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Abstract—Corrosion-induced damage poses a critical threat 

to the structural integrity of fluid transport pipelines, 

necessitating advanced detection strategies for early intervention. 

This study investigates the use of acoustic emission (AE) 

monitoring in conjunction with machine learning techniques to 

identify anomalies indicative of corrosion. A comprehensive 

analysis of supervised, unsupervised, semi-supervised, and self-

supervised learning methods is presented, with emphasis on their 

suitability for AE-based anomaly detection. Building upon this 

foundation, we implement and evaluate multiple machine 

learning models—including K-Nearest Neighbours (KNN), 

Support Vector Machines (SVM), Artificial Neural Networks 

(ANN), and Convolutional Neural Networks (CNN)—and 

compare them to a Transformer-based model integrated into a 

hybrid CNN-Transformer architecture. Experimental results 

demonstrate that the hybrid model outperforms all baselines, 

achieving R-squared values of 0.7037 for Acoustic Signal Level 

(ASL) and 0.6836 for Root Mean Square (RMS), thus confirming 

its superior ability to capture both local and long-range 

dependencies in acoustic emission data. A systematic review of 

recent Transformer-based corrosion detection models further 

contextualizes the results. This research highlights the promise of 

Transformer-based models in robust, real-time corrosion 

monitoring and offers a pathway toward more intelligent, 

machine learning-driven infrastructure maintenance systems. 
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I. INTRODUCTION 

The structural integrity of pipelines is critical to the safe 
and efficient transport of fluids across industrial infrastructure. 
Among the various threats to pipeline reliability, corrosion 
remains one of the most pervasive and damaging phenomena, 
often leading to catastrophic failures, economic losses, and 
environmental hazards. As such, early and accurate detection 
of corrosion-related anomalies is essential for preventive 
maintenance and risk mitigation. Traditional inspection 
methods, such as ultrasonic testing, visual inspection, or 
radiography, are often constrained by accessibility, resolution, 
and cost. These limitations have catalysed the shift toward non-
destructive monitoring approaches, particularly those based on 
acoustic emission (AE) signals, which can detect internal 
damage mechanisms in real-time without interrupting 
operations. 

Within this context, the field of anomaly detection has 
gained considerable traction. By identifying deviations from 
normal behaviour in sensor data, anomaly detection methods 

enable the recognition of subtle, early-stage corrosion 
signatures. These methods span from classical statistical 
techniques to advanced machine learning and deep learning 
models. More recently, the adoption of Transformer-based 
architectures—originally developed for natural language 
processing—has opened new avenues for capturing long-range 
dependencies and intricate temporal patterns in time-series 
data, including AE signals. Transformers, especially when 
combined with Convolutional Neural Networks (CNNs), have 
demonstrated superior performance in learning both localized 
and global representations, making them particularly well-
suited for signal-based corrosion detection. 

This study contributes to this evolving landscape by 
applying and evaluating a hybrid CNN-Transformer model for 
AE-based corrosion anomaly detection in pipelines. Unlike 
conventional approaches that often struggle with noisy, high-
dimensional, and unlabelled signal data, the hybrid model 
leverages CNNs for localized feature extraction and 
Transformer encoders for contextual temporal modelling. A 
comprehensive comparison against classical machine learning 
algorithms and other deep learning models reveals the hybrid 
model’s significant performance advantage in predicting key 
corrosion indicators such as Acoustic Signal Level (ASL) and 
Root Mean Square (RMS). 

Furthermore, this work contextualizes its findings within 
the broader literature by examining prior studies on 
Transformer-based corrosion detection across various domains, 
including bridge inspection, UAV imagery, pipeline 
surveillance, and 3D point cloud segmentation. By bridging 
insights from both image-based and signal-based corrosion 
detection, this paper not only validates the effectiveness of 
Transformer models in AE applications but also lays the 
groundwork for future self-supervised learning strategies in 
industrial health monitoring systems. 

II. BACKGROUND OF THE STUDY 

A. Anomaly Detection 

Anomaly detection is the process of identifying data points, 
patterns, or events that significantly deviate from the normal or 
expected behaviour within a dataset [1]. These deviations, 
known as anomalies or outliers, can indicate critical incidents 
such as errors, defects, fraud, or other unusual activities. 
Anomaly detection is used across various fields like 
cybersecurity, finance, manufacturing, and healthcare to detect 
problems early and prevent larger issues. It typically involves 
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building a model of normal behaviour and then comparing new 
data to this model to find anything that stands out as abnormal. 

Anomaly detection offers several significant advantages, 
especially in systems where early identification of unusual 
behaviour can prevent serious consequences. One of the 
primary benefits is its ability to uncover rare or previously 
unknown issues, such as hidden faults in machinery, 
undetected cyberattacks, or fraudulent financial transactions, 
which might not be identifiable using standard monitoring 
techniques [2]. It also supports automation in monitoring 
processes, reducing the need for manual oversight and allowing 
organizations to respond more quickly and efficiently to 
emerging problems. Furthermore, anomaly detection improves 
decision-making by providing insights into unexpected 
behaviour and enabling predictive maintenance, risk 
management, and enhanced security. Its flexibility across 
domains and ability to handle large volumes of data in real 
time make it a powerful tool for increasing operational 
reliability and safety. 

B. Anomaly Detection Use Cases 

Anomaly detection plays a pivotal role in cybersecurity, 
especially for identifying novel or stealthy attacks that 
signature-based systems often miss. For instance, a study on 
smart-city IoT networks applied federated and split learning 
methods to detect anomalies on the UNSW-NB15 dataset, 
achieving accuracy rates above 97% and reducing false 
positives in real-time intrusion detection. Another work 
introduced a PCC-CNN deep-learning model capable of 
detecting multi-class attacks in IoT environments using 
datasets like NSL-KDD and CICIDS2017, demonstrating 
robust performance in real-time classification [3], [4], [5]. 
These approaches exemplify how anomaly detection enhances 
threat detection in dynamic, decentralized network ecosystems. 

In manufacturing, anomaly detection enables predictive 
maintenance by identifying early signs of equipment 
degradation. A machine-learning system using Random Forests 
and SVM, trained on sensor data like vibration, temperature, 
and pressure, successfully flagged anomalies indicative of 
impending motor and pump failures. This led to a remarkable 
30% reduction in unplanned downtime and substantial cost 
savings. Additionally, a semi-supervised approach for 
pharmaceutical manufacturing equipment demonstrated its 
effectiveness in detecting failures in complex multivariate time 
series without requiring labelled fault data [6], [7]. These 
techniques shift maintenance strategies from reactive to 
proactive, improving operational efficiency and equipment 
lifespan. 

Deep learning–based anomaly detection methods are 
transforming system reliability across industrial settings. One 
paper [8] explored autoencoders, RNNs, and CNNs to examine 
sensor streams in a manufacturing environment. The proposed 
deep-learning framework outperformed traditional techniques, 
enabling earlier detection of equipment faults. Another study 
[9] implemented a federated learning setup using 1D-CNN and 
bi-LSTM to process time-series sensor data across distributed 
devices, achieving 97.2% test accuracy and enabling edge-
based anomaly detection that preserves data privacy. Together, 
these works illustrate how advanced neural architectures 

facilitate real-time fault prediction and distributed diagnostics 
in Industry 4.0 systems. 

In civil and structural engineering, anomaly detection 
methods are increasingly used to identify corrosion on critical 
infrastructure—like bridges, towers, and building façades—
using aerial imagery [10] collected by drones or unmanned 
aerial vehicles (UAVs). For instance, CorrDetector [11] is an 
ensemble deep learning model based on convolutional neural 
networks (CNNs) that analyses drone-captured images of 
structures (e.g., telecom towers) to locate and identify corroded 
regions [12]. This framework achieved significantly better 
classification accuracy compared to prior state-of-the-art 
models, enabling automated, remote, and scalable corrosion 
monitoring in hard-to-reach areas. Such anomaly-driven 
detection enhances safety, reduces inspection costs, and 
enables timely maintenance decisions [13]. 

C. Types of Anomalies 

Point anomalies refer to individual data instances that 
deviate significantly from the majority of the data and can be 
identified as unusual regardless of the context in which they 
occur [14]. These anomalies are the simplest and most intuitive 
form, appearing as sharp spikes or dips in data distributions. A 
point anomaly stands alone as being inconsistent with the 
expected pattern—there is no need to examine its surrounding 
values or additional variables [15]. For example, in banking, if 
a customer typically spends less than $100 per transaction, but 
one day a transaction of $10,000 is recorded, that transaction is 
likely to be a point anomaly. Similarly, in a medical dataset, a 
sudden and extreme heart rate recorded in an otherwise stable 
trend could be flagged as anomalous. These anomalies are 
typically rare but can be highly impactful, often signalling 
errors, fraud, or critical failures. Because they occur in a 
variety of domains—from finance and healthcare to 
environmental monitoring and manufacturing—point 
anomalies are often the first type considered when building 
anomaly-aware systems. Despite their simplicity, 
understanding and classifying them accurately is crucial due to 
the potential severity of the events they represent. 

Contextual anomalies occur when a data point is considered 
normal in one context but anomalous in another. Unlike point 
anomalies, these require additional contextual information—
such as time, location, or season—to assess whether the data 
instance is truly unusual [16]. A contextual anomaly cannot be 
identified solely by looking at the value itself; its significance 
emerges only when the surrounding environment or condition 
is considered [17]. For example, a temperature of 25°C might 
be perfectly normal during the summer but highly unusual 
during the winter, making it a contextual anomaly in the latter 
case. Another example would be a sudden drop in stock prices 
that is abnormal only when viewed against the typical patterns 
of that specific market on a certain day of the week. These 
types of anomalies are especially prevalent in time-series and 
spatiotemporal data, where the same value can be either 
expected or unexpected depending on when and where it 
occurs. Recognizing contextual anomalies is essential in fields 
such as climate science, behavioural analytics, and industrial 
monitoring, where environmental variability plays a key role in 
defining what is normal. 
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Collective anomalies refer to a set or sequence of data 
instances that are anomalous when considered together, even 
though the individual data points within the group may appear 
normal on their own. The anomaly lies not in the data points 
themselves, but in the pattern or relationship between them. 
This type of anomaly typically appears in sequential or 
structured data, such as time-series or spatial data grids [18]. 
For example, in network traffic analysis, a single packet may 
appear normal, but a burst of similar packets over a short 
duration might indicate a denial-of-service attack—a collective 
anomaly. Similarly, in health monitoring systems, a slight 
elevation in blood pressure over one reading might not be a 
concern, but a sustained increase over several hours could 
signal the onset of a medical emergency. These anomalies are 
crucial in identifying coordinated or evolving patterns that 
could go unnoticed when data is analysed in isolation. They are 
especially important in domains like cybersecurity, fault 
detection, and system diagnostics, where anomalies emerge not 
from individual values, but from the way groups of values 
interact over time or space. 

D. Anomaly Detection Techniques 

1) Statistical techniques are among the earliest and most 

fundamental approaches to anomaly detection [19]. These 

methods rely on the assumption that normal data points follow 

a known statistical distribution (e.g., Gaussian, Poisson), and 

anomalies are observations that deviate significantly from this 

distribution. Common statistical measures used include mean, 

variance, standard deviation, and probability density 

functions. 

A classic example is the Z-score method, where any data 
point that lies beyond a threshold (commonly 3 standard 
deviations from the mean) is considered anomalous[20]. This 
approach works well for data that is symmetrically distributed, 
such as in many industrial process control settings. Grubbs' 
Test is another statistical test used for identifying outliers in a 
univariate dataset that assumes normality; it tests the 
hypothesis that the extreme value in the dataset is an outlier 
[21]. 

Another foundational statistical method is the Interquartile 
Range (IQR) approach, which defines outliers as data points 
lying below Q1−1.5×IQR or above Q3+1.5×IQR, where Q1 
and Q3 are the first and third quartiles, respectively [19]. This 
is particularly useful for skewed distributions and boxplot-
based anomaly visualization. 

More advanced techniques include Kernel Density 
Estimation (KDE), a non-parametric way to estimate the 
probability density function of a random variable [22]. 
Anomalies are identified as points in regions of low estimated 
density. KDE is flexible and does not require assumptions 
about the distribution form. 

In time-series applications, statistical methods like Moving 
Average and Exponential Smoothing are employed to detect 
deviations from expected trends. These are often combined 
with control limits to flag values that exceed expected 
variation. Similarly, Cumulative Sum Control Charts 

(CUSUM) and Exponentially Weighted Moving Average 
(EWMA) charts are widely used in quality control to detect 
small shifts in process mean [20]. 

These techniques are particularly valuable due to their 
interpretability, low computational cost, and ease of 
implementation. They are commonly used in industries such as 
finance (to detect fraud), manufacturing (to monitor production 
quality), and environmental science (to identify climate 
anomalies). 

2) Time-series anomaly detection involves techniques that 

account for the temporal structure and order of the data [23]. 

Unlike traditional static datasets, time-series data includes 

observations collected over time, making the detection of 

anomalies more challenging due to seasonality, trends, and 

autocorrelation. 

One of the most traditional techniques is the Autoregressive 
Integrated Moving Average (ARIMA) model. It predicts future 
values based on past observations. Anomalies are detected by 
comparing actual values to ARIMA-based forecasts; 
significant deviations signal potential anomalies. ARIMA is 
particularly effective when the data shows clear trends or 
periodic patterns. 

Seasonal Decomposition of Time Series (STL) separates a 
time series into seasonal, trend, and residual components. 
Anomalies are typically identified in the residual component. 
This method helps isolate irregularities that cannot be 
explained by seasonality or trend. 

Change-point detection techniques aim to identify points in 
time where the statistical properties of the series change [24]. 
These can include abrupt shifts in mean, variance, or 
autocorrelation structure. Algorithms like Bayesian Change 
Point Detection, Pruned Exact Linear Time (PELT), and 
Binary Segmentation are used in applications such as financial 
market analysis and equipment failure prediction [25]. 

More recent developments include the Matrix Profile 
method, which enables fast, scalable similarity search and 
anomaly detection in large time-series datasets [26]. By 
identifying the least similar sub sequences, Matrix Profile 
effectively highlights unusual patterns without requiring a 
model to be trained. 

Time-series specific techniques are essential in fields like 
energy consumption forecasting, stock market analysis, 
industrial equipment monitoring, and healthcare analytics, 
where anomalies often follow complex temporal dynamics. 

3) Signal-based anomaly detection techniques are widely 

used in domains where data is collected in the form of 

continuous waveforms, vibrations, or frequency-based signals. 

These techniques focus on identifying irregularities in the 

shape, amplitude, or frequency components of the signal data, 

which may indicate faults, noise, or other abnormal 

conditions. Applications include structural health monitoring, 

acoustic emission testing, vibration analysis in machinery, and 

biomedical signal processing such as ECG and EEG 

monitoring. 
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One common method is spectral analysis, where the 
frequency content of a signal is examined using tools like the 
Fourier Transform [27]. Anomalies may manifest as sudden 
spikes or drops in power at certain frequencies. In rotating 
machinery, for instance, deviations from baseline frequency 
signatures often suggest wear, imbalance, or bearing failure. 

Another key method is wavelet transform analysis, which 
provides both frequency and time localization of signal 
features [28]. This is particularly useful for identifying 
transient anomalies, such as sudden impacts or short-duration 
faults. Wavelets can decompose signals at multiple scales, 
making them suitable for multi-resolution analysis. 

Envelope analysis is another powerful technique used to 
detect impacts and modulated signals hidden within a complex 
waveform [29]. It's often used in gear and bearing diagnostics, 
especially where periodic impulses are masked by noise. 

Cross-correlation and coherence techniques are used to 
compare signals across multiple channels or sensors to detect 
spatially coherent anomalies, such as propagating cracks in 
structures. 

In AE-based corrosion monitoring, signal-based techniques 
can distinguish between noise, crack growth, and corrosion 
signals based on parameters like rise time, amplitude, duration, 
and energy [30]. These methods are critical in environments 
where traditional techniques may not detect internal flaws until 
catastrophic failure. 

Signal-based methods are valued for their sensitivity and 
ability to capture minute signal changes that precede larger 
failures. However, they require high-fidelity data acquisition 
systems and advanced filtering to isolate meaningful features. 

4) Machine learning techniques form a core component of 

modern anomaly detection systems. These techniques leverage 

data-driven learning models to discover complex and 

nonlinear relationships between features that can indicate 

abnormal patterns. Depending on the availability of labelled 

data and the structure of the problem, machine learning 

techniques are broadly categorized into four main types: 

supervised, unsupervised, semi-supervised, and self-

supervised learning. Each of these categories provides 

different advantages and trade-offs, and their usage is dictated 

by the nature of the data and the application domain. 

E. Machine Learning Anomaly Detection Techniques 

1) Supervised learning involves training models on 

datasets that include labelled examples of both normal and 

anomalous data. These models learn to distinguish between 

the two classes based on the features present in the training 

data. Algorithms such as Support Vector Machines (SVM), 

Decision Trees, Random Forests, Logistic Regression, and 

Neural Networks are widely used in this category. 

This approach can be highly effective when ample labelled 
data is available. It allows for the creation of highly 
discriminative models that can achieve strong generalization on 
unseen data [31]. However, its major limitation lies in the 

difficulty of acquiring sufficient labelled examples of 
anomalies, which are typically rare and diverse. 

Supervised anomaly detection has been successfully 
applied in spam detection, medical diagnostics, and quality 
assurance systems where historical labelled datasets are 
available. Techniques such as cross-validation and synthetic 
data generation (e.g., SMOTE) are often used to handle class 
imbalance [32]. 

2) Unsupervised learning techniques are particularly 

useful when labelled data is unavailable, which is a common 

scenario in anomaly detection where anomalies are rare and 

difficult to label [1]. These models attempt to learn the 

inherent structure of the dataset without predefined labels, 

assuming that normal patterns dominate the data distribution. 

Anomalies are identified as instances that do not conform to 

these learned patterns. 

Common approaches include clustering algorithms like k-
means and DBSCAN, where outliers are data points that do not 
belong to any cluster or are far from cluster centroids. 
Dimensionality reduction techniques such as Principal 
Component Analysis (PCA) and Isolation Forest also fall under 
this category [14]. PCA reduces the data into a lower-
dimensional space where anomalies can be observed as 
deviations from the principal components. One-Class SVM is 
another widely used method that attempts to learn the boundary 
of normal data and flags deviations as anomalies. 

Unsupervised techniques are widely used in cybersecurity 
for detecting unauthorized access, in finance for fraud 
detection, and in manufacturing for identifying process faults. 
They require minimal prior knowledge about the data and are 
effective for exploratory analysis. 

3) Semi-supervised learning sits between supervised and 

unsupervised methods. It utilizes a large amount of unlabelled 

data and a small amount of labelled data—usually only normal 

instances [2]. The model is trained to capture the distribution 

of normal data and detect deviations as potential anomalies. 

A prominent approach in this category includes One-Class 
SVM, which learns a decision function that identifies the 
region in the feature space where the majority of the data lies. 
Autoencoders, a type of neural network, are also commonly 
used; they are trained to reconstruct normal data with high 
fidelity [33]. At inference time, high reconstruction errors 
suggest that the input does not conform to the learned normal 
pattern, signalling an anomaly. 

Semi-supervised methods are well-suited to industrial 
applications, such as predictive maintenance, where anomaly 
data is limited. They are also used in biomedical monitoring, 
where only healthy data may be available for training. 

4) Self-supervised learning (SSL) is an emerging paradigm 

in anomaly detection that leverages large volumes of 

unlabelled data by creating pseudo-labels through pretext 

tasks [34]. These pretext tasks are designed to train models to 

learn general data representations, which can then be used for 
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downstream anomaly detection without requiring manually 

labelled anomalies. 

In the context of anomaly detection, SSL often begins by 
defining surrogate tasks such as predicting masked input 
features (e.g., in tabular data), reconstructing corrupted signal 
segments (e.g., in time series), or predicting the temporal order 
of sequence segments [35]. Models trained on these tasks 
develop an internal representation of normal data distribution. 
During inference, deviations from expected patterns are 
flagged as anomalies. 

In time-series anomaly detection, a common SSL strategy 
involves forecasting future values based on historical data 
using models like Transformers or Temporal Convolutional 
Networks. Large prediction errors are used as indicators of 
anomalous behaviour [36]. Similarly, contrastive learning—a 
subfield of SSL—maximizes agreement between different 
views or augmentations of the same data point while 
minimizing agreement with others, making it powerful for 
identifying rare deviations. 

In industrial and biomedical applications, self-supervised 
pretraining has shown to improve anomaly detection 
performance [37]. For example, in acoustic emission-based 
corrosion monitoring, self-supervised pretraining allows the 
model to learn signal patterns unique to material degradation 
without needing explicitly labelled defect types. 

SSL not only reduces the dependency on labelled data but 
also enhances robustness and generalizability across unseen 
data distributions. It has proven effective in fraud detection, 
predictive maintenance, healthcare monitoring, and 
cybersecurity, where anomalies evolve or emerge dynamically 
over time. 

5) Deep learning techniques have revolutionized the field 

of anomaly detection by enabling systems to automatically 

extract hierarchical representations from raw, high-

dimensional data. These techniques, primarily based on 

artificial neural networks, are capable of modelling complex 

and nonlinear data distributions, making them exceptionally 

powerful for detecting subtle and intricate anomalies. 

Convolutional Neural Networks (CNNs) and Recurrent 
Neural Networks (RNNs) are among the most commonly used 
deep learning models for anomaly detection. CNNs are 
particularly effective in applications involving image or spatial 
data, where anomalies may appear as localized irregularities. 
For instance, in industrial quality inspection, CNNs can 
identify manufacturing defects from high-resolution images 
[38]. RNNs, on the other hand, are designed to process 
sequential data and are extensively used in time-series anomaly 
detection, such as sensor data monitoring, by capturing 
temporal dependencies and flagging unexpected deviations. 

Autoencoders are another widely used deep learning 
technique. These unsupervised neural networks are trained to 
reconstruct their input data. During testing, if the 
reconstruction error is high for certain inputs, those inputs are 
flagged as potential anomalies. Variants such as Variational 
Autoencoders (VAEs) and Denoising Autoencoders add 

probabilistic and noise-resilience components to improve 
detection robustness [39]. 

Generative Adversarial Networks (GANs) have also gained 
popularity for anomaly detection [40]. These models consist of 
a generator that creates fake data and a discriminator that tries 
to distinguish between real and generated data. The 
discriminator’s inability to classify an instance properly can 
indicate that the data does not follow the expected distribution, 
thus signalling an anomaly. GAN-based methods have been 
applied in fields such as cybersecurity, medical imaging, and 
predictive maintenance. 

Long Short-Term Memory (LSTM) networks, a type of 
RNN, are particularly effective for learning long-range 
dependencies in time-series data [41]. They have been 
employed in health monitoring systems, power grid analysis, 
and transportation networks to predict normal behaviour and 
detect anomalies through forecast errors. 

Deep learning models benefit from large-scale datasets and 
computational resources, enabling them to outperform 
traditional methods in many scenarios [42]. However, they also 
present challenges such as model interpretability, high 
computational cost, and the need for careful hyperparameter 
tuning. 

6) Transformers represent a significant advancement in 

machine learning models for anomaly detection due to their 

superior ability to model long-range dependencies and capture 

complex temporal patterns in data. Originally designed for 

natural language processing, Transformers have since been 

successfully adapted to various domains including vision, 

time-series analysis, and industrial monitoring [43]. Unlike 

traditional recurrent architectures like RNNs or LSTMs, 

Transformers rely on self-attention mechanisms that allow 

them to process all elements of a sequence simultaneously, 

leading to better scalability and improved performance, 

especially on large and noisy datasets. 

One of the key advantages of Transformers in anomaly 
detection lies in their flexibility and robustness. They can be 
applied in both supervised and self-supervised settings and are 
capable of learning high-quality representations from 
unlabelled data. In comparison to CNNs and RNNs, 
Transformers offer superior performance in handling 
multivariate time-series data, where correlations across 
different features and timestamps must be considered jointly 
[44]. Moreover, self-attention helps in identifying subtle 
contextual anomalies that may span long sequences, which 
traditional models often miss. 

This makes Transformers particularly valuable in industrial 
and infrastructure monitoring applications, such as in 
predictive maintenance and fault detection. One emerging 
application is anomaly detection in corrosion monitoring, 
especially using Acoustic Emission (AE) data, where annotated 
anomalies are difficult to obtain and the signals are often non-
stationary and high-dimensional [45]. The ability of 
Transformers to learn from limited or unlabelled data and their 
capacity to model complex temporal dynamics makes them an 
ideal choice for such scenarios. 
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Furthermore, recent research has demonstrated that 
Transformer-based architectures can outperform conventional 
techniques in both accuracy and generalization when applied to 
corrosion-related anomaly detection tasks [46]. Their 
compatibility with self-supervised learning strategies enhances 
their effectiveness in low-resource settings, making them 
particularly relevant for pipeline health monitoring systems and 
structural integrity assessments. 

The discussion of Transformer applications in corrosion 
detection, is expanded further in the next section, where we 
delve into their specific contributions, datasets, and models. 

III. PRIOR STUDIES OF TRANSFORMER BASED MODELS FOR 

CORROSION ANOMALY DETECTION 

A. Comparative Analysis of Transformer Based Models for 

Corrosion Detection 

The following paragraphs go into a deeper dive into each of 
the studies mentioned in Table I. 

TABLE I.  COMPARATIVE STUDY 

Study Transformer Model Input Data Learning Setup Dataset Accuracy/F1 

Efficient Metal Corrosion Area 

Detection Model Combining 
Convolution and Transformer 

Visual Transformer 

integrated in MCD-Net 

Corrosion images (public 

dataset A and self-collected 
Dataset B) 

Supervised 

Learning 

Dataset A 

(AASHTO/BIRM 

corrosion levels), 
Dataset B (natural 

scene images) 

F1 Score: 

84.53% 

CorFormer: a hybrid 
transformer-CNN architecture 

for corrosion segmentation on 

metallic surfaces 

CorFormer (hybrid 

Transformer-CNN) 

Corrosion images on 

metallic surfaces 

Supervised 

Learning 

Not stated (mentions 

10 validation splits) 

IoU improved by 

2.7% over 
SOTA; FPS: 28 

Civil Infrastructure Damage 
and Corrosion Detection: An 

Application of Machine 

Learning 

Transformer block within 

CycleGAN (residual block-
based Transformer) 

UAV aerial images of 

bridges and steel 
infrastructure 

Supervised 

Learning 

1300 images (Bolte 

Bridge & Sky Rail, 
Victoria, AU) 

F1 Score: 0.83; 

Accuracy: 0.989 

A Multilevel Bridge Corrosion 

Detection Method by 

Transformer-Based 
Segmentation in a Stitched 

View 

Transformer-based 

segmentation (e.g., 
SegFormer) 

Stitched images of bridge 

surfaces 
Supervised 

Public dataset from 

Virginia Tech (440 

images), augmented 
with Lundamo Bridge 

dataset (94 images) 

F1 Score: 68.2% 
(improved from 

60–61% with 

CNNs) 

P-DETR: A Transformer-Based 

Algorithm for Pipeline 

Structure Detection 

Pipe Detection 

Transformer (P-DETR, 
DETR-based with FNT 

module) 

Aerial drone images of 
pipelines 

Supervised 

Custom dataset (2553 

raw + augmented to 

6127 images) 

mAP: 55% (↑3 

AP over DETR); 

Recall: 73.9% 

Corrosion segmentation 
method of concrete drainage 

pipes based on point 

transformer 

Point Transformer (U-Net-

like) 

3D point clouds from real 

+ simulated concrete pipe 
data 

Supervised 

Learning 

200 real + 200 
simulated 3D point 

cloud samples (Azure 

Kinect DK) 

Accuracy: 

94.36%; MIoU: 
86.31% 

SegFormer: Semantic 

Segmentation Based 

Transformers For Corrosion 
Detection 

SegFormer 
Bridge corrosion images 
from inspection reports 

(VDOT) 

Supervised 

Learning 

440 annotated images 
(AASHTO/BIRM 

guidelines) 

Mean Acc: 
81.39%; MIoU: 

71.16% 

Double-Attention YOLO: 

Vision Transformer Model for 

Transmission Line Fittings & 
Rust 

Vision Transformer + Dual 

Attention YOLO 

Hazy/defogged images of 
transmission line 

connection fittings 

Supervised 

Learning 

Not explicitly named; 
7700 annotated images 

(Stage 2) 

mAP@0.5:0.95 

= 

0.8674mAP@0.5 
= 0.9948Macro-

F1 = 0.661 

(stage 1), 0.568 
(stage 2) 

Corrosion SAM: Adapting 

Segment Anything Model with 
Parameter-Efficient Fine-

Tuning for Structural 

Corrosion Inspection 

Segment Anything Model 

(SAM) + Vision 

Transformer (ViT-H) with 
Adapter modules (PEFT) 

RGB corrosion images 
resized to 512×512; 

binarized 

Supervised 

Learning 

VDOT (440 
images)KRDB (955 

images) 

VDOT: IoU 

69.72%, Dice 
81.04%KRDB: 

IoU 60.78%, 

Dice 72.97% 

Pipeline defect recognition 
algorithm based on CNN-

Transformer model for internal 

detection in PE gas pipelines 

CNN + Transformer with 

Squeeze-and-Excitation 
(no positional encoding) 

Internal pipeline defect 
images (1200), 1080×1080 

px, collected via inspection 

robot 

Supervised 

Learning 

Custom dataset (1200 

images) of PE pipeline 
defects 

Accuracy: 97.8% 

(avg. over 10 
runs) 

 

The study titled “Efficient Metal Corrosion Area Detection 
Model Combining Convolution and Transformer” proposes 
MCD-Net, a hybrid deep learning architecture that integrates 
convolutional layers with a visual Transformer encoder to 
enhance corrosion detection on metallic surfaces [46]. By 
combining local feature extraction with global context 
modelling, the model effectively addresses challenges such as 

occlusions, lighting variability, and irregular corrosion 
patterns. It employs an attention-based multi-layer feature 
fusion mechanism and a multi-scale feature enhancement 
strategy to refine boundary segmentation. MCD-Net achieved 
an F1 score of 84.53% on a public dataset, demonstrating 
improved robustness to noise and lighting compared to 
conventional CNNs. 
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In “CorFormer: A Hybrid Transformer-CNN Architecture 
for Corrosion Segmentation on Metallic Surfaces”, the authors 
present CorFormer, a real-time segmentation model that 
combines CNNs and Transformers within a unified framework 
[47]. Transformer layers are embedded within the CNN 
encoder, while a Semantic Gap Merger (SGM) bridges feature-
level disparities. A hierarchical decoder further processes 
multi-scale features, enabling the model to capture both 
localized and broad defects. CorFormer improved Intersection-
over-Union (IoU) by 2.7% over baseline methods and achieved 
real-time performance at 28 FPS, making it well-suited for 
industrial monitoring applications. 

The study “Civil Infrastructure Damage and Corrosion 
Detection: An Application of Machine Learning” introduces a 
hybrid CycleGAN-based model incorporating Transformer-
enhanced residual blocks for corrosion segmentation in UAV-
acquired bridge imagery [48]. Positioned between the encoder 
and decoder of the generator, the Transformer blocks enable 
domain-adaptive learning, improving the model’s robustness to 
texture and lighting variations. Trained on 1,300 annotated 
images from Melbourne’s Bolte Bridge and Sky Rail, the 
model achieved an F1 score of 0.83 and an overall accuracy of 
98.9%, outperforming traditional networks like PSPNet and 
SegNet, and demonstrating strong generalization capabilities 
across diverse aerial scenes. 

The study “A Multilevel Bridge Corrosion Detection 
Method by Transformer-Based Segmentation in a Stitched 
View” addresses the limitations of CNNs when applied to 
wide, high-resolution structural images [49]. Utilizing a 
Transformer-based semantic segmentation model (e.g., 
SegFormer), the study incorporates stitched bridge surface 
imagery to enable large-area defect detection. Trained on 440 
annotated images from Virginia Tech and additional data from 
Norway’s Lundamo Bridge, the model achieved an F1 score of 
68.2%, significantly outperforming U-Net and DeepLabV3+. 
Although performance was impacted by input resolution, the 
approach showed strong potential for deployment in field 
inspection workflows. 

In “P-DETR: A Transformer-Based Algorithm for Pipeline 
Structure Detection”, the authors propose an enhanced DETR 
architecture tailored for small-object detection in aerial 
pipeline imagery [50]. The model integrates a Feature 
Normalization and Transformation (FNT) module to improve 
spatial resolution and feature fusion. Trained on an augmented 
dataset of 6,127 drone-captured images, P-DETR achieved a 
mean Average Precision (mAP) of 55% and a recall of 73.9%, 
outperforming DETR, YOLOv3, and SSD baselines. While 
highly accurate in static image analysis, real-time drone-based 
deployment is identified as a future direction for further 
validation. 

The study “Corrosion Segmentation Method of Concrete 
Drainage Pipes Based on Point Transformer” introduces a 3D 
point cloud segmentation method using a Point Transformer to 
identify corrosion in concrete drainage pipes [51]. A U-Net-
like architecture is employed, trained on a combined dataset of 
real and simulated point clouds generated using an Azure 
Kinect DK. The model achieved 94.36% accuracy and a mean 
IoU of 86.31%, surpassing PointNet++ and PAConv. The best 

results were obtained with a 1:1 real-to-simulated data ratio. 
Despite its computational intensity, the model excels in precise 
3D segmentation tasks for corrosion detection. 

“SegFormer: Semantic Segmentation Based Transformers 
for Corrosion Detection” explores the use of SegFormer for 
corrosion classification based on annotated bridge inspection 
images following AASHTO and BIRM guidelines [52]. The 
dataset includes four corrosion severity levels, with class 
imbalance noted for the “severe” category. After fine-tuning, 
the model achieved a mean accuracy of 81.39% and a mean 
IoU of 71.16%. The study emphasizes the need for balanced 
datasets and tailored preprocessing to improve segmentation 
performance in underrepresented classes. 

The paper “Double-Attention YOLO: Vision Transformer 
Model Based on Image Processing Technology in Complex 
Environment of Transmission Line Connection Fittings and 
Rust Detection” presents a two-stage framework for corrosion 
detection under visual degradation [53]. The approach 
integrates defogging preprocessing with a YOLO-based 
detector that combines Vision Transformers, a dual attention 
mechanism (CBAM), and GhostNet for efficient inference. 
Trained on 7,700 annotated images, the model achieved a 
mAP@0.5 of 99.48% and macro-F1 scores of 0.661 and 0.568. 
It outperformed multiple baselines—including ATSS, FCOS, 
and DETR variants—particularly in scenes with small objects, 
haze, and occlusion. 

“Corrosion SAM: Adapting Segment Anything Model with 
Parameter-Efficient Fine-Tuning for Structural Corrosion 
Inspection” applies the SAM foundation model with ViT-H 
backbone to the corrosion domain using adapter-based 
Parameter-Efficient Fine-Tuning (PEFT) [54]. By inserting 
adapters into frozen Transformer layers, the model adapts with 
minimal computational overhead. Evaluated on the VDOT and 
KRDB datasets, Corrosion SAM achieved IoU scores of 
69.72% and 60.78%, and Dice scores of 81.04% and 72.97%, 
respectively. It consistently outperformed DeepLabV3+, U-
Net, and SegFormer, demonstrating the viability of efficient 
fine-tuning techniques in adapting foundation models to 
specialized inspection tasks. 

Finally, “Pipeline Defect Recognition Using a CNN–
Transformer Model” presents a lightweight architecture 
combining CNNs with Transformers and a Squeeze-and-
Excitation module to classify defects in polyethylene (PE) gas 
pipelines [55]. The model omits positional encoding—
leveraging zero-padding from CNNs—and uses Layer 
Normalization and multi-head attention for stability. Trained 
on 1,200 images captured by pipeline inspection robots, the 
model achieved an average accuracy of 97.8% over 10 
randomized test runs. It consistently outperformed standard 
CNN and ViT architectures on small and medium-sized 
datasets, underscoring its potential for real-world pipeline 
monitoring. 

As can be seen from these studies, the use of transformer-
based models improved the accuracy of detecting anomalies 
caused by corrosion. Therefore, in this study, a transformer-
based model was used on the experimental data set along with 
other models for a comparative analysis of the performances of 
each model. 
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IV. METHODOLOGY 

A. Experimental Setup 

The dataset used in this study was generated through a 
controlled laboratory experiment designed to simulate real-
world corrosion in fluid transport pipelines. As shown in Fig. 
1, ten acoustic emission (AE) sensors were strategically 
distributed along the pipeline—five on the left side (with girth 
welds between the source and sensors) and five on the right 
(without girth welds). Accelerated corrosion was induced at the 
centre of the pipeline over a three-hour period, with sensors 
spaced at 100 cm intervals to capture both near-field and far-
field AE signal variations. 

 
Fig. 1. Setup for the data acquisition. 

This experimental dataset was chosen over public datasets 
to ensure high-fidelity, labelled AE signals under known and 
controlled corrosion conditions. The setup allowed us to 
evaluate the performance of machine learning models in 
detecting corrosion-induced anomalies while accounting for 
attenuation effects due to girth welds. Such a controlled 
environment also provided reliable ground truth for model 
validation, making the dataset particularly suitable for the 
supervised, unsupervised, and hybrid models evaluated in this 
study. 

B. Data Analysis 

After filtering and analysing the data, strong correlations 
was found between the parameters ABS-ENERGY and Signal 
Strength, along with distance (channel 3 being the closest and 
channel 8 being the furthest). The scatterplot in Fig. 2 shows 
the relationship. These relationships will be used to train the 
machine learning models that would detect the corrosion. 

 
Fig. 2. Relationship between ABS-ENERGY and RMS. 

V. RESULTS AND DISCUSSION 

A. Machine Learning Models and Transformer Based Models 

Applied 

In the following paragraphs, each ML model used, 
including the Hybrid CNN-Transformer, is described in detail 
along with its performance on the acquired data from the 

experiment. The bar graph in Fig. 3 provide a visual 
representation of the performances of each ML model. 

 
Fig. 3. Comparison of ML models. 

1) K-Nearest Neighbours (KNN) is a non-parametric, 

instance-based learning algorithm that predicts the value of a 

target variable by averaging the values of its k-nearest 

neighbors in the feature space. For both 'ASL' and 'RMS', 

KNN demonstrated relatively strong performance, achieving 

R-squared values of 0.5984 and 0.6026, respectively. This 

suggests that the local patterns in the 'Distance' and 'CH' 

feature space are somewhat indicative of the target 

parameters. The moderate to high R-squared scores imply that 

a significant portion of the variance in both 'ASL' and 'RMS' 

can be explained by the values of their nearest neighbours. 

However, the performance is not perfect, indicating that other 

factors or more complex relationships might be at play.  

2) The Artificial Neural Network (ANN) and 

Backpropagation Neural Network BPNN, both implemented 

as a Multi-Layer Perceptron with similar architectures (two 

hidden layers with 64 and 32 neurons), exhibited substantially 

lower performance for 'ASL' (R-squared of 0.0907) compared 

to KNN. For 'RMS', the performance was significantly better, 

reaching an R-squared of 0.6061, comparable to KNN. The 

discrepancy in performance for 'ASL' suggests that the non-

linear relationships captured by the MLP were not as effective 

as the local averaging performed by KNN for this specific 

parameter. Conversely, for 'RMS', the MLP was able to model 

the underlying relationships as effectively as KNN. The fact 

that both ANN and BPNN yielded identical results is expected 

given their identical implementation and random initialization 

(controlled by the random state). This highlights the 

sensitivity of neural network performance to the specific target 

variable and the potential need for more extensive 

hyperparameter tuning. 

3) The Support Vector Regression with Radial Basis 

Function kernel (RBF-NN), implemented using SVR with an 

RBF kernel, showed moderate predictive power for both 'ASL' 

(R-squared of 0.2748) and 'RMS' (R-squared of 0.2309). The 

RBF kernel allows the model to capture non-linear 

relationships through the use of radial basis functions. The 

performance was lower than KNN and the better performing 

neural network for 'RMS', indicating that the specific non-

linear mapping learned by the RBF kernel was not as well-
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suited to the underlying data distribution for these parameters 

compared to the other effective models. 

4) The Support Vector Regression (SVM) with a linear 

kernel demonstrated the poorest performance among the 

dedicated regression models for 'ASL', achieving an R-

squared of only 0.0498. For 'RMS', the R-squared was even 

slightly negative (-0.0100), indicating that the model 

performed worse than simply predicting the mean of the 

'RMS' values. This suggests that the relationship between the 

features ('Distance' and 'CH') and the target parameters is 

likely non-linear, and a linear model is insufficient to capture 

the underlying patterns. The near-zero or negative R-squared 

values highlight the importance of selecting a model that can 

accommodate the complexity of the data relationships. 

5) The Convolutional Neural Network (CNN) adapted for 

this task by treating each data point as a single timestep, also 

exhibited low performance, with an R-squared of 0.1756 for 

'ASL' and a negative R-squared of -0.0455 for 'RMS'. CNNs 

are typically designed for sequential or spatial data, and their 

poor performance here likely stems from the lack of a 

meaningful sequential structure in the provided features in 

relation to the target variables. The convolutional layers, 

designed to detect local patterns across a sequence, may not 

have been effectively utilized in this context. 

6) The Hybrid CNN-Transformer Model yielded the 

highest performance for both 'ASL' (R-squared of 0.7037) and 

'RMS' (R-squared of 0.6836) among all the models evaluated. 

This model leverages the strengths of Convolutional Neural 

Networks (CNNs) for local feature extraction from the raw 

acoustic emission (AE) waveforms or their spectrograms, and 

Transformer encoders for capturing long-range temporal 

dependencies. The CNN layers are adept at identifying 

intricate, localized patterns and transient events within the AE 

signals, which are crucial for understanding the underlying 

physical processes. Subsequently, the Transformer's self-

attention mechanism processes these extracted features, 

allowing the model to learn complex, non-linear relationships 

across extended segments of the AE data. The high R-squared 

scores suggest that the model effectively translates the rich 

information embedded in the AE signals (which implicitly 

capture 'Distance' and 'CH' effects, along with other nuanced 

characteristics) into highly accurate predictions for both 'ASL' 

and 'RMS'. The strong performance of this hybrid architecture 

indicates its superior ability to learn hierarchical and 

contextual representations from the sequential AE data, 

bridging the gap between local signal characteristics and their 

global impact on the target parameters. 

7) The Long Short-Term Memory network (LSTM), a type 

of recurrent neural network designed for sequential data, 

showed very poor performance, with an R-squared of 0.0319 

for 'ASL' and 0.0059 for 'RMS'. Similar to the CNN, the poor 

performance is likely due to the lack of a clear temporal 

dependency in the provided features. Treating the data points 

as a sequence of single timesteps did not allow the LSTM's 

recurrent architecture to effectively learn predictive patterns 

for these parameters. 

8) The Deep Residual Network (ResNet) implemented also 

showed relatively low performance, with an R-squared of 

0.1620 for 'ASL' and 0.2042 for 'RMS'. While ResNets are 

powerful for learning deep representations, their architecture, 

adapted here for non-sequential data, did not outperform 

simpler models like KNN or the Decision Tree. The skip 

connections, designed to ease the training of deep networks, 

might not have provided a significant advantage in this 

context with the given data structure. 

VI. LIMITATIONS AND FUTURE WORK 

While the study demonstrates the potential of machine 
learning and Transformer-based models for corrosion detection 
using acoustic emission data, several limitations should be 
acknowledged. One notable limitation is that the effect of 
temperature on the pipeline and the acoustic signal propagation 
was not considered during the experiment. In real-world 
scenarios, pipelines operate under varying thermal conditions, 
which can alter AE signal characteristics such as amplitude, 
attenuation, and wave speed. Ignoring temperature effects may 
limit the generalizability of the trained models to operational 
environments with fluctuating temperatures. 

Future work should incorporate temperature as a variable in 
both data collection and model training to improve robustness. 
This could involve using temperature-compensated sensors, 
collecting data under controlled thermal variations, or 
integrating temperature data as an additional input feature for 
model training. Additionally, further research could explore the 
deployment of the proposed hybrid CNN-Transformer model 
in real-world pipelines with dynamic environmental conditions 
and test its performance across different corrosion types and 
pipeline materials. 

VII. CONCLUSION 

The study conclusively demonstrates the significant 
advantage of employing a Hybrid CNN-Transformer Model for 
accurately predicting Acoustic Signal Level (ASL) and Root 
Mean Square (RMS) in acoustic emission-based corrosion 
detection. Achieving R-squared values of 0.7037 for ASL and 
0.6836 for RMS, this transformer-based architecture 
outperformed all other evaluated machine learning models, 
including traditional methods like KNN, SVM, and even other 
deep learning models like ANNs, CNNs, LSTMs, and ResNets. 

This success can be attributed to the inherent design of the 
Hybrid CNN-Transformer. It effectively harnesses the 
Convolutional Neural Network's ability to extract nuanced, 
local features and transient patterns from raw AE waveforms or 
their spectrograms, which are critical for characterizing the 
distinct acoustic signatures of corrosion. Subsequently, the 
Transformer encoder's self-attention mechanism excels at 
learning complex, long-range temporal dependencies and 
contextual relationships across these extracted features. This 
synergistic combination allows the model to process the high-
dimensional, sequential AE data comprehensively, bridging the 
gap between subtle local signal changes and their broader 
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implications for corrosion-related parameters. The high R-
squared values unequivocally indicate that this advanced, 
transformer-based approach can effectively decipher the 
intricate link between AE signals and the target parameters, 
representing a significant step forward in robust and accurate 
corrosion detection through acoustic emission monitoring. 
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