … 𝜇ℎ). According to [35], the hybrid 
pre-coding method was implemented and the process is shown 
in algorithm.1. In the process, BS = Base Station, and MS = 
Mobile Station. 

C. Hybrid Sparrow-Harris Hawks Optimization 

The suggested HHO was based on a simulation of Harris 
hawks' foraging habits. The HHO replicates its cooperative 
foraging in two phases, i.e., exploration and exploitation 
phase—using a variety of strategies. Based on the parameter 𝐻, 
which represents the prey's escape energy, HHO carries out the 
change from the exploration to the exploitation phase. The 
mathematical formation is given in Eq. (9): 

𝐻 = 2𝐻0(1 − 𝑖/𝐼)                   (9) 

The early energy state of the prey is denoted as 𝐻0, fluctuates 
at random among (1,1) for every iteration. The computation is 
𝐻0 = 2 ∗ 𝑟𝑎𝑛 − 1 where 𝐼  and 𝑖  are the maximal and current 
iterations, and rand is the random integer of (0,1). 

1) Searching phase: In this research, the searching phase is 

accomplished by the sparrow search optimization algorithm. 

The sparrow is highly clever and has a good memory, unlike 

numerous other small birds. Keep in mind that there are two 

different breeds of house sparrows which are kept as pets: the 

producer and the scrounger. While the scroungers rely on the 

producers to provide them with food, the producers constantly 

pursue for sources of food. The findings also demonstrate that 

the birds frequently transition between generating and 

scrounging behaviour patterns. Additionally, it may be noted 

that sparrows typically combine their producer and scrounger 

strategies to get food.  The computational formula is developed 

to create the sparrow search method based on the earlier 

description of the sparrows. The study created equivalent rules 

based on the following idealized behaviour of the sparrows for 

convenience. 

To search for food in the simulation study, virtual sparrows 
must be developed. The following Eq. (10) may be used to 
illustrate where sparrows are located: 

𝐴 = [

𝐴11 𝐴12 … 𝐴1𝑚

𝐴21 𝐴22… 𝐴2𝑚

𝐴𝑛1 𝐴𝑛2 𝐴𝑛𝑚

]                       (10) 

Here, 𝑚 is the dimensionality of the parameters that need to 
be optimized and 𝑛  denotes the number of sparrows. The 
corresponding vector may therefore be used to indicate the 
fitness value of every sparrows as given in Eq. (11): 

𝐹𝐴 = [

𝐹([𝐴11 𝐴12 … 𝐴1𝑚])

𝐹([𝐴21 𝐴22… 𝐴2𝑚])

𝐹([𝐴𝑛1 𝐴𝑛2… 𝐴𝑛𝑚])
]               (11) 

“Here, the amount of every row in 𝐹𝐴  denotes the 
individual's fitness value and 𝑛 is the number of sparrows. In the 
SSA, food is prioritised for producers with higher fitness ratings 
during the procedure of search. The producers are also 
responsible for charge of locating food and guiding the entire 
community’s circulation. The producers may thus look for food 
in a wider variety of locations than the scavengers. The 
mathematic formulation is given in Eq. (12). 

𝐴𝑖+1
𝑥𝑦

= {
𝐴𝑖

𝑥𝑦
. 𝑒𝑥𝑝 (

−𝑡

𝛽.𝑖𝑚𝑎𝑥
)

𝐴𝑖
𝑥𝑦

+ 𝑅. 𝑀 𝑖𝑓 𝐷 ≥ 𝑆
𝑖𝑓 𝐷 < 𝑆 (12) 

Here, 𝑦 = 1, 2,..., m, and 𝑖 denotes the current iteration. The 
frequency of the 𝑦 th dimensions of the ith sparrow at iteration 

𝑖 is represented by 𝐴𝑥𝑦
𝑖 . The constant with the most iteration is 

called 𝑖𝑚𝑎𝑥 . 0 and 1 are two random numbers. The alert value 
and the safety threshold are denoted by 𝐷 and 𝑆 respectively. 𝑅 
is a chance quantity that follows the normal distribution. 𝑀 
displays a 1 ∗ 𝑚 matrix with 1 as the value of each member. The 
producer switches to broad search mode at 𝐷 < 𝑆, that indicates 
that there are no nearby predators. Many sparrows must 
immediately fly to other safe regions if 𝐷 ≥ 𝑆, which indicates 
that certain sparrows have identified the predator.” 

2) Exploitation phase: The procedure moves into the stage 

of development when|𝐻| < 1. The prey that were followed and 

monitored during the exploration phase would be the subject of 

a raid hunt by the hawks throughout this stage. Nevertheless, 

when hunting in nature, the prey would often attempt to flee 

from the chase, hence hawks would also employ varied 

pursuing strategies for the various prey escape behaviour. HHO 

suggested four methods, which are all outlined below, to mimic 

this pursuing and hunting behaviour. HHO chooses a strategy 

based on the escape energy 𝐻 and the probability of escape 𝑒. 

a) Soft besiege: When |H| ≥ 0.5 and  ≥ 0.5, the prey had 

sufficient energy to make a random jump to safety, but hawks 

have encircled it. The hawk then decides to effectively hunt by 

using gentle besiege to deplete the prey's physical ability. Eq. 

(13) to Eq. (15) illustrate the computational equations. 

𝐴𝑖+1
𝑥𝑦

= ∆𝑋𝑖
𝑦

− 𝐻 ∗ |𝐽𝐴𝑖
𝑝,𝑦

− 𝐴𝑖
𝑥𝑦

|  (13) 

∆𝑋𝑖
𝑦

= 𝐴𝑖
𝑝,𝑦

− 𝐴𝑖
𝑥𝑦

  (14) 

𝐽 = 2(1 − 𝑒5)   (15) 

Here, 𝑒5  is a random value between (0,1) and 𝑦  is the 
distance between the prey's current location in the 𝑦 th 
dimension as well as the current location of the 𝑥h hawk; where 
Jump ( 𝐽 ) denotes a randomly changing jump intensity that 
alternates between (0,2) for each repetition. 

b) Hard besiege: When the prey lacks the energy to flee 

and the hawks have encircled it, |𝐻| < 0.5 and 𝑒 <0.5, the 

hawks would decide to engage in a hard besiege swift raid hunt. 

Eq. (16) displays the behaviour model in question. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 7, 2025 

619 | P a g e  

www.ijacsa.thesai.org 

𝐴𝑖+1
𝑥𝑦

= 𝐴𝑖
𝑝,𝑦

− 𝐻 ∗ |∆𝑋𝑖
𝑦

|  (16) 

c) Soft besiege with progressive rapid dives: The prey 

has had enough energy to break free of the siege as well as 

perform a zigzag motion in the situation of |𝐻| ≥ 0.5and 𝑒 <
 0.5, and the hawks haven't yet fully organized an surrounding 

denounce on the prey. The hawks now decide to concurrent 

using prey energy as well as eventually create a full surround. 

Eq. (17) to Eq. (20) illustrate the steps of this method. 

𝐴𝑖+1
𝑥𝑦

{
𝐵𝑖+1

𝑥𝑦
 𝑖𝑓 𝑓(𝐵𝑖+1

𝑥𝑦
) < 𝑓(𝐵𝑖+1

𝑥𝑦
)

𝐶𝑖+1
𝑥𝑦

𝑖𝑓 𝑓(𝐶𝑖+1
𝑥𝑦

) < 𝑓(𝐶𝑖+1
𝑥𝑦

)
            (17) 

𝐵𝑖+1
𝑥𝑦

= 𝐴𝑖
𝑝,𝑦

− 𝐻 ∗ |𝐽𝐴𝑖
𝑝,𝑦

− 𝐴𝑖
𝑥𝑦

|           (18) 

𝐶𝑖+1
𝑥𝑦

= 𝐵𝑖+1
𝑥𝑦

+ 𝑇𝑦 ∗ 𝐿𝑦  (19) 

𝐿𝑦 = 𝐿(𝑟𝑦 , 𝑠𝑦 , 𝛼𝑦)  (20) 

Here 𝑇𝑦 represents random number; 𝐿 indicates Lévy flight 

function. 

d) Hard besiege with progressive rapid dives: Hawks 

utilize this tactic to speed up and reduce the mean location 

distance among themselves and the prey in order to build a hard 

encircling circle earlier the raid in the situation of |𝐻| <
0.5 𝑎𝑛𝑑 𝑒 < 0.5, when the prey lacks the energy to flee but is 

not entirely surrounded. Eq. (21) through Eq. (23) provide the 

models for this tactic. 

{
𝐵𝑖+1

𝑥𝑦
 𝑖𝑓 𝑓(𝐵𝑖+1

𝑥𝑦
) < 𝑓(𝐵𝑖+1

𝑥𝑦
)

𝐶𝑖+1
𝑥𝑦

𝑖𝑓 𝑓(𝐶𝑖+1
𝑥𝑦

) < 𝑓(𝐶𝑖+1
𝑥𝑦

)
         (21) 

𝐵𝑖+1
𝑥𝑦

= 𝐴𝑖
𝑝,𝑦

− 𝐻 ∗ |𝐽𝐴𝑖
𝑝,𝑦

− 𝐴𝑖
𝑥𝑦

|             (22) 

𝐶𝑖+1
𝑥𝑦

= 𝐵𝑖+1
𝑥𝑦

+ 𝑇𝑦 ∗ 𝐿𝑦     (23) 

The Sparrow Search Optimization (SSO) algorithm 
emulates the foraging and anti-predator actions of sparrows to 
solve optimization issues. In this algorithm, population members 
are separated into two primary roles: producers and scroungers. 
Producers are the sparrows with more energy, usually the ones 
that get assigned higher fitness values. They are responsible for 
actively searching the search space for regions with high 
resources (i.e., improved solutions). As soon as they find such a 
region, they alert other members of the group. In the event that 
there is danger (e.g., in the presence of a predator)—as 
expressed by a risk level above a particular threshold value—
these producers lead the others to a safe area in the search space 
directly. Conversely, scroungers are less fit sparrows. Rather 
than searching on their own, they tail producers with the 
expectation of gaining access to good resources. Certain 
scroungers tactically monitor producers, and if they observe a 
producer discovering a high fitness solution, they move rapidly 
to that spot in a bid to upgrade their own position. If they 
succeed, they directly take advantage of the producer's solution; 
otherwise, they fall back to a rule-based updating mechanism. 
Population behavior demonstrates a balance natural to the 
system: while sparrows towards the center of the group meander 
randomly to preserve close proximity, those at the edges are 
more sensitive to threats and move quickly to less risky or more 
advantageous areas. The scrounger positions get updated 

according to certain mathematical laws in Eq. (24), that 
determine how they move compared to producers so as to gain 
opportunities for better solutions. 

𝐴𝑖+1
𝑥𝑦

= {
𝑅. 𝑒𝑝 (

𝐴𝑖
𝑤𝑜𝑟𝑠𝑡−𝐴𝑖

𝑥𝑦

𝑡2 )

𝐴𝑜
𝑖+1 + |𝐴𝑖

𝑥𝑦
− 𝐴𝑖+1

𝑥𝑦
|

    𝑖𝑓 𝑇 > 𝑛/2       (24) 

Here 𝐴𝑜 denotes the ideal position. 𝐴𝑤𝑜𝑟𝑠𝑡  designates the 
world's worst location at the moment. Every member in the 
matrix 𝑅 is given a random number between 1 and 1. The 𝑡th 
scrounger with the lowest fitness score is most certain to be 
starved when 𝑇 >  𝑛/2. 

These sparrows, which are aware of the threat, make about 
10% to 20% of the overall population for the simulation study. 
Those sparrows were distributed at random in their starting 
places. The mathematical model may be depicted as follows 
using rules as given in Eq. (25): 

𝐴𝑖+1
𝑥𝑦

= {

𝐴𝑖
𝑏𝑒𝑠𝑡 . 𝛼|𝐴𝑖

𝑥𝑦
− 𝐴𝑖

𝑏𝑒𝑠𝑡|    𝑖𝑓 𝑓𝑡 > 𝑓𝑔

𝐴𝑥𝑦
𝑖 + 𝐾. (

𝐴𝑖
𝑥𝑦

−𝐴𝑖
𝑤𝑜𝑟𝑠𝑡

(𝑓𝑡−𝑓𝑔)+𝜀
)  𝑖𝑓 𝑓𝑡 = 𝑓𝑔

         (25) 

Here, the current global ideal location is 𝐴𝑖
𝑏𝑒𝑠𝑡 . With an 

average value and a variance of 0 and 1, respectively, the step 
size process parameters is a normal distribution of random 
integers. The random integer K is between [1, 1]. 𝑓𝑡  is the 
current sparrow's fitness value in this instance. “The top and 
worst fitness values on the planet right now are 𝑓𝑔  and 𝑓𝑡 , 

respectively. To prevent a zero-division mistake, is the lowest 
constant. 

For ease of use, when the sparrow was at the group’s edge if 

𝑓𝑡 > 𝑓𝑔. 𝐴𝑖
𝑏𝑒𝑠𝑡 stands for where the population's centre is safe in 

that area. The sparrows inside the centre of the community are 
conscious of the threat and need to migrate closer to the others, 
as shown by the equation 𝑓𝑡 = 𝑓𝑔 . The step-size control 

coefficient and the sparrow's movement direction are both 
indicated by the letter K. 

D. LSTM Based Channel Estimation 

"The dispersion channels between the receiver and the 
transmitter in wireless communications networks must be 
known in order to perform coherent identification; these 
channels could be estimated by applying traditional estimation 
methods. This section introduces LSTM-based channel 
estimation strategies that encourage us to use DL techniques to 
reduce channel estimation errors. A recurrent neural network or 
LSTM neural network was used to examine the behaviours of 
the channel correlations (RNN). Fig. 4 shows the one-layer 
RNN's basic construction. This illustration shows that the RNN 
cell's input for the present time-step is its output for the previous 
time-step. By functioning in this way, the RNN has been able to 
recall previous input statistics. The computing unit, or 
fundamental RNN cell, executes the following computation in 
Eq. (26) and Eq. (27).” 

𝑑𝑡 = 𝑓(𝑅𝑖𝑑𝑠𝑡 + 𝑅𝑑𝑑𝑑𝑡−1 + 𝑔𝑖𝑑 + 𝑔𝑑𝑑)         (26) 

𝑈𝑡 = 𝑓(𝑔𝑑𝑜 + 𝑑𝑡𝑅𝑑𝑜)               (27) 
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Fig. 4. Basic Structure of RNN layer. 

where 𝑓(·) represents activation function; 𝑠𝑡  is the input and 
𝑈𝑡  is the output; 𝑑𝑡and 𝑑𝑡−1 are the hidden states at the time 
step 𝑡 and 𝑡 −  1, correspondingly, 𝑅𝑖𝑑 , 𝑅𝑑𝑑 , and 𝑅𝑑𝑜  are the 
weights for input-hidden layer; hidden-next hidden layer, and 
hidden-output layer, respectively; and 𝑔𝑖𝑑 , 𝑔𝑑𝑑 , and 𝑔𝑑𝑜  were 
the corresponding biases. 

“However, the basic RNN cell has some shortcomings. For 
starters, even if the channel at time step t has a connection to 
both the past and the future, it is unable to exploit the data's 
future information. In this case, the bidirectional network must 
be used to achieve higher efficiency. Second, a disadvantage of 
a simple RNN cell is that it cannot record long-term data. One 
solution to this problem is to use LSTM as an alternative. In this 
study, we propose a bidirectional LSTM (bi-LSTM) network for 
5G channel estimation in order to overcome these problems.” 

The outcome of the LSTM cell's computation is indicated in 
the following formulae from Eq. (28) to Eq. (33). 

𝑓𝑡 = 𝑓(𝑉𝑓𝑆𝑡 + 𝑔𝑓 + 𝑅𝑓𝑑𝑡−1)     (28) 

𝑗𝑡 = 𝑓(𝑉𝑗𝑆𝑡 + 𝑔𝑗 + 𝑅𝑗𝑑𝑡−1)      (29) 

𝑏′𝑡 = 𝑡𝑎𝑛𝑑(𝑉𝑏𝑆𝑡 + 𝑔𝑏 + 𝑅𝑏𝑑𝑡−1)             (30) 

𝑏𝑡 = 𝑓𝑡⨀𝑏𝑡−1 + 𝑗𝑡⨀𝑏′𝑡     (31) 

𝑝𝑡 = 𝑓(𝑉𝑜𝑆𝑡 + 𝑔𝑜 + 𝑅𝑜𝑑𝑡−1)       (32) 

𝑑𝑡 = 𝑜𝑡⨀𝑡𝑎𝑛𝑑(𝑏𝑡)              (33) 

Where, 𝑅𝑓, 𝑅𝑗, 𝑅𝑏, 𝑅𝑜, 𝑉𝑓, 𝑉𝑗, 𝑉𝑏, 𝑉𝑜, 𝑔𝑓, 𝑔𝑗, 𝑔𝑏, and 𝑔𝑜 are 

the respective weights of matrices and biases, as well as 𝑡𝑎𝑛𝑑 is 
the hyperbolic tangent functional. The cell state 𝑏𝑡  holds the 
critical data from the past, the forget function 𝑓𝑡 specifies which 
statistics would be elapsed by the LSTM cell, and the new 
candidate values 𝑏′𝑡 specifies which data would be upgraded to 
the cell state. The LSTM cell's hidden state function is 

represented by 𝑏𝑡 and 𝑑𝑡. The LSTM cell has a stronger capacity 
to capture information than a basic RNN cell since it may avoid 
duplicate information by operating in this manner, allowing it to 
catch the vital data from the past. The bi-LSTM network's 
structure is depicted at the lowest part of Fig. 8. Moreover, the 
bi-LSTM technique combines two LSTM networks with two 
distinct orientations. The bi-LSTM's output considers the two 
LSTM cell’s outputs via the linear layer as given in Eq. (34). 

𝑈𝑡 = 𝑅𝐷𝑡 + 𝑔    (34) 

Where, 𝑅  and 𝑔  are really the linear layer’s weights and 
biases, and 𝐷𝑡  is the hidden phase created by concatenating the 
forward-hidden phase ht with the backward-hidden phase 𝑑′𝑡 . 
As a result, the bi-LSTM technique may take advantage of the 
relationship between the information in the present time step and 
both the past and the future. This research first collects the LS-
estimated channels from across all antennas in order to apply the 
bi-LSTM framework to the network. “Next, it specifies a 
realization of the given data (input) for the procedure of training 
in Eq. (35). 

𝑋𝑛−𝑏𝑖−𝐿𝑆𝑇𝑀 = {[𝑅𝑒{�̂�𝐿𝑆
𝑛 (0)}; 𝐼𝑚{�̂�𝐿𝑆

𝑛 (0)}], … … , [𝑅𝑒{�̂�𝐿𝑆
𝑛 (𝑙 −

1)}; 𝐼𝑚{�̂�𝐿𝑆
𝑛 (𝑙 − 1)}]}   (35) 

𝑙 represents the sequence length taken into account for the 
bi-LSTM network. The number of characteristics for the input 

is 2NT×NR since the bi-LSTM’s input, �̂�𝐿𝑆
𝑛  indicates the LS-

estimated channel for entire NT×NR channel streams. The 
equivalent true channel is the bi-LSTM network's output as 
shown in Eq. (36). 

𝑂𝑛−𝑏𝑖−𝐿𝑆𝑇𝑀 = {[𝑅𝑒{�̂�𝑛(0)}; 𝐼𝑚{�̂�𝑛(0)}], … … , [𝑅𝑒{�̂�𝑛(𝑙 −

1)}; 𝐼𝑚{�̂�𝑛(𝑙 − 1)}]}  (36) 

The MSE loss function is taken into account since the goal 
of utilising a bi-LSTM network was to reduce the MSE between 
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the anticipated channel and the real channel. The bi-LSTM 
network's goal function is Eq. (37). 

𝐹𝑏𝑖−𝐿𝑆𝑇𝑀(ℛ, 𝐴) = 1
𝑁𝑙⁄ ∑ ∑ ‖�̂�𝑛(𝑖) − 𝑑𝑛(𝑖)‖

2

2𝑙−1
𝑗=0

𝑁
𝑛=1   (37) 

Where, N represents the training sample’s total number, 

�̂�𝑛(𝑖) represents the actual channel conforming to �̂�𝑛(𝑖);  ℛ and 
𝐴 were all the bi-LSTM weights and biases, and the superscript 
n signifies the nth trained model. By employing gradient descent 
techniques to update ℛ  and 𝐴 , the loss function could be 
reduced. The inadequate channel state data as a potential future 
expansion of the approach because this research assumes that 
the ideal instantaneous channels are accessible for the training 
stage. 

The novelty of the proposed approach is integrating a hybrid 
metaheuristic optimization framework with deep learning 
overcoming the channel estimation of 5G MIMO-OFDM 
systems with great success. This method differs with traditional 
ones which involve only Deep learning or traditional estimators 
like LS, LMMSE and picks out the best of the two HHO and 
Sparrow Search Algorithm technologies to tune the parameters 
of a Long Short-Term Memory (LSTM). This HHO-SSA-
LSTM hybrid model has been successful in adjusting itself to 
channel conditions dynamically in response to environment 
high-mobility and Doppler effects. Furthermore, OFDM 
modulation which is based on discrete wavelet transform 
(DWT) is used to enhance spectral efficiency and eliminate the 
effects of inter-symbol interference which needs not to use any 
cyclic prefixes. The metaheuristic layer globally optimizes the 
learning parameters in LSTM, resulting at such, the parameters 
capture better temporal relationships of the wireless channel, as 
well as nonlinear attributes of the wireless channel. This coupled 
architecture enables more efficient and robust channel 
estimation mechanism to have a lower BER, MSE, and SER 
than the existing approaches. In general, the suggested hybrid 
structure overcomes the weakness of the current estimation 
methods due to the smart process of the parameter’s 
optimization and dynamic learning in a real-time 
communication case.” 

IV. RESULT AND DISCUSSION 

This section evaluates the suggested hybrid optimization 
with DL estimates over the 5G channel profile's performance 
and compares with conventional approaches, such as LS, CNN, 
LSTM, FDNN, and LMMSE. Additionally, give a justification 
for each received outcome. The simulation's settings have been 
stated first, and the outcomes have been then shown and 
discussed. The parameters employed for MIMO-OFDM system 
is shown in Table I. 

TABLE I.  PARAMETER SETUP 

Parameters Values 

Modulation type 16-QAM 

Model of noise Gaussian Noise 

FFT size 256 

Sample frequency 3.84MHz 

Cyclic prefix 24 

Subcarrier spacing 15kHz 

MIMO 4 × 4 

Four antennas are used in 4x4 MIMO, also referred as 4T4R, 
to connect up to 4-data streams to the recipient device. 4x4 
networks offer up to a 400% throughput boost over standard 
single antenna (SISO) networks. Construction complexity 
significantly rises as compared to earlier 2x2 antennas. Since the 
majority of manufacturers cannot offer four unique 
polarizations, nominal MIMO arrangements are the most 
typical. Additionally, 4x4 MIMO is up to 160% quicker than 
2x2 MIMO in weak signal settings and roughly 90% faster in 
good signal circumstances. The employed 4x4 MIMO and the 
used pilot structure for the presented MIMO-OFDM 
construction are indicated in Fig. 5 (a) and (b), correspondingly. 
In Fig. 5 (a), T×1 and T×4 seems to be the transmitted antenna-
indices and R×1 and R×4 seems to be the receiver antenna-
indices. 

  
(a)       (b) 

Fig. 5. Presented MIMO-OFDM (a) 4×4 MIMO (b) Pilot structure. 
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The scenario relating to the mobile velocity has been 
employed to evaluate the effectiveness of all the possible 
channel estimations. The outcomes of the simulation have been 
achieved for different models using different performance 
measures in order to evaluate the suggested DL model-based 
estimation’s effectiveness. The suggested technique has been 
applied in MATLAB, and the experimental outcomes were 
obtained. The suggested algorithm evaluates the efficiency of 
the channel by adjusting the network's SNR in relation to the 
quantity of sender and recipient arrays. Moreover, the 
simulation was being run to assess the effectiveness of the HHO-
SSA-LSTM-aided estimation, and the outcomes have been 
contrasted with the traditional LS, CNN, LSTM, FDNN, and 
LMMSE-based estimation using the BER, SER, and MSE vs 
SNR, efficiency, and execution time. 

A. Performance Analysis 

The presented channel estimation strategy's performance is 
assessed in regards to BER, SER, and MSE for SNR, efficiency, 
and execution time. The HHO-SSA-LSTM's measures have 
been contrasted with those of the conventional LS, CNN, 
LSTM, FDNN, and LMMSE. Additionally, the effectiveness of 
alternative channel estimation algorithms is assessed across a 
range of pilot lengths. The description of SNR, BER, SER, and 
MSE are described as follows: 

 SNR: The noise effectiveness, and consequently the 
susceptibility of radio receivers, could be examined in a 
variety of methods. Comparing the signal as well as noise 
rates for a particular signal level, or SNR, seems to be the 
most straightforward technique. It goes without saying 
that the bigger the SNR—the difference among the 
signals and the undesired noise—the greater the radio 
recipient's sensitivity effectiveness. 

 BER and SER: The chances of obtaining a symbol and 
bit in errors were denoted by SER and BER, 
correspondingly. By recreating a whole system with a 
large number of bits as well as comparing the proportion 
of bits or symbols obtained in error to the overall 
number-of-bits, BER and SER may be estimated. Hence 
SER is computed by Eq. (38). 

𝐵𝐸𝑅 =
𝑁𝑆(𝐸)

𝑇𝑁(𝑇𝑆)⁄     (38) 

Where, 𝑇𝑁(𝑇𝑆)  indicates total no. of transferred symbols 
and 𝑁𝐵(𝐸) indicates no. of symbols in error. 

Moreover, BER is computed by Eq. (39). 

𝐵𝐸𝑅 =
𝑁𝐵(𝐸)

𝑇𝑁(𝑇𝐵)⁄     (39) 

Where, 𝑇𝑁(𝑇𝐵) indicates total no. of transferred bits and 
𝑁𝐵(𝐸) indicates no. of bits in error. 

 MSE: In statistics, MSE seems to be a measurement of 
the mean square error. It is an expected value-
corresponding risk function. It is random, hence it could 
hasn't ever be null. It has been always employed in a non-
negative context when assessing estimator performance. 
MSE seems to be a second moment that considers the 
sources of error as well as estimation variation. An 
unbiased estimation with invariance of estimate is the 
MSE. The mean squared variances between the predicted 
and real values have been used to compute it. 

1) Performance evaluation using different pilot lengths: 

Under several pilot lengths (PL) (i.e., PL =128, 136, and160), 

the assessment metrics of several channel estimation algorithms 

are analyzed. Fig. 6 compares the BER, SER, and MSE of 

several channel estimate algorithms when the PL has been set 

to 128. As may be seen in Fig. 6 (a), BER (Bit Error Rate) 

decreases as SNR (Signal to Noise Ration) rises. The LSTM's 

BER is lowered to 30% less compared to the traditional CNN 

as long as the weight variables have been chosen for it in the 

best way possible. However, FDNN has been computationally 

more efficient than LMSE, and as a result, its BER was 50% 

lower contrasted to LMSE. In this method, HHO-SSA has been 

introduced to adjust the weight variables of LSTM in order to 

produce improved prediction outcome. As a result, the HHO-

SSA-LSTM's BER is lower than those of the FDNN, LMSE, 

LS, CNN, and LSTM by 50%, 75%, 90%, 88%, and 90%, 

correspondingly. 

  
(a)      (b) 
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(c) 

Fig. 6. “Performance of different channel estimation algorithms when PL=128 (a) BER vs SNR (b) MSE vs SNR (c) SER vs SNR”  

The HHO-SSA-LSTM's MSE (Mean Square Error) is 
lowered to 40%, 55%, 70%, 85%, and 92% less than that of the 
FDNN, LMSE, LS, CNN, and LSTM, correspondingly, when 
PL=128 as demonstrated in Fig. 6 (b). Additionally, as 

illustrated in Fig. 6 (c), the SER (Symbol Error Rate) of the 
HHO-SSA-LSTM was lower at PL=128 than it is for the FDNN, 
LMSE, LS, CNN, and LSTM at 50%, 53%, 64%, 79%, and 
82%, correspondingly. 

  
(a)      (b) 

 
(c) 

Fig. 7. “Performance of different channel estimation algorithms when PL=136 (a) BER vs. SNR (b) MSE vs. SNR (c) SER vs. SNR”  
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Fig.7 compares the BER, SER, and MSE of several channel 
estimate algorithms when PL =136. As may be seen in Fig. 7 (a), 
BER decreases as SNR rises. The CNN's BER is lowered to 75% 
less compared to the FDNN; moreover, LMSE’s BER is 
mitigated to 60% than that of CNN. However, LSTM has been 
computationally more efficient than LS, and as a result, its BER 
was 25% lower contrasted to LS. In this method, HHO-SSA-
LSTM has been introduced to offer improved prediction 
outcome. As a result, the HHO-SSA-LSTM's BER is lower than 

those of the all-other methods like FDNN, LMSE, LS, CNN, and 
LSTM by 20%, 53%, 72%, 80%, and 88%, correspondingly. In 
addition, HHO-SSA-LSTM's MSE is lowered to 53%, 65%, 
72%, 78%, and 85% less than that of the FDNN, LMSE, LS, 
CNN, and LSTM, respectively, when PL=136 as depicted in 
Fig. 7 (b). Additionally, as represented in Fig. 7 (c), the SER of 
the HHO-SSA-LSTM was lower at PL=136 than it is for the 
FDNN, LMSE, LS, CNN, and LSTM at 65%, 70%, 75%, 89%, 
and 94%, respectively. 

  
(a)      (b) 

 
(c) 

Fig. 8. “Performance of different channel estimation algorithms when PL=160 (a) BER vs. SNR (b) MSE vs. SNR (c) SER vs. SNR”. 

Fig. 8 compares the BER, SER, and MSE of several channel 
estimate techniques under the PL=160 condition. As shown in 
Fig. 8 (a), the BER of HHO-SSA-LSTM was lower than that of 
FDNN, LS, CNN, LMSE, and LSTM, falling to 76%, 80%, 
42%, 83%, and 91%, accordingly. Additionally, as shown in Fig. 
8 (b), the MSE of the HHO-SSA-LSTM has been lowered to 
73%, 78%, 75%, 80%, and 86%, as opposed to the FDNN, LS, 
CNN, LMSE, and LSTM, correspondingly. Additionally, as 
shown in Fig. 8 (c), the SER of the HHO-SSA-LSTM 
significantly lowered to 58%, 69%, 76%, 84%, and 92%, as 

opposed to the FDNN, LS, CNN, LMSE, and LSTM, 
respectively. In addition, the efficiency of the different channel 
estimation algorithms is also computed for different pilot 
lengths. Efficiency seems to be the maximum degree of 
effectiveness that needs the fewest inputs and creates the 
greatest number of outputs. Efficiency appeals for cutting back 
on the amount of resources, particularly energy, that are utilized 
inefficiently to generate a given outcome. Additionally, 
efficiency seems to be a quantifiable notion that may be assessed 
by comparing the usable outcome to the entire input. 
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TABLE II.  EFFICIENCY OF HHO-SSA-LSTM OVER FDNN, LSME, LS, 
CNN, AND LSTM WHEN NUMBER OF PL VARIED 

Methods 
Efficiency (%) 

PL = 128 PL = 136 PL = 160 

FDNN [36] 85.8 87.64 88.5 

LSME [37] 87.7 88.9 90.2 

LS [38] 81.1 84.7 87.9 

CNN [39] 79.5 84.1 85 

LSTM [40] 92.3 94.1 94.91 

Proposed HHO-SSA-LSTM 96.41 96.75 96.92 

The obtained efficiency is represented in Table II and Fig. 9. 
The result indicated that the presented HHO-SSA-LSTM has 
attained higher efficiency under PL = 128, 136, and 160 over 
other methods. The efficiency of LSTM is increased to 9%, 
10%, and 11% than CNN under PL = 128, 136, and 160, 
respectively. Moreover, when PL = 128, the presented model is 
enhanced to 11%, 11%, 10%, 9%, and 4% as compared to 
FDNN, LSME, LS, CNN, and LSTM, respectively. Also, when 
PL = 136, the presented model is enhanced to 11%, 12%, 10%, 
11%, and 2% as compared to FDNN, LSME, LS, CNN, and 
LSTM, respectively. In addition, when PL = 160, the presented 
model is enhanced to 12%, 15%, 12%, 11%, and 2% as 
compared to FDNN, LSME, LS, CNN, and LSTM, 
correspondingly. 

 

Fig. 9. Efficiency of HHO-SSA-LSTM over other methods.

2) Complexity analysis: The computational assessment of 

various channel estimate strategies in regards to execution time 

was shown in Fig. 10 and Table III. Every simulation and 

execution time measurement was carried out on a system that 

has an NVIDIA GeForce GTX 1660 Ti GPU, 16 GB of RAM, 

and an Intel Core i7-10750H CPU running at 2.60GHz. 

MATLAB R2021b was used for the implementation, and 

Windows 10 Pro (64-bit) was used. In order to ensure 

uniformity across all compared models, no GPU acceleration 

was used during execution time testing. As seen in the table, 

traditional channel estimation algorithms take longer to execute 

than DL-based ones due of their computational complexity. 

However, contrasted to FDNN, LSME, LS, CNN, and LSTM, 

the given HHO-SSA-LSTM takes a long time to execute. 

MATLAB's tic and toc functions were used to measure the 

execution time on a Windows 10 computer running an Intel 

Core i7-11700 CPU with 32 GB of RAM. After ten runs of each 

method, the average execution time was noted. Because of its 

hybrid optimization structure, the suggested HHO-SSA-LSTM 

model took 22 seconds, which is a little longer than other 

models. However, this is justified by the fact that it estimates 

channels with much greater accuracy and efficiency. The 

computational complexity has grown as a result of the 

integrated HHO and SSA approaches. 

TABLE III.  COMPLEXITY ASSESSMENT IN REGARDS TO EXECUTION TIME 

Methods Execution time (sec) 

FDNN 21 

LSME 18 

LS 20 

CNN 16 

LSTM 10 

Proposed HHO-SSA-LSTM 22 

Contrasted to the proposed method, the other methods like 
FDNN, LMSE, LS, CNN, and LSTM has attained less execution 
time as 21s, 18s, 20s, 16s, and 10s, respectively. Those methods 
have less complexity due to implementation of single models. 
However, the presented model was a hybridized method; thus, 
the execution time was increased than other methods. Moreover, 
the execution time of the presented HHO-SSA-LSTM is 22s. 
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Fig. 10. Execution time. 

B. Execution Time Comparison 

“The comparative study of the suggested technique with the 
methods in the prior literature is illustrated in Table IV and Fig. 
11. The presented HHO-SSA-LSTM method was compared 
with other existing methods like Compressive Sensing (CS) 
[24], OCEAN [41], and PSO-Adam-LSTM [42] in terms of 
execution time. 

TABLE IV.  COMPARATIVE ASSESSMENT 

Reference Method Execution time (s) 

[24] CS 9 

[41] OCEAN 4 

[42] PSO-Adam-LSTM 20 

Proposed HHO-SSA-LSTM 22 

 
Fig. 11. Execution time comparison. 

Haythem Bany Salameh et al. [24] achieved an execution 
time of 9s, as shown in the table. The researchers obtained 
highest MSE although execution time was less than the 
recommended technique.  The method put out by Changqing 
Luo et al. [41] has attained execution time as 4s. Unfortunately, 
this takes the least amount of time to execute contrasted to the 

other techniques in the chart. In contrast to the suggested plan, 
Lipsa and Anand [42] were able to achieve an execution time of 
20s. Furthermore, the provided work seems to have a longer 
execution time than these studies. However, the presented model 
has attained maximum BER and MSE as less, which is less than 
the other works. 

C. Discussion 

The proposed HHO-SSA-LSTM model outperformed 
traditional and deep learning-based channel estimation 
techniques—such as LS, LMMSE, CNN, LSTM, and FDNN—
on various pilot lengths and signal-to-noise ratio scenarios 
consistently. The experimental findings showed considerable 
decreases in BER, SER, and MSE, especially at larger pilot 
lengths (PL=160), in which the suggested model attained as 
much as 91% decreased BER and 86% decreased MSE against 
isolated LSTM. Additionally, the model attained the most 
efficient estimation, with 96.92%, outperforming even 
sophisticated DL approaches. While the hybrid model added 
computational complexity, resulting in the longest execution 
time (22s), this comes at the expense of the significant 
improvements in estimation reliability and accuracy [43]. These 
results have been supported by Mahdi and Deniz [26], who 
showed that deep learning-based channel estimation models 
typically have higher execution times because of architectural 
complexity, comparable to the trade-offs seen in our suggested 
HHO-SSA-LSTM model, even though they improve accuracy 
over traditional methods. 

The suggested approach is superior despite having a longer 
execution time because it provides significantly higher accuracy 
and efficiency, both of which are essential in high-reliability 5G 
MIMO-OFDM situations. The research presents a compelling 
argument for the necessity and justification of the trade-off, 
particularly for applications where accuracy is more important 
than speed. In comparison with other current benchmark 
solutions such as CS, OCEAN, and PSO-Adam-LSTM, the 
proposed scheme represents a reliable solution for channel 
estimation in 5G MIMO-OFDM systems [44], ideally applicable 
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for high-reliability and high-capacity communication scenarios. 
There are several restrictions to take into account, even with the 
HHO-SSA-LSTM framework's greater accuracy and efficiency. 
When compared to single-model approaches, the hybrid 
structure results in longer execution times due to increased 
computational overhead. Its direct application in real-time or 
energy-constrained applications may be limited as a result. 
Additionally, in low-pilot or rapidly changing settings, the 
model may not always have access to the full channel state 
information needed for training. The following studies will 
concentrate on lowering computational complexity to optimize 
the model for real-time deployment. Additionally, transfer 
learning and adaptive techniques will be explored to enhance 
performance in dynamic or low-pilot environments. There will 
also be consideration of integration with new 6G technologies 
including THz-band systems and RIS. 

V. CONCLUSION AND FUTURE WORKS 

This paper suggested a hybrid deep learning-based channel 
estimation scheme, HHO-SSA-LSTM, for 5G MIMO-OFDM 
systems under multi-path fading and Doppler shift. By 
combining Harris Hawks Optimization and Sparrow Search 
Algorithm to adjust LSTM parameters, the model showed 
notably reduced BER, SER, and MSE for various pilot lengths. 
The performance measurement showed up to 91% BER 
improvement and 86% MSE reduction in comparison with 
traditional and deep learning benchmarks like LS, LMMSE, 
CNN, FDNN, and LSTM. In addition, the novel approach 
attained maximum efficiency (96.92%) at a pilot size of 160, 
outperforming the available methods in all instances. The results 
prove the accuracy and resilience of the HHO-SSA-LSTM 
technique for practical application scenarios in real-world 5G 
channel estimation. 

Although it has higher accuracy, the proposed model has two 
primary drawbacks: (1) higher computational complexity 
leading to longer runtime time (22s) than basic models, and (2) 
its requirement of a completely known channel profile at 
training time, which could restrict usability in fast-changing or 
low-pilot environments. Its computational overhead should be 
minimized in future studies by developing lightweight variants 
of the hybrid model for real-time embedded applications. 
Moreover, being able to extend the model to enable transfer 
learning and adaptive generalization across various channel 
conditions will make it more scalable for the next-generation 
wireless systems, such as 6G and beyond.” 
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