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Abstract—Humanity's survival, development, and existence 

are deeply intertwined with agriculture, the source of most of our 

food. Plant disease detection helps in securing food, but manual 

plant disease detection is error-prone and labor-intensive. 

Convolutional Neural Networks (CNNs) are highly effective for 

automated plant disease classification, but their difficulty in 

recognizing differently oriented images means they need large 

datasets with many variations to work best. Capsule Networks 

(CapsNets) were developed to overcome the shortcomings of CNNs 

and can function effectively with smaller datasets. However, 

CapsNets process every part of an input image, so their 

performance can suffer when dealing with complex visuals. To 

tackle this challenge, DLCA-CapsNet was introduced. DLCA-

CapsNet integrates a Color Difference Histogram (CDH) layer for 

key feature extraction, atrous convolution layers to enlarge 

receptive fields while maintaining spatial details, along with max-

pooling, standard convolutional layers, and a dropout layer. The 

proposed DLCA-CapsNet method was evaluated on datasets 

including apple, banana, grape, maize, mango, pepper, potato, 

rice, tomato, as well as CIFAR-10 and Fashion-MNIST. The model 

demonstrated strong performance with high test accuracies in 

plant disease detection and on CIFAR-10 and Fashion-MNIST. It 

improved test accuracies by 6.78%, 14.82%, 6.14%, 5.07%, 

21.12%, 40.32%, 4.64%, 0.76%, 10.23%, 13.73%, and 2.03%, 

while also reducing the number of parameters in millions by 

6.16M, 6.16M, 6.16M, 6.16M, 7.14M, 5.68M, 5.92M, 7.62M, 

7.62M, and 6.54M respectively when compared with the original 

CapsNet. On sensitivity, F1-Score, precision, specificity, Receiver 

Operating Characteristics, Precision-Recall values, accuracy, disk 

size, and parameters generated, etc., the DLCA-CapsNet achieved 

better performance compared to the original CapsNet and other 

advanced CapsNets reported in the literature. The findings 

suggest that this efficient and computationally less demanding 

method can significantly enhance plant disease classification and 

contribute incrementally to efforts aligned with the SDG 2 goal by 

offering a lightweight, scalable solution that can be adapted for 

field use in resource-constrained settings. 

Keywords—Color Difference Histogram (CDH); Convolutional 

Neural Network (CNN); atrous Convolution; Capsule Neural 

Network; plant disease detection; dynamic routing; AI in agriculture 

I. INTRODUCTION 

Agriculture has consistently been a crucial social and 
economic sector for humanity. The production of food is 
particularly critical, with high demand from every household. 
As a result, employing innovative technologies to improve the 
sector is essential for the agri-food industry. Today, artificial 
intelligence stands out as a significant technological tool 

extensively utilized in contemporary society. Specifically, Deep 
Learning (DL) has numerous applications owing to its capability 
to learn strong representations from images [1] [2] [3]. 

CNNs are the primary DL architecture for image 
classification, primarily due to the significant attention they 
have received in recent years. Multiple CNN architectures have 
been developed to enhance their performance. However, 
traditional CNNs still have many limitations. They do not 
emphasize the arrangement or spatial connections among the 
components of the image, so they require extensive datasets in 
various variations to achieve high performance [4], which 
results in the augmentation of data [5] [6]. 

To address this issue, a novel architecture named CapsNet, 
which mimics the human brain, has been introduced for 
extracting information from images [7]. Despite their numerous 
advantages, such as performing well with fewer data, CapsNets 
try to identify every object in an image, which reduces their 
ability to generalize effectively, especially on unseen and 
complex images [8][9][10]. To address the issues with CapsNet, 
researchers sometimes deepen and widen their models, resulting 
in longer training times and more parameters. Moreover, 
increasing the CapsNet model depth does not necessarily 
improve performance. Selecting efficient feature extractors for 
the encoder network is crucial for enhancing the CapsNet 
model’s performance. Therefore, this study seeks to answer the 
following research questions: 

 Can a well-performing CapsNet be designed to perform 
well on plant diseases and complex images? 

 Can good feature extractors be incorporated into the 
CapsNet to improve the encoder network for better 
feature extraction of the CapsNet Model? 

 How can we explain the “black box” phenomenon of this 
AI model to enhance comprehension of the model and 
confidence in the model’s output? 

 Can the CapsNet model be optimized to make it 
deployable on resource-constrained devices? 

This study suggests a low-parameterized shallow CapsNet 
with efficient feature extraction abilities to help classify plant 
diseases efficiently using CDH [11] and atrous convolutions 
[12] [13]. Results from experiments conducted on 11 publicly 
accessible datasets demonstrate that the proposed DLCA-
CapsNet model performs on par with the most advanced models 
available for detecting complex images and other plant diseases. 
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The visualization of class capsule clusters, activation maps, and 
reconstructed images demonstrates the superior efficiency of the 
feature extractors of DLCA-CapsNet compared to the feature 
extraction capabilities found in the traditional CapsNet model. 

This study's contributions are: 

 A novel and well-performing CapsNet design named 
DLCA-CapsNet is introduced. 

 CDH is utilized to extract significant features in CapsNet 
models. Additionally, the DLCA-CapsNet employs 
atrous convolution to enhance spatial representation. 

 We conducted thorough visualizations of plant diseases 
and other datasets to enhance the explainable artificial 
intelligence (XAI) field. 

 The DLCA-CapsNet model generated fewer parameters 
and had a smaller size, enhancing its suitability for 
deployment on devices with limited resources. 

The remainder of the paper is structured as follows: Section 
II reviews related literature, Section III outlines the 
methodology employed, Section IV discusses the experimental 
results, and Section V provides the conclusion and suggestions 
for future research. 

II.  RELATED WORKS 

A. Introduction 

In recent years, plant disease detection has emerged as a 
crucial area of research in agriculture, meeting the demand for 
timely and precise diagnosis to ensure crop health and 
productivity. CNNs have been widely used in this domain, 
demonstrating notable success in image classification tasks 
compared to CapsNet. This section reviews the advancements 
and applications of Capsule networks for plant disease detection, 
highlighting their effectiveness in improving detection accuracy 
and generalisation.  

B. Review of CapsNet for Plant Disease Detection in 

Literature 

Mensah et al. proposed combining CapsNet and Gabor to 
detect deformed and unclear diseases in citrus and tomatoes, 
utilising the PlantVillage dataset. Their system attained 93.33% 
validation accuracy for classifying citrus diseases and 98.13% 
with 12 million parameters for classifying tomato diseases [14]. 
Verma and their team created an optimized technique for 
computing features by leveraging Squeeze and Excitation (SE) 
Networks. These networks are applied before the original 
CapsNet in the classification process to assess the severity of 
plant diseases. They incorporated AlexNet and ResNet into 
CapsNet to get two SE CapsNets. They used a tomato dataset 
from PlantVillage and classified Late Blight diseases into late, 
middle, early, and healthy stages. The SE-ALexNet CapsNet 
had 9 million parameters with an accuracy of 92.1%, and SE-
Res CapsNet had 19 million parameters with an accuracy of 
93.75% [15]. Vasudevan and Karthick proposed a composite 
technique for detecting grape diseases. They obtain a leaf area 
by utilizing a method based on a graph. To augment the dataset, 
they employ a Generative Adversarial Network. Although the 
model was computationally complex, it attained a validation 

accuracy of 97.63% on diseases in grapes using captured data 
and data from the PlantVillage dataset [16]. Xu et al. proposed 
a model, combining CapsNet with inception modules to amplify 
receptive fields using diverse dilation rates. This helps to 
improve the multi-level characteristics of diseases in apple 
leaves. The model attained 93.16% validation accuracy [17]. 
Mensah et al. introduced a model by replacing sigmoid with 
SoftMax, CNN with Local Binary Pattern, and dynamic routing 
with k-means routing. Experimentally on CIFAR-10, fashion-
MNIST, MNIST, citrus, maize, and tomato, 75.80%, 92.72%, 
99.68%, 99.41%, 96.79%, and 98.06% validation accuracies 
were attained, generating 5.2 million for CIFAR-10, 2.8 million 
parameters for fashion MNIST and MNIST, and 8.4 million for 
tomato and citrus [18]. Verma and co-authors used the 
conventional CapsNet to classify potato leaf images from the 
PlantVillage dataset. The experimental results reveal 9,856,768 
parameters produced by the model and 91.83% validation 
accuracy attained [19]. Oladejo and Ademola classified banana 
diseases by proposing a CapsNet model, in which they changed 
the neuron number in the fully connected layer of the original 
CapsNet to two 512 and 1024 instead of 3, hence reducing the 
time for training the network. Also, they used an optimizer for 
momentum to upgrade the network processing speed. On banana 
leaf disease detection, the model attained a validation accuracy 
of 95% [20]. Atlan changed the traditional CapsNet model by 
adjusting the three fully connected layers to 960, 768, and 4096. 
On assessing the model, it gained a sensitivity of 96.37%, an 
accuracy of 95.76%, and a specificity of 97.49% when used to 
classify bell pepper diseases [21]. Mensah and colleagues chose 
to use the Gabor filter rather than CNNs. This change allowed 
the initial layers to capture spatial and texture relationships, 
improving overall performance. Max Pooling was used to select 
the most important features after the Gabor filter convolution, 
reducing the feature vectors' dimensionality. Tests conducted on 
tomato datasets from plant villages showed a validation 
accuracy of 97.98%, with a total parameter count of 8,708,128 
[22]. Anant suggested a technique called AppleCaps that 
overcomes the spatial invariance issue discovered in CNNs. The 
model gained 87.06% accuracy on an augmented dataset 
containing diseased apple leaves [23]. Mensah et al. proposed a 
CapsNet model that uses dual input. The output from these 
inputs is merged and submitted to the layers of the original 
CapsNet. Upon assessing the system on the tomato and CIFAR-
10 datasets, it generated 5.48 million (M) and 6.04 M 
parameters and 76.58% and 93.03% validation accuracies, 
respectively [24]. Peker suggested a CapsNet that uses multiple 
ensemble channels by implementing different CapsNet models 
on images with various pre-processing methods. By merging the 
networks to learn diverse features from data, the model increases 
in performance and attains 98.15% on 10 disease classes of the 
tomato dataset [25].   Abouelmagd and colleagues developed a 
computer vision approach using an improved CapsNet to 
recognize and categorize ten distinct diseases affecting tomato 
leaves from standard datasets. To minimize overfitting, they 
employed pre-processing and data augmentation approaches 
when training. Their CapsNet method achieved an accuracy of 
96.39% [26]. Zang and colleagues proposed a method for 
detecting plant leaf diseases by combining residual networks 
(ResNet) and CapsNet. They improved the traditional ResNet by 
replacing the kernel with a set of 3 × 3 convolutional kernels and 
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incorporating an attention mechanism to guide the model in 
prioritizing important features. The upgraded ResNet was then 
integrated with CapsNet. This combined model, SE-SK-
CapResNet, achieved accuracy rates of 98.58%, 97.19%, and 
95.08% on the PlantVillage, Tomato Leaf Disease, and AI 
Challenger 2018 datasets, respectively [27]. Mensah and co-
authors proposed Shallow and Multi-input CapsNets. The 
shallow CapsNet used LBP, the squash function, and a 
normalizer in the standard CapsNet model. The model was 
assessed on datasets, CIFAR-10, fashion-MNIST, and tomato, 
and achieved validation accuracies of 75.75%, 92.70%, and 
97.33% with 4.6M, 2.5 M, and 4.1M parameters, respectively. 
Furthermore, the multi-input CapsNet merged the results of 
three (3) convolution layers before feeding them to the standard 
CapsNet model. The model was also assessed on the same 
dataset as shallow CapsNet and attained validation accuracies of 
63.95 %, 91.45%, and 94.04% with 4.3 M, 2.2 M, and 4.0 M 
parameters, respectively [28]. Andrushia and co-authors 
proposed a technique for classifying grape leaf diseases by 
inserting convolution layers before the primary capsules. This 
resulted in speeding up the dynamic process by reducing the 
number of capsules. On both the non-augmented and augmented 
grape leaf disease datasets from PlantVillage, the model 
achieved 99.12% accuracy [29]. 

C. Summary 

These models have performed well on different plant disease 
datasets. Still, these current CapsNet models for plant disease 
identification are often limited by scalability, processing speed, 
many parameters, large size, and robustness to complex 
backgrounds. Developing a more advanced CapsNet model 
could enhance accuracy, improve generalization, reduce 
parameter count and size on disk, and ultimately aid in more 
effective crop management. 

III. METHODOLOGY 

A. Capsule Network 

Unlike CNNs, CapsNets [7] can identify orientation, texture, 
and pose. In CapsNets, neurons are organised into capsules, each 
of which has an activity vector that encodes different 
instantiation parameters for detecting a specific object type. 
These capsules provide a probability of the object's presence and 
its generalised pose. Capsules receive these activity vectors from 
the capsules in the preceding layer, and the connections between 
these layers, called coupling coefficients, have varying values. 
If the present capsule identifies a dense cluster of earlier 
predictions, strongly suggesting the object's presence, it 
generates a high probability, a process referred to as routing by 
agreement. Therefore, if the lower layer capsule's prediction 
aligns with the current capsule's real output, the coefficient 
among them rises, calculated using the softmax function as 
illustrated in Eq. (1). 

�̂�𝑗|𝑖 = 𝑊𝑖𝑗𝑢𝑖     (1) 

Where �̂�𝑗|𝑖  represents the 𝑗𝑡ℎ  capsule output or prediction 

vector, 𝑊𝑖𝑗  and 𝑢𝑖 denote the weight matrix and output vector 

of the capsule 𝑖 in the lower-level layer, respectively. Coupling 
coefficients are determined through the softmax function in Eq. 
(2), reflecting the level of alignment between capsules in 
adjacent layers. 

𝐶𝑖𝑗 =
ex p(𝑏𝑖𝑗)

∑ ex p(𝑏𝑖𝑘)𝑘
   (2) 

Here, 𝑏𝑖𝑗  represents the probability amongst the two (2) 

capsules based on logarithmic values, set to zero. The 𝑗𝑡ℎ 
capsules input vector 𝑠𝑗 is determined as in Eq. (3), 

𝑠𝑗 = ∑ 𝑐𝑖𝑗  . �̂�𝑗|𝑖
𝑁
𝑖=1   (3) 

Ultimately, the subsequent squash function in Eq. (4) is 
utilised to confine the output within the range of 0 to 1. 

𝑣𝑗 =
||𝑠𝑗||2

1+||𝑠𝑗||2

𝑠𝑗

||𝑠𝑗||
 (4) 

Eq. (5) calculates the loss function for the capsules in the 
final layer. Here, Tk equals 1 if class k is active, and 0 if 
otherwise. The values of λ, m-, and m+ are determined during the 
learning process. 

𝐿𝑘 = 𝑇𝑘  𝑚𝑎𝑥(0, 𝑚+ − ||𝑣𝑘||)2 + 𝜆(1 − 𝑇𝑘) 𝑚𝑎𝑥(0, ||𝑣𝑘|| −
𝑚−)2 (5) 

B. UnitsColour Difference Histogram (CDH) Feature Map 

Detection 

The CDH method prioritizes color, how edges line up, and 
color changes that look natural to us. It captures these features 
in a way that mimics how our eyes and brain understand them. 
This method introduces a novel visual descriptor that combines 
color, edge direction, and how we visually perceive color 
differences, all while taking into account how these elements are 
arranged in space. With edge orientation identified and colors 
quantized via CDH, the next stage is to find small structural 
elements. This is done by looking at each pixel and then using a 
3x3 filter to apply the CDH framework for color and edge 
quantization [11]. Examining a filter's central value in relation 
to its eight surrounding values yields a set of edge and color 
maps. From these maps, we can derive features representing 
color and edge characteristics by computing the difference (∆) 
in color intensity and edge direction for each L*a*b*   
component. In the final step, we integrate these two properties 
into one histogram. In a quantized image, the brightness or color 
levels of each pixel, denoted as 𝐶(𝑥, 𝑦), are limited to a specific 
set of discrete values. These values span from a minimum of 0 
up to a maximum of 𝑊 − 1. Neighbouring pixels, identified by 
their coordinates  (𝑥, 𝑦) and (𝑥′𝑦′) have associated color index 
values as 𝐶(𝑥, 𝑦) = 𝑤1 and C (𝑥′𝑦′) = 𝑤2 . The orientation 
image for edge by 𝜃(𝑥, 𝑦)  stores orientation information as 
discrete values 𝑣  (ranging from 0 to 𝑉 − 1 ) for each pixel 
(𝑥, 𝑦). At specific coordinates (𝑥, 𝑦) and (𝑥′𝑦′), the orientation 
angles are as 𝜃(𝑥, 𝑦) = 𝑣1 and 𝜃(𝑥′𝑦′)=𝑣2. 

Color difference histograms for neighboring pixels separated 
by distance 𝐷, with color quantization 𝑊 and edge orientation 
quantization 𝑉, are defined using Eq. (6) and Eq. (7). 

𝐻𝑐𝑜𝑙𝑜𝑟( 𝐶(𝑥, 𝑦) ) =

{
∑ √(∆𝐿2) + (∆𝑎2) + (∆𝑏2) 

𝑤ℎ𝑒𝑟𝑒 𝜃(𝑥, 𝑦) = 𝜃(𝑥′𝑦′); 𝑚𝑎𝑥(|𝑥 − 𝑥′|), (|𝑦 − 𝑦′| = 𝐷) 
(6) 

𝐻𝑜𝑟𝑖( 𝜃(𝑥, 𝑦) ) =

{
∑ √(∆𝐿2) + (∆𝑎2) + (∆𝑏2) 

𝑤ℎ𝑒𝑟𝑒 𝐶(𝑥, 𝑦) = 𝐶(𝑥′𝑦′); 𝑚𝑎𝑥(|𝑥 − 𝑥′|), (|𝑦 − 𝑦′| = 𝐷) 
(7) 
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Here, ∆𝐿, ∆𝑎, and ∆𝑏  denote the differences between two 
color pixels, with D set to a value of 1. When the edge 
orientation is W and the color quantization level is 𝑉, the CDH 
feature is computed as shown in Eq. (8): 

𝐻𝐶𝐷𝐻 = 𝐻𝑐𝑜𝑙𝑜𝑟(0), 𝐻𝑐𝑜𝑙𝑜𝑟(1) … 𝐻𝑐𝑜𝑙𝑜𝑟(𝑊 −
1), 𝐻𝑜𝑟𝑖(0), 𝐻𝑜𝑟𝑖(1) … 𝐻𝑜𝑟𝑖(𝑉 − 1)         (8) 

Image retrieval features can be created by combining a color 
histogram 𝐻𝑐𝑜𝑙𝑜𝑟  with a histogram of edge orientations 𝐻𝑜𝑟𝑖 . If, 
for instance, we divide the color space into 72 bins and the edge 
orientations into 18 bins, the combined feature vector, 
represented as 𝐻, will have a total of 90 dimensions (72 + 18). 

C. Atrous Convolutions 

Atrous convolution or dilated convolution is crafted to see a 
wider input area without needing more computing power and 
parameter count. They are primarily used in tasks like semantic 
segmentation [12] [13]. Regular deep CNN combines 
convolutional layers with max-pooling. The downside is that the 
feature maps shrink in size by 50% every time a max-pooling 
operation happens. As a result, projecting the processed feature 
information back onto the initial image leads to less detailed 
feature extraction as the neural network goes deeper. Atrous 
(Dilated) convolution tackles this problem by allowing for more 
thorough feature extraction. It introduces a new parameter 
known as the rate (r). Atrous convolution functions much like 
standard convolution, with the key difference being that its 
kernel weights are distributed with a spacing of r positions, 
creating sparsely connected convolution layers. Atrous 
convolution expands its field of view by changing how spread 
out its sampling points are. Different levels of this spread can 
capture information at various scales without more 
computational resources. For example, a standard 3x3 
convolution can be modified to see the same area as a 5x5 or 7x7 
convolution, allowing it to pick up image features of different 
sizes. By applying dilated convolutions with varying dilation 
rates, receptive fields at multiple scales can be effectively 
captured, and dilated convolution functions can serve as a 
mechanism for multi-scale convolutional processing. Eq. (9) and 
Eq. (10) present the formulations for computing the dilated 
convolution kernel and its corresponding receptive field, 
respectively. 

𝑛 = 𝑘 + (𝑘 − 1)(𝑟 − 1)   (9) 

𝑙𝑚 = 𝑙𝑚−1 + [(𝑓𝑚 − 1) ∏ 𝑆𝑖
𝑚−1
𝑖=1 ]  (10) 

In this context 𝑛 and 𝑘 denote the sizes of the dilated and 
standard convolution kernels, respectively. The term 𝑙𝑚−1 refers 
to the receptive field size of the 𝑙𝑚−1ᵗʰ layer, while the receptive 

field at the 𝑚𝑡ℎ layer is determined after applying convolution. 

fₘ represents the convolution kernel size at the 𝑚𝑡ℎ layer, and 𝑆𝑖 
indicates the stride of layer 𝑙. Fig. 1 illustrates the concept of 
atrous (dilated) convolutions utilizing a 3×3 kernel with dilation 
rates of 1, 2, and 4. 

D. Proposed Architecture 

The proposed DLCA-CapsNet model found in Fig. 2 
comprises a CDH layer, two astrous convolution layers, two 
traditional convolution layers, max-pooling layers, batch 
normalizers, and a dropout layer. The input image, rescaled to 
32x32x3, is subjected to the CDH layer, and does not add any 
parameters. The 32x32x3 feature map from the CDH layer is 
sent through two different lanes (Lane1(L1) and Lane2(L2)), 
each starting with atrous convolutions (Atrous_Conv1 and 
Atrous_Conv2) with a dilation rate of 2, which processes the 
feature map subjected to them to produce a 32x32x32 feature 
map. Each feature map from these astrous convolutions from L1 
and L2 is sent to a max-pooling layer (MP1 and MP3), 
producing feature maps of dimensions 16x16x32. The outputs 
from the max-pooling layers from L1 and L2 are forwarded to 
the convolution layers (Conv1 and Conv2) of 64 filters, a 3×3-
sized kernel operating with a stride length of 1, respectively. 
They produce 14x14x64 feature maps sent to max pooling layers 
(MP2 and MP4) in these separate lanes to produce 7x7x64 
feature maps each for L1 and L2. Feature maps from L1 and L2 
are then merged or concatenated to produce a 7x7x128 feature 
map. This merging allows the model to gain the ability to learn 
integrated features. The merged output is then sent to a dropout 
layer, then to a Primary Capsule (PC) layer with eight 
dimensions and 16 channels, a 3×3-sized kernel operating with 
a stride length 2. Output from the PC layer is sent to the class 
capsule (Plant_DiseaseCaps), which produces its output for 
reconstruction. This class capsule layer consists of 16D capsules 
and considers every class within a dataset. The decoder layer, 
comprised of three fully connected layers encompassing 512, 
1024, and 3072 neurons, respectively, gets the feature map and 
decodes the entity's properties. The batch normalization layers 
incorporated in the model helped in the consistent data 
distribution and improved and simplified the training. The 
atrous, CDH, dropout, and max-pooling layers help retrieve very 
salient features submitted to the model from the image for better 
categorization. 

 
Fig. 1. Demonstrating the idea of astrous convolution. Dilation significantly increases the receptive fields while maintaining full resolution. (a) 1-rate dilated 

convolution (b) 2-rate dilated convolution and (c) 4-rate dilated convolution. 
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Fig. 2. Architecture of the suggested DLCA-CapsNet model. 

E. Datasets 

All datasets used are publicly available datasets. 

The apple, grape, corn, pepper, potato, and tomato datasets, 
scaled at 256x256, are a portion of the Plant Village [30]. 

Apple: It comprises 3171 images sorted into four groups: 
three infected classes and one healthy class. 0,1,2, and 3 
represents Apple_scab, Black_rot, Cedar_apple_rust, and 
healthy respectively. 

Grape: It contains 4062 images in four groups; 0,1,2, and 3 
represents Black_rot, Esca_(Black_Measles), 
Leaf_blight_(Isariopsis_Leaf_Spot, and healthy respectively. 

Corn: It is made up of 3852 images sorted into four groups; 
three infected classes and one healthy class. 0,1,2, and 3 
represents Cercospora_leaf_spot Gray_leaf_spot, 
Common_rust, Northern_Leaf_Blight, and healthy respectively. 

Pepper: It is made up of 2475 images sorted into two groups; 
one infected class and one healthy class. 0 and 1 represent 
healthy and Bacterial_spot, respectively. 

Potato: comprises 2152 images sorted into three groups: two 
infected classes and one healthy class. 0,1, and 2 represent 
Healthy, Early_blight, and Late_blight, respectively. 

Tomato: It comprises 18160 images sorted into ten groups; 
nine infected and one healthy class. 0,1,2,3,4,5,6,7,8 and 9 

represents Bacterial_spot, Early_blight, Late_blight, 
Leaf_Mold, Septoria_leaf_spot, Spider_mites Two-
spotted_spider_mite, Target_Spot, Tomato_mosaic_virus, 
Tomato_Yellow_Leaf_Curl_Virus, and Healthy respectively. 

Banana comprises 937 images sorted into four groups: three 
infected classes and one healthy class. 0, 1, 2, and 3 represent 
Cordana, Pestalotiopsis, Sigatoka, and Healthy [31]. 

Mango comprises 4000 images sorted into eight groups: 
seven infected classes and one healthy class. 0,1,2, 3, 4, 5, 6, and 
7 represent Anthracnose, Bacterial Canker, Cutting Weevil, Die 
Back, Gall Midge, Powdery Mildew, Sooty Mould, and Healthy, 
respectively [32]. 

Rice: It comprises 5932 images sorted into four infected 
classes. 0, 1, 2, and 3 represent Bacterial_blight, Blast, 
Brown_spot, and Tungro, respectively [36]. 

Fashion-MNIST: contains 70,000 grayscale fashion product 
images, each with dimensions of 28x28 pixels. It is divided into 
ten categories, each containing 7,000 images. The training set 
includes 60,000 images, while the remaining 10,000 images 
form the test set. This dataset is more complex than MNIST [33]. 

CIFAR-10: The dataset contains 50,000 images for training 
and 10,000 images for testing. Each image has a resolution of 
32x32x3 and includes diverse backgrounds and objects, making 
it more complex than the Fashion-MNIST dataset [34]. 
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To standardize input across datasets, images were resized to 
32 × 32 × 3 and split into training and testing sets in an 80:20 
ratio. Data augmentation was not applied, as CapsNet is suitable 
for limited data, and the DLCA-CapsNet is optimized for 
extracting critical features. Given that most of the ten datasets 
are imbalanced, high performance would underscore the 
model’s effectiveness in dealing with real-world data imbalance. 

F. Implementation Details 

The setup involved utilizing a Windows machine with an 
RTX 2080 SUPER GPU featuring 8GB of dedicated memory 
and 32GB of RAM. The implementation utilized Keras and 
Python through Anaconda, with TensorFlow as the backend. For 
training. The optimization process used Adam, operating with a 
learning rate of 0.001 and a decay rate of 0.9, with training 
conducted in batches of 100 samples. To ensure optimal 
progress during training, the model with the best performance 
was saved at each iteration. The authors referenced the 
architecture of the original CapsNet, which is available at the 
following GitHub repository: 
https://github.com/XifengGuo/CapsNet-Keras. 

IV. RESULTS AND DISCUSSION 

In this part of the article, we assessed the proposed DLCA-
CapsNet model by conducting a comparative analysis with the 
traditional CapsNet and other cutting-edge CapsNet techniques 
for classifying plant disease. This comparison aims to determine 
the most effective model for classifying diseases from plant 
images. 

A. Performance Evaluation 

The outcomes of the DLCA-CapsNet architecture, which 
was trained on images from the plants, CIFAR-10, and fashion-
MNIST datasets, are presented here. Confusion matrices are also 
p, loss and validation curves that depict accuracy (ACC), Area 
Under the Curve (AUC) for both Precision-Recall (PR) and 
Receiver Operating Characteristics (ROC) curves, sensitivity 
(SEN), precision (PRE), specificity (SPE), and F1-Score (FS) 
are presented to assess the model's performance. Eq. (11)-(15) 
represent the various performance metrics calculated by 
considering the confusion matrix’s TP, FP, TN, FN, 
representing True Positive, False Positive, True Negative, False 
Negative. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                         (11) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                            (12) 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅)/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                  (13) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                         (14) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 (
𝑃∗𝑅

𝑃+𝑅
)                       (15) 

Additionally, discussions cover visual representations of 
reconstructed images, clusters of class capsules, and layer 
activation maps, which illustrate the model's internal 
mechanisms and help users have confidence in the model. 
Again, an ablation study demonstrates the model's flexibility and 
robustness, highlighting the components that significantly 
impact its performance. Moreover, the quantity of parameters 
and the model's disk size are also discussed. 

Based on the confusion matrices in Fig. 3 for the tomato and 
mango datasets, it is evident that the DLCA-CapsNet model 
categorised the images into their respective classes more 
accurately than the traditional model. From the confusion 
matrices, accuracy per class, sensitivity, precision, F1-score, and 
specificity values can be calculated. Such metrics ensure a well-
rounded analysis of model performance, which is crucial for 
small and unevenly distributed dataset scenarios, where relying 
solely on accuracy might overlook critical details. Based on 
Table I and Table II, it can be noticed that the proposed DLCA-
CapsNet model achieved higher accuracy, sensitivity, precision, 
F1-Score, and specificity, surpassing values attained by the 
traditional model when the tomato and mango datasets are 
considered respectively. This suggests that the proposed model 
outperforms the traditional model and effectively generalizes 
unseen data. 

Also, Fig. 4 depicts the PR and ROC curves of the tomato 
dataset, providing insights into the model's resilience and 
effectiveness on imbalanced datasets. The suggested model 
outperformed the traditional model, as indicated by superior 
curve shapes and values. The DLCA-CapsNet significantly 
outperformed the original CapsNet on the Tomato dataset, 
achieving an overall ROC of 100% and a PR of 99.5%, 
compared to the original CapsNet's lower ROC of 97.7% and PR 
of 88%. 

The training and validation loss and accuracy for both the 
DLCA-CapsNet and traditional CapsNet are shown in Fig. 5 for 
tomato, mango, and CIFAR-10 datasets. The DLCA-CapsNet 
model converged faster and achieved higher validation 
accuracies than the traditional model on the various datasets. It 
can be seen that, the DLCA-CapsNet significantly outperformed 
the original CapsNet in validation accuracy across eleven 
diverse datasets (apple, banana, grape, corn, mango, pepper, 
potato, rice, tomato, CIFAR-10, and Fashion-MNIST), 
achieving consistently higher validation accuracy scores of 
99.69%, 95.77%, 99.63%, 97.66%, 99.50%, 100%, 100%, 
100%, 98.82%, 77.31%, and 93.01% compared to that of the 
traditional CapsNet model that achieved lower validation 
accuracies of 92.91%, 80.95%, 93.49%, 92.59%, 78.38%, 
59.68%, 95.36%, 99.24%, 88.59%, 63.58%, and 90.98% for the 
same dataset. This suggests the proposed model generalizes 
better on unseen data than the traditional model across all the 
datasets. Examining the original or traditional CapsNets 
validation accuracy for the CIFAR-10 dataset reveals its initial 
increase but decline around the 20th epoch. In contrast, the 
proposed model maintained its peak accuracy until the end. 

https://github.com/XifengGuo/CapsNet-Keras
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Fig. 3. Confusion matrices comparing the performance of the DLCA-CapsNet and the original CapsNet models on the tomato and mango datasets. 

TABLE I.  PERFORMANCE RESULTS OF DLCA-CAPSNET AND THE ORIGINAL CAPSNET ON THE TOMATO DATASET 

Model (Dataset) Class TP FP FN TN ACC (%) PRE (%) SEN (%) SPE (%) FS (%) Data Size 

Original-CapsNet 
(Tomato) 

0 408 31 18 3180 98.65 92.94 95.78 99.04 94.34 426 

1 111 52 89 3385 96.12 68.10 55.50 98.49 61.16 200 

2 330 70 52 3185 96.65 82.50 86.39 97.85 84.40 382 

3 161 36 30 3410 98.19 81.73 84.29 98.96 82.99 191 

4 275 38 80 3244 96.76 87.12 77.47 98.84 82.01 355 

5 302 41 34 3260 97.94 88.05 89.88 98.76 88.96 336 

6 238 80 43 3276 96.62 74.84 84.70 97.62 79.47 281 

7 51 3 24 3559 99.26 94.44 68.00 99.92 79.07 75 

8 1059 34 13 2531 98.71 96.89 98.79 98.68 97.83 1072 

9 287 30 32 3288 98.30 90.54 89.97 99.10 90.25 319 

DLCA-CapsNet 

(Tomato) 

0 424 7 2 3204 99.75 98.38 99.53 99.78 98.95 426 

1 189 0 11 3437 99.70 100 94.50 100 97.17 200 

2 375 3 7 3252 99.73 99.21 98.17 99.91 98.69 382 

3 190 5 1 3441 99.84 97.44 99.48 99.86 98.45 191 

4 353 12 2 3270 99.62 96.71 99.44 99.63 98.06 355 

5 334 6 2 3295 99.78 98.24 99.41 99.82 98.82 336 

6 269 6 12 3350 99.51 97.82 95.73 99.82 96.76 281 

7 75 1 0 3561 99.97 98.68 100 99.97 99.34 75 

8 1066 0 6 2565 99.84 100 99.44 100 99.72 1072 

9 319 3 0 3315 99.92 99.07 100 99.91 99.53 319 
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TABLE II.  PERFORMANCE RESULTS OF DLCA-CAPSNET AND THE ORIGINAL CAPSNET ON THE MANGO DATASET 

Model (Dataset) Class TP FP FN TN ACC (%) PRE (%) SEN (%) SPE (%) FS (%) Data Size 

Original-CapsNet 
(Mango) 

0 77 23 23 677 94.25 77.00 77.00 96.71 77.00 100 

1 80 19 20 681 95.13 80.81 80.00 97.29 80.40 100 

2 98 1 2 699 99.63 98.99 98.00 99.86 98.49 100 

3 92 15 8 685 97.13 85.98 92.00 97.86 88.89 100 

4 78 35 22 665 92.88 69.03 78.00 95.00 73.24 100 

5 66 16 34 684 93.75 80.49 66.00 97.71 72.53 100 

6 64 45 36 655 89.88 58.72 64.00 93.57 61.25 100 

7 72 19 28 681 94.13 79.12 72.00 97.29 75.39 100 

DLCA-CapsNet 

(Mango) 

0 100 0 0 700 100 100 100 100 100 100 

1 97 0 3 700 99.63 100 97.00 100 98.48 100 

2 100 0 0 700 100 100 100 100 100 100 

3 100 0 0 700 100 100 100 100 100 100 

4 100 0 0 700 100 100 100 100 100 100 

5 99 0 1 700 99.88 100 99.00 100 99.50 100 

6 100 4 0 696 99.50 96.15 100 99.43 98.04 100 

7 100 0 0 700 100 100 100 100 100 100 
 

B. Number of Parameters and Size of Disk 

Increasing model complexity (by adding layers or increasing 
the size of layers) often improves performance on intricate 
images. However, this makes the models larger and 
computationally demanding, hindering their use on devices with 
limited resources like phones and embedded systems. DLCA-
CapsNet is smaller in size and has fewer parameters than the 
original CapsNet and other top models (see Table III). 
Additionally, the CDH component we used does not add any 

extra parameters. The DLCA-CapsNet achieves a notable 
decrease in parameter count (in millions (M)) by 6.16M, 6.16M, 
6.16M, 6.16M, 7.14M, 5.68M, 5.92M, 7.62M, 7.62M, and 
6.54M respectively, when compared to the conventional 
CapsNet considering apple, banana, grape, corn, mango, pepper, 
potato, rice, tomato, CIFAR-10, and Fashion-MNIST datasets. 
Furthermore, it results in a reduction in disk space usage by 
23.5MB, 23.5MB, 23.5MB, 23.5MB, 27.2MB, 21.6MB, 
22.6MB, 23.5MB, 29.1MB, 29.1MB, and 24.8MB, respectively, 
for the same datasets. 

TABLE III.  COMPARISON OF DISK SIZE (S) IN MB AND NUMBER OF PARAMETERS (P) IN MILLIONS (M) 

CapsNet 

Models/Reference 

P(M) and S(MB) 
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Gabor CapsNet [14] P - - - - - - - - 12.00 - - 

CapsNet[18] P - - - 8.40 - - - - 8.40 5.20 2.80 

K-Means CapsNet[37] P - - - - - - - - 5.12 - - 

CapsNet [19] P - - - - - - 9.86 - - - - 

Gabor-Maxpooled 

CapsNet [22] 
P - - - - - - - - 8.71 - - 

Shallow/Multi-Input 

CapsNet [28] 
P - - - - - - - - 

4.10/ 

4.00 

4.60/ 

4.30 

2.50/ 

2.20 

Dual-Input CapsNet [24] P - - - - - - - - 6.04 5.48 - 

Original CapsNet [7] 
P 10.13 10.13 10.13 10.13 11.21 9.59 9.86 10.13 11.75 11.75 8.22 

S 38.6 38.6 38.6 38.6 42.7 36.5 37.6 38.6 44.8 44.8 31.3 

DCLA-CapsNet 

proposed 

P 3.97 3.97 3.97 3.97 4.07 3.91 3.94 3.97 4.13 4.13 1.68 

S 15.1 15.1 15.1 15.1 15.5 14.9 15.0 15.1 15.7 15.7 6.5 
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Fig. 4. PR and ROC curves comparing the performance of DLCA-CapsNet and Original CapsNet models on the Tomato dataset. 

C. Ablation Study 

To assess the model parts that affect its performance, an 
ablation study was performed [35]. The layers are removed one 
by one to check the layers of the model that significantly affect 
the performance of the model. Considering the tomato and 
potato leave diseases, it can be seen in Table IV that the model’s 
performance is highly impacted by the CDH layer. 

TABLE IV.  ABLATION RESULTS 

Layers 
Validation accuracy (%) 

Tomato Potato 

-CDH 82.12 90.17 

-Atrous_Conv1/ Atrou_Conv2 97.75 95.95 

-MP1 & MP3 98.62 98.88 

-Conv1 & Conv2 97.88 97.17 

-MP2 & MP4 98.75 98.28 

-Dropout 98.88 99.14 

+All Layers 98.82 100 
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Fig. 5. Accuracy and loss performance for the proposed DLCA-CapsNet and the original CapsNet models across three datasets: tomato, mango, and CIFAR-10. 
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Fig. 6. Activation maps of the DLCA-CapsNet and the original CapsNet models on the Tomato dataset. 

D. Model Interpretability 

Fig. 6 visually compares activation maps from one of the 
atrous convolution layers in the proposed DLCA-CapsNet 
model (which takes input from the CDH layer using the tomato 
dataset) to the activation map from the convolution layer of the 
traditional CapsNet. A comparison of these maps reveals that the 
atrous convolution in the DLCA-CapsNet captures more 
detailed features, suggesting that the CDH layer plays a crucial 
role in extracting significant information, something the 
convolution layer of the traditional CapsNet alone fails to 
achieve. Furthermore, comparing the activation maps from the 
primary capsule layer of the proposed DLCA-CapsNet and the 
original model reveals that DLCA-CapsNet captures more 
relevant features. This improvement is attributed to the proposed 
model’s ability to extract significant features earlier in the 
network, which enhances the quality of the features passed to its 
primary capsule layer, unlike the traditional CapsNet, whose 
convolutional layer was less effective in feature extraction. 

The clusters generated at the class capsule layers were also 
visualized using t-distributed stochastic neighbor embedding (t-
SNE). As shown in Fig. 7, considering the DLCA-CapsNet 
model, the clusters at the class capsule layer are more distinctly 
grouped by class, with fewer outliers compared to the traditional 
model, particularly for the tomato, mango, and pepper datasets. 
This indicates that the DLCA-CapsNet model demonstrates a 
stronger ability to distinguish between different classes in the 
dataset than the traditional model. Also, the reconstruction 
technique aids in identifying the predicted class of an image and 
the confidence of that prediction. Referring to Fig. 8, which 
presents three rows of reconstructed images from the tomato and 
banana datasets for both the proposed and traditional CapsNet 
models, it is evident that the proposed model generates images 
of slightly better quality with higher class probabilities. These 
visual outputs from the model layers enhance interpretability 
and support the goals of Explainable Artificial Intelligence 
(XAI). 
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Fig. 7. Class capsule clusters for Apple, Banana, and Corn in DLCA-CapsNet and the original CapsNet models. 
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Fig. 8. Reconstructed images generated by the DLCA-CapsNet and Original CapsNet models when applied to the Tomato and Banana datasets. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 7, 2025 

672 | P a g e  

www.ijacsa.thesai.org 

E. Comparison of Results 

Table V compares the proposed DLCA-CapsNet model and 
state-of-the-art models applied to CIFAR-10, Fashion-MNIST, 
and the nine plant disease datasets from the literature. The 
comparison also includes various routing algorithms, despite the 
DLCA-CapsNet model utilizing a dynamic routing technique. 
Table V shows that the less parameterized DLCA-CapsNet 
model, with enhanced feature extraction capabilities, achieved 
higher validation accuracies across various datasets, surpassing 
the original CapsNet by 6.78%, 14.82%, 6.14%, 5.07%, 21.12%, 
40.32%, 4.64%, 0.76%, 10.23%, 13.73%, and 2.03% for the 
apple, banana, grape, corn, mango, pepper, potato, rice, tomato, 
CIFAR-10, and Fashion-MNIST datasets, respectively. It also 
resulted in a reduction of 6.16M, 6.16M, 6.16M, 6.16M, 7.14M, 

5.68M, 5.92M, 7.62M, 7.62M, and 6.54M in model size (in 
millions) compared to the traditional CapsNet. Furthermore, the 
DLCA-CapsNet model led to a decrease in disk size by 23.5MB, 
23.5MB, 23.5MB, 23.5MB, 27.2MB, 21.6MB, 22.6MB, 
23.5MB, 29.1MB, 29.1MB, and 24.8MB for the same datasets 
compared to the traditional CapsNet, as shown in Table III. 
Also, comparing the proposed DLCA-CapsNet with existing 
models found in the literature for plant disease detection, the 
DLCA-CapsNet also outperformed them, as shown in Table V 
and Table III. These results demonstrate the superior 
generalization ability and lower computational complexity of 
the DLCA-CapsNet over the original CapsNet. This exceptional 
performance, necessary for complex images, can be credited to 
the superior feature extraction methods we used to isolate only 
the most relevant features from the images. 

TABLE V.  COMPARISON BETWEEN PREVIOUS STUDIES AND THE PROPOSED DCLA-CAPSNET MODELS 

CapsNet Models/Reference 

Validation Accuracy (%) 
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Gabor CapsNet [14] - - - - - - - - 98.13 - - 

E-GAN CapsNet [16] - - 97.63 - - - - - - - - 

CapsNet [18] - - - 96.79 - - - - 98.06 75.80 92.72 

Dilated CapsNet [17] 93.16 - - - - - - - - - - 

K-Means CapsNet [37] - - - 97.99 - - - - 98.80 - - 

ConvCapsNet [29] - - 99.12 - - - - - - - - 

CapsNet [19] - - - - - - 91.83 - - - - 

CapsNet [21] - - - - - 95.76 - - - - - 

CapsNet [20] - 95.00 - - - - - - - - - 

Gabor-Maxpooled CapsNet [22] - - - - - - - - 97.98 - - 

Shallow/Multi-Input CapsNet [28] - - - - - - - - 
97.33/ 
94.04 

75.75/ 
63.95 

92.7/ 
91.45 

Dual-Input CapsNet [24] - - - - - - - - 93.03 76.58 - 

Multi-Channel CapsNet [25] - - - - - - - - 98.15 - - 

CapsNet [26] - - - - - - - - 96.39 - - 

SE-SK CapsNet [27] - - - - - - - - 97.19 - - 

Original CapsNet [7] 92.91 80.95 93.49 92.59 78.38 59.68 95.36 99.24 88.59 63.58 90.98 

DCLA-CapsNet Proposed 99.69 95.77 99.63 97.66 99.50 100 100 100 98.82 77.31 93.01 
 

V. CONCLUSION 

This study proposed an optimized DLCA-CapsNet model 
for classifying plant diseases, CIFAR-10, and fashion-MNIST. 
Modifications were made by adding a CDH, which does not add 
any parameters, atrous convolutions, max-pooling, or a dropout 
layer. All these layers contributed to the efficient feature 
extraction abilities of the proposed model. The DLCA-CapsNet 
model was assessed using evaluation metrics such as sensitivity, 
F1-score, precision, specificity, ROC and PR values, accuracy, 
disk size, and parameters generated. The DLCA-CapsNet model 
results were compared with those of the traditional CapsNet and 
other models found in the literature, and outperformed them as 
shown in Table III and Table V. The proposed DLCA-CapsNet 
model's fewer parameters make it usable on IoT and resource-

constrained devices, and the better validation accuracies show 
its generalization ability on unseen data. An ablation study was 
performed to ascertain the layers of the model that influence its 
performance. Again, the model interpretability regarding 
visualizing clusters at the class capsule, activation maps, and 
reconstruction of images was discussed. The proposed model's 
better performance shows its effectiveness in detecting plant 
diseases from plant leaf images than those found in literature as 
analyzed in Table III and Table V. The findings suggest that this 
efficient and computationally less demanding method can 
significantly enhance plant disease classification and contributes 
incrementally to efforts aligned with the SDG 2 goal by offering 
a lightweight, scalable solution that can be adapted for field use 
in resource-constrained settings. 
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Nonetheless, environmental variables like uneven lighting 
and intricate backgrounds in real-world conditions can hinder or 
limit model performance. Subsequent research will aim to 
enhance generalizability and real-world applicability by 
evaluating the model across more diverse, challenging settings, 
incorporating additional datasets, and investigating real-time 
implementation on edge and mobile platforms for agricultural 
use. 
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