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Abstract—Atrial fibrillation (AF) is the most common 

sustained cardiac arrhythmia and increases the risk of stroke, 

heart failure, and mortality. Electrocardiography (ECG) is the 

most important technology for AF detection because it is 

inexpensive, non-invasive, and provides clinically useful 

information. However, the variability of ECG patterns, 

particularly during paroxysmal AF creates challenges in detecting 

AF. Artificial Intelligence (AI) offers a promising opportunity to 

improve AF recognition. However, AI performance is contingent 

on obtaining high-quality and diverse ECG datasets. This paper 

presents a focused survey of 15 publicly available and clinical ECG 

datasets used in AI-driven AF detection research between 2023 

and 2025. We analyze the datasets based on acquisition methods, 

ECG type, format, lead configurations, annotation richness, and 

their application in AI models. Our comparative analysis reveals 

major trends, challenges such as data imbalance and motion 

artifacts, and gaps in current datasets including limited 

demographic diversity and underrepresentation of wearable ECG 

data. This study aims to guide future research toward more 
robust, interpretable, and inclusive AF detection models. 

Keywords—Atrial fibrillation; ECG datasets; Artificial 
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I. INTRODUCTION 

Atrial fibrillation (AF) is a serious and prevalent cardiac 
condition characterized by irregular electrical activity in the 
atria, which can lead to blood clots, stroke, and heart failure [1]. 
As the global burden of AF rises, early and accurate detection 
has become critical for timely treatment and risk management. 
Electrocardiograms (ECGs) serve as the gold standard for 
detecting AF due to their ability to capture cardiac electrical 
activity in a fast, non-invasive, and cost-effective manner [2]. 

In recent years, Artificial Intelligence (AI), particularly 
machine learning (ML) and deep learning (DL), has shown 
remarkable performance in analyzing ECG signals to 
automatically detect AF. However, these AI models depend 
heavily on the quality, structure, and diversity of the ECG 
datasets used for training and validation. While previous surveys 
often focus on AI architectures, little attention has been paid to 
the ECG datasets themselves. 

This paper addresses that gap by providing a focused survey 
of ECG datasets used in AI-based AF detection. The survey is 
structured as follows: First, a technical background discusses 
ECG types for AF diagnosis and highlights commonly used AI 
technologies. Second, the related work section emphasizes the 

importance of our survey and outlines our added value compared 
to existing reviews, which often overlook the role of ECG 
datasets in AI-based AF diagnosis. Third, we present our 
methodology for assembling recent studies from 2023-2025 and 
extracting the datasets used. The survey results follow, 
organized in two tables: one summarizing the extracted datasets, 
and the second providing an analysis grid of 12 selected studies 
detailing preprocessing techniques, AI models, architectures, 
and performance metrics. Finally, we discuss insights from these 
results, highlighting trends, challenges, and future research 
directions. 

II. BACKGROUND 

Electrocardiograms (ECGs) record the heart's electrical 
activity and can be captured using different lead configurations, 
such as the standard 12-lead or single-lead used in wearable 
devices. The duration of ECG recordings can vary from seconds 
to days, with longer recordings, known as Ambulatory ECGs, 
often obtained via wearable devices. These continuous 
recordings are particularly useful for detecting paroxysmal atrial 
fibrillation (AF), which occurs intermittently and may not be 
captured in shorter ECG sessions. To address this, AI models 
like Support Vector Machine (SVM), Extreme Gradient 
Boosting (XGBoost), Convolutional Neural Networks (CNNs), 
and Long Short-Term Memory Networks (LSTMs) are trained 
on diverse ECG data, including ambulatory recordings, with 
recent models incorporating explainable AI (XAI) techniques to 
improve interpretability and clinical trust [3]. The data can be 
stored as raw signals or transformed into images for visual or 
AI-based analysis [4]. 

III. RELATED WORK 

Recent studies have explored AI-based tools for assessing 
atrial fibrillation (AF) burden, showing high correlation with 
manual physician assessments. Notably, AI demonstrated strong 
agreement and minimal bias, offering an efficient and accurate 
alternative for AF burden evaluation [5]. However, when it 
comes to AI-driven AF detection, the dataset plays a crucial role 
in the precision of the diagnosis. The quality, variety, and 
characteristics of ECG datasets significantly impact the 
performance of AI models. Despite the growing importance of 
these datasets, there is a noticeable gap in existing reviews and 
surveys. Many reviews discuss ECGs from a biometric 
perspective [6] or focus on ECGs for arrhythmia detection in 
general, but few address the specifics of AI-based AF 
detection[7], [8]. My previous review focused on the latest AI 
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technologies for AF detection [9], but this current work expands 
by compiling and analyzing the ECG datasets specifically used 
for AI-driven AF diagnosis. This review aims to fill the gap by 
highlighting the diverse datasets used in AF detection, which 
will aid future research in understanding the strengths and 
limitations of various data sources and model implementations 
in the field. 

IV. METHODOLOGY 

To conduct this dataset-oriented survey on atrial fibrillation 
(AF) detection using artificial intelligence (AI) models applied 
to electrocardiogram (ECG) data, we followed systematic 
review principles, inspired by PRISMA guidelines as shown in 
Fig. 1, to ensure transparency and reproducibility in the selection 
and analysis of studies. Bibliographic references were collected 
using the following keywords: "Artificial Intelligence", "AI", 
"Machine Learning", "ML", "Deep Learning", "DL", "Atrial 
Fibrillation", "AF", "AFib", "Electrocardiogram", and "ECG". 
These were queried in several major scientific databases, 
including Scopus, Science Direct, Web of Science, and IEEE 
Xplore. As part of the inclusion criteria, we considered only 
papers that had the core terms in the title, ensuring a strict focus 
on AF detection using AI applied to ECG data with a total of 
304 papers. Additionally, the time frame was restricted to 2023–
2025 and limited to 25 June 2025, and only articles published in 
English were considered. We included only original research 
articles, conference papers, and technical studies, while review 
and survey papers were examined separately to identify 
potential overlaps or gaps but were ultimately excluded from the 
analysis. All retrieved references were exported into Mendeley 

for management and screening. After removing duplicates, 81 
unique entries remained. During the screening process, papers 
were excluded if they: 

 Focused on physiological signals other than ECG (e.g., 
PPG or ECHO). 

 Studied diseases related to AF rather than AF itself (e.g., 
stroke outcomes or AF recurrence after catheter 
ablation). 

 Did not report the use of AI techniques for AF detection. 

Following the title and abstract screening, 48 papers met the 
inclusion criteria. In the full-text screening phase, 33 full-text 
papers were successfully retrieved. After reviewing the 
literature, it became clear that a lack of standardization in ECG 
datasets used across AI models was a significant limitation. This 
prompted a focus on compiling a dataset-oriented survey of 
ECG datasets for AI-based AF detection. We’ve selected 33 
studies from 2023 to 2025, extracting key information about 15 
different ECG datasets. The dataset attributes included ECG 
type, acquisition method, sample size, format, annotation 
quality, and availability. To gather this information, we 
conducted online searches for dataset sources and details, 
including any risk factors or clinical labels associated with each 
dataset. The extracted data were organized in Table I, 
summarizing each dataset’s key characteristics and their 
relevance to AI-based AF detection. This compilation provides 
a comprehensive overview of the datasets, filling a gap in the 
current literature.

 
Fig. 1. PRISMA flow diagram representing the paper selection process for the dataset-oriented survey on AI-based Atrial Fibrillation detection. 
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TABLE I.  SUMMARY OF ECG DATASETS USED FOR ATRIAL FIBRILLATION DETECTION 

Ref ABR 
Name of 
Dataset 

Yea
r 

Source 
type 

Acquisiti
on device 

Sample 
S ize 

Dur
atio

n 

ECG 
Type 

ECG 
Form

at 

Numbe

r of 
ECG 

leads 

Annotation Link 
Studi

es 

[10] 
CPSC 
2018 

- The China 
Physiological 
Signal 

Challenge 
Database 

- CPSC-Extra 
Database 

201
8 

Public 

Clinical 

devices 
from 11 
hospitals 

10 330 

records: 

- Set 1: 

6877 
Records 

- Set 2: 

3453 
Records 

6s to 
60s 

Standard 
ECG 

Signal 12 
- ECG only 

- Age & Sex only 

The China 
Physiological 
Signal 

Challenge 
2018 

[11] 

[12] 

[13] 

[14] 
INCA
RT 

St. Petersburg 
Institute of 

Cardiological 
Technics 12lead 
Arrhythmia 

Database 

200
8 

Public 
Holter 
Monitor 

75 

Records 
from 32 
Patient 

30 
min 

Ambulato
ry ECG 

Signal 12 

Over 175,000 beat 

annotations; auto-
detected and 
manually 

corrected; 
includes age, sex, 

diagnosis. 

St Petersburg 
INCART 12-

lead 
Arrhythmia 
Database 

v1.0.0 

[12] 

[15] 

[16] PTB 
PTB Diagnostic 
ECG Database 

200
4 

Public 

PTB 

custum 
prototype 

Recorder 

549 
Records 

from 
290 
Patient 

Vari
es  

up to 
minu
tes 

Resting 
ECG 

Signal 

15 

leads: 

 12 

 3 

Fran
k 

Diagnosis, age, 

gender, history, 
medications, 

interventions, and 
clinical 

summaries 

(some records 
missing 

Annotations). 

PTB 

Diagnostic 
ECG Database 

v1.0.0 

[11] 

[12] 

[13] 

[17] 

[18] 

[19] 
PTB-

XL 

PTB-XL, a large 

publicly 
available 
electrocardiogra

phy dataset 

201

9 
Public 

Device 
from 

Achiller 
AG 

21 799 

Records 
from 18 
689 

Patients 

10s 
Resting 

ECG 
Signal 12 

SCP-ECG codes 
(71 statements), 
multi-label: 

diagnostic, form, 
rhythm; metadata 

includes age, sex, 
height, weight, 

heart axis, 
infarction stage, 
signal noise info. 

PTB-XL, a 

large publicly 
available 

electrocardiogr
aphy dataset 

v1.0.3 

X 
Georg
ia 

The Georgia 12-
lead ECG 

Challenge 
(G12EC) 

Database 

200
0 

Public 

Not 

specified 
(Assumin
g the 

clinical 
devices) 

10 344 
Records 

10s 
Resting 
ECG 

Signal 12 

Labels not clearly 

defined in brief, 

Includes 
diagnosis/class 

Georgia 12-
Lead ECG 
Challenge 

Database 

[11] 

[12] 

[20] 

2017 

Physi
oNet 

Chall
enge 

The 

PhysioNet/Com
puting in 

Cardiology 
Challenge 2017 

201

7 
Public 

Kardia 
Mobile: 

AliveCor 

8528 

Records 

9s to 
60s 

(Var
ies) 

Minimal 

ECG 
Signal 

Single 

lead 

Rhythm Labels : 

 Normal 

 Atrial 

 Fibrillation 

 Other Rhythms 

 Noisy 

AF 
Classification 

from a Short 
Single Lead 

ECG 
Recording: The 

PhysioNet/Co
mputing in 
Cardiology 

Challenge 
2017 v1.0.0 

[21]  

[22] 

[23] 

[24] 

[25] 

[26] 

[27] 

[28] 

X 
MUS

E 

the MUSE 
cardiology 

information 
system 
(GE,Healthcare, 

Chicago, IL, 
USA) 

X 

Clinical 

Not 
Availab

le 

Clinical 

Diverse 

and 
Over 
300 000 

Records 

Usia
lly 
10s 

Resting 

ECG 
Signal 12 

 Raw waveform 
signals 

 Demographics 
(age, sex, etc.) 

 Clinical 

diagnoses and 
physician 
interpretations 

 ECG 
measurements 

(HR, PR 
interval, QT, 
etc.) 

 Not publicly 
available, 

MUSE 
Cardiology 

Information 
System | GE 
HealthCare 

(United 
Kingdom) 

[3] 

[29] 

http://2018.icbeb.org/Challenge.html
http://2018.icbeb.org/Challenge.html
http://2018.icbeb.org/Challenge.html
http://2018.icbeb.org/Challenge.html
http://2018.icbeb.org/Challenge.html
https://physionet.org/content/incartdb/1.0.0/
https://physionet.org/content/incartdb/1.0.0/
https://physionet.org/content/incartdb/1.0.0/
https://physionet.org/content/incartdb/1.0.0/
https://physionet.org/content/incartdb/1.0.0/
https://physionet.org/content/incartdb/1.0.0/
https://physionet.org/content/ptbdb/1.0.0/
https://physionet.org/content/ptbdb/1.0.0/
https://physionet.org/content/ptbdb/1.0.0/
https://physionet.org/content/ptbdb/1.0.0/
https://physionet.org/content/ptb-xl/1.0.3/
https://physionet.org/content/ptb-xl/1.0.3/
https://physionet.org/content/ptb-xl/1.0.3/
https://physionet.org/content/ptb-xl/1.0.3/
https://physionet.org/content/ptb-xl/1.0.3/
https://physionet.org/content/ptb-xl/1.0.3/
https://www.kaggle.com/datasets/bjoernjostein/georgia-12lead-ecg-challenge-database
https://www.kaggle.com/datasets/bjoernjostein/georgia-12lead-ecg-challenge-database
https://www.kaggle.com/datasets/bjoernjostein/georgia-12lead-ecg-challenge-database
https://www.kaggle.com/datasets/bjoernjostein/georgia-12lead-ecg-challenge-database
https://physionet.org/content/challenge-2017/1.0.0/
https://physionet.org/content/challenge-2017/1.0.0/
https://physionet.org/content/challenge-2017/1.0.0/
https://physionet.org/content/challenge-2017/1.0.0/
https://physionet.org/content/challenge-2017/1.0.0/
https://physionet.org/content/challenge-2017/1.0.0/
https://physionet.org/content/challenge-2017/1.0.0/
https://physionet.org/content/challenge-2017/1.0.0/
https://physionet.org/content/challenge-2017/1.0.0/
https://physionet.org/content/challenge-2017/1.0.0/
https://physionet.org/content/challenge-2017/1.0.0/
https://www.gehealthcare.com/en-gb/products/diagnostic-cardiology/muse-v9?npclid=CjwKCAjw0a-SBhBkEiwApljU0nguvZYAZ1DaaIftQ4qgx-ruc99u6H5Q2Rc63w7lgTIGvqD964bblRoC8TkQAvD_BwE
https://www.gehealthcare.com/en-gb/products/diagnostic-cardiology/muse-v9?npclid=CjwKCAjw0a-SBhBkEiwApljU0nguvZYAZ1DaaIftQ4qgx-ruc99u6H5Q2Rc63w7lgTIGvqD964bblRoC8TkQAvD_BwE
https://www.gehealthcare.com/en-gb/products/diagnostic-cardiology/muse-v9?npclid=CjwKCAjw0a-SBhBkEiwApljU0nguvZYAZ1DaaIftQ4qgx-ruc99u6H5Q2Rc63w7lgTIGvqD964bblRoC8TkQAvD_BwE
https://www.gehealthcare.com/en-gb/products/diagnostic-cardiology/muse-v9?npclid=CjwKCAjw0a-SBhBkEiwApljU0nguvZYAZ1DaaIftQ4qgx-ruc99u6H5Q2Rc63w7lgTIGvqD964bblRoC8TkQAvD_BwE
https://www.gehealthcare.com/en-gb/products/diagnostic-cardiology/muse-v9?npclid=CjwKCAjw0a-SBhBkEiwApljU0nguvZYAZ1DaaIftQ4qgx-ruc99u6H5Q2Rc63w7lgTIGvqD964bblRoC8TkQAvD_BwE
https://www.gehealthcare.com/en-gb/products/diagnostic-cardiology/muse-v9?npclid=CjwKCAjw0a-SBhBkEiwApljU0nguvZYAZ1DaaIftQ4qgx-ruc99u6H5Q2Rc63w7lgTIGvqD964bblRoC8TkQAvD_BwE
https://www.gehealthcare.com/en-gb/products/diagnostic-cardiology/muse-v9?npclid=CjwKCAjw0a-SBhBkEiwApljU0nguvZYAZ1DaaIftQ4qgx-ruc99u6H5Q2Rc63w7lgTIGvqD964bblRoC8TkQAvD_BwE
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Ref ABR 
Name of 
Dataset 

Yea
r 

Source 
type 

Acquisiti
on device 

Sample 
S ize 

Dur
atio

n 

ECG 
Type 

ECG 
Form

at 

Numbe

r of 
ECG 
leads 

Annotation Link 
Studi

es 

 Access 
typically 

requires 
collaboration 

with a hospital 
using the 

MUSE system. 

X PHYJ 

Hospital of 
Yangjiang 

(PHYJ),Yangjia
ng, China, 

Database 

X 

Clinical 

Not 

Availab
le 

Clinical 

100 
Records 

from 
100 

Patients 

15s 
Resting 
ECG 

Array 12 

 Labels 

confirmed by 
Holter 
monitoring and 

cardiologist 
review 

 Not publicly 
available. 

X [30] 

X EHR 

the ECG and 
electronic health 

record (EHR) 
databases from 

AZ Delta 

202
2 

Clinical 

Not 

Availab
le 

GE MUSE 

Cardiolog
y System 

173 537 
ECGs 

from 68 
880 

Patients 

10s 
Resting 
ECG 

MUS
E 
Forma

t 

 12 

 Singl
e 

 AF diagnosis 
from structured 
EHR + MUSE 

ECG labels 

 Not publicly 

available 

Best Electronic 

Health Record 
(EHR) 
Datasets & 

Databases 
2025 | Datarade 

[31] 

[32] 
Chap
man 

Chapman 
University and 

Shaoxing 
People's 
Hospital 

database, 

202
0 

Clinical  
Availab

le 

GE MUSE 
Cardiolog

y System 

10 646 
Patients 

10s 
Resting 
ECG 

Digita
l 

12 

 Expert-

labeled: 

- 11 rhythms + 67 
conditions 

A 12-lead 

electrocardiogr
am database for 

arrhythmia 
research 
covering more 

than 10,000 
patients 

[13] 

[33] 

[34] 

X 
CNU

H 

Chonnam 

National 
University 

Hospital 
databases 

202

2 

Clinical 

Not 
Availab

le 

MobiCAR

E-MC100 

3059 

ECGs 
from 

6720 
patients 

60s 
Mobile 

ECG 

Digita

l 
Single 

 Labeled as 
"AF" (masked 

AF) or 
"Healthy" 

based on 12-
lead ECG 
history 

 Not publicly 
available 

X [35] 

[36] 
AFD
B 

MIT-BIH Atrial 
Fibrillation 

Database 

200
0 

Public 

Clinical 

Ambulato
ry ECG 

recorders 

25 
records 

10h 
Ambulato
ry ECG 

Digita
l 

2 leads 

 Rhythm: 
AFIB, AFL, J, 

N (manual) 

 Beat: .qrs 
(auto), .qrsc 

(manually 
corrected, 

some records) 

MIT-BIH 

Atrial 
Fibrillation 

Database 
v1.0.0 

[37] 

[28] 

[38] 

[39] 

[40] LTAF 
The Long Term 

AF Database 

200

0 
Public 

Clinical 

Ambulato
ry ECG 

recorders 

86 
Records 

from 80 
Patients 

21h 
to 

24h 

Ambulato

ry ECG 

Digita

l 

2 lead 

or 

3 leads 

 ST episode 

annotations 

 beat 
annotations 

 ST level 
measurements 

Long Term ST 
Database 

v1.0.0 

[38] 

[41] 
MIT
DB 

The MIT-BIH 

Arrhythmia 
Database 

200
1 

Public 

Clinical 

Ambulato
ry ECG 
recorders 

48 
Records 
from 47 

Patients 

30mi
n 

Ambulato
ry ECG 

Binar
y 

2 leads 

 Beat-by-beat 
annotations by 
cardiologists 

(~110,000 
beats 

annotated) 

MIT-BIH 
Arrhythmia 
Database 

v1.0.0 

[26] 

[28] 

[38] 

[42] 
NSR

DB 

MIT-BIH 
Normal Sinus 

Rhythm 
Database 

200

0 
Public 

Clinical 

Ambulato
ry ECG 

recorders 

18 

Subjects 
24h 

Ambulato

ry ECG 

Binar

y 
2 leads 

 No significant 
arrhythmias; 

 Rhythm 
annotations 

only 

 Healthy 

volunteers 

The MIT-BIH 
Normal Sinus 

Rhythm 
Database 

[38] 

 

https://datarade.ai/data-categories/electronic-health-record-ehr-data/datasets
https://datarade.ai/data-categories/electronic-health-record-ehr-data/datasets
https://datarade.ai/data-categories/electronic-health-record-ehr-data/datasets
https://datarade.ai/data-categories/electronic-health-record-ehr-data/datasets
https://datarade.ai/data-categories/electronic-health-record-ehr-data/datasets
https://datarade.ai/data-categories/electronic-health-record-ehr-data/datasets
https://figshare.com/collections/ChapmanECG/4560497/2
https://figshare.com/collections/ChapmanECG/4560497/2
https://figshare.com/collections/ChapmanECG/4560497/2
https://figshare.com/collections/ChapmanECG/4560497/2
https://figshare.com/collections/ChapmanECG/4560497/2
https://figshare.com/collections/ChapmanECG/4560497/2
https://figshare.com/collections/ChapmanECG/4560497/2
https://figshare.com/collections/ChapmanECG/4560497/2
https://physionet.org/content/afdb/1.0.0/
https://physionet.org/content/afdb/1.0.0/
https://physionet.org/content/afdb/1.0.0/
https://physionet.org/content/afdb/1.0.0/
https://physionet.org/content/afdb/1.0.0/
https://physionet.org/content/ltstdb/1.0.0/
https://physionet.org/content/ltstdb/1.0.0/
https://physionet.org/content/ltstdb/1.0.0/
https://physionet.org/content/mitdb/1.0.0/
https://physionet.org/content/mitdb/1.0.0/
https://physionet.org/content/mitdb/1.0.0/
https://physionet.org/content/mitdb/1.0.0/
https://archive.physionet.org/physiobank/database/nsrdb/#:~:text=This%20database%20includes%2018%20long-term%20ECG%20recordings%20of,Hospital%20%28now%20the%20Beth%20Israel%20Deaconess%20Medical%20Center%29.
https://archive.physionet.org/physiobank/database/nsrdb/#:~:text=This%20database%20includes%2018%20long-term%20ECG%20recordings%20of,Hospital%20%28now%20the%20Beth%20Israel%20Deaconess%20Medical%20Center%29.
https://archive.physionet.org/physiobank/database/nsrdb/#:~:text=This%20database%20includes%2018%20long-term%20ECG%20recordings%20of,Hospital%20%28now%20the%20Beth%20Israel%20Deaconess%20Medical%20Center%29.
https://archive.physionet.org/physiobank/database/nsrdb/#:~:text=This%20database%20includes%2018%20long-term%20ECG%20recordings%20of,Hospital%20%28now%20the%20Beth%20Israel%20Deaconess%20Medical%20Center%29.
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V. ECG DATASETS LANDSCAPE 

Over the past decade, a wide range of ECG datasets have 
been utilized to develop AI models for Atrial Fibrillation (AF) 
detection. Table I presents a comparative analysis of 15 ECG 
datasets that were extracted following the used methodology in 
section before. These datasets differ significantly in terms of 
source (public vs. clinical), ECG type (resting vs. ambulatory), 
number of leads (from single-lead to 15-lead), signal duration (6 
seconds to 24 hours), and data format (digital signals, WFDB, 
MUSE, or image-based ECG scans). Publicly accessible 
datasets like PTB-XL, AFDB, MITDB, and the PhysioNet 2017 
Challenge have been widely adopted due to their availability and 
rich rhythm annotations [19], [20], [36], [41]. Clinical datasets 
such as MUSE, PHYJ, and CNUH, while offering more realistic 
clinical scenarios, are often inaccessible, limiting 
reproducibility and external validation[44]. There is growing 
interest in single-lead and ambulatory ECG datasets, especially 
for wearable and real-time monitoring applications [36]. In 
contrast, 12-lead ECGs remain the most common in clinical 
datasets due to their diagnostic richness [19], [32]. Regarding 
duration, some datasets contain short snapshots (typically 10 
seconds) while others, such as LTAF and MITDB, include long-
term ambulatory ECGs suitable for detecting paroxysmal or 
transient AF episodes. Datasets vary considerably in annotation 
granularity. Some, like the PhysioNet 2017 Challenge and 
AFDB, provide beat-level or rhythm-level labels, which are 
essential for supervised learning. Others, like PTB and CNUH, 
contain diagnostic summaries but lack detailed temporal 
annotation, which restricts their use in time-series AF detection 
tasks. A few datasets offer clinical metadata such as age, sex, 
and comorbidities, but this information remains inconsistent and 
often incomplete, hindering the study of model fairness and 
demographic generalization. A variety of acquisition devices are 
represented, including hospital-grade machines, Holter 
monitors, and portable solutions like KardiaMobile [5], [45]. 
Additionally, several large-scale, non-public clinical datasets 
(e.g., from hospitals in the US, Israel, Japan, and the UK 
Biobank) have been used in recent studies to validate 
generalization performance across diverse patient populations 
[46], [47]. One notable example involved over 320,000 ECGs 
from 130,000+ patients using both Philips and GE systems [48]. 
These real-world datasets, though inaccessible to the broader 
community, are essential for robust AF detection, especially in 
challenging cases such as paroxysmal or asymptomatic AF [40], 
[41], [49], [50], [51]. Despite recent advancements, the lack of 
standardized annotations, inconsistent demographic diversity, 
and limited access to prospective real-world datasets remain key 
barriers to model development and evaluation 

VI. AI MODELS LANDSCAPE FOR AF DIAGNOSIS 

Table II provides a comprehensive overview of 12 
representative studies from 2024–2025 that apply AI techniques 
to ECG datasets for atrial fibrillation (AF) detection. Each entry 
outlines the dataset used, preprocessing pipeline, model 
architecture, performance, and key innovations. Together, they 
illustrate the current state of applied AI in this domain and 
support a synthesis of prevailing trends, methods, and research 
directions. 

Key Observations: 

1) Dominance of Deep Learning (DL): CNNs remain the 

most widely adopted models, often serving as backbone 

architectures in hybrid setups (e.g., CNN-LSTM, CNN-RNN). 

Lightweight architectures (e.g., MobileNet, ultra-compact 

CNNs) are increasingly favored in resource-constrained 

environments like wearables and mobile devices [3][11][21]. 

2) Rise of hybrid and transformer models: Hybrid models 

combining CNNs with LSTMs or GRUs enhance temporal 

pattern recognition. Transformer-based models are also 

emerging, particularly in multimodal settings (e.g., ECG + 

HRV + demographics), demonstrating high AUROC scores 

(e.g., 0.9668 with VGG-16) [24] [33] [38]. 

3) Preprocessing pipelines vary widely: Signal 

preprocessing includes traditional filtering (e.g., Butterworth, 

Pan-Tompkins), wavelet transforms (e.g., CWT), and advanced 

time–frequency representations (e.g., STFT, spectrograms). 

Some models integrate domain-specific techniques like ECG 

segmentation (PQRST) or RR interval extraction for feature 

fusion. [22] [30] [33] [35] [37]. 

4) Explainability and interpretability: Explainable AI 

(XAI) is increasingly used through techniques like Layer-wise 

Relevance Propagation (LRP), anomaly scoring, and saliency 

maps. Studies applying LRP or segment-wise analysis provide 

insights into model behavior and potential diagnostic 

biomarkers, such as T-wave/ST-segment deviations in 

paroxysmal AF[3] [33] [34]. 

5) Dataset-specific adaptations: Several studies tailor their 

models to specific datasets public or clinical accounting for 

noise, class imbalance, and sampling frequency. For example, 

the use of DBSCAN-GAN for denoising and synthetic 

augmentation on noisy wearable ECG datasets shows promise 

for generalization [24]. 

6) Clinical integration and risk factors: A subset of studies 

incorporates demographic features (e.g., age, sex) and 

electronic health record (EHR)-derived risk scores. This 

multimodal fusion enhances AF prediction, particularly in 

identifying paroxysmal AF from normal sinus rhythm, and 

aligns with real-world deployment needs [31]. 

7) Performance benchmarks: Reported metrics span 

AUROC (up to 0.98), F1-scores (up to 0.99), and accuracy 

(>96% in some cases). However, performance varies across 

datasets and is often affected by noise, signal duration, or 

sampling frequency. Lightweight models maintain high 

performance with reduced computational cost, enabling 

deployment in real-time monitoring systems [18]. 

8) Cross-dataset and external validation: Some studies 

emphasize generalization by testing across multiple public 

datasets (e.g., PTB-XL, MITDB, PhysioNet 2017). However, 

only a few employs external validation on private clinical data 

an essential step for real-world readiness [11]. 

This comparative summary not only emphasizes the 
practical applications of each dataset, but also reveals 
methodological trends, current performance benchmarks, and 
emerging best practices in AI-driven AF detection. 
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TABLE II.  OVERVIEW OF AI MODELS FOR ATRIAL FIBRILLATION DETECTION FROM ECG SIGNALS 

Paper
s 

Year Dataset 
Preprocessing 

Techniques 
AI Models Type Architecture details 

Performance 
Metrics 

Key 
Contribution 

Notes 

[11] 2025 

 CPSC201
8 

 PTB-XL 

 Georgia 

 Raw ECG; 

 Feature 
extraction; 

 Demographic 
data (age, 
sex); 

 Saliency 
maps 

 Deep Learning: 

o CNNs, 

o RNNs (GRU), 

o Transformers 

 AlexNet, 

 VGG-16, 

 LeNet, 

 ResNet, 

 Inception, 

 FCN, 

 GRU, 

 Transformers 

 AUROC: 

o VGG-16 
(0.9668), 

o AlexNet 
(0.9617); 

 Sensitivity: 

~0.9225 with 
HRV+demo 

 Multimodal 
input (ECG + 
HRV + 

demographics) 

 Improves AF 
detection; 

 Simple models 
outperform 
complex ones 

 Final best 
performers: AlexNet 

and VGG-16 due to 
efficiency, 
performance, and 

interpretabilityemph
asises 

 Best performance on 
PTB-XL; 
generalizability and 

label quality vary 
across datasets 

[21] 2025 
Physionet 

challenge 2017 

 Bandpass 
filtering 

 Short-Time 
Fourier 
Transform 

(STFT) 

 Reverse polar 
transform 

 PanTompkin
s (P-T) 

algorithm 

 CNN 

 Ensemble Voting 

 Pretrained 
MobileNet, 
ResNet50,DenseNet

121 

 5-fold cross-
validation 

 Soft and hard voting 
ensemble 

 Accuracy, 

 Precision, 

 Recall, 

 F1-score 

 Introduced 
reverse polar-
transformed 

spectrograms 
for ECG 

 Improved 
AFib detection 
with better 

visual 
representation 

 Effective use 

of compact 
square 

matrices for 
CNN input 

 Sensitive to signal 

amplitude and filter 
type 

 Well-suited for real-
time and wearable 
ECG analysis 

[3] 2025 MUSE 

 Feature 
extraction; 

 Demographic 
data (age, 
sex); 

 Deep Learning 

(CNN) 

Not fully disclosed 

 CNN 

 Layer wise 
Relevance 
Propagation 

 AUROC: 

0.905 ± 0.00 

 Demonstrated 
ability to 
predict 

paroxysmal 
AF onset from 

normal sinus 
rhythm ECGs 

using deep 
learning. 

 Used LRP to 

identify T-
wave/ST 
abnormalities 

as key 
predictors 

 Focused on 

paroxysmal AF 
prediction. 

 Applied LRP (Layer-
wise Relevance 
Propagation) for 

XAI. 

[22] 2025 
Physionet 
challenge 2017 

 Bnechmark 
Algorithm 

 Expert 
cardiologist 

review 

 removal of 

artifacted 
ECGs 

 Deep Learnig 

 Cloud-based AI 
platform: “The 

Willem Artificial 
Intelligence 

platform”  [43] 

 Trained on >520,000 
patients' ECGs; 

 detects 23+ 
arrhythmias; 

 Uses data from: 

o PTB-XL, 

o MIT-BIH, 

o Georgia DB, 

o ESC DB, 

o AHA DB, etc. 

 Accuracy: 
96.4% 

 Sensitivity: 

84.2% 

 Specificity: 
97.6% 

 PPV: 78.0% 

 NPV: 98.4% 

 High-
performance 

AF detection 
from 1-lead 

ECGs, 

 Outperforming 
rule-based 

algorithms 

 Real-world 
deployability 

 Detected additional 
arrhythmias (PVC, 
PAC, AV block); 

 Platform was not 
trained on test ECGs 

(external validation) 

 Performance 
degraded with 

noise/artifacts 

[23] 2025 
Physionet 

challenge 2017 
 Raw ECG 

used directly; 

 Hybrid DL 

o CNN 

 Ultra-lightweight 
CNN for feature 

extraction 

 F1 Score: 
99.56%, 

 Introduces a 
compact, real-
time 

 Optimized for speed 
and embedded 

applications; 
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Paper

s 
Year Dataset 

Preprocessing 

Techniques 
AI Models Type Architecture details 

Performance 

Metrics 

Key 

Contribution 
Notes 

 Class 

imbalance 
addressed 
using 

Neurokit, 
BioSPPy, and 

EngZeeMod 
filters for 

synthetic data 
augmentation 

o LSTM  LSTM for temporal 

patterns; 

 64.9K parameters; 

 0.48 ms inference 

time 

 Size gain: 

102.25 dB, 

 1.06% Gain 
over SOTA 

architecture 

with high 
accuracy on 

imbalanced 
ECG data 

 Avoids complex 

preprocessing 

[17] 2025 PTB-XL 

 Coarse 
graining 
(1s/0s) 

 Complexity 
feature 
extraction 

from all 12 
leads; 

 Evaluated 
each lead and 
combinations

. 

 Traditional ML 

 Multiple models 
optimized using 
Bayesian 

optimization. 

 KNN was tuned over 
1–99 neighbors (odd 

values) with 10 
distance functions; 

 SVM models tested 
with linear, 

 Quadratic 
polynomial, 

 Gaussian kernels. 

 Leave-one-out cross-
validation was used 

for robust evaluation. 

 Peak 
accuracy 

~0.69 at 
125 Hz 
sampling 

(using lead 
V6). 

 First human 
application of 
complexity 

analysis for 
detecting a 
history of PAF 

from normal 
sinus rhythm 

recordings. 

Additional experiments 
at 500 Hz were 

conducted using various 
coarse graining 
techniques: 

 LZ76 (A), 

 LZ78 (B), 

 Titchener (C); also 

reporting results with 
configurations: 

o BD (Beat 

Detection), 

o FD (Feature 

Detection), KM 
(K-means), 

o TC (Threshold 
Crossing) across 
individual leads 

and their 
combination. 

o KNN 
outperformed 
SVM overall. 

[30] 2024 PHYJ 

 Signal 

Preprocessin
g (Filter) 

 Signal 

Dimensionali
ty Reduction 
(SDR); 

 Kernal 
Principal 

Component 
Analysis 
(KPCA) for 

dimensionalit
y reduction; 

 Wavelet 
Transform 
(CWT) for 

time–
frequency 

domain; 

 Deep Learning 

(CNN) 

 AlexNet , 

 VGG19, 

 ResNet152 , 

 Inception-v3, 

 Inception ResNet-v2 

 Accuracy 
(ACC), 

 Sensitivity 

(SEN), 

 Specificity 
(SPF) 

 Cross 
Validation 

 First approach 
to detect PAF 

from sinus 
rhythm ECGs 

using full 12-
lead CWT + 
KPCA + deep 

network fusion 

 Highlights potential 
to detect PAF from 

non-diagnostic 
ECGs; 

 Future work aims to 

scale validation and 
involve open-access 

datasets for 
pretraining 

[31] 2024 
EHR 

MUSE 

 ECG 

converted to 
OMOP-
CDM; 

 Risk factor 
extraction 

from ICD 
codes, Rx, 
and 

measurement
s 

 Multiple residual 
neural network 

 ResNet 

 Random Forest 

 AUC = 0.74 
(ECG only), 

 AUC = 0.76 

(ECG + 6 
RFs); 

 Stable across 
age and sex 

 Demonstrates 

that AF can be 
predicted 
during sinus 

rhythm using 
1-lead ECG + 

6 key risk 
factors 

 Model matches 
12-lead 
performance. 

 Designed for real-
world deployment 

 

 Reduces age bias 

seen in prior studies 
Prospective clinical 
validation planned 
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Paper

s 
Year Dataset 

Preprocessing 

Techniques 
AI Models Type Architecture details 

Performance 

Metrics 

Key 

Contribution 
Notes 

[33] 2024 
 Chapman 

 PTB-XL 

 ECGs 
segmented 

into PreQ, 
QRS, and 

PostS 

 Only Lead II 
used 

 Unsupervised 
DL: 

o LSTM 
Autoencoder 

o XGBoost 

 LSTM-based 
autoencoder trained 
on normal ECG 

segments 

 Anomaly detection 
via MSE per 

segmenT 

 Postprocessing with 
XGBoost classifier 

on anomaly scores 

 AUROC 

(PreQ): 

o Experime
nt A: 0.96, 

o Experime
nt B: 0.90, 

o Experime
nt  C: 0.95 

 AUROC 
(XGBoost): 
0.98 

 F1 Score: 
0.94 

 Demonstrated 

explainable, 
segment-wise 
anomaly 

detection of 
AF without 

supervision 

 PreQ segment 
most 

predictive of 
AF 

 Cross-dataset 
validation 

(Germany/China) 

 Highlights clinical 

interpretability by 
segment-level scores 

 Addresses physician 

concerns about DL 
"black-boxing" 

[24] 2024 
Physionet 

challenge 2017 

 Two-stage 

ECG 
denoising 
and filtering 

 ECG-SQE 
(signal 
quality 

evaluation 
using Pan-

Tompkins 
based ML) 

 9-sec 
segmentation 

 Density-
Based Spatial 

Clustering of 
Applications 

with Noise 
(DBSCAN) 

for outlier 
filtering 

 Deep learning 
(hybrid) 

 MuDANet: Multi-
stream CNN-RNN 
with Dense Attention 

o Dual-stream Conv-
RNN (enhances 

signal 
representation 

o Attention 

mechanism 
improves focus on 

discriminative 
features 

o Final classification 
into AFR, NSR, and 
Other 

 DBSCAN-GAN: 

o Density-based 
clustering to isolate 

clean data 

o GAN trained only 

on clean samples for 
synthetic 

augmentation 

 F1 Score: 

0.876 
(baseline) 

 F1 Score: 

0.962 (with 
DBSCAN-

GAN and 10-
fold CV) 

 Introduced 
MuDANet: 
dual-stream 

CNN-RNN 
with dense 

attention for 
AF detection. 

 Proposed 

DBSCAN-
GAN for 

noise-aware, 
class balanced 
synthetic ECG 

generation. 

 Demonstrated 
strong 

generalization 
using synthetic 

data in a noisy 
real-world 

dataset. 

 Real-time capable 
and wearable-device 
friendly 

 Combines traditional 
ECG signal cleaning 
(Pan-Tompkins) with 

advanced DL and 
GAN-based 

augmentation 

 Overcomes common 
data imbalance and 

outlier noise issues in 
wearable ECG 

datasets 

[35] 2024 CNUH 

 PQRST 

detection and 
trimming 

 Baseline 

correction 

 0.5 Hz high-
pass 

Butterworth 
filter 

 Segmentation 
into 10-
second 

intervals 

 Random 
under-

sampling to 
reduce class 

imbalance 

 Deep Learning 

o CNN 

o LSTM 

o RNN 

 ResNet50: deep CNN 
architecture with skip 

connections 

 RNN and LSTM 
models for 

comparison 

 Training with 
AdamW optimizer, 

early stopping, batch 
size = 32 

 ResNet50: 

o F1 = 71.9% 

o Recall = 
79.3% 

o Precision = 

65.8% 

o Accuracy = 

70.5% 

o AUC = 0.79 

 External set” 

o F1 = 64.1%, 

o AUC = 0.68 

 Demonstrated 
that deep 

learning can 
detect masked 
AF from NSR 

in single-lead 
mobile ECG 

 Study used a private 
clinical dataset; 

 High potential for 
real-world wearable 
device applications 

[38] 2024 

 AFDB 

 LTAF 

 MITDB 

 NSRDB 

 R-peak 
detection to 
compute RR 

intervals 
(RRIs) 

 Removal of 
poor-quality 
or noisy data 

 Hybrid CNN-

LSTM 

 Multi-input fusion 

network combining 
ECG and RRI 

features 

 Res-CNN for 
morphological 

features 

 High 
accuracy 

across 4 
external 
datasets 

 Ablation 
study 

 Proposed MIF-

AFNet: a 
multi-input 

fusion model 
integrating RR 
interval + ECG 

features for 
robust AF 

detection 

 - Limitations: 

requires ≥30s input; 
R-peak detection 
accuracy affects 

performance; lacks 
diverse arrhythmias 

 Future work: clinical 
validation, enhanced 
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Paper

s 
Year Dataset 

Preprocessing 

Techniques 
AI Models Type Architecture details 

Performance 

Metrics 

Key 

Contribution 
Notes 

 ECG 

augmentation 
via vertical 
flipping 

 Bi-LSTM for 

temporal sequence 
modeling of RRI 

 Low complexity 

design for real-time 
application 

validated 

robustness 

 Maintains 
performance 

with ectopic 
beats 

 High 

generalization 
capability 
across datasets 

and rhythms 

R-peak detection, 

training on multi-
arrhythmia data, 

improved noise 
handling 

 

VII. ANALYSIS AND CRITICAL EVALUATION 

Building on the comparative review of ECG datasets and 
applied AI models, this section critically evaluates key trends, 
limitations, and methodological patterns observed across recent 
studies on AF detection. 

1) Patterns and bias in dataset usage: Despite the growing 

number of ECG datasets, the majority of recent studies rely 

heavily on PTB-XL, PhysioNet 2017, and AFDB. This over-

reliance introduces dataset bias, limiting the generalizability of 

models to broader clinical populations. Less common datasets, 

especially clinical ones like MUSE or EHR, are underutilized 

due to accessibility barriers, despite offering more realistic and 

varied signals. 

2) Dataset limitations affecting model performance: 

Several datasets exhibit class imbalance (e.g., fewer AF vs. 

non-AF samples), requiring oversampling, Synthetic Minority 

Over-sampling Technique (SMOTE), or weighted loss 

functions. Wearable ECG datasets often contain motion 

artifacts and noise, while many collections lack demographic 

metadata (e.g., age, sex, comorbidities), which hampers model 

personalization. Only a few datasets integrate clinical risk 

factors, despite their value in enhancing prediction. 

3) Clinical vs. Wearable datasets: Clinical datasets (e.g., 

PTB-XL, Chapman) offer clean, high-resolution ECGs from 

controlled environments. In contrast, wearable datasets enable 

long-term monitoring but introduce higher noise levels and data 

variability. Many models perform well on clean datasets but 

degrade on wearable ones unless robust preprocessing or 

augmentation is applied. This creates a gap between lab 

performance and real-world application [33].. 

4) Single-lead vs. Multi-lead ECGs: 12-lead ECGs remain 

the standard for model development and benchmarking due to 

their diagnostic richness. However, single-lead ECGs, 

especially from wearables, are gaining traction for screening. 

While multi-lead ECGs generally outperform in accuracy, well-

designed models using single-lead inputs (e.g., AZ Delta study) 

demonstrate that simpler signals combined with clinical 

features can achieve comparable performance, especially in 

ambulatory settings. 

5) Reproducibility and transparency gaps: Many studies 

omit details about signal preprocessing, segmentation, or lead 

selection. Some apply noise filters or augmentation without 

reproducible descriptions. Additionally, few publish code or 

preprocessing pipelines, making it difficult to replicate findings 

or benchmark new approaches. This lack of transparency 

reduces trust and slows progress. 

6) Standout approaches: A few studies stand out for their 

innovation. For example, the AZ Delta AF-SR study combined 

a single-lead ECG during sinus rhythm with six clinical risk 

factors, achieving strong predictive performance while 

reducing age-related bias  ideal for wearable screening [31]. 

Another notable work used LSTM autoencoders to detect 

anomalies in specific ECG segments (PreQ), enhancing 

interpretability and requiring no labeled AF samples. 

Overall, while current approaches show promise, 
overcoming dataset biases, improving reproducibility, and 
integrating richer clinical context remain essential for advancing 
reliable and generalizable AF detection models. 

VIII. DISCUSSION AND FEATURE DIRECTIONS 

A. Key Takeaways: 

Our analysis of recent AI-based Atrial Fibrillation (AF) 
detection studies reveals consistent patterns across dataset usage 
and model development. A key concern is the heavy dependence 
on a limited set of datasets particularly PTB-XL, PhysioNet 
2017, and AFDB while more clinically representative datasets 
remain underutilized. This trend narrows the scope of model 
validation and hinders generalizability to real-world scenarios. 
Moreover, datasets with limited demographic diversity and 
missing metadata restrict the ability to evaluate models for 
fairness, particularly across age groups, sex, or comorbidities. 
Additionally, wearable ECGs, while increasingly relevant for 
remote monitoring and early AF screening, are still 
underexplored due to their noisy nature and signal variability. 
As a result, models often perform well in controlled, clinical 
conditions but falter when deployed in real-world or ambulatory 
environments. 

B. Gaps and Limitations in Current Approaches: 

1) Overfitting to benchmarks: Many models are optimized 

for performance on a few benchmark datasets, which inflates 

accuracy metrics but limits cross-dataset robustness. 

2) Lack of dataset standardization: Inconsistent data 

formats, label definitions (e.g., AF types), and missing 

preprocessing documentation make reproducibility difficult 

and comparisons unreliable. 

3) Fairness blind spots: Absence of demographic and 

clinical metadata (e.g., sex, age, comorbidities) prevents 

analysis of bias, reducing the trustworthiness of AI models for 

sensitive applications. 

4) Underutilization of wearable data: Despite their value 

for long-term monitoring, wearable ECG datasets are rarely 

used in training or evaluation due to signal quality issues. 
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5) Reproducibility challenges: Very few studies share their 

code, training configurations, or preprocessing pipelines, 

making model replication and clinical translation problematic. 

C. Future Research Directions 

To address these challenges and unlock the full potential of 
AI in AF detection, we recommend the following research 
directions: 

1) Standardization and benchmarking needed: Most public 

datasets vary in signal format, label structure, and metadata 

availability. Establishing a benchmark framework with unified 

preprocessing and labeling would allow for fair model 

comparisons and reproducibility. 

2) Underuse of wearable and real-time ECGs: Wearable 

devices are central to future AF screening strategies, yet few 

studies utilize real-world data from such sources. Research 

should focus on noise-robust algorithms and domain adaptation 

techniques to bridge the performance gap. 

3) Explainability still lacking: Explainable AI remains an 

exception rather than the rule. Future models should 

incorporate interpretability methods (e.g., attention maps, ECG 

segment analysis, SHAP values) to support clinical trust and 

decision-making. 

4) Missing demographics and clinical metadata: Datasets 

should include age, sex, risk factors, and comorbidities to 

support personalized predictions and fairness assessment. This 

metadata is crucial for clinical deployment and regulatory 

validation. 

5) Hybrid modeling with clinical context: Few models 

integrate non-ECG features like EHR data, medication history, 

or symptom logs. Incorporating these modalities can improve 

predictive performance and reduce overreliance on limited 

signal features. 

D. Proposed Dataset Guidelines for Future Research 

Based on our review, the following dataset practices are 
strongly encouraged to support future innovation: 

 Provide at least 3 leads when possible (e.g., lead I, II, V1) 
for improved feature richness. 

 Share both raw and preprocessed signal versions. 

 Use consistent and annotated labels, including AF types 
(e.g., paroxysmal, persistent). 

 Include demographic and clinical metadata (age, sex, 
comorbidities). 

 Ensure public access under a research license to foster 
collaboration and reproducibility. 

IX. CONCLUSION 

This survey examined 15 ECG datasets from 33 recent AI 
models for Atrial Fibrillation (AF) detection studies, revealing a 
strong reliance on PTB-XL, PhysioNet 2017, and AFDB. While 
these resources have advanced the field, their overuse, coupled 
with missing demographic and clinical metadata, limits 
generalizability and fairness. Our analysis highlights the 

growing gap between model performance on clean benchmark 
datasets and the noisy reality of wearable ECGs. We emphasized 
the importance of dataset quality, transparency in preprocessing, 
and the inclusion of patient context for real-world readiness. 
This work represents the first survey focused specifically on 
datasets in AI-based AF detection. By mapping current usage 
patterns and limitations, we provide a guide for future research 
toward more inclusive, robust, and clinically meaningful AI 
tools. A collaborative push for standardized, annotated, and 
diverse datasets including wearable ECGs and multimodal data 
is essential to bridge the gap between lab success and clinical 
impact. 
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