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Abstract—The increased success of deep learning in the 

radiology imaging domain has significantly advanced automated 

diagnosis and report generation, aiming to enhance diagnostic 

precision and clinical decision-making. However, existing methods 

often struggle to achieve detailed morphological description, 

resulting in reports that provide only general information without 

precise clinical specifics and thus fail to meet the stringent 

interpretability requirements of medical diagnosis. Also, the 

critical need for transparency in clinical automated systems has 

catalyzed the emergence of explainable artificial intelligence (XAI) 

as an essential research frontier. To address these limitations, we 

propose an explainable system for report generation that leverages 

semantic-guided alignment and interpretable multimodal deep 

learning. Our model combines hierarchical semantic feature 

extraction from medical reports with fine-grained features that 

guide the model to focus on lesion-relevant visual features and use 

Concept Activation Vectors (CAVs) to explain how radiological 

concepts affect report generation. A contrastive multimodal fusion 

module aligning textual and visual modalities through 

hierarchical attention and contrastive learning. Finally, an 

integrated concept activation system that provides transparent 

explanations by quantifying how radiological concepts influence 

generated reports. Validation of our approach in comparisons 

with existing methods indicates a corresponding boost in report 

quality in terms of clinical accuracy of the description, localization 

of the lesion, and contextual consistency, positioning our 

framework as a robust tool for generating more accurate and 

reliable medical reports. 

Keywords—Automated report generation; explainable AI; 
cross-modal fusion; contrastive learning; semantic-guided 

alignment 

I. INTRODUCTION 

The rapid success of deep learning in the medical domain 
has created transformative possibilities for improving diagnostic 
accuracy and clinical decision-making, particularly through AI-
powered automated report generation. This solution enhances 
workflow efficiency, reduces the workload on radiologists, 
minimizes diagnostic errors, and improves the efficiency of 
patient treatment [1]. However, the integration of artificial 
intelligence in radiology has reached a critical inflection point, 
where diagnostic accuracy must now be matched by clinical 
interpretability to enable real-world adoption [2]. 

Recently, the increasing availability of the use of multimodal 
data in image analysis has created new opportunities for 
automating the generation of medical reports. Current models 
rely on multi-modal learning techniques that jointly process both 
imaging data and textual information [3]. These models perform 

a comprehensive analysis of medical imaging features alongside 
their associated clinical narratives, enabling a more thorough 
interpretation of radiological findings. Through the 
simultaneous processing of visual patterns and language 
representations. The combination of these modalities enables the 
models to effectively leverage both the nuanced features of the 
medical images and the diagnostic context from the associated 
text. 

Transforming detailed medical images into descriptive text 
necessitates the accurate detection of anatomical structures, 
alongside precise identification of lesions based on their 
morphology and location. Although automated report 
generation systems have shown significant progress in analyzing 
chest radiographs [4], their widespread clinical adoption 
remains limited due to several challenges. Among these, a major 
barrier is the semantic and granularity gap between imaging 
modalities and textual descriptions, which leads to imperfect 
alignment between visual data and generated reports. 
Additionally, these systems suffer from data bias, as common 
conditions are often overrepresented in training datasets, 
whereas rare pathologies are underrepresented, hindering the 
robustness and generalizability of the models. Furthermore, 
interpretability continues to be a major challenge in medical 
applications, as AI models often operate as 'black boxes.' The 
doctors emphasize the need for transparent models that can 
provide clear, understandable explanations for their predictions, 
an essential requirement in medical practice. 

Clinical automated systems require transparency, which has 
led to the creation of explainable artificial intelligence (XAI) 
becoming an essential research topic [5]. The ability to interpret 
AI outcomes remains essential for validating diagnostic 
accuracy while building clinician trust and meeting regulatory 
requirements [6]. The semantic gap between modalities, the 
"black-box" nature of deep learning models, and the need for 
high-fidelity descriptions—motivate the central research 
question of this work: How can we design a radiology report 
generation framework that not only achieves high clinical 
accuracy through fine-grained, semantically-guided alignment 
between images and text, but also provides transparent, concept-
based explanations for its diagnostic outputs to foster clinical 
trust and adoption? This question guides our development of a 
novel architecture that simultaneously optimizes for descriptive 
precision and true model interpretability. 

To answer this question, we introduce a new model based 
on semantic-guided alignment and interpretable multimodal 
deep learning named Explainable Report Generation Semantic-
guided Alignment—Ex-RGSA—which directly uses important 
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signals and features to advance automated medical reporting. 
Unlike traditional methods focusing on global visual and textual 
features, this model emphasizes sensitivity to crucial lesion 
locations and fine-grained alignment, thereby improving the 
quality and reliability of generated reports. 

Our approach addresses the persistent challenges of aligning 
visual and textual data, detecting small and rare pathologies, and 
ensuring the precision of diagnostic terminology. It uses 
structured semantic knowledge from medical reports. At the 
start of our framework lies the Explainable Semantic Feature 
Extractor (X-SFE) module, which consists of two subparts: the 
Multi-level Text Feature Extraction, capturing multi-level text 
features at the report, sentence, and word levels. Semantic 
Guided Knowledge extraction is a sub-part that identifies and 
encodes structured medical knowledge from historical reports, 
aiding the model in contextualizing lesion descriptions and 
refining diagnostic terminology. At the core of our framework 
lies the Semantic-Aligned Visual Extractor (X-SAVE) module. 
This mechanism leverages structured semantic knowledge 
extracted from medical reports to guide the visual extractor to 
focus on fine-grained lesion details related to the text. 
Additionally, the Contrastive Multimodal Fusion module 
(CMF) links visual-textual features anchored by concepts 
through three stages (global anatomy to regional findings to 
lesion-specific details). To further refine the generated reports, 
we introduce a semantic self-refining mechanism in the Decoder 
module that uses CAV confidence scores to correct terminology 
errors. 

Experimental results demonstrate significant improvements 
in lesion localization, diagnostic precision, and contextual 
coherence, underscoring the effectiveness of our framework in 
generating high-quality medical reports. This positions our 
approach as a valuable tool for enhancing diagnostic workflows 
and improving patient outcomes. In summary, this paper 
presents three main contributions: 

1) First, our primary contribution: is a novel trainable 

architecture for radiology report generation, introducing a new 

paradigm that significantly enhances multimodal alignment and 

semantic consistency. A key aspect of this architecture is its 

ability to improve the detection of small and rare lesions, 

further ensuring the diagnostic precision achieved by the 

Explainable Semantic Feature Extractor (X-SFE), the 

Semantic-Aligned Visual Extractor (X-SAVE), and the 

Multimodal Fusion (CMF) modules. 

2) In the second contribution: we introduce an explainable 

architecture that fundamentally transforms how multimodal 

systems process medical data, combining concept activation 

vectors with hierarchical semantic alignment to produce reports 

clinicians can trust—unlike current "black box" systems. The 

framework's unique integration of visual-textual grounding 

with CAV-based explanations yields not just better 

performance, but more importantly, delivers the transparent 

diagnostic reasoning demanded in clinical practice. 

3) The last contribution: Demonstrating superior 

performance on benchmark datasets: experimental results 

indicate that our framework achieves superior performance on 

publicly available datasets, with significant improvements in 

lesion localization, diagnostic precision, and contextual 

coherence. For instance, our model achieves a BLEU-4 score 

of 0.189, 0.221 in METHEOR and 0.412 in ROUGE-L on the 

IU X-RAY dataset, demonstrating a notable improvement 

compared to the baseline and delivering superior results on this 

dataset, particularly in handling complex cases with multiple 

lesions. 

The remainder of this paper is organized as follows. A 
review of related work in explainable AI and multimodal report 
generation is given in Section II. The architecture of our 
proposed Ex-ReGSA model, including its main modules, is 
described in detail in Section III. The experimental setup, 
including the dataset, evaluation metrics, and implementation 
specifics, is covered in Section IV. The findings of our 
comparative and ablation studies are shown in Section V. 
Section VI, which discusses the results with suggestions for 
further research, addresses the limitations and wider 
ramifications of our work. 

II. RELATED WORK 

The automatic generation of medical reports based on 
multimodal data has recently attracted much attention. In this 
field, diverse works are introduced to tackle key challenges, 
including cross-modal alignment, reducing data bias, and 
improving clinical relevance. This section shows an overview of 
related work along four key areas, including (1) multi-modal 
fusion and (2) explainable artificial intelligence-based report 
generation. 

A. Multimodal Fusion-Based Method for Report Generation 

In recent years, several studies have explored the use of 
multimodal data fusion to improve diagnostic accuracy and 
report coherence. The method proposed by Tang et al. [7] solves 
medical report generation challenges by proposing the "locate 
then generate" CAT pattern. The framework uses a multi-
modality encoder combined with a dual-stream decoder to 
dynamically incorporate retrieved terminologies with preceding 
sentences. Similarly, the approach proposed by Iqbal et al. [8] 
improves radiology reporting by utilizing an adaptive multi-
modal approach that encodes clinical data elements. The system 
uses "wisdom learning" to extract medical insights from 
radiology reports through textual embeddings while applying 
cross-modal coherence that employs clinical embeddings to 
direct visual feature learning and enhance semantic alignment 
between images, disease labels, and generated reports. Li etl. [9] 
continued to explore diverse data integration. The authors 
developed a context-enhanced framework to address the 
shortcomings of image-only dependent systems. The report 
generation process is improved through their method, which 
combines multiple contextual elements such as clinical texts, 
structured medical knowledge, and previous diagnostic 
outcomes with primary medical images. Zeng et al. [10] ensures 
that generated reports maintain internal coherence while 
preserving their contextual integrity. The model utilizes a 
relational memory module that updates itself with previously 
generated words to enhance word correlations, as well as a 
double LSTM network with an interaction module to preserve 
contextual information during text generation. Tsaniya etl. [11] 
conduct research on architectural advancements along with 
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input data enhancements. The authors developed a medical 
report generator that operates on a transformer-based model. 
The system integrates text feature embedding through BERT 
with visual feature extraction from a pre-trained CheXNet 
model enhanced by multi-head attention to evaluate how 
contrast-based image enhancement positively influences report 
quality. 

B. XAI-Based Report Generation 

Several recent approaches have focused on embedding 
explainability directly into the architecture of report generation 
models. Zhang et al. [12] proposed the Attribute Prototype-
guided Iterative Scene Graph framework, which utilizes an 
autoregressive approach for structural edge reasoning to handle 
common attribute and region feature limitations and improve 
interpretability. Similarly, Tanida et al. [13] developed an 
interactive region-guided framework that begins by detecting 
anatomical regions and then describes key regions to generate 
medical reports. Chen et al. [14] introduced AdaMatch as a 
model to establish detailed connections between CXR image 
segments and medical report terminology; then they used their 
AdaMatch-Cyclic model to utilize these connections for 
producing understandable CXR reports, which showed excellent 
results on public datasets. The development of specialized 
datasets and models focused on aligning with clinical reasoning 
is also crucial. One such study [15] introduced the FG-CXR 
dataset, which provides fine-grained pairings between 
radiologists' generated captions and corresponding gaze 
attention heatmaps for specific anatomies. The same study 
proposed a Gen-XAI network, which simulates diagnostic 
activities by matching its outputs with radiologist gaze patterns 
and transcript data. The research by Taleb et al. [16] addresses 
broader topics beyond report generation. The researchers 
introduced ContIG as a self-supervised learning method that 
enables the alignment of medical images and genetic data 
through contrastive loss and utilizes gradient-based XAI for 
interpreting cross-modal connections to demonstrate XAI 
effectiveness on diverse medical data sources. XAI techniques 
are currently used to improve transparency across multiple 
diagnostic tasks that involve different data types. For example, 
Sangnark et al.[17] created an explainable deep learning model 
to diagnose dyssynergic defecation from abdominal X-rays and 
questionnaires utilizing cross-modal attention mechanisms with 
Grad-CAM and DeepSHAP for image and symptom data 
interpretation. Transparent COVID-19 interpretation research 
[18] implemented deep neural networks like EfficientNet and 
DenseNet together with XAI techniques including LIME and 
Grad-CAM as well as a new "Modified Grad-CAM++." 

While existing methods have achieved remarkable 
performance on multimodal fusion and started to integrate 
explainability, from our literature review, we identify the 
following gaps in the existing methods: 1) Many methods use 
global feature alignment, which neglects the fine-grained, 
lesion-specific evidence that doctors often need to pay attention 
to for a detailed and accurate clinical description. 2) 

Explainability in these methods is often restricted to post-hoc 
visualizations, such as heatmaps that indicate where the model 
is looking. While they reveal the localization of model attention, 
these heatmaps do not offer explanations that are interpretable 
in terms of well-defined and clinically meaningful concepts, 
resulting in a "black box" problem that can undermine clinical 
trust. To address these problems, we employ hierarchical feature 
extraction and semantic-guided alignment to attend to fine-
grained features. Moreover, we introduce Concept Activation 
Vectors (CAVs) to our model to enable quantifiable and 
interpretable concept-based explanations of the model 
prediction. 

III. PROPOSED METHOD 

The overview of our proposed model for enhancing the 
generation of radiology reports Ex-ReGSA is illustrated in Fig. 
1 and comprises four major modules: Explainable Semantic 
Feature Extractor (X-SFE), which includes Multi-Level Text 
Feature Extraction and Semantic Guided Knowledge extraction. 
The second module is the Semantic-Aligned Visual Extractor 
(X-SAVE), the third module is the Contrastive Multimodal 
Fusion module (CMF); and the end module is a Dynamic 
Decoder (DD). 

First, the input medical report is processed by the 
Explainable Semantic Feature Extractor module to extract rich-
grained features from the radiology reports through hierarchical 
attention networks. Subsequently, the Semantic Guided 
Knowledge Extraction Module is designed to extract relevant 
semantic knowledge from the fine-grained features obtained by 
Multi-Level Text Feature Extraction by categorizing similar 
information into groups that have the same characteristics. 
Moreover, the Semantic-Aligned Visual Extractor serves to 
extract visual features from radiology images, guided by 
semantic output obtained by X-SFE, to ensure that only the 
important text-based features are captured. The features 
extracted by X-SFE and X-SAVE then feed into the Contrastive 
Multimodal Fusion module (CMF), which focuses on aligning 
semantic association between the extracted fine-grained visual 
and corresponding multi-level textual features, ensuring 
cohesive multi-modal representations. Finally, the Dynamic 
Decoder (DD) module integrates the aligned multi-modal 
features to generate, in a hierarchical process, a coherent and 
contextualized radiology report. 

A. Explainable Semantic Feature Extraction (X-SFE) 

1) Multi-level text feature Extraction: To extract multi-

level features from medical report data, hierarchical attention 

mechanisms based on RadBERT[19], a Bidirectional Encoder 

Representations from Transformers (BERT) model specifically 

pre-trained on a large corpus of clinical radiology text, operate 

at three levels: report, sentence, and word. This approach 

captures both global diagnostic context and fine-grained 

clinical details while leveraging RadBERT’s improved 

pretraining for better representation learning. 
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Fig. 1. Overview of the proposed Ex-ReGSA model. 

Before robust hierarchical feature extraction can be applied 
to radiology reports data. They must first pass through an 
essential preprocessing stage. The process begins with 
extracting diagnostic sections such as "Findings" and 
"Impression," followed by text cleaning steps that include 
lowercasing text while removing unnecessary characters and 
artifacts. Crucially, the cleaned text, which we can denote as 
Rclean_text. 

The prepared text undergoes processing by RadBERT, 
which conducts sub-word tokenization and creates foundational 
embeddings with deep context for all text tokens.  The 
foundational token embeddings enable systematic creation of 
specialized representations covering all parts of the report down 
to the individual words and sentences. Converting the text into 
a sequence of M tokens, T={t1,t2,...,tM}. This token sequence T 
is then comprehensively processed by RadBERT to generate 
foundational contextual embeddings. 

𝐻 = 𝑅𝑎𝑑𝐵𝐸𝑅𝑇(𝑇)                               (1) 

where H={h1,h2,...,hM} is the sequence of final hidden layer 
states from RadBERT. Each hj∈Rdh represents a deeply 
contextualized embedding for token tj, where dh is the 
dimensionality of RadBERT's hidden states. This output H 
serves as the rich, contextual basis from which all hierarchical 
features are subsequently derived. For Sentence-Level Feature 
Representation (Semb), Individual sentences within a clinical 
report often convey distinct findings or observations. To capture 
these, sentence-level embeddings, Semb, are derived for each of 
the N sentences, S={S1,S2,...,SN}, in the preprocessed report. For 
a given sentence Si, its representation Semb(Si)∈Rdh is 
constructed by aggregating the contextual token embeddings {hj

∈H} that correspond to the Qi tokens within that specific 
sentence (denoted HSi={hSi,1,...,hSi,Qi}). A common aggregation 
method is mean pooling: 

𝑆𝑒𝑚𝑏(𝑆𝑖) =
1

𝑄𝑖
= ∑ ℎ𝑆𝑖,𝑞

𝑄𝑖
𝑞=1 )                              (2) 

Word embeddings for individual words make up the finest 
textual feature level Wemb. Word embeddings serve as essential 
tools for recognizing particular clinical entities as well as their 
complex meanings in medical reports. The word embedding 
Wemb(Wk) for the k-th word Wk is derived from the RadBERT 
output H. Since RadBERT's tokenizer may split Wk into Lk sub-
word tokens (T(Wk)={tk,1,...,tk,Lk}), the corresponding 
contextual token embeddings (hk,1,...,hk,Lk from H) are typically 
aggregated. The most common method is averaging: 

𝑊𝑒𝑚𝑏(𝑊𝑘) =
1

𝐿𝑘
= ∑ ℎ𝐾,𝑙

𝐿𝑘
𝑙=1                     (3) 

2) Semantic guided knowledge extraction: The Semantic 

Knowledge Module is designed to extract relevant knowledge 

from chest X-ray reports by categorizing similar information 

into groups that have the same characteristics. To achieve this, 

we employ a clustering algorithm on report-embedded 

representation vectors to group similar information together 

into several clusters. To quantify the presence and strength of 

these representations within each report and to guide the 

clustering process towards forming semantically interpretable 

groups, we leverage Concept Activation Vectors (CAV) [21]. 

In particular, given a set of embedding vectors V = {v1, v2, ..., 

vn}, the K-Means algorithm [20] is used to group these vectors 

into groups (clusters), denoted Tk, based on their similarities. 

This process is defined by minimizing the Euclidean distance 

between each report’s embedding Vi and the centroid Cj of its 

corresponding cluster. Initialize K centroids randomly, where 

each centroid mj (for j=1,2,…,K) represents the initial mean of 

a cluster. This can be expressed as Eq. (4). 

𝑇𝑘 =
𝑎𝑟𝑔,𝑚𝑖𝑛

𝑗
∑ (𝑣𝑖,𝑑
𝐷
𝑑=1 −𝑚𝑗,𝑑)

2 + α ⋅ 𝐶𝐴𝑉𝑠𝑖𝑚(vi, cj)(4) 
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Where Tk is the index of the cluster assigned to report vi  and 
mj is the centroid, D is the dimensionality of each embedding 
vector yi and yi,d and mj,d represent the d-th component of vectors 
vi and mj, respectively.  After this step, the centroids continue to 
get refined and updated as the meaning of the embeddings 
associated to each cluster. This iterative process executes until 
labeled reports do not change anymore, resulting in k groups of 
reports, where each cluster encapsulates specific features, like 
similar writing style or diagnostic terminology. And the function 
𝐶𝐴𝑉𝑠𝑖𝑚(vi, cj)   measuring the semantic or conceptual 
similarity between report vi and cluster centroid mj, based on 
their alignment with predefined concepts quantified by CAVs. 
While the α is a weighting parameter that balances the influence 
of the Euclidean distance against the CAV-guided conceptual 
similarity term. 

B. Explainable Semantic-Aligned Visual Extractor (X-SAVE) 

To reduce the problem of data bias and extract precise spatial 
and semantic features of disease lesions, we employ a multi-
level feature extraction technique that relies heavily on prior 
knowledge obtained from semantic clusters found within 
clinical text reports. This guidance aims to align visual regions 
with relevant textual features and to direct the model’s attention 
towards focal regions based on their semantic relevance, 
determined through cluster-specific importance signals. The X-
SAVE module receives a collection of chest X-ray (CXR) 
images X={x1 , x2 , …, xn }, where each image xi is a tensor in 
RC×H×W, with C representing the number of channels and H 
and W representing spatial height and width, respectively. While 
H = W = 224 for CXR images. The feature extraction process 
starts by passing the input images through a SwinTransformer 
[22], which serves as the visual backbone. The Swin 
Transformer is selected for its effectiveness in computer vision 
tasks and its inherent hierarchical architecture, which captures 
features at multiple scales by progressively downsampling the 
input image. Enabling both localized fine-grained features and 
global contextual information. The process is illustrated in Eq. 
(5) to Eq. (7). 

1) Macro-level features (F1): Capturing coarse, global 

anatomical structures, the image is downsampled by a factor of 

4: 

F1= SwinTransformer (X)                         (5) 

were, F1 ∈ R(C₂×H/4×W/4) = R(C
1
×56×56) , the resolution becomes 

56 x 56 with C1 channels. 

2) Intermediate level (F2): At the second level, 

highlighting regional characteristics and intermediate 

structures, the CXR-image is downsampled by another factor 

of 2: 

F2= SwinTransformer (F1)                     (6) 

Where F2 ∈ R(C₃×H/8×W/8) = R(C2×28×28) and the resolution is 
reduced to 28 × 28, with C2 channels. 

3) Micro-level features (F3): Detailing fine-grained visual 

patterns crucial for localizing subtle lesions., The image is 

downsampled by a factor of 2: 

F3= SwinTransformer (F2)                   (7) 

Here F3 ∈ R(C₄×H/16×W/16) = R(C3×14×14)and the resolution 
becomes 14 × 14, and C3 channels are used. 

The key innovation lies in our semantic alignment integrated 
with the Concept Activation Vectors (CAVs) mechanism, where 
text-derived clinical concepts from radiology reports are 
clustered (T₁,...,Tₖ) using RadBERT embeddings, and each 
cluster's importance weight wₖ is computed based on feature 
dispersion from its centroid mₖ to reflect semantic coherence, 
computed as Eq. (8): 

𝑤𝑘 =
1

|𝑇𝑘|
∑ ||𝑣𝑖 − 𝑚𝑘||2𝑛
𝑖∈𝑇𝑘                     (8) 

Where |Tk| is the number of reports in cluster Tk. 

The visual features extracted for each input image x are then 
aligned with the clusters as follows in Eq. (9): 

𝐹𝐴𝑙𝑖𝑔𝑛𝑒𝑑 = ∑ (𝑤𝑘. TCAV𝑘). 𝐹𝑘
𝐾
𝑘=1                      (9) 

where  𝐹𝑘 = 𝑊𝑘 ⋅ [𝐹2⊕𝐹3]  represents the visual features 
associated with cluster Tk, and Wk is a learnable projection 
matrix. 

C. Contrastive Multimodal Fusion (CMF) 

To apply a hierarchical alignment and fusion, we use a 
transformer-based model. Current multi-modal fusion 
approaches rely on global feature fusion. We design multimodal 
fusion based on self-supervised attention, which comprises two 
key stages: cross-modal attention and self-supervised 
contrastive learning. The CMF module learns aligned 
representations by combining detailed feature interactions with 
a comprehensive semantic understanding from visual and 
textual data sources.  The system accomplishes this through a 
unified process that uses hierarchical cross-modal attention 
mechanisms to map visual and textual features at various scales 
into detailed correspondences.  The features are attentively fused 
and aligned and then projected into a shared embedding space, 
which undergoes refinement with a self-supervised contrastive 
learning objective to ensure robust end-to-end semantic 
alignment.  The system achieves explainability by leveraging 
Concept Activation Vectors (CAVs) for understanding the 
semantic characteristics of the shared embedding space. 

This initial step within CMF focuses on establishing detailed 
correspondence between the hierarchically extracted visual 
features and report features. As previously detailed, hierarchical 
visual features (F1 for global, F2 for regional, and F3 for fine-
grained details) are obtained from the input CXR image. 
Similarly, hierarchical textual features (Remb for report-level, 
Semb for sentence-level, and wemb(j) for word-level) are 
extracted from the medical report. 

To bridge representational differences, both feature sets 
undergo modality-specific normalization and are augmented 
with positional embeddings. The cross-modal attention then 
aligns these features. 

The normalized and enriched features are then used to 
compute the queries (Qs), keys (Ks), and values (Vs) directly 
within the attention mechanism: 

𝐴𝑠 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑠𝐾𝑠

𝑇

√𝑑
+ log(TCAV + 1))        (10) 
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Where 𝑄𝑠 = 𝐹𝑡𝑒𝑥𝑡
𝑝𝑜𝑠

: The query matrix is derived from 

position-enriched textual features. And 𝐾𝑠 = 𝐹𝑣𝑖𝑠𝑢𝑎𝑙
𝑝𝑜𝑠

 Is the key 

matrix derived from the position-enriched visual features. The d 
is the dimensionality of the key vectors, and serves as a scaling 
factor to ensure gradient stability in training. By using the 
attention scores As, the aligned features FS aligned are 
computed by applying As to the value matrix(Vs), which is also 
derived from the position-enriched visual features.  𝐹𝑎𝑙𝑖𝑔𝑛𝑒𝑑

𝑠 =

𝐴𝑠𝑉𝑠 and  𝑉𝑠 = 𝐹𝑣𝑖𝑠𝑢𝑎𝑙
𝑝𝑜𝑠

 

The aligned features from all scales are concatenated into a 
unified representation: 

Ffusion=Concat(F1aligned,F2aligned,F3aligned)  (11) 

After generating a unified representation (Ffusion), visual 
features will be projected into a shared latent space through a 
learnable matrix (Wv): F’visual=Wv.Ffusion and textual 
features with another one (Wt): F’text=Wtr. These embeddings 
are refined using multimodal contrastive learning, which 
optimizes a contrastive loss (Lcontrastive) to align positive 
pairs, such as a CXR image and its corresponding report, while 
distancing unrelated pairs. The loss is calculated in Eq. (12) as: 

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 = 

−
1

𝑁
∑ log

exp⁡(𝑠𝑖𝑚(𝐹′𝑣𝑖𝑠𝑢𝑎𝑙,𝑖,𝐹′𝑡𝑒𝑥𝑡,𝑖)/𝜏

∑ exp⁡(𝑠𝑖𝑚(𝐹′𝑣𝑖𝑠𝑢𝑎𝑙,𝑖,𝐹′𝑡𝑒𝑥𝑡,𝑗)/𝜏
𝑁

𝑗=1

𝑁

𝑖=1

      (12) 

Where sim(x,y) is the cosine similarity, and τ is a 
temperature parameter controlling the sharpness of the similarity 
distribution. This end-to-end, self-supervised training paradigm 
leverages inherent data pairings without requiring manual 
annotations, ensuring scalability and robust semantic alignment 
for downstream tasks. 

D. Dynamic Decoder (DD) 

To overcome critical limitations in existing report generation 
decoders—such as static templates, neglect of hierarchical 
features, and lack of dynamic refinement. We propose a novel 
Dynamic Decoder (DD) that processes multi-level fused visual 
features (Ffusion  ) in a hierarchical structure. The decoder process 
uses corresponding report, sentence, and word-level textual 
embeddings together with fused visual features to construct final 
reports. A key innovation is its Dynamic Sentence-Type 
Adaptation mechanism, which uses learned, Concept Activation 
Vector (CAV)-influenced attention weights (αT,αA) where, for 
instance, αT is determined by Eq. (13): 

⁡𝜶𝑇 = 𝜎(𝑊𝑇𝐹𝑓𝑢𝑠𝑖𝑜𝑛 ⁡+ 𝛽 ⋅ ⁡𝐶𝐴𝑉𝑠𝑖𝑚(𝐹𝑓𝑢𝑠𝑖𝑜𝑛 , 𝑐𝑘)⁡, 𝛼𝐴 = 1 −

𝛼𝑇)    (13) 

Where CAVsim: Measures alignment between fused features 
and concept ck. These weights ensure critical abnormalities are 
prioritized in complex cases, while template sentences dominate 
in normal cases. The final representation is presented in Eq. (14): 

Rt=αTT+αAA                  (14) 

where T represents normal features and A represents 
abnormal features. 

Furthermore, a Feedback-Driven Refinement loop 
iteratively improves semantic consistency by re-encoding the 
generated report Y′ and minimizing a refinement loss (Lrefine) 
against the input features Ffusion, defined as 
Lrefine=∥Ffusion−Encoder(Y’)∥2

2. The DD is trained end-to-end 
with a hybrid loss function, combining objectives for token 
accuracy (Lxe), feature alignment (Lrefine), and overall semantic 
coherence (via Lcontrastive), enabling it to generate clinically 
accurate, contextually relevant, and professionally structured 
medical reports: 

Lrefine : Ltotal=λ1 Lxe+λ2 Lcontrastive+λ3 Lrefine   (15) 

IV. EXPERIMENTAL SETTINGS 

A. Dataset 

IU X-ray [23]: is a publicly accessible repository of chest X-
rays, featuring 7,470 images and their 3,955 associated 
radiological reports. The nature of this data makes it a valuable 
asset for developing and training models in tasks such as 
automated radiology report generation and computer-aided 
diagnostic systems. To maintain consistency and allow for 
comparison with prior research, this collection is conventionally 
divided into standard proportions: 70% of the data for model 
training, 10% for validation during development, and the 
remaining 20% for final model testing. 

B. Evaluation Metrics 

The quality of our model was evaluated using four NLG 
Natural Language Generation metrics. To measure precision in 
the generated report compared to ground truth clinical report, we 
used BLEU [24], which scores n-gram overlap. For an 
evaluation more aligned with human intuition, we used 
METEOR [25], as it considers variations like word stems and 
synonyms from WordNet. To specifically assess the fluency and 
coherence of the generated content, we employed ROUGE-L 
[26], which measures similarity based on the longest common 
subsequence of words found in both the generated and reference 
texts. Additionally, CIDEr [27] was utilized to assess how well 
the generated text captures salient concepts present across a set 
of reference texts, by weighing n-grams based on their Term 
Frequency-Inverse Document Frequency (TF-IDF) scores, 
thereby emphasizing consensus and information richness. 

C. Implementation Details 

Our medical report generation system is built on a 
hierarchical, multimodal architecture. For visual input, we 
process 224x224 resolution chest X-rays using a Swin 
Transformer backbone. This visual encoder uses a patch size of 
4, an embedding dimension of 96, and four feature extraction 
stages with 3, 6, 12, and 24 attention heads, respectively. The 
text processing component utilizes RadBERT for hierarchical 
feature extraction at the word, sentence, and document levels, 
each with a 768-dimensional hidden state for attention. To 
integrate these, a multimodal fusion module projects both visual 
and textual features into a shared 128-dimensional space via 
linear transformations, followed by cross-modal attention with 
4 parallel heads. Report generation is handled by a 6-layer 
transformer decoder (512 hidden units, 8 attention heads) that 
dynamically regularizes sentence types between templates and 
abnormal findings. The model was trained for 40 epochs using 
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a composite loss function—combining cross-entropy (weight 
1.0), contrastive loss (weight 0.5, temperature 0.07), and a 
learned features refinement loss (weight 0.5)—optimized with 
Adam at a learning rate of 5 × 10⁻⁴. For generating reports 
(inference), we employ a beam search with a width of 3, using 
hyperparameters (contrastive temperature τ between 0.05-0.2, 
loss balancing λ between (0.1-0.9) selected based on ROUGE 
scores on a validation set. 

V. EXPERIMENTS RESULTS 

A. Comparison Experiment 

We evaluated our model using standard metrics: we 
employed BLEU-1 to BLEU-4, METEOR, ROUGE-L, and 
CIDEr metrics to measure both the quality and relevance of the 
reports. As shown in Table I and Fig. 2, comparative analysis is 
performed against state-of-the-art models: The evaluation 
includes comparisons with advanced models HRGR-Agent[28], 
R2GEN[29], PPKED [30], AERMNet[10], C-Enhanced-F [9], 
and work by SAEED et al. [8]. These benchmarks provide 
thorough assessments of fluency quality along with informative 
content and clinical consistency. 

Analyzing the BLEU scores, which measure n-gram 
precision against reference texts, our model demonstrates strong 
performance, particularly for lower-order n-grams. It achieves 
the highest BLEU-1 score of 0.517, outperforming all listed 
competitors, including notable models like SAEED et al. (0.499) 
and C-Enhanced-F (0.491). For higher-order n-grams, our 
model remains highly competitive: its BLEU-2 score is 0.351, 
slightly behind C-Enhanced-F, which scored 0.359. Similarly, 
its BLEU-3 score is 0.251, with C-Enhanced-F at 0.263, and its 
BLEU-4 score is 0.189, compared to C-Enhanced-F's 0.209. 
While C-Enhanced-F exhibits an edge in these higher-order 
BLEU metrics, indicating a closer match in longer contiguous 
word sequences, our model consistently surpasses other 
methods like R2GEN and PPKED across all BLEU categories. 
This suggests a strong grasp of lexical choice and phraseology. 

In terms of the METEOR metric, which evaluates generated 
text quality by considering stemming, synonyms, and word 
order to better align with human judgment, our model scores 
0.221. This is the highest METEOR score among all models for 
which this metric is reported in the table, surpassing AERMNet 
(0.219), C-Enhanced-F (0.212), and R2GEN (0.185). This 
leading performance in METEOR suggests that our model 
generates reports that are not only accurate in terms of word 
choice but also capture semantic similarity effectively, aligning 
well with human assessment criteria. 

TABLE I. PERFORMANCE COMPARISON 

Model B-1 B-2 B-3 B-4 M. R-L CIDEr 

[28] 0.438 0.298 0.208 0.151 -- 0.322 0.343 

[29] 0.451 0.293 0.209 0.159 0.185 0.381 0.406 

[30] 0.483 0.315 0.224 0.168 -- 0.376 0.365 

[10] 0.486 0.321 0.236 0.183 0.219 0.398 0.560 

[9] 0.491 0.359 0.263 0.209 0.212 0.408 0.396 

[8] 0.499 0.349 0.229 0.170 -- 0.401 0.411 

(Ours) 0.517 0.351 0.251 0.189 0.221 0.412 0.463 

 
Fig. 2. Performance comparison of models on IU-CXR. 

TABLE II. ABLATION EXPERIMENT 

Model B-1 B-2 B-3 B-4 M. R-L CIDEr 

Baseline Model 0.405 0.301 0.219 0.168 0.181 0.350 0.392 

+ X-SFE 0.413 0.314 0.222 0.172 0.188 0.358 0.409 

+ X-SAVE 0.422 0.332 0.239 0.181 0.192 0.373 0.441 

+CMF 0.451 0.339 0.243 0.182 0.202 0.398 0.453 

+Self-Refining mechanism 
 

0.470 0.349 0.249 0.189 0.214 0.408 0.461 

Full Model 0.517 0.351 0.251 0.189 0.221 0.412 0.463 
 

Our model particularly excels in the ROUGE-L score, 
achieving 0.412. This metric, which measures the longest 
common subsequence between generated and reference texts, 
reflects fluency and the recall of important content. Attaining the 
top score in ROUGE-L indicates our model's superior ability to 
capture the structural similarity and main ideas present in the 
ground truth reports when compared to all other listed models, 
including strong performers like C-Enhanced-F (0.408), 
SAEED et al. (0.401), and AERMNet (0.398). This suggests that 
the reports generated by our model are coherent and effectively 
convey the necessary information. 

The CIDEr metric, designed to measure consensus and 
human-like quality in image descriptions by weighting n-grams 
using Term Frequency-Inverse Document Frequency (TF-IDF), 
offers further insights into the model's performance. Our model 
achieves a CIDEr score of 0.413. This score is competitive and 
robust, surpassing or closely aligning with several models such 
as SAEED et al. (0.411), R2GEN (0.406), and C-Enhanced-F 
(0.396). However, it is noteworthy that AERMNet demonstrates 
a significantly higher CIDEr score of 0.560. This indicates 
AERMNet's strong capability in generating text that effectively 
captures n-grams frequently found across multiple reference 
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reports, a key aspect of consensus. While our model performs 
well against many peers in CIDEr, AERMNet sets a high 
benchmark for this specific measure of quality. 

In summary, this comparative analysis reveals that our 
proposed model exhibits a strong and highly competitive 
performance profile. It achieves leading results in BLEU-1, 
METEOR, and ROUGE-L, signifying its strengths in generating 
lexically precise, semantically rich, and structurally coherent 
radiology reports. While C-Enhanced-F shows an advantage in 
higher-order BLEU scores, and AERMNet leads substantially in 
CIDEr, our model consistently outperforms many established 
baselines across multiple critical metrics. The particularly strong 
ROUGE-L and METEOR scores suggest that the generated 
reports are fluent and capture clinical information effectively, 
which is paramount for clinical utility. The CIDEr score of 
0.413, while not the highest, is solid and points towards good 
consensus capture. These results collectively affirm the Efficacy 
of our model as a significant contribution to the field of 
automated radiology report generation, though future work 
could explore strategies to further enhance performance on 
metrics like CIDEr to match the top specialist models. 

B. Ablation Experiment 

In this section, we will conduct an ablation experiment to 
indicate the influence of each module on our model's overall 
performance. The experiments demonstrate the influence of the 
various components when they are integrated in the baseline 
model to quantify the gain of each module (X-SFE, X-SAVE, 
CMF, and DD) and the combination on final accuracy. Table II 
provides a detailed comparison over multiple evaluation 
metrics, including B-1, B-2, B-3, B-4, METEOR, and ROUGE-
L, for the Indiana University dataset. 

 
Fig. 3. Performance metrics of ablation study. 

Table II and Fig. 3 illustrate that the full model yields 
substantial performance gains when compared to the baseline 
model, thereby underscoring the crucial role of every proposed 
module. Quantitatively, the Full Model surpassed the Baseline 
by 11.2% on BLEU-1, 5.0% on BLEU-2, 3.2% on BLEU-3, 
2.1% on BLEU-4, 4.0% on METEOR, 6.2% on ROUGE-L, and 
7.1% on CIDEr. These results indicate a marked improvement 
in report generation quality due to the additional components. A 
systematic evaluation of each component's individual effect was 
subsequently undertaken by comparing the various 
configurations. 

BASELINE: The BASELINE model is a standard 
Transformer composite of three layers, eight attention heads, 

and 512 hidden units. This model serves as the starting point to 
evaluate the impact of additional modules. 

+X-SFE (Explainable Semantic Feature Extraction): This 
configuration adds the explainable text feature extraction 
module to the baseline model. This component leads to 
discernible gains across all metrics. For instance, BLEU-1 rises 
to 0.413, ROUGE-L to 0.358, and notably, CIDEr improves by 
1.7%. This suggests that enhancing the model’s ability to 
capture hierarchical relations in the text provides better context 
and structure for report generation. 

+X-SAVE (Explainable Semantic-Aligned Visual 
Extractor): This module focuses on fine-grained lesion 
detection. The X-SAVE module guides visual feature extraction 
using semantic knowledge derived from medical reports. This 
ensures that the model focuses on clinically significant regions 
of the image, significantly improving the model’s ability to 
generate precise and accurate medical reports. This module 
yields more significant boosts, with BLEU-1 reaching 0.422, 
BLEU-2 improving from 0.314 to 0.332, ROUGE-L increasing 
to 0.373 (+0.015), and CIDEr showing a strong jump to 0.441 
(+0.032). These results underscore the importance of semantic-
aligned visual extractors in focusing the model on diagnostically 
relevant image regions, thereby enhancing the quality and 
relevance of the generated text, particularly reflected in the 
CIDEr score. 

+CMF Multimodal Fusion module: In this setup, the CMF 
module is integrated into the model. As shown in Table II, this 
module improves visual-textual alignment by learning 
relationships between the two modalities. This leads to better 
cross-modal understanding, ensuring that both the visual and 
textual data are appropriately aligned, resulting in more accurate 
and coherent reports. This addition results in BLEU-1 increasing 
to 0.451, METEOR to 0.202 (+0.010), and ROUGE-L to 0.398 
(+0.025). The CIDEr score also sees a healthy increase to 0.453. 
These results highlight the importance of multi-level cross-
modal alignment in improving the integration of visual and 
textual data, leading to more accurate and coherent medical 
report generation. 

+Self-refining mechanism: We add a self-refining 
mechanism strategy in our decoder. As shown in Table II, this 
configuration substantially outperforms BASE; BLEU-1 
reaches 0.470, METEOR improves to 0.214, ROUGE-L to 
0.408, and CIDEr to 0.461. This indicates the importance of this 
configuration in improving the semantic quality of reports that 
are generated by maintaining consistent and context-dependent 
terminology. 

The full model, which merges all modules into an optimized 
layout, demonstrates superior performance. The BLEU-1 score 
reached 0.517, which represents a considerable increase from 
the former performance at 0.470. The METEOR score achieves 
0.221, while ROUGE-L reaches a level of 0.412 and CIDEr 
advances to 0.463. Transitioning from the "+Self-Refining 
mechanism" configuration to the "Full Model" generates 
substantial BLEU-1 improvements and consistent metric gains, 
which demonstrate that combined optimization of all modules 
creates a powerful synergy or enables the self-refining process 
to achieve its maximum potential in this final configuration. The 
BLEU-4 score maintains a value of 0.189 across the final two 
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stages because advancements have been concentrated on the text 
structure and semantic meaning along with lower-order n-gram 
precision. 

C. Visual Analysis 

We demonstrated the clinical insight and effectiveness of our 
Ex-ReGSA model by choosing illustrative cases for qualitative 
analysis, which appear in Table III.  The table presents a side-
by-side analysis of the original radiological report against Ex-
ReGSA-produced output and the model-derived explanations 
for its results, which appear within the context of the input 
radiological image.  This visual experiment surpasses 
quantitative metrics by providing richer insight into Ex-
ReGSA's ability to interpret complex clinical narratives and 
demonstrate its decision-making transparency. 

As shown in Table III, the generated report shows a high 
degree of resemblance in terms of organs and lesion 
description, signifying the model's capability in encapsulating 
the intricate relationship between multi-level features in both 
images and reports. This enables its hierarchical attention 

mechanisms, which focus on both global and fine-grained 
details. Additionally, the output report of the case also contains 
detailed diagnostic details, such as specific characteristics of 
the referred lesions, which can be attributed to the X-SFE and 
X-SAVE during hierarchical feature extraction. This guidance 
enables the model to offer importance on critical areas, 
improving the clinical relevance of the generated reports. 
Furthermore, the "Interpretable Explanations" column provides 
important understanding of how the model arrives at its 
decisions and processes information internally. These examples 
illustrate how these explanations combine model-assigned 
confidence scores of specific findings (e.g., "cardiomegaly score 
0.92," "pleural effusion score 0.93") with mentions of key visual 
features detected by internal components alongside potential 
semantic knowledge or quantifiers used by the model. Through 
detailed case-by-case explanations of its operational logic, Ex-
ReGSA proves transparent because it shows both its pathologies 
and normality reports and explains the reasoning behind those 
conclusions, which builds confidence in its clinical usefulness 
and reliability. 

TABLE III. THE VISUALIZATION OF OUR EX-RGSA MODEL 

image Ground truth Generated report Interpretable Explanations 
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Collectively, Ex-ReGSA demonstrated through 
representative cases Table III its ability to produce accurate 
radiology reports that thoroughly include necessary clinical 
terms and findings from ground truth while maintaining high 
coherence.  The "interpretable and explainable" evidence links 
generated statements with visual features and advanced 
analytical components to boost our model's clinical 
trustworthiness and usefulness. 

The necessary degree of transparency supports radiologists 
by potentially decreasing their reporting workload and 
enhancing diagnostic speed while functioning as a dependable 
clinical tool.  Ex-ReGSA's architecture demonstrates strong 
performance across various cases, which highlights its ability to 
manage different radiological presentations effectively. 

VI. DISCUSSION 

Our research shows that the Ex-ReGSA model demonstrates 
robust performance while achieving competitive results in 
automated radiology report generation, as confirmed by 
quantitative data and qualitative evaluations along with an 
insightful ablation study. Ex-ReGSA achieves state-of-the-art or 
similar scores when compared to existing methods across 
essential metrics with exceptional performance in all metrics, 
which indicates high lexical accuracy and semantic depth along 
with strong structural coherence. Furthermore, the ablation 
study systematically confirmed the individual and collective 
contributions of its core architectural modules, namely the X-
Semantic Feature Extractor (X-SFE), X-Semantic-Aligned 
Visual Extractor (X-SAVE), Cross-Modal Fusion (CMF), and 
the Self-Refining mechanism—each incrementally enhancing 
report quality towards the Full Model's performance. 
Complementing these objective scores, our qualitative analysis, 
showcased in Table III, illustrates Ex-ReGSA's ability to 
generate clinically relevant and accurate narratives for diverse 
cases, from identifying chronic conditions to recognizing acute 
findings such as pleural effusions and even subtle 
incidentalomas like calcified granulomas. 

Ex-ReGSA achieves its strength through a well-designed 
architecture specifically created to tackle multimodal medical 
report generation challenges. The collaboration between 
advanced visual feature extraction methods (X-SFE and X-
SAVE) delivers precise identification and interpretation of 
clinically important image regions. The Cross-Modal Fusion 
(CMF) module demonstrates essential functionality by 
combining visual cues with available textual information to 
create a comprehensive understanding. The output labeled 
"Interpretable and Explainable" stands out as a major 
advancement for achieving transparent AI within radiology. The 
model's decision-making process becomes clear through an 
analysis of system-detected features along with attention focal 
points and confidence levels. Ex-ReGSA produces reports while 
delivering a foundation for interpreting its conclusions. The 
model's inherent interpretability remains essential for 
developing clinical confidence and assisting with debugging and 
refining the model. 

When compared to the broader landscape of radiology report 
generation research, Ex-ReGSA positions itself favorably. Its 
leading ROUGE-L score, for instance, suggests a superior 
capability in capturing the essential content and narrative flow 

of reference reports compared to many existing models. The 
METEOR score further supports its ability to generate 
semantically coherent and fluent text. While Ex-ReGSA 
achieves a solid CIDEr score (0.463 as per the ablation study's 
Full Model), some specialized models, such as AERMNet 
(which reported a CIDEr of 0.560 in comparative settings), 
demonstrate higher performance on this specific consensus-
based metric. This suggests that while Ex-ReGSA demonstrates 
superior performance in report structure and semantic accuracy, 
it must improve n-gram overlap to maximize CIDEr rewards. 
While other models focus on single metrics and lack 
transparency, Ex-ReGSA demonstrates a distinct advantage 
through its comprehensive capabilities and built-in 
interpretability features. Therefore, our model, Ex-ReGSA, 
offers three key advantages over current methods. First, it 
achieves superior fine-grained accuracy by using a semantic-
guided visual extractor (X-SAVE) to focus on specific, subtle 
lesions that other models miss. Second, it provides truly 
explainable and trustworthy AI by using Concept Activation 
Vectors (CAVs) to explain why it makes a diagnosis in 
quantifiable terms, rather than just showing a heatmap of where 
it looks. Finally, it ensures enhanced coherence and reliability 
through a dynamic, self-refining decoder that corrects its output, 
leading to more logical and professionally structured reports 
than static generators. 

The study achieved promising results but remains limited by 
certain constraints.  Although the IU X-ray dataset serves as a 
standard benchmark, its limited size and variety fail to capture 
the full spectrum of clinical scenarios found in worldwide 
medical practice.  Further research is required to understand how 
the model handles fewer common conditions and complex cases 
that involve multiple subtle interacting findings.  Our CIDEr 
score competes well but remains behind the field leaders, which 
demonstrates room for growth in producing reports that match 
multiple radiologists' preferred terminology.  The existing 
interpretability methods provide valuable insights but represent 
only one phase in the continuous effort to achieve completely 
transparent and interactive artificial intelligence. 

Future work should focus on several key directions. 
Addressing the CIDEr gap could involve exploring novel 
decoding strategies or incorporating more fine-grained 
common-sense and clinical knowledge into the generation 
process. Training and validating Ex-ReGSA on larger, more 
diverse, and multi-institutional datasets would be crucial for 
assessing its generalizability and robustness. Prospective 
clinical studies are also essential to evaluate Ex-ReGSA's real-
world impact on radiologists' workflow, reporting efficiency, 
and diagnostic accuracy. Further development of the 
interpretability framework could involve more interactive 
explanation modalities, allowing clinicians to query the model's 
reasoning. 

VII. CONCLUSION 

Our research presents Ex-ReGSA as a novel method for 
automated radiology report generation which combines 
semantic-guided visual alignment, concept-based explainability 
via CAVs, and a dynamic self-refining decoder. Our model 
outperforms the state-of-the-art systems on major evaluation 
metrics such as ROUGE-L and METEOR, generating medically 
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accurate and fluent reports that are also interpretable. By 
explaining its diagnostic decisions in terms that can be 
quantified, Ex-ReGSA aims to promote transparency and trust 
in clinical AI, providing a powerful approach to improving 
diagnostic workflow, reducing radiologist workload, and 
helping interpretability in clinical decision-making. Although 
validation is successful, specific limitations are its testing on a 
single benchmark dataset and the potential to improve 
consensus-based metrics. Future work will focus on training 
with larger, multi-institutional datasets and conducting 
prospective clinical studies to affirm its real-world utility. 
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