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Abstract—Diabetic Foot Ulcer (DFU) is a serious and common 

complication of diabetes mellitus, which can lead to lower limb 

amputation if not identified and treated in its early stages. This 

study introduces an integrated and intelligent system designed 

for the early detection and severity classification of DFUs by 

combining sensor-driven data collection with machine learning 

techniques in a mobile application. The research is based on a 

dataset comprising both clinical features (D-1 to D-16) and key 

sensor-based readings gathered from 316 participants. After 

preprocessing and normalization, the clinical data undergoes 

feature selection using CatBoost, which filters out the five least 

impactful features while preserving all sensor data due to its 

diagnostic relevance. The refined dataset is then processed using 

a Deep Neuro-Fuzzy Network (DN-FN) to deliver real-time DFU 

severity predictions, categorized into Low, Mid, and High-risk 

levels. The solution is deployed through an intuitive smartphone 

interface, enabling users to input clinical data once and conduct 

periodic sensor-based tests—including vibration, pressure, and 

temperature readings. The mobile application interfaces with 

embedded hardware via Bluetooth and performs offline 

inference using a compact version of the trained model. The 

system is designed to offer both patients and healthcare 

professionals a practical and interpretable tool for continuous 

monitoring of foot health, with the ultimate goal of reducing the 

risk and impact of DFU complications. 
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I. INTRODUCTION 

Diabetes mellitus continues to rise as a critical global health 
issue, with around 537 million adults affected as of 2021—a 
number expected to surge to 783 million by 2045 (International 
Diabetes Federation, 2021). [1] One of the most serious 
complications associated with diabetes is Diabetic Foot Ulcers 
(DFUs), which impact an estimated 15% to 25% of diabetic 
patients during their lifetime. [2] DFUs contribute to over 85% 
of diabetes-related lower-limb amputations, placing a heavy 
burden on healthcare infrastructure and severely affecting 
patients' quality of life. [3] 

India, with over 77 million diabetic adults, holds the 
second-largest diabetic population globally [4]. The country 
faces considerable difficulties in detecting DFUs early, 
especially in semi-urban and rural regions. Challenges such as 

limited diagnostic resources, irregular medical follow-ups, and 
a scarcity of trained healthcare providers often lead to delayed 
intervention in foot-related complications. 

Although diagnostic technologies have progressed, DFU 
evaluation largely remains manual and reactive. Standard 
assessment techniques depend heavily on clinical expertise and 
are often unavailable or impractical in remote settings [5]. This 
highlights the pressing need for an affordable, scalable, and 
intelligent solution capable of facilitating both early diagnosis 
and ongoing risk monitoring. 

This work proposes a smart and accessible system that 
merges clinical information with sensor-derived data, enhanced 
by advanced machine learning techniques, and implemented 
through a smartphone-based application. The system enables 
early and proactive DFU risk classification by employing 
CatBoost for efficient feature selection and a DN-FN for 
accurate prediction. It emphasizes interpretability, adaptability, 
and reliable performance, including functionality in offline 
scenarios—addressing the practical limitations in current DFU 
screening approaches. 

The remainder of this paper is organized as follows: 
Section II presents an in-depth literature review of existing 
DFU prediction methodologies. Section III outlines the dataset, 
hardware setup, feature selection using CatBoost, and the 
development of the DN-FN model. Section IV discusses the 
results and model performance based on standard evaluation 
metrics. Section V concludes with a summary of key 
contributions and outcomes. 

II. LITERATURE REVIEW 

Chatratia et al. [6] present a smart home health monitoring 
system integrating machine learning models for predicting type 
2 diabetes and hypertension based on blood pressure and 
glucose readings, with Support Vector Machine (SVM) 
achieving the highest accuracy (75%) for diabetes prediction. 
This system facilitates real-time alerts to healthcare providers, 
promoting early detection and intervention. Similarly, Agrawal 
et al. [7] compared statistical methods and machine learning 
models for plantar pressure-based diabetic foot classification. 
Using wireless insoles, they found that the AdaBoost model 
achieved the highest accuracy (0.85), outperforming traditional 
methods, suggesting that ML models significantly enhance 
diabetic foot prediction and classification. 

This work was supported and funded by the Indian Council of Medical 
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Reddie et al. [8] introduced a low-cost, purely mechanical 
plantar pressure evaluation device utilizing bistable compliant 
mechanisms, allowing non-specialist healthcare workers to 
assess foot pressure, though sensitivity improvements are 
needed. Ghazi et al. [9] developed a smart shoe system 
integrating temperature, humidity, plantar pressure, and oxygen 
saturation sensors, with efficient real-time monitoring and 
responsive data transmission, though future work is needed to 
improve sensor accuracy. Kularathne et al. [10] presented Dia-
Shoe, a smart diabetic shoe with IoT-enabled sensors, 
transmitting real-time data to a mobile app and showing high 
calibration accuracy, emphasizing the importance of refining 
sensors and predictive modeling for DFU prevention. 

Ming et al. [11] proposed a telemedical monitoring system 
using sensor-equipped insoles to detect plantar temperature 
asymmetry, where intervention groups showed no ulcer cases, 
demonstrating feasibility but limited by low ulceration 
incidence during the study. Bus et al. [12] evaluated the 
DIATEMP system involving daily foot temperature monitoring 
for DFU prevention. Although no significant reduction was 
seen at monitored sites, significant benefits were observed 
when adherence to activity reduction was high, stressing that 
patient behavior plays a critical role in telehealth interventions 
for DFU. 

De Pascali et al. [13] developed a smart insole-based 
monitoring platform integrating microfabricated sensors for 
plantar pressure, temperature, and sweat glucose detection. 
This real-time wireless system proved capable of detecting 
early signs of ischemic damage and inflammation, with strong 
technical performance in piezoelectric and glucose sensing. 
Although promising, the system remains in early-stage 
development, requiring clinical validation and broader usability 
testing. This effort represents an important step in combining 
bio-sensing with wearable technologies for DFU prevention. 

Reddie et al. introduced a purely mechanical plantar 
pressure evaluation device designed for low-resource settings. 
Utilizing bistable compliant mechanisms, the system provides 
binary feedback without electronics. Though sensitivity was 
relatively low in healthy subjects (25.6%), performance 
improved in heavier individuals, indicating potential with 
design enhancements. This approach offers a minimalistic and 
accessible solution for DFU screening where advanced 
electronics are impractical. 

 Nagarajan et al. [14] proposed a cryptographically secure 
data transmission method in the Internet of Medical Things 
(IoMT) using a hybrid RES-256 model, which combines RC6 
encryption, ECDSA digital signatures, and SHA-256 hashing 
to safeguard sensitive health data. The system ensures end-to-
end confidentiality, integrity, and authentication between 
implantable medical devices and clinical repositories. This 
architecture offers resilience against known attacks such as 
DoS and router-level intrusions, and is validated using ECG 
signals from the MIT-BIH dataset, showing efficient 
encryption/decryption performance. While their focus was on 
data protection rather than analytics, the architectural principles 
are directly applicable to DFU systems, particularly in securing 
patient sensor streams (pressure, vibration, and temperature) in 
mobile-based diagnostic applications. 

Ramana et al. [15] developed an ambient intelligence-based 
intrusion detection system for IoT environments using a 
Reinforcement Learning-integrated Deep Q-Network (RL-
DQN). The model performs binary attack classification at the 
edge and multi-class detection in the cloud, enhancing real-
time threat identification in wireless sensor networks. 
Evaluated on datasets like UNSW-NB15 and CICIDS2017, it 
outperforms traditional ML methods in intrusion detection 
accuracy. Their design affirms the feasibility of deploying 
intelligent, lightweight inference models on resource-limited 
platforms—an essential requirement for smartphone-based 
DFU screening in rural or offline clinical scenarios. 

Fakhar et al. [16] proposed a deep learning-based MLFNN 
model for early diabetes detection using the PIMA dataset. 
Their approach included data normalization, advanced 
activation functions (ELU, SELU), and robust validation, 
achieving superior performance over traditional classifiers. 
This study is reviewed for its methodological relevance—
particularly in data preprocessing and neural network-based 
medical prediction—which aligns with our DFU system’s 
clinical data handling and predictive modeling approach. 

These studies collectively highlight the progress in 
applying machine learning and deep learning models to clinical 
and sensor-based data for effective DFU detection and risk 
stratification. Building on this foundation, the proposed system 
introduces a hybrid framework that integrates CatBoost for 
feature selection and a DN-FN for predictive modeling, with an 
emphasis on real-time DFU risk assessment and seamless 
deployment via smartphone-based applications for enhanced 
accessibility and scalability. 

III. METHODS AND METHODOLOGY 

Conventional diabetic foot ulcer (DFU) risk prediction 
systems predominantly rely on static clinical parameters and 
lack integration of real-time physiological data, resulting in 
suboptimal early detection and limited clinical utility. 
Furthermore, many existing approaches employ opaque 
machine learning models and manual feature selection 
techniques, which constrain model interpretability and hinder 
their deployment in patient-facing applications. 

To address these limitations, the proposed study introduces 
a multi-modal, smartphone-integrated predictive framework 
that combines dynamic sensor inputs—pressure, temperature, 
and vibration sensitivity—with comprehensive clinical 
attributes. Feature selection is performed using the CatBoost 
algorithm, which offers high efficiency and interpretability in 
handling heterogeneous data types. For classification, a Deep 
Neuro-Fuzzy Network (DN-FN) is employed to model 
nonlinearities and uncertainty in physiological signals while 
maintaining interpretability through fuzzy logic layers. 

This end-to-end methodology enables real-time DFU risk 
stratification (low/mid/high) and seamless deployment in a 
mobile environment, making it suitable for remote, home-
based monitoring and early intervention. 

A. Data Acquisition and Integration 

This study is based on a dataset collected from 316 
participants, including 192 individuals with diabetes and 124 
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healthy controls, gathered from several small clinics and 
healthcare centers across the Vellore district in Tamil Nadu, 
India. The dataset is divided into two main feature groups: 
clinical and sensor-based attributes. In Table I, the clinical data 
(D-1 to D-16) covers a broad range of demographic and 
medical details, such as diabetic condition, age, gender, BMI, 
HbA1c, blood pressure, family history, and key lifestyle factors 
like diet, physical activity, smoking, and alcohol use. It also 
includes anthropometric indicators like height and weight to 
improve model accuracy. The sensor-derived data is captured 
through dedicated hardware, with pressure readings from 
force-sensitive resistors (FSRs), temperature values from 
DS18B20 digital sensors, and vibration sensitivity measured 
manually using an eight-point tactile test on both feet to 
evaluate neuropathy. While users enter their clinical 
information once during initial registration via a smartphone 
app, the sensor readings are collected in real time during each 
assessment, enabling dynamic monitoring and responsive DFU 
risk prediction. 

TABLE I.  DATASET FEATURES AND CORRESPONDING LABELS 

Data Attributes Identifiers 

Diabetic D-1 

Age D-2 

Gender D-3 

BMI D-4 

HbA1c D-5 

Blood Pressure D-6 

Family History D-7 

Diet D-8 

Physical Activity D-9 

Smoking D-10 

Alcohol D-11 

Education D-12 

Profession D-13 

Early Signs of DFU D-14 

Height D-15 

Weight D-16 

Pressure of Right Fore Foot RP-1 

Pressure of Right Heel RP-2 

Pressure of Left Fore Foot LP-1 

Pressure of Left Heel LP-2 

Temperature of Right Fore Foot RT-1 

Temperature of Right Heel RT-2 

Temperature of Left Fore Foot LT-1 

Temperature of Left Heel LT-2 

Vibration Sensitivity - Right Foot RV-1 to RV-8 

Vibration Sensitivity - Left Foot LV-1 to LV-8 

B. Data Preprocessing 

The dataset comprises 316 individuals, each with 16 
clinical attributes and 24 sensor readings, including plantar 
pressure, skin temperature, and vibration sensitivity. This 
heterogeneous data demands careful handling to maintain 
quality and compatibility for machine learning applications. 

To address missing entries, different imputation strategies 
are used based on the feature type. Numerical clinical variables 
such as age, BMI, HbA1c, and blood pressure are filled using 
mean imputation, ensuring that the overall distribution is 
preserved. For categorical attributes like gender, diet, and 
smoking status, mode imputation is applied to replace missing 
values with the most common category in each field. Notably, 
sensor data—including pressure, temperature, and vibration 
sensitivity—is collected in real time during each user session, 
making it inherently complete and not requiring imputation. 

Categorical features are then transformed into numerical 
formats using appropriate encoding methods. Binary categories 
such as gender, smoking, and alcohol usage are processed 
using label encoding. For multi-class variables like education 
level and profession, one-hot encoding is used to prevent the 
model from learning false ordinal relationships. This encoding 
ensures that the dataset remains interpretable and machine-
friendly without introducing bias. 

Normalization is applied to all continuous numerical 
features to bring them to a uniform scale, facilitating faster and 
more stable model training. Min-Max normalization is used to 
scale attributes such as age, BMI, HbA1c, blood pressure, 
height, and weight. Similarly, sensor data—including plantar 
pressure and temperature—is normalized to account for 
individual variations, while vibration sensitivity values, already 
in binary form, are directly incorporated without 
transformation. 

C. Feature Selection Using CatBoost 

To enhance the model’s performance and generalization 
capability, the CatBoost algorithm [17] [18] —an advanced 
gradient boosting method developed by Yandex—is utilized 
for assessing the importance of input features. By training 
CatBoost on the clinical dataset, it generates importance scores 
for all 16 clinical variables (D-1 to D-16). One of the key 
strengths of CatBoost is its native support for categorical 
features, enabling efficient processing while minimizing 
overfitting through ordered boosting strategies. As shown in 
Fig. 1, the feature importance rankings indicate that, five 
clinical attributes—D-9 (Physical Activity), D-8 (Diet), D-10 
(Smoking), D-12 (Education), and D-13 (Profession)—were 
identified as having minimal relevance to DFU risk prediction 
and were thus excluded. These variables showed weak 
associations with the target outcome, contributing little to the 
model’s predictive capacity. The refined feature set, 
comprising the remaining 11 clinical features and all sensor-
based inputs, serves as the input layer for the modeling phase, 
ensuring improved classification efficiency and model 
interpretability. 
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Fig. 1. Given dataset’s clinical feature importance for DFU severity 

evaluation – comparison-ranking chart. 

This targeted pruning reduced dimensional redundancy 
while maintaining the model’s diagnostic robustness. The 
remaining high- and moderately ranked clinical predictors were 
then integrated with the sensor data for input into the DN-FN, 
ensuring an optimized and clinically meaningful feature set for 
risk classification. 

D. Deep Neuro-Fuzzy Network (DN-FN) 

The selected features are then passed to the DN-FN for the 
prediction phase. The DN-FN is a hybrid model that integrates 
deep learning with fuzzy logic to capture complex, nonlinear 
relationships in the data [19] [20]. As shown in Fig. 2, the DN-
FN operates in a multi-phase architecture—fuzzification, 
fusion, and learning—to transform the input data into fuzzy 
sets, combine them into a unified representation, and learn 
from these patterns to predict the DFU risk level. This 
approach ensures the model not only performs accurate 
predictions but also remains interpretable, making it easier for 
clinicians to understand how specific inputs influence the risk 
classification. 

Algorithm 1: DN-FN Prediction Algorithm 

Input: 

Sensor + clinical feature vector 𝒛𝒊 ∈ 𝑅𝑑  for patient 𝑖 , with true 

label 𝑦𝑖 ∈ {𝐿, 𝑀, 𝐻} 

 

1. Fuzzification Phase (Input → Fuzzy Layer) 

Each input feature is fuzzified using Gaussian membership 

functions: 

𝜇𝑖𝑗
(𝑘)

= exp (−
(𝑧𝑖𝑗−𝑚𝑗

(𝑘)
)

2

2(𝜎𝑗
(𝑘)

)
2 )            (1) 

 𝑚𝑗
(𝑘)

: center of 𝑘-th MF for feature 𝑗 

 𝜎𝑗
(𝑘)

: width of the MF 

This generates fuzzy activations for each input dimension. 

 

2. Fusion Phase (Fuzzy → Fusion Layer) 

Combine all fuzzy outputs using fuzzy rule-based logic to form 

rule strengths: 

𝑟𝑞 = ∏ 𝜇
𝑖𝑗

(𝑘𝑞𝑗)𝑑
𝑗=1 (rule strength for rule 𝑞)          (2) 

 

Normalize all rule strengths: 

𝑟�̃� =
𝑟𝑞

∑ 𝑟𝑞′
𝑄

𝑞′=1

              

(3) 

Pass through a weighted linear combination to form the fused 

representation: 

𝑓𝑖 = ∑ 𝑟�̃�
𝑄
𝑞=1 ⋅ (𝒘𝒒

⊤𝒛𝒊 + 𝑏𝑞)             

(4) 

 

3. Learning Phase (Fusion → Hidden Layer → Output Layer) 

Step 3.1: Hidden Layer Processing 
The fused scalar or vector 𝑓𝑖 is input to a deep learning stack (MLP 

or BiLSTM). For simplicity, assuming MLP: 

𝒉𝟏 = 𝜙(𝑾𝟏𝑓𝑖 + 𝒃𝟏)           (5) 

𝒉𝟐 = 𝜙(𝑾𝟐𝒉𝟏 + 𝒃𝟐) (and so on, as per hidden depth) (6) 

 𝜙: non-linear activation (e.g., ReLU, tanh) 

Step 3.2: Output Layer 
Final dense layer maps hidden activations to class logits: 

𝒐𝒊 = 𝑾𝒐𝒉𝒏 + 𝒃𝒐              (7) 

Softmax applied for class probabilities: 

𝑦�̂� = arg max(softmax(𝒐𝒊))             (8) 

Output: 

Predicted class label 𝑦�̂� ∈ {𝐿, 𝑀, 𝐻} for each patient/sample 

 

Fig. 2. DN-FN Prediction model – network architecture. 

Furthermore, Bayesian Optimization is employed to fine-
tune the hyperparameters of the DN-FN model. Unlike 
conventional methods such as grid search or random search, 
this approach leverages a probabilistic model to explore the 
hyperparameter space more intelligently, selecting optimal 
configurations based on prior evaluations. Key parameters—
including learning rate, tree depth, and regularization factors—
are optimized through this method, leading to improved model 
performance and better generalization to new data. The 
model’s effectiveness is first validated using an 80:20 stratified 
train-test split, ensuring a consistent distribution of diabetic and 
healthy cases across both sets. To enhance the reliability of 
performance assessment, 5-fold cross-validation is also 
conducted, offering a more comprehensive evaluation across 
different subsets of the dataset. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 7, 2025 

689 | P a g e  

www.ijacsa.thesai.org 

E. Smartphone-Based Integration and Real-Time Inference 

The Diabetic Foot Screening Companion (DFSC) mobile 
app, built using Android Studio with Java and Kotlin, 
integrates a TensorFlow Lite (TFLite)-based backend for fast, 
offline inference of DFU risk using the trained Deep Neuro-
Fuzzy Network (DN-FN) model. Users input their clinical data 
once during registration—excluding the five least significant 
features removed via CatBoost—and the app stores this locally. 
During each assessment, the app connects via Bluetooth to an 
Arduino-based embedded system that collects real-time sensor 
data across three modalities: vibration sensitivity at 16 foot 
points (RV-1 to RV-8, LV-1 to LV-8), plantar pressure via 
Force Sensing Resistors (RP-1, RP-2, LP-1, LP-2), and 
localized temperature using DS18B20 sensors (RT-1, RT-2, 
LT-1, LT-2). These readings are processed on-device when the 
user taps “Calculate Severity,” triggering the DN-FN model to 
classify DFU risk into Low, Mid, or High. Results are 
presented with color-coded severity indicators, health tips, and 
recommendations. Designed for accessibility in rural or 
resource-limited areas, the DFSC app enables proactive self-
monitoring through its user-friendly interface, offline 
capability, and comprehensive multi-sensor integration. Fig. 3 
represents the mobile application’s navigations and 
functionalities and Fig. 4 shows the built model’s prototype 
device. 

 
Fig. 3. Smartphone Application’s step by step navigation, sensor-based foot 

inspection and results. 

 
Fig. 4. DFU Sensor device – model prototype. 

IV. RESULTS AND DISCUSSION 

A. Results 

Table II presents the proposed model benchmarked against 
state-of-the-art algorithms. 

TABLE II.  PROPOSED SYSTEM PERFORMANCE COMPARISON ACROSS 

STATE OF THE ART MODELS USING EVALUATION METRICS 

Model 
Accur

acy 
Precision Recall 

F1-

Score 

AUC-

ROC 
MCC 

Random 

Forest 
86.2 84.9 82.3 83.5 88.4 76.1 

Support 

Vector 

Machine 
(SVM) 

85.1 82.7 80.2 81.4 87.2 72.9 

XGBoost 88.6 87.1 84.3 85.7 89.3 79.6 

ANN (3-

layer 

MLP) 

89 87.5 85.6 86.5 90.2 81.2 

LightGBM-

EANFIS 
90.5 89.3 87.4 88.3 92.1 84.7 

Proposed 

DN-FN -

CatBoost 

92.4 91.2 89.7 90.4 94.5 88 

 

Fig. 5. Confusion matrix for three class DFU severity classification. 
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The performance of the proposed DFU risk prediction 
system, utilizing the CatBoost-selected features and the DN-
FN model, demonstrates strong classification accuracy across 
all three severity levels—Low, Mid, and High. Fig. 5 visualizes 
the confusion matrix of the proposed model which correctly 
classified 95 Low-risk, 94 Mid-risk, and 94 High-risk 
instances, with only minimal misclassifications between 
adjacent classes. These results indicate the model’s ability to 
effectively differentiate among DFU severity levels, 
particularly in borderline cases where physiological parameters 
might overlap. The near-diagonal dominance of the confusion 
matrix highlights the model’s robustness and reliability in real-
world risk stratification, affirming its suitability for integration 
into the DFSC mobile application for continuous, on-device 
diabetic foot monitoring. 

B. Discussion 

Compared to prior studies, the proposed smartphone-
integrated system demonstrates notable advancements in both 
predictive accuracy and deployment feasibility. Agrawal et al. 
achieved 85% accuracy using AdaBoost for plantar pressure-
based classification, while the proposed model surpassed this 
with improved precision and real-time DFU severity grading 
across multimodal sensor data. Similarly, Ghazi et al. and 
Kularathne et al. developed smart footwear systems 
incorporating temperature and pressure sensors, but lacked 
advanced feature selection or neuro-fuzzy logic for 
personalized risk profiling. Ming et al. and Bus et al. 
emphasized telemedical approaches, though their effectiveness 
was limited by adherence and simplistic data interpretation. In 
contrast, the proposed system leverages intelligent 
preprocessing, robust feature selection via CatBoost, and a 
deep neuro-fuzzy framework for explainable, real-time DFU 
detection, making it more adaptive and clinically relevant for 
at-home screening in resource-constrained settings. 

C. Limitations and Future Work 

While the proposed system demonstrates significant 
potential, it does face certain limitations that could impact the 
comprehensiveness of diabetic foot ulcer (DFU) risk 
assessment. A notable shortcoming is the exclusion of pulse 
oximeter data and microvascular flow indicators, which are 
critical for evaluating peripheral circulation and anticipating 
DFU development. Moreover, the current smartphone-based 
implementation lacks individualized interpretability tools such 
as SHAP or LIME, restricting users from understanding the 
underlying reasoning behind each prediction. Another 
limitation is the absence of longitudinal tracking, which is 
essential for monitoring changes in foot health over extended 
periods. 

To overcome these gaps, future iterations of the system will 
integrate pulse oximeter sensors to support real-time vascular 
health evaluation. Additionally, efforts will be made to embed 
SHAP-driven explainability directly into the mobile 
application, offering both clinicians and users greater 
transparency into prediction logic. The dataset will also be 
diversified to include participants from various ethnic 
backgrounds, thereby improving the model's generalizability 
and relevance. Furthermore, the architecture will adopt 
federated learning techniques to facilitate on-device model 

training while preserving user privacy. Collectively, these 
enhancements aim to bolster the system’s clinical utility, 
reliability, and adaptability in diverse, real-world healthcare 
environments. 

V. CONCLUSION 

This study validates the effectiveness of combining 
CatBoost-based feature selection with a Deep Neuro-Fuzzy 
Network (DN-FN) for early and interpretable prediction of 
Diabetic Foot Ulcer (DFU) risk. By leveraging a hybrid input 
space of clinical attributes and real-time sensory data—
including plantar pressure, foot temperature, and vibration 
sensitivity—the proposed framework demonstrates superior 
performance over existing machine learning models in terms of 
accuracy, reliability, and semantic transparency. The 
smartphone-integrated deployment ensures offline operability 
and user accessibility, making it particularly suitable for rural 
and resource-constrained settings. The system allows patients 
to input clinical data once while performing periodic sensory 
tests, enabling continuous foot health monitoring. Comparative 
evaluation shows that the proposed approach outperforms 
state-of-the-art models in key evaluation metrics, underscoring 
its robustness and clinical relevance. Future enhancements will 
focus on incorporating vascular health sensors like pulse 
oximeters, advanced explainable AI techniques such as SHAP 
for instance-level interpretation, and privacy-aware training 
methods like federated learning to expand its utility and 
scalability in real-world clinical practice. 
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