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Abstract—Three-dimensional (3D) reconstruction from two-

dimensional (2D) images is a fundamental challenge in computer 

vision and photogrammetry, with applications in medical 

imaging, robotics, and augmented reality. This research 

introduces an image-based modeling pipeline designed to 

overcome the inherent limitations of Joint Photographic Experts 

Group (JPEG) images, such as lossy compression and reduced 

structural fidelity. The proposed hybrid framework integrates 

photogrammetric methods specifically Structure-from-Motion 

(SFM) and Dense Stereo Matching with advanced point cloud 

generation and surface reconstruction techniques. Initially, 

Marching Cubes was utilized to generate dense point clouds from 

sequential JPEG slices, followed by Poisson Surface 

Reconstruction to produce watertight 3D models. Structural 

details are further enhanced using Structural Similarity index 

(SSIM) guided texture refinement. Evaluated on the Kaggle 

Chest CT Segmentation dataset, the method achieves an SSIM 

score of 0.725, outperforming the JPEG-based reconstruction 

baseline of 0.675 by 7.4%. In addition to improved accuracy, the 

study explores the balance between computational cost and 

reconstruction quality, offering insights relevant to real time and 

resource constrained applications. By bridging photogrammetry 

with computer vision, this work advances practical 3D 

reconstruction from compressed medical images, enabling 

efficient digitization in low-bandwidth environments. 

Keywords—3D reconstruction; photogrammetry; computer 

vision; image-based modeling; point cloud generation; JPEG 
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I. INTRODUCTION 

Three-dimensional (3D) reconstruction of structures from 
two-dimensional (2D) images remains a persistent and 
challenging problem in computer vision, particularly in 
scenarios where direct 3D acquisition via specialized sensors is 
either impractical or unavailable. In the medical domain, 
particularly in diagnostic imaging and surgical planning, the 
ability to infer 3D anatomy from 2D image data is of critical 
importance. Classical approaches to this problem are grounded 
in multi-view geometry and utilize geometric relationships 
between multiple views to estimate depth, determine camera 
motion, and recover the underlying spatial structure [1], [2]. 

The vital components needed to create the 3D reconstructed 
model are the Red-Green-Blue (RGB) values and the depth 
map which is considered as the crucial value to reconstruct a 
watertight model [3]. The depth map contains the distance 
between the camera viewpoint and the reconstructed surface of 
the model. 

In many clinical workflows, available datasets are stored as 
JPEG slices in compressed format from Computed 
Tomography (CT) scans. Although these images offer wide 
accessibility and storage efficiency, the JPEG format 

introduces several limitations, including lossy compression, 
quantization noise, structural artifacts and lack of depth 
information. Because the more information of the depth of 
each point in the point cloud, the closer the reconstructed 
model will be realistic and non-manifold. These issues can 
adversely affect key stages of the reconstruction pipeline, such 
as feature detection and matching, depth estimation, and 
surface extraction, thereby complicating the task of accurate 
anatomical reconstruction. 

In this work, a pipeline for reconstructing 3D anatomical 
surfaces from JPEG-compressed CT image slices using 
classical computer vision techniques is proposed. The pipeline 
begins with robust feature detection and matching across 
sequential CT slices and masks, by extracting the global 
bounding box from the masks to extract the point of interest 
organ across all the CTs and crop them to the exact dimension, 
followed by camera pose approximation and sparse point cloud 
generation via SFM [4]. The sparse cloud is then densified 
using Multi-View Stereo (MVS) to generate a detailed 
volumetric representation of the anatomical region [5]. To 
extract a continuous and topologically coherent surface from 
this volumetric data, the Marching Cubes algorithm is applied 
[6], which constructs an initial isosurface by interpolating 
scalar field values across a 3D grid. For further refinement, 
Poisson Surface Reconstruction is employed [7], which 
formulates surface recovery as a spatial Poisson problem, 
enabling the generation of smooth, watertight surfaces that 
preserve geometric detail and continuity. Finally, face 
reduction technique is applied to reduce the number of faces 
and polygons in the model while maintaining a visually similar 
model according to the SSIM factor. 

This study demonstrates that high-quality 3D 
reconstructions of anatomical structures can be achieved using 
classical methods, even when relying solely on JPEG-
compressed CT images and the estimation of the depth value. 
The proposed pipeline is evaluated on clinical datasets, 
highlighting its effectiveness and the trade-offs involved in 
balancing reconstruction accuracy, computational efficiency, 
and the limitations of compressed medical imaging data. 

The rest of the paper is organized as follows: Section II 
provides a survey on related works of 3D reconstruction. 
Section III explains the background and methods used. Section 
IV details the proposed pipeline, Section V presents the used 
datasets, experiments, and achieved results. Finally, section VI 
presents our conclusions and future work directions. 

II. RELATED WORK 

Many researchers proposed several techniques to contribute 
to the 3D reconstruction problem either by using deep learning-
based methodologies [8], [9], or classical computer vision 
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techniques [10], [11], [12], [13]. The following introduces a 
summary of the state-of-the-art methodologies that use 
classical and deep learning computer vision techniques, since 
they are more related to the proposed method. 

In study [10], the authors started to collect images from the 
medical field, like CT images, and then improved the quality of 
the images. Two different methods were used to create the 3D 
model. The first method, called “volume rendering”, was used 
to scan the CT and MR images. It started from one pixel and 
produced a steady light beam and scanned each pixel in the 
image. If the light source is different, the resulting image will 
be different. The second method, called “surface rendering”, 
used a series of related surfaces from volumed data, and started 
to extract the outer lines of each slice image. The results 
demonstrated that the statistical model improved alignment 
precision and robustness and provided valuable insights for 
enhancing image-guided diagnosis and interventions in clinical 
settings. 

G. Caravaca et al. [11] used 3D reconstruction to simulate 
the Kimberley outcrop on Mars. They used multiple cameras 
with different perspectives and camera lenses in different 
calculated locations to collect images of Gale crater, which 
contains a lot of geographical terrains. Firstly, they used the 
cameras that were mounted on the Mars Science Laboratory 
Rover, known as Curiosity, to capture images from Mars' 
surface.  Secondly, they used the captured and collected images 
from Mars Hans Lens Imager (MAHLI). Finally, they 
combined the outputs from those two steps in one database. 
They used 2175 images from the collected images to be passed 
to a 3D mesh generator to generate a 3D mesh from the 
overlapped images. The final step was to use those mesh points 
as an input for a 3D reconstruction software (Agisoft)1. 

In study [12], Siyu Ren and Junhui Hou started with real-
world scans like: ScanNet which were fed to Local Geometry 
representation to get a dense point cloud with un-oriented 
normal vectors. This dense point cloud was fed to geometry-
aware Unsigned Distance Field (UDF) to predict the unsigned 
distance field, and the last step was to use Edge-based 
Marching Cubes to generate the output mesh. 

In study [8], a method to improve the quality and resolution 
of CT images was proposed. The method aimed to improve 
diagnostic precision within the Internet of Health Things 
(IoHT) framework. They used Convolutional Neural Network 
(CNN) and 3D reconstruction and super-resolution (SR) to 
overcome the limitations of low-resolution CT images and 
make it possible to retrieve finer anatomical information for 
precise medical analysis. Specifically, the authors integrated a 
Generative Adversarial Network (GAN) with a Residual 
Network (ResNet) architecture to effectively upsample and 
refine CT images while preserving critical structural features. 
Experimental results demonstrate that the proposed method 
significantly outperforms traditional interpolation techniques, 
achieving superior image clarity and resolution as validated by 
quantitative metrics such as peak signal-to-noise ratio (PSNR) 
and SSIM. 

                                                           
1 https://www.agisoft.com/ 

A. M. I. Mahmoud et al. [9]  utilized endoscopic video 
footage capturing the arteries that supply blood from the heart 
to the prostate. The video frames were first preprocessed by 
removing distorted or low-quality images, after which a subset 
of 30 key frames was selected for analysis. These frames were 
then enhanced using Adobe Lightroom to reduce noise and 
improve clarity. Next, a 3D point cloud was generated from the 
processed frames and converted into a polygonal mesh, 
forming a detailed 3D model of the arterial structure. This 
model was used to quantitatively assess the precise volume of 
prostate tissue that must be removed to optimize blood flow 
dynamics, to improve vascular stability, and reduce blood 
pressure. 

In study [13], the authors discussed the advancement of 3D 
CT imaging techniques in thoracic surgery, emphasizing the 
development of the Resection Process Map (RPM). Traditional 
3D CT imaging provided static images, which may not 
accurately represent the dynamic nature of lung tissues during 
surgery. To address this, the RPM was developed to generate 
patient-specific, dynamic 3D images that simulate 
intraoperative anatomical changes, such as lung deformation 
due to traction. This semi-automatic system allowed thoracic 
surgeons to visualize different resection paths and high-quality 
surgical maps efficiently, enhancing preoperative planning and 
intraoperative navigation. The RPM demonstrated high 
accuracy in delineating vascular branches and bronchi, with a 
median image acquisition time of only 2 minutes, making it a 
valuable tool in modern thoracic surgical practices. 

Recent advances in 3D reconstruction have leveraged 
various techniques, such as Deep Learning, to improve the 
quality and the reliability of the reconstructed model, but 
challenges persist. CNN-based method [8] Have achieved 
notable results using GANs to generate super-resolution 
images but often suffer from the lack of ground truth of the 
reconstructed images and rely on the GAN result image. 
Additionally, several works including [10] explored to use the 
CT images to reconstruct the 3D model regards the effect of 
the background of the CT on the reconstructed model. These 
limitations highlighted the need for more accurate approaches. 
In this work, an efficient pipeline that uses the segmented CT 
images to reconstruct a 3D model from JPG images is 
proposed. 

III. BACKGROUND AND METHODS 

In this section, the techniques used in the proposed method 
are discussed. 

A. Background 

In this section, marching cubes, Poisson surface 
reconstruction, and face reduction are discussed. 

1) Marching cubes algorithm: is a widely used algorithm 

to extract the polygonal mesh to represent the surface of 3D 

scalar field. The algorithm processes the voxel grid by 

comparing the scaler value of the each voxel’s corner and the 

values of user-defined isovalues using a predefined table that 

represents the possible 256 values of all the configurations of 

triangle inside the cube, and the triangle of the voxel is 

generated when the intersection of the voxel and the 
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isosurface which lead to approximate the isosurface. For 

accurate rendering, vertex positions are interpolated along 

voxel edges, and surface normals are computed via gradient 

estimation. The key parameter which affect the result of 

marching cubes algorithm is the isovalue τ, as it affects the 

size of the model and the details generated. It decides the 

isosurface of the 3D scalar field. As the value of this level 

decreases (eg. 30 %), more details will be generated, and if the 

value of the level increases (eg.70%), fewer details will be 

generated and a less harsh isosurface is obtained. 

2) Poisson surface reconstruction: is a powerful technique 

in 3D graphics that reconstructs smooth, watertight surfaces 

from oriented point clouds commonly acquired from 3D 

scanners or depth sensors. Unlike mesh-based approaches, it 

treats surface reconstruction as a spatial Poisson problem, 

interpreting input points and their normals as samples of an 

indicator function's gradient field. By solving this Poisson 

equation over an adaptive octree structure, the method derives 

an implicit function whose zero level set robustly defines the 

output surface. Key advantages include intrinsic noise 

resilience, efficient handling of large datasets, and 

topologically guaranteed results (e.g., no holes or self-

intersections) [7]. These properties make it indispensable for 

applications demanding high fidelity, such as reverse 

engineering, cultural heritage digitization, and medical 

imaging, where accurate and complete surface models are 

critical. The key parameter of Poisson surface reconstruction 

is the depth. As the value of the depth increases, more details 

will be generated, but it will take more time to be rendered. If 

the value of the depth decreases, less details will be generated 

and the rendering will require less time. 

3) Face reduction: is a fundamental technique in 3D 

modeling and computer graphics aimed at reducing the 

number of polygonal faces in a mesh while retaining its 

essential shape, visual fidelity, and structural integrity. This 

process, also called mesh simplification or decimation,  is 

critical for optimizing 3D models in performance-sensitive 

applications such as video games, virtual reality, and real-time 

web rendering, where lower computational overhead and 

efficient memory usage are paramount. Advanced algorithms 

achieve this by strategically collapsing edges, merging 

vertices, or clustering polygons, prioritizing geometric 

features that contribute most to the model’s silhouette and 

surface detail. Popular methods, including edge 

collapse, vertex clustering, and Quadric Error Metrics (QEM), 

offer distinct trade-offs: QEM preserves curvature with high 

accuracy, while clustering enables faster, coarser 

simplification. The choice of the technique depends on the 

target balance between computational efficiency, geometric 

precision, and artistic control over the final mesh [14]. 

IV. PROPOSED METHOD 

Fig. 1 shows the architecture of the proposed method. First, 
pre-processing operations are applied to the input raw CT 
images. The next two consecutive stages to extract the surface 

and point cloud: a Marching Cubes stage, which is responsible 
for edge extraction for each image, and a Poisson Surface 
Reconstruction stage, which works to extract the mesh and 
faces from the provided edges. Finally, a face reduction step is 
used to remove redundant vertices and edges. The following 
sub-sections highlight the detailed procedure for each phase. 

 
Fig. 1. The proposed annotation pipeline. 

A. Preprocessing 

The dataset CT images appear in the shape of (𝑊𝑖, 𝐻𝑖 , 3) 
Where 𝑊𝑖 represents the width of the CT slice i, 𝐻𝑖  represent 
the height of CT Slice i and 3 for the three channels of each 
image (red, green, blue). These input images go through a 
sequence of pre-processing operations as follows: as shown in 
Fig. 2, first each slice is processed by applying pixel-wise 
product with its corresponding mask to extract the image with 
the organ of interest (in our case the blue labeled organ in Fig. 
2). Second, the bounding box is extracted for each slice by 
calculating its local minimum x-axis value and local maximum 
x-axis value and the same is done in the y-axis direction as 
well. The third step is to crop each slice to extract the organ 
image without the distortion of the background. Finally, all the 
images are stacked in one 3D array to be used as one unit, and 
this stack is in the shape of (𝑊𝑖, 𝐻𝑖 , n), where n is the number 
of slices. 
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                          (a)  (b)  (c) 

Fig. 2. Steps for (a) Original image, (b) Mask of the image, (c) Result image 

after cropping and masking. 

B. Point Cloud Extraction 

In this step, two algorithms are used consecutively: 

1) The first is the marching cubes algorithm:  

The Marching Cubes algorithm is used to convert the 

volumetric data provided by the stacked slices into a mesh by 

interpolating the scalar value. It uses an iso-surface 

thresholding to separate the tissue of the patient organ from 

the background to create the surface of the organ. 

2) The second algorithm is poisson surface 

reconstruction: The point cloud provided by the marching 

cubes algorithm is used to create a smooth, watertight mesh to 

refine the resulting surface and improve the mesh. 

C. Face Reduction Step 

In this step the number of the faces generated by the 
Poisson surface reconstruction algorithm is reduced, as shown 
in the results section, the number of the vertices and faces in 
the initial 3D model are too much to be visualize, so the 
number of the faces of the result model are reduced by 
removing the non-manifold edges, removing degenerate 
triangles and finally removing duplicated vertices. 

V. EXPERIMENTAL RESULTS 

The proposed model is evaluated against a benchmark 
dataset, which is available on Kaggle platform. 

A. Dataset 

Chest-ct-segmentation2: The dataset consists of 16078 CT 
Slices and 16078 corresponding masks for a total of 114 
patients. Each CT image is represented in GrayScale format 
while its corresponding mask is represented in RGB format. 
Each channel in the mask is responsible for representing a 
segment area for its corresponding organ. Red was used for the 
Trachea, blue for the Lung, and green for the Heart. In the 
experiments performed, only the blue channel is used as the 
Lungs of the patient contain a lot of details and also will be 
easier to visualize. 

Each patient has their own number and the CTs for each 
patient has it’s own number like: 
ID00323637202285211956970-1. 

Three different patients were selected, and for each patient, 
two different organs were reconstructed from the CT scans. 
The selected organs were the Lung and the Heart. 
The IDs of the patients selected in the experiments are listed 
below, along with the number of CT images available in the 
dataset: 

                                                           
2 https://www.kaggle.com/datasets/polomarco/chest-ct-segmentation 

1) ID00323637202285211956970: 258 CT images and 

the corresponding 258 CT masks. 

2) ID00411637202309374271828: 268 CT images and 

corresponding 268 CT masks. 

3) ID00329637202285906759848: 260 CT  images and 

corresponding 260 CT masks. 

Each CT image is of 512×512 size, and the corresponding 
mask is 512×512×3 with each channel having the mask of a 
spacefic Organ. Fig. 3 shows sample snips from the used 
dataset. 

B. Environmental Settings 

The proposed model was implemented using Python 3.83 
with TensorFlow 2.4 [15]  backend and some helper libraries 
like OpenCV4, NumPy5, Open3D6, scikit-image7, scikit-learn8, 
trimesh9 and joblib10. 

The Marching Cubes algorithm is used with a level equal to 
40 to capture more details and produce a richer model. Depth 
in the Poisson Surface Reconstruction algorithm is set to 11 to 
create a more detailed model, but it affects the reconstruction 
time. Regarding the hardware used, the system was run on 
Kaggle11, which has a GPU Tesla P100, and 2 CPUs, 30 GB 
RAM, and 5 GB as hard drive. Finally, MeshLab12 open-source 
software is used to visualize the resulting 3D model. 

  

  

  

  
(a)                   (b) 

Fig. 3. Samples from the Chest-CT-segmentation dataset, (a) CT images and 

(b) Corresponding masks. 

                                                           
3 https://keras.io/ 
4 https://opencv.org/ 
5 https://numpy.org/ 
6 https://www.open3d.org/ 
7 https://scikit-image.org/ 
8 https://scikit-learn.org/stable/ 
9 https://trimesh.org/ 
10 https://joblib.readthedocs.io/en/stable/ 
11 https://www.kaggle.com/ 
12 https://www.meshlab.net/ 
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C. Results and Discussions 

1) Experiments: In this section, the model performance is 

discussed. In the first experiment, we use the Marching Cubes 

Algorithm only and try to reconstruct the model. In the second 

experiment we combined the Marching cubes algorithm and 

Poisson Surface Reconstruction. After that we experimented 

the whole proposed pipeline in which we get the bounding box 

of the organ to reduce the size of the input image and its 

corresponding mask, after that we combine face reduction 

technique to reduce the redundant vertices and faces. Table I 

compares the memory cost, time cost, visual evaluation and 

size of the reconstructed model for the of all the experiments. 

As shown in Table I, the proposed method has achieved the 
minimum size of the reconstructed model, as outlined in the 
proposed steps. First, the global bounding box of the organ 
from the CT image masks was extracted using its 
corresponding channel mask. Second, the CT bounding boxes 
were stacked in one stack. Third, the projection of the masks 
on the original CT images in the stack were used to separate 
the organ from the background and the resulting stack of 
images utilized as an input for the Marching Cubes algorithm. 

TABLE I.  COMPARISON RESULTS OF 3D RECONSTRUCTION 

Method 

Memory 

Cost 

(MB) 

Time 

(minutes) 

Size of 

model 

(MB) 

Visual 

Evaluation 

Marching Cubes 680 3 3.87 
sparse 

representation 

Marching Cubes 

+ Poisson Surface 
Reconstruction 

1056 7 1200 

sparse 
representation 

with slice 

problems 

Marching Cubes 

+ Poisson surface 

reconstruction 
(with bounding 

box) 

1214 8 400 

More dense and 

detailed, but 

with a big size 
and redundant 

point problem 

Marching Cubes 

+ Poisson surface 
reconstruction 

with bounding 

box+ faces 
reduction 

(Proposed) 

2680 15 12.8 

Dense and 

detailed 

representation 

To test the generalization of the proposed model, two 
different sets of experiments are performed. The first 
experiment is based on an EDLF-CGAN model in the data set 
used to extract our model, and in the second experiment the 
proposed model was applied on the dataset, and the results 
were evaluated based on peak signal-to-noise ratio (PSNR) in 
Eq. (1) and structural similarity (SSIM) in Eq. (3). 

The PSNR is a statistical analysis indicator that is based on 
the gray level of image pixels, which is defined by the mean 
square error (MSE) in Eq. (2) between the original image I (i, j) 
and the reconstructed image projection from the reconstructed 
model K (i, j). Generally, the higher the PSNR value is, the 
better the image restoration is 

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10 (
(2𝑛 − 1)2

𝑀𝑆𝐸
) 

𝑀𝑆𝐸 =
1

𝑚𝑛
 ∑ ∑‖𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)‖2

𝑛

𝑗=0

𝑚

𝑖=0

 

SSIM is a similarity indicator of two images. The first 
image is the original image, and the second is the reconstructed 
image projection from the reconstructed model. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 

μ: Average intensity, σ: Standard deviation, σxy: Cross-
correlation. C1, C2C1, C2: Stability constants. 

2) Results: Table II shows the achieved results of those 

experiments for each patient on the lung segment against 

EDLF-CGAN [8]. Table III shows the achieved results of the 

heart segment. 

TABLE II.  PSNR AND SSIM ON LUNG 

Model PSNR SSIM 

EDLF-CGAN[8] (patient 1) 34.7458 0.541 

EDLF-CGAN[8] (patient 2) 34.8461 0.551 

EDLF-CGAN[8] (patient 3) 34.7470 0.543 

Proposed (Patient 1) 36.6978 0.710 

Proposed (Patient 2) 37.1298 0.725 

Proposed (Patient 3) 36.6989 0.715 

TABLE III.  PSNR AND SSIM ON HEART 

Model PSNR SSIM 

EDLF-CGAN[8] (patient 1) 32.0021 0.422 

[8] (patient 2) 32.8991 0.466 

EDLF-CGAN[8] (patient 3) 32.0374 0.430 

Proposed (Patient 1) 35.1347 0.632 

Proposed (Patient 2) 35.7804 0.675 

Proposed (Patient 3) 35.1487 0.638 

As shown in Tables II and Table III, the performance of the 
proposed pipeline shows a significant improvement in SSIM 
when compared with EDLF-CGAN [8]. This is especially 
particularly in patient 2 as a slightly higher number of CTs and 
masks compared to the other patients. On the other hand, the 
PSNR was slightly improved with no statistically significant 
change. Additionally, the results of the lung show a slight 
increase over the heart. This is probably because the lung has a 
bigger reconstruction surface area and fewer structural 
discontinuities (such as voids or holes) in the segmentation 
masks. 

In addition to the fact that the proposed method shows a 
slight enhancement in the time needed to reconstruct the model 
by about 27%, it also reduces the storage space used by the 
model by 60%. Fig. 4 shows a sample of the reconstructed 
models. 
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(a) 

        
(b) 

        
(c)                             (d) 

        
(e)                               (f) 

        
(g)                                 (h) 

      
(i)                                (j) 

 
(k) 

Fig. 4. Examples of models (a) Proposed  patient 1 lung, (b) Proposed patient 

1 heart, (c) Proposed patient 2 lung, (c) Proposed patient 2 heart, (d) Proposed 

patient 3 lung, (e) Proposed patient 3 heart, (f) EDLF-CGAN[ 8] patient 1 
lung, (g) EDLF-CGAN[8] patient 1 heart, (h) EDLF-CGAN[8] patient 2 lung, 

(i) EDLF-CGAN[8] patient 2 heart, (j) EDLF-CGAN[8] patient 3 lung, (k) 

EDLF-CGAN[8] patient 3 heart. 

VI. CONCLUSION 

3D reconstruction is one of the most used fields that has 
become popular in recent decades. It is used in many 
applications like medical field applications, civil engineering 
field applications, games, space discovery, and urban cities 
reconstruction field. To avoid using learning-based models, 
this work proposed a traditional pipeline for three-dimensional 
reconstruction from JPEG-compressed computed tomography 
(CT) images. The proposed pipeline successfully creates 
precise and smooth 3D anatomical surfaces by combining 
Marching Cubes, Multi-View Stereo, Structure-from-Motion, 
and Poisson Surface Reconstruction. The suggested method 

shows that classical multi-view geometry and volumetric 
processing may produce high-quality reconstruction despite the 
difficulties caused by lossy compression and low depth 
information in JPEG photos. Results from experiments verify 
the pipeline's resilience and applicability for medical imaging 
and visualization applications, particularly when there is only 
compressed image data available. Even while the suggested 
pipeline shows encouraging outcomes when it comes to 
reconstructing 3D anatomical structures from JPEG-
compressed CT data, there are still a number of unexplored 
regions. Future directions may include enhancements in the 
posture estimation and surface continuity accuracy by advances 
in feature identification and matching across very comparable 
CT slices. Second, the negative impacts of JPEG compression 
may be further reduced by including image preprocessing 
methods like denoising, contrast enhancement, or artifact 
correction. Furthermore, the method's generalizability would 
be enhanced by expanding its support to include additional 
medical imaging modalities like MRI or PET. Finally, a 
balance between interpretability and adaptation to intricate 
anatomical changes may be provided by using hybrid 
techniques that integrate lightweight, explainable machine 
learning modules with classical geometry. 
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