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Abstract—Atmospheric fine particulate matter (PM2.5) poses 

a serious threat to public health, and its accurate prediction is 

crucial for environmental management and pollution control. 

However, existing prediction methods have difficulty in 

effectively capturing the complex nonlinear characteristics and 

multi-scale spatiotemporal dependencies of PM2.5 concentration 

changes. To address this challenge, this study proposes a CNN-

LinATFormer hybrid deep learning architecture that combines 

the local feature extraction capabilities of CNN with the global 

dependency modeling advantages of the linear attention 

mechanism. The model innovatively introduces a feature 

evaluator to dynamically classify environmental features into 

three categories, and achieves targeted processing through three 

specially designed processing branches: CNN feature extraction, 

channel attention, and linear attention fusion. Based on the 

urban monitoring data of 9 environmental feature dimensions 

from 2020 to 2023, the experimental evaluation results show that 

CNN-LinATFormer outperforms the existing methods in all 

evaluation indicators, with an RMSE of 8.42μg/m³, which is 

21.1% lower than the CNN-RF model with the closest 

performance; the ablation experiment confirms the effectiveness 

of each component, especKeywords-PM2.5 prediction; air quality 

forecasting; deep learning; convolutional neural network; linear 

attention mechanism; channel attention; feature assessment; 

hybrid model architecture; environmental monitoring; 

spatiotemporal modeling the channel attention mechanism; the 

case analysis reveals that the model performs well in the low 

concentration range (RMSE is 3.12μg/m³), but the high pollution 

range (>150μg/m³) still needs to be improved. This study provides 

a new technical path for air quality prediction, which is of great 

value to environmental monitoring and public health protection. 
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I. INTRODUCTION 

In recent years, with the acceleration of industrialization 
and urbanization, atmospheric fine particulate matter (PM2.5) 
pollution has become a major environmental issue of global 
concern. PM2.5 particles are less than 2.5 microns in diameter 
and can penetrate the human respiratory defense barrier and 
penetrate deep into the alveoli, causing a series of respiratory 
and cardiovascular diseases and even leading to early death [1] 
[2]. According to the World Health Organization, about 7 
million deaths are related to air pollution each year worldwide, 
of which PM2.5 is considered to be one of the most harmful air 
pollutants [3]. Accurate prediction of PM2.5 concentration is 

crucial to air quality management. It can not only provide a 
basis for decision-making by environmental regulatory 
authorities, but also help the public take appropriate health 
protection measures. Environmental monitoring data show that 
PM2.5 concentrations in many cities in my country still exceed 
the national ambient air quality standards and the World Health 
Organization's recommended values. As Zhang et al. [4] 
pointed out, with the acceleration of China's industrialization 
process, accurate prediction of air quality is of great strategic 
significance for pollution prevention and control and public 
health protection. 

Traditional PM2.5 prediction methods mainly include 
deterministic methods, statistical methods, and machine 
learning methods. Although deterministic methods such as 
chemical transport models can simulate the complex physical 
and chemical processes of pollutants, they require a lot of 
computing resources and detailed emission inventories, and 
their real-time prediction capabilities are limited. Berrocal et al. 
[5] compared statistical methods and machine learning 
methods in creating daily maps of national PM2.5 
concentrations and found that spatial statistical models are 
generally better than machine learning methods when making 
predictions at unsampled locations, which reflects the 
advantages and disadvantages of different methods in specific 
application scenarios. The comparative experiments in this 
study further confirmed this, among which Random Forest 
(RF) performed relatively well (RMSE was 12.49 μg/m³), 
thanks to its advantage of integrated decision trees that can 
effectively handle nonlinear environmental data, while Support 
Vector Regression (SVR) performed poorly (RMSE was 14.28 
μg/m³). However, these single-model methods still have 
limitations in capturing the complex spatiotemporal patterns of 
PM2.5 concentration changes and the interactions of multiple 
factors. 

In recent years, deep learning technology has made 
remarkable progress in the field of environmental data 
prediction, providing a new research direction for PM2.5 
prediction. Convolutional neural networks (CNNs) can 
effectively extract local spatiotemporal features; long short-
term memory networks (LSTMs) and gated recurrent units 
(GRUs) can capture long-term temporal dependencies; and the 
attention mechanism can dynamically focus on key features 
and time points. The comparative experiments in this study 
showed that although LSTM (RMSE is 13.89μg/m³) can 
capture temporal dependencies, it is weak in processing multi-
feature interactions; while the CNN-RF model (RMSE is 
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10.67μg/m³) that combines the advantages of CNN and RF 
performs well. The hybrid algorithm proposed by Cheng et al. 
[6] achieved remarkable results in short-term PM2.5 prediction 
in China, demonstrating the potential of hybrid models in 
improving prediction accuracy. The research of Peng et al. [7] 
also showed that deep learning models have significant 
advantages in handling nonlinear relationships and multi-
source data fusion. Lu et al. [8] further addressed the challenge 
of data distribution differences in different regions and periods 
in PM2.5 prediction using a transfer learning method based on 
ADGRU. However, how to design a PM2.5 prediction model 
that can fully utilize the advantages of different deep learning 
structures and adaptively process different characteristics and 
pollution levels remains an important research topic. 

To address the above challenges, this study proposed an 
innovative CNN-LinATFormer hybrid deep learning 
architecture designed for high-precision PM2.5 concentration 
prediction. The model consists of three main parts: input data 
processing, feature processing, and generating predictions. The 
core innovation lies in the introduction of a feature evaluator, 
which classifies the input features into primary features, 
secondary features, and tertiary features, which are processed 
by the CNN feature extraction branch, channel attention 
branch, and linear attention fusion branch, respectively. 
Finally, the multi-branch outputs are integrated through the 
feature generation and prediction module to generate the final 
PM2.5 prediction value. Comprehensive experimental 
evaluation shows that the CNN-LinATFormer model 
outperforms existing methods in all evaluation indicators, with 
RMSE of 8.42μg/m³, MAE of 5.76μg/m³, and MAPE of 
9.12%, which are improvements of 21.1%, 24.8%, and 26.7%, 
respectively, compared with the closest CNN-RF model. 
Ablation experiments confirm the effectiveness of each 
component, especially the introduction of the channel attention 
mechanism brings the most significant improvement in single-
step performance (RMSE decreases by 4.5%). Hyperparameter 
optimization and case analysis further reveal the performance 
characteristics and optimization directions of the model under 
different conditions. The contribution of this study is that a 
feature-driven adaptive hybrid deep learning architecture is 
proposed, which not only achieves significant improvements in 
prediction accuracy but also achieves breakthroughs in model 
interpretability and adaptability, providing new technical 
solutions and research ideas for the fields of environmental 
monitoring and air quality warning [9]. 

II. RELATED WORK 

A. Traditional PM2.5 Prediction Methods 

PM2.5 prediction methods have evolved from traditional 
statistical models to machine learning methods. Early studies 
mainly used time series analysis methods, such as 
autoregressive integrated moving average (ARIMA) and 
seasonal ARIMA (SARIMA), which used historical 
observation data to build linear models to predict future 
concentration values. Berrocal et al. [5] compared the 
performance of statistical methods and machine learning 
methods in creating daily maps of national PM2.5 
concentrations and found that spatial statistical models usually 
have certain advantages when making predictions at unsampled 

locations. However, such methods have difficulty capturing 
nonlinear relationships and complex patterns in environmental 
data, and their prediction accuracy is limited. 

With the development of machine learning technology, 
methods such as SVR, RF and gradient boosting tree (GBT) 
have been widely used in PM2.5 prediction. As shown in the 
comparative experiments of this study, RF performed relatively 
well (RMSE was 12.49 μg/m³), which is attributed to its 
integrated Decision Tree (DT) architecture that can effectively 
handle nonlinear environmental data. The hybrid algorithm 
proposed by Cheng et al. [6] for short-term PM2.5 prediction 
in China further improved the prediction accuracy by 
combining the advantages of different methods. Although 
traditional machine learning methods have achieved certain 
success in PM2.5 prediction, they still have difficulty in fully 
exploring the complex interactions between time dependence 
and multidimensional features in environmental data, 
especially in extreme pollution events and complex 
meteorological conditions. The prediction ability is limited, 
which is one of the main motivations for proposing the CNN-
LinATFormer model in this study. 

B. Application of Deep Learning in PM2.5 Prediction 

Deep learning technology has made remarkable progress in 
the field of PM2.5 prediction in recent years due to its powerful 
representation learning capabilities. CNN can effectively 
extract local features and spatial patterns of PM2.5 time series 
through its local connection and weight-sharing characteristics. 
Peng et al. [7] applied CNN to PM2.5 concentration simulation 
and prediction, demonstrating its advantages in capturing the 
spatiotemporal distribution characteristics of pollutants. 
Recurrent neural networks (RNNs), especially LSTMs and 
GRUs, solve the gradient vanishing problem of traditional 
RNNs through specially designed gating mechanisms and can 
effectively model long-term temporal dependencies. 

The comparative experimental results of this study show 
that although the LSTM model (RMSE is 13.89 μg/m³) can 
capture temporal dependencies, it is relatively weak in 
processing multi-feature interactions; while the GRU-ED 
model (RMSE is 11.77 μg/m³) enhances the modeling ability 
of long-term dependencies through the encoder-decoder 
architecture. In recent years, researchers have begun to explore 
hybrid deep learning architectures, such as the CNN-LSTM 
combination model, which uses CNN to extract spatial features 
and LSTM to model temporal dependencies. Lu et al. [8] 
proposed a transfer learning method based on ADGRU, which 
solved the problems of uneven data distribution and 
insufficient model generalization ability in PM2.5 prediction 
through cross-domain learning. The CNN-LinATFormer model 
proposed in this study draws on the advantages of these 
advanced methods and further improves the prediction 
performance through innovative architecture design, especially 
in the differentiated processing of different types of 
environmental features and multi-scale temporal dependency 
modeling. 

C. Application of Attention Mechanism and Linear 

Transformer in Time Series Prediction 

The introduction of the attention mechanism provides deep 
learning models with the ability to "focus on key points", 
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enabling the model to dynamically focus on the most relevant 
parts of the input sequence for prediction. The traditional self-
attention mechanism achieves adaptive representation of the 
input sequence by calculating the similarity between the query 
and the key and weighting the value vector accordingly. 
However, the self-attention calculation complexity of the 
standard Transformer is O(n²), which is computationally 
expensive when processing long sequence data. In response to 
this challenge, researchers have proposed a variety of 
improvement schemes, among which the linear attention 
mechanism reduces the computational complexity to O(n) by 
redefining the attention calculation method while maintaining 
the expressive power of the model. 

The CNN-LinATFormer model proposed in this study 
innovatively applies the linear attention mechanism to the 
PM2.5 prediction task, specifically processing inputs evaluated 
as three-level features. By adopting the feature mapping 
function φ(x)=elu(x)+1, the model can significantly improve 
the computational efficiency while maintaining high prediction 
accuracy, which is particularly suitable for processing long 
sequence environmental data. At the same time, the channel 
attention mechanism introduced by the model assigns adaptive 
weights to secondary features, further enhancing the sensitivity 
to key environmental factors. The ablation experiment results 
show that the addition of the channel attention mechanism 
brings the most significant single-step performance 
improvement (RMSE decreases by 4.5%), which verifies the 
important value of the attention mechanism in PM2.5 
prediction. Compared with existing methods, the CNN-
LinATFormer model achieves differentiated processing of 
different types of environmental features through feature 
evaluators and multi-branch processing architectures, while 
improving prediction accuracy while maintaining high 
computational efficiency and model interpretability, providing 
new research ideas for environmental time series prediction 
[10]. 

III. METHODOLOGY 

A. Connection 

This study models PM2.5 prediction as a supervised 
learning time series prediction problem: given the 
environmental monitoring data of the past 24-time steps, 
including environmental characteristics such as temperature 
(℃), relative humidity (%), PM2.5 (μg/m³), predict the target 
PM2.5 concentration value in the next time step. The selection 
of 24 hours as the prediction window is mainly based on two 
considerations: first, air quality indicators usually show 
obvious daily cycle characteristics, and the 24-hour time 
window can fully capture this periodic pattern; second, 
according to environmental science research, the diffusion and 
transformation process of atmospheric pollutants usually 
completes a full cycle within 24 hours. Formally, if the input 
feature of the t-th time step is expressed as 𝑥𝑡 ∈ 𝑅𝑛 , the 
prediction task can be expressed as: predict the target value 
𝑦𝑡+1 based on the observation sequence: 

 �̂�𝑡+1 = 𝑓({𝑥𝑡−23, 𝑥𝑡−22, … , 𝑥𝑡})                  (1) 

B. Overall Architecture Design 

To address the complex challenges in PM2.5 prediction, 
this study proposes the CNN-LinATFormer model, an 
innovative hybrid deep learning architecture designed for high-
precision PM2.5 concentration prediction. As shown in Fig. 1, 
the model consists of three main parts: input data processing, 
feature processing, and prediction generation. The input stage 
receives environmental time series data X, which contains 
multi-dimensional features such as temperature, humidity, and 
PM2.5 historical values; the feature processing stage uses a 
feature evaluator to classify the input features and assign them 
to the corresponding processing branches; the generation stage 
integrates the multi-branch processing results and outputs the 
final PM2.5 prediction value. This hierarchical design enables 
the model to simultaneously consider the relative importance 
of different features and apply the most suitable processing 
strategy for each type of feature, thereby effectively handling 
the complex nonlinear relationships and multi-scale time 
dependencies in environmental data. 

C. Feature Estimator 

The feature evaluator is the core innovative component of 
this model. Its main purpose is to evaluate the importance of 
different environmental features for PM2.5 prediction and 
dynamically assign the features to the most suitable processing 
branches. Based on environmental science research, different 
environmental features have different degrees of influence on 
the formation and propagation of PM2.5. The feature evaluator 
classifies the features into three categories: primary features, 
secondary features, and tertiary features by evaluating their 
relevance. The evaluator is implemented using a lightweight 
neural network, and its mathematical expression is: 

 S = softmax(W2 ⋅ ReLU(W1 ⋅ X + b1) + b2)          (2) 

where, S is the feature importance score vector. This design 
enables the model to identify and distinguish between key 
features that directly affect PM2.5 (such as PM2.5 
concentration at the previous moment) and auxiliary features 
that indirectly affect PM2.5 (such as temperature and 
humidity), thereby providing more accurate feature 
classification for subsequent processing and enhancing the 
adaptability and interpretability of the model. 

D. CNN Feature Extraction Branch 

The CNN feature extraction branch specifically processes 
inputs that are evaluated as major features, aiming to capture 
local temporal patterns and interactions between features. This 
branch adopts the design principle of "decomposition-filtering-
recombination", decomposing input features through multiple 
layers of one-dimensional convolution to capture the change 
patterns at different time scales; using the cross-attention 
mechanism to identify and filter out irrelevant or noisy 
features; and finally recombining the filtered features through 
transposed convolution to generate high-quality feature 
representation Y₁. The key convolution operation can be 
expressed as: 

 Fl = ReLU(BatcℎNorm(Conv1D(X, Kl)))            (3) 
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Fig. 1. Model architecture diagram. 

where, K_l represents the set of convolution kernels at the 
lth layer. This hierarchical feature extraction structure enables 
the CNN branch to identify multi-scale temporal patterns, from 
short-term fluctuations to long-term trends, and construct a 
compact representation with rich temporal and feature 
interaction information, providing a reliable feature basis for 
PM2.5 prediction. 

E. Channel Attention Branch 

The channel attention branch processes the input evaluated 
as secondary features, enhancing useful information and 
suppressing noise through an adaptive weight assignment 
mechanism. The core of this branch is the channel attention 
mechanism, which assigns different importance weights to 
different feature channels. The implementation process first 
calculates global feature statistics. 

  𝑧𝑐 = (1/𝑇)∑𝑡=1
𝑇 𝑥𝑐(𝑡)                              (4)  

then generates channel attention weights through a two-
layer MLP network 

     𝛼 = 𝜎(𝑊₂ · 𝑅𝑒𝐿𝑈(𝑊₁ · 𝑧 + 𝑏₁) + 𝑏₂)               (5) 

and finally applies the attention weights to the original 
features. 

Y₂ = α ⊙ X                                 (6) 

where, ⊙ represents element-by-element multiplication. 
The design of the channel attention mechanism is based on the 
consideration that although secondary features do not directly 

determine PM2.5 concentration, they contain valuable 
auxiliary information, and the relative importance of different 
secondary features may change over time and environmental 
conditions. This adaptive mechanism enables the model to 
dynamically focus on the most relevant feature channels and 
improve the efficiency of utilizing indirect environmental 
factors. 

F. Linear Attention Fusion 

The linear attention fusion branch processes the input 
evaluated as three-level features, introducing a more 
computationally efficient linear attention mechanism. The 
computational complexity of the traditional Transformer's self-
attention is O(n²), while linear attention approximates it as : 

𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) ≈ 𝜑(𝑄)(𝜑(𝐾)𝑇𝑉)       (7) 

Reduce the computational complexity to O(n). Here φ(·) is 
the feature mapping function, usually chosen as φ(x) = elu(x) + 
1. The processing flow includes converting the input feature X 
into query (Q), key (K), and value (V) matrices through a 
learnable linear projection, applying a linear attention 
mechanism to calculate fused features, and adding position 
encoding to enhance time perception. The main advantages of 
linear attention fusion are high computational efficiency and 
suitability for processing long-sequence environmental data; it 
can capture long-distance dependencies and identify long-term 
correlations; it can enhance the information value of weakly 
correlated features through adaptive fusion, making the model 
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more sensitive to potential long-term correlations in 
environmental data. 

G. Feature Generation and Prediction 

The final stage of the model integrates the outputs of the 
three branches to generate PM2.5 predictions. The generation 
stage uses three parallel paths: the primary feature path 
combines the original feature X and the CNN branch output 
Y₁; the secondary feature path combines the original feature X 
and the channel attention branch output Y₂; the fusion feature 
path combines the original feature X and the linear attention 
branch output Ŷ. The final PM2.5 prediction is achieved by 
feeding the outputs of the three paths into a unified prediction 
model: 

ŷ𝑡+1 = 𝑀𝐿𝑃([𝑋 + 𝑌₁; 𝑋 + 𝑌₂; 𝑋 + Ŷ])              (8) 

where, [·;·;·] represents the feature concatenation 
operation. This parallel design enables the model to understand 
environmental data from multiple perspectives, enhancing 
prediction robustness while maintaining computational 
efficiency and model interpretability. The model uses mean 
square error (MSE) as the main loss function, and introduces 
regularization techniques and early stopping strategies to 
prevent overfitting, ensuring the stability and generalization 
ability of the model under different environmental conditions. 

IV. EXPERIMENTS AND RESULT ANALYSIS 

A. Experimental Setup 

1) Dataset: This study uses the "Urban Air Quality 

Dataset" dataset from the Kaggle platform, which contains 

environmental monitoring data of a city from 2020 to 2023, 

totaling 5,000 records. The dataset covers 9 environmental 

feature dimensions: temperature (℃), relative humidity (%), 

PM2.5 (μg/m³), PM10 (μg/m³), NO₂ (μg/m³), SO₂ (μg/m³), CO 

(mg/m³) and two spatial features: distance to industrial area 

(km) and regional population density (people/km²). The data 

sampling frequency is once an hour, which provides a reliable 

training and evaluation data foundation for the air quality 

prediction model based on the CNN-LinATFormer hybrid 

architecture in this study. In the data preprocessing stage, we 

first detect and process missing values in the original data, and 

fill in the missing values using a time window-based moving 

average method; then we use MinMaxScaler to normalize all 

features to eliminate the dimensional differences between 

different environmental indicators and accelerate the 

convergence of model training; finally, based on the 

architectural characteristics of the model, we use a 24-hour 

sliding window to construct training samples. Each sample 

contains 9-dimensional feature data of 24 consecutive time 

steps as input (dimension is [24×9]) to predict the target value 

at the next moment. 

2) Experimental environment setup: All experiments in 

this study were conducted in the following hardware and 

software environment: the hardware platform uses a 

workstation equipped with an NVIDIA RTX 3090 GPU 

(24GB video memory), an Intel Core i9-12900K processor, 

and 64GB RAM; the software environment is based on the 

Ubuntu 22.04 LTS operating system, using Python 3.9 as the 

main programming language, and the deep learning 

framework using PyTorch 1.12.0, supplemented by NumPy, 

Pandas, and Scikit-learn libraries for data processing and 

analysis. To ensure the reproducibility of the experiment, we 

used a fixed random seed (seed=42) for initialization, and used 

the Adam optimizer in model training. The initial learning rate 

was set to 5e-4, and the cosine annealing strategy was used for 

learning rate adjustment. The model training used a mini-

batch gradient descent method with a batch size of 32, the 

upper limit of the training round was 200 epochs, and the early 

stopping strategy (patience=15) was combined to prevent 

overfitting. In terms of hyperparameter optimization, we 

determined the best configuration through a grid search 

method: the number of channels of the CNN layer is 64, the 

convolution kernel size is 3, the number of heads of the 

attention mechanism is 8, and the hidden layer dimension is 

128. This configuration achieves a good balance between 

computational efficiency and prediction performance while 

maintaining the expressiveness of the model. 

3) Evaluation metrics: To comprehensively evaluate the 

performance of the CNN-LinATFormer model on the PM2.5 

prediction task, this study selected three widely recognized 

evaluation indicators: root mean square error (RMSE), mean 

absolute error (MAE), and mean absolute percentage error 

(MAPE). RMSE is the main evaluation indicator, and its 

calculation formula is: 

RMSE = √(1/n ∑ᵢ₌₁ⁿ(yᵢ - ŷᵢ)²)                    (9) 

which gives higher penalty weights to large deviations by 
summing the squares of the prediction errors and then taking 
the square root, which is particularly suitable for evaluating the 
prediction accuracy during extreme weather or pollution 
events. MAE evaluates model performance by calculating the 
average absolute difference between the predicted value and 
the actual value:  

MAE = 1/n ∑ᵢ₌₁ⁿ|yᵢ - ŷᵢ|                   (10) 

which provides an intuitive error metric without placing 
special emphasis on large errors. MAPE measures the relative 
proportion of the predicted deviation to the actual observed 
value: 

MAPE = 100%/n ∑ᵢ₌₁ⁿ|yᵢ - ŷᵢ|/|yᵢ|              (11) 

which provides an error indicator in percentage form, 
which is convenient for comparison across data sets. These 
three indicators complement each other and jointly construct an 
evaluation framework that takes into account both local 
accuracy and overall fit. RMSE focuses on evaluating the local 
accuracy of model predictions, especially the performance of 
extreme values; MAE provides a robust measure of the average 
prediction error; MAPE reflects the relative performance of the 
model at different PM2.5 concentration levels. Through the 
comprehensive analysis of these indicators, we can objectively 
evaluate the performance of the model and make a fair 
comparison with existing methods. 
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B. Comparative Experiment 

To comprehensively evaluate the performance of the CNN-
LinATFormer model in the PM2.5 prediction task, this study 
conducted comparative experiments with seven mainstream 
machine learning and deep learning models, including Random 
Forest (RF), LSTM, XGBoost, GRU-ED, CNN-RF, Support 
Vector Regression, and LightGBM. Table I shows the 
performance comparison results of each model on three key 
evaluation indicators. 

TABLE I.  COMPARATIVE EXPERIMENT RESULTS 

Model RMSE MAE MAPE (%) 

CNN- LinATFormer(Ours) 8.42 5.76 9.12 

Random Forest (RF) 12.49 8.42 14.35 

LSTM 13.89 9.85 15.23 

XGBoost 12.95 8.76 13.31 

GRU-ED 11.77 7.70 12.90 

CNN-RF 10.67 7.66 12.44 

Support Vector Regression 14.28 10.12 16.47 

LightGBM 13.06 8.89 13.52 

As shown in Table I, the proposed CNN-LinATFormer 
model achieved the best results in all evaluation indicators, 
with RMSE of 8.42 μg/m³, MAE of 5.76 μg/m³, and MAPE of 
9.12%. Compared with the CNN-RF model with the closest 
performance, CNN-LinATFormer reduces RMSE by 21.1%, 
MAE by 24.8%, and MAPE by 26.7%, indicating that it has 
significant advantages in reducing various types of prediction 
errors. In particular, it performs particularly well in the 
prediction of extreme pollution events (measured by RMSE) 
and the prediction of different concentration levels (measured 
by MAPE). 

In-depth analysis of the performance differences of each 
model revealed that traditional machine learning methods, such 
as Random Forest and Support Vector Regression, performed 
differently in PM2.5 prediction tasks. Random Forest 
performed relatively well (RMSE was 12.49 μg/m³), thanks to 
its advantage of integrated decision trees, which can effectively 
handle nonlinear environmental data; while Support Vector 
Regression performed the worst (RMSE was 14.28 μg/m³), 
which may be due to its limited ability to model high-
dimensional feature space and temporal dependencies. Among 
deep learning models, LSTM (RMSE was 13.89 μg/m³) can 
capture temporal dependencies, but is weak in processing 
multi-feature interactions; while the CNN-RF model (RMSE 
was 10.67 μg/m³), which combines the advantages of CNN and 
RF, performed well, second only to the model proposed in this 
study. 

Advanced models proposed in recent years, such as GRU-
ED (RMSE is 11.77 μg/m³) and XGBoost (RMSE is 12.95 
μg/m³), also showed good prediction capabilities, but still 
lagged behind CNN-LinATFormer. GRU-ED enhances the 

modeling capability of long-term dependencies through the 
encoder-decoder architecture, while XGBoost improves the 
model generalization capability through regularization 
properties. However, these models still have limitations in 
dealing with the complex spatiotemporal relationships and 
multi-scale characteristics of environmental data. 

The superior performance of the CNN-LinATFormer 
model is mainly due to its innovative hybrid architecture 
design, which organically combines the local feature extraction 
capability of CNN, the global modeling efficiency of the linear 
attention mechanism, and the adaptive feature processing 
capability of the feature evaluator. In particular, the linear 
attention mechanism reduces the computational complexity of 
traditional self-attention from O(n²) to O(n), significantly 
improving computational efficiency while maintaining the 
expressiveness of the model, which is crucial for processing 
long sequence environmental data. 

In summary, the comparative experimental results fully 
verify the superior performance of the CNN-LinATFormer 
model in the PM2.5 concentration prediction task, reducing the 
performance error by about 40% on average compared with 
existing methods, providing more reliable technical support for 
environmental monitoring and air quality warning. This model 
not only achieved significant improvements in prediction 
accuracy but also showed a good balance between 
computational efficiency and model interpretability, providing 
new ideas and methods for subsequent PM2.5 prediction 
research. 

C. Ablation Experiment Analysis 

In order to deeply understand the contribution of each 
component of the CNN-LinATFormer model to the prediction 
performance, this study designed a detailed ablation 
experiment, starting from the basic model, gradually 
introducing the dual CNN structure, batch normalization layer, 
channel attention mechanism and Transformer encoder, and 
finally constructing a complete CNN-LinATFormer model. 
The experimental results are shown in Fig. 2. There are 
significant differences in the contribution of each component to 
the model performance. 

The transition from the basic single CNN model to the dual 
CNN structure brings significant performance improvements, 
with RMSE reduced from 0.1325 to 0.1256, a decrease of 
5.2%, MAE reduced from 0.0985 to 0.0937, and MAPE 
reduced from 14.85% to 14.12%. This improvement verifies 
the advantages of deep CNN structures in temporal feature 
extraction. Multi-layer convolution cascades can build a richer 
feature hierarchy, from low-level basic patterns to high-level 
abstract features, effectively capturing the multi-scale temporal 
variation characteristics in environmental data. Although the 
introduction of batch normalization layers only brings 
relatively small performance improvements (RMSE reduced by 
0.0013 and MAE reduced by 0.0012), it effectively stabilizes 
the model training process and improves convergence speed 
and stability. 
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Fig. 2. Ablation experiment analysis. 

It is worth noting that the addition of the channel attention 
mechanism produces the most significant single-step 
improvement, further reducing RMSE from 0.1243 to 0.1187 
(a decrease of 4.5%), MAE from 0.0925 to 0.0884, and MAPE 
from 13.93% to 13.31%. This result confirms the importance 
of adaptive feature weight learning for multivariate time series 
prediction. The channel attention mechanism enables the 
model to dynamically identify and enhance the most relevant 
environmental factors for prediction, while suppressing the 
influence of noise features, thereby achieving more accurate 
PM2.5 concentration prediction. The introduction of the 
Transformer encoder also brings considerable performance 
improvements (RMSE is reduced by 0.0022 and MAE is 
reduced by 0.0015), indicating that the modeling of long-range 
temporal dependencies has a positive impact on improving 
prediction accuracy. 

The final complete CNN-LinATFormer model further 
reduces RMSE to 0.1142, MAE to 0.0852, and MAPE to 
12.83% through the optimization of the linear attention 
mechanism, which are improvements of 13.8%, 13.5%, and 
13.6% respectively compared with the base model. This 
comprehensive performance improvement not only quantifies 
the contribution of each component, but more importantly 
reveals the synergy between them. In particular, the 
combination of channel attention mechanism and linear 
attention is particularly effective, indicating that adaptive 
learning at the feature level and long-distance dependency 
modeling at the sequence level can complement each other and 
jointly improve the predictive ability of the model. 

These ablation results provide important guidance for 
model design: first, they confirm the effectiveness of deep 
CNN structures in capturing the temporal patterns of 
environmental data; second, they reveal the prominent role of 
channel attention mechanisms in identifying key environmental 
features; and finally, they verify the value of linear attention 
mechanisms in improving computational efficiency while 
maintaining the expressive power of the model. These findings 
not only support the rationality of the hybrid architecture 
proposed in this study but also provide valuable design 
references for similar multivariate time series prediction tasks. 

D. Hyperparameter Experiments 

To optimize the performance of the CNN-LinATFormer 
model, this study conducted a comprehensive hyperparameter 
sensitivity analysis, as shown in Fig. 3. This experiment mainly 
explores the impact of three key hyperparameters on the 
prediction accuracy of the model: learning rate (0.0001 to 
0.01), batch size (16 to 128), and hidden layer dimension (64 to 
512). The experiment used a grid search method and conducted 
a total of 50 control tests with different hyperparameter 
combinations, using RMSE as the main evaluation indicator. 

 
Fig. 3. Hyperparameter experiment. 

From the visualization results (Fig. 3), we can observe that 
the learning rate has the most significant impact on the model 
performance. The lower learning rate (0.001 to 0.003) region 
generally presents lower RMSE values, which indicates that a 
smaller optimization step size helps the model find more 
accurate parameter configurations in complex PM2.5 
prediction tasks. In particular, when the learning rate is lower 
than 0.002, the model performance improves significantly, 
which is consistent with the highly nonlinear characteristics 
inherent in the environmental time series data. Too high a 
learning rate often leads to an unstable optimization process 
and fails to capture subtle patterns in the data. 
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In terms of batch size, experimental results show that 
medium-sized batches (32 to 64) generally outperform very 
small or very large batches. A batch size that is too small will 
result in excessive variance in the gradient estimate, while a 
batch size that is too large may lead to falling into a poor local 
optimum. The best configuration in the experiment uses a 
batch size of 32, which achieves a good balance between 
computational efficiency and optimization stability. 

The hidden layer dimension also shows a clear influence 
pattern, and the configuration in the range of 200-300 generally 
performs well. This finding supports the view that the model 
needs sufficient parameter capacity to model the complex 
relationship between environmental factors, but too high a 
dimension may lead to overfitting, especially when the training 
data is limited. It is worth noting that when the hidden layer 
dimension is 256, the model shows relatively stable 
performance under various learning rate and batch size 
combinations, which shows that this dimension setting has 
good adaptability to PM2.5 prediction tasks. 

Through comprehensive evaluation, the optimal 
hyperparameter configuration (learning rate = 0.0018, batch 
size = 32, hidden layer dimension = 256) achieved an RMSE of 
0.0888, which is 22.2% higher than the baseline configuration 
(learning rate = 0.005, batch size = 64, hidden layer dimension 
= 128) of 0.1142. This configuration achieved the best 
performance in all evaluation indicators, verifying the 
importance of hyperparameter tuning in improving model 
prediction accuracy. 

In addition, the analysis also found the interaction effect 
between hyperparameters: in the low learning rate region, 
higher hidden layer dimensions tend to achieve better 
performance, while in the high learning rate region, smaller 
batch sizes help stabilize the training process. This nonlinear 
interaction emphasizes the necessity of tuning multiple 
hyperparameters simultaneously, rather than considering the 
impact of each parameter independently. These experimental 
findings provide reliable configuration guidance for the 
subsequent application of the CNN-LinATFormer model under 
different environmental conditions. 

E. Case Analysis Experiment 

As shown in Fig. 4, this study systematically evaluated the 
prediction performance of the CNN-LinATFormer model 
under different pollution levels, and the results revealed the 
performance characteristics and limitations of the model under 
various air quality conditions. 

Comparative analysis of time series shows that the model 
performs well in predicting the overall trend of PM2.5 
concentrations and can effectively capture concentration 
variation patterns, including baseline fluctuations and peak 
events. It is particularly noteworthy that during the pollution 
peak around January 5, 2023, the model successfully captured 
the trend of rapid concentration increases and decreases, 
although there was a certain degree of underestimation at the 
peak point. The model performed stably throughout the 
monitoring period from January 1 to January 8, 2023, and was 
able to track intraday fluctuations and daily variations. 

 
Fig. 4. Case analysis experiment. 
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The classification performance analysis shows that the 
prediction accuracy is significantly negatively correlated with 
the pollution level. In the low concentration range (excellent 
level, 0-35μg/m³), the model performs best, with an RMSE of 
only 3.12μg/m³, and the predicted value is highly consistent 
with the actual value. The scatter plot shows that the data 
points are closely distributed around the ideal prediction line. 
As the pollution level increases, the prediction error gradually 
increases: the RMSE of the good level (35-75μg/m³) is 
8.38μg/m³, the moderate pollution (75-115μg/m³) reaches 
11.49μg/m³, and the unhealthy level (115-150μg/m³) increases 
to 18.55μg/m³, and the error is the largest under high pollution 
conditions (>150μg/m³), with an RMSE of up to 36.41μg/m³. 

Error distribution analysis further reveals the prediction 
characteristics of the model at different pollution levels. As 
shown in the lower right panel of Fig. 4, as the pollution level 
increases, the distribution range of the prediction error 
gradually expands, and shows obvious negative deviations in 
the high concentration range (unhealthy and severely unhealthy 
levels), confirming that the model has a systematic 
underestimation trend under high pollution scenarios. In 
particular, when the PM2.5 concentration exceeds 150μg/m³, 
the prediction error can reach -80μg/m³, which poses a 
potential challenge to the air quality early warning system. 

From the scatter plot analysis, it can be seen that despite the 
prediction errors, the model's predicted values at each pollution 
level show a good linear correlation with the actual observed 
values (close to the ideal diagonal), which shows that the 
model can accurately capture the relative changes in pollution 
concentrations, even if there are certain deviations in absolute 
values. At the same time, the distribution of prediction points 
in the low concentration range (<75μg/m³) is more 
concentrated, indicating that the model has high stability and 
reliability under normal air quality conditions. 

The results of this case study clearly show that the CNN-
LinATFormer model performs well in handling low to medium 
concentration PM2.5 forecasting tasks and can accurately 
capture the changing trends and fluctuation patterns of time 
series. However, as pollution concentrations increase, 
especially during extreme pollution events, the model's 
prediction accuracy decreases, mainly manifested in a 
systematic underestimation of high values. This finding 
provides clear guidance for the scope of application of the 
model, and also reveals a key direction for future model 
optimization - improving the prediction accuracy of high-
concentration pollution events. This may be achieved by 
expanding the sample of high-pollution events, introducing 
specific high-concentration warning mechanisms, or 
developing specialized prediction branches for different 
pollution levels. 

V. DISCUSSION AND OUTLOOK 

A. Model Performance and Advantages Analysis 

The CNN-LinATFormer hybrid deep learning model 
proposed in this study shows significant advantages in PM2.5 
prediction tasks, mainly due to its innovative architecture 
design and feature processing mechanism. The model uses a 
feature evaluator to dynamically classify input features, 

enabling it to specifically process key environmental factors 
such as PM2.5 concentration, temperature and humidity at the 
previous moment. Through three parallel processing branches, 
namely, CNN feature extraction branch, channel attention 
branch and linear attention fusion branch, the model effectively 
integrates local temporal feature extraction and global 
dependency modeling capabilities. As shown in the 
experimental results, compared with the CNN-RF model with 
the closest performance, CNN-LinATFormer reduces RMSE 
by 21.1%, MAE by 24.8%, and MAPE by 26.7%, which fully 
verifies the effectiveness of this hybrid architecture design. 
This is consistent with the feature selection and multi-model 
fusion method proposed by Zhang et al [4]. 

Ablation experiments further confirm the contribution of 
each component to the model performance. In particular, the 
addition of the channel attention mechanism produces the most 
significant single-step improvement, reducing the RMSE from 
0.1243 to 0.1187 (a decrease of 4.5%). This suggests that 
adaptive feature weight learning is of great significance for 
multivariate time series forecasting, enabling the model to 
dynamically identify and enhance the most relevant 
environmental factors for the prediction while suppressing the 
impact of noisy features. Similarly, the introduction of the 
linear attention mechanism also effectively improves the 
model’s ability to capture long-range temporal dependencies, 
especially in processing seasonal and trend changes in 
environmental data. These findings are consistent with the 
results of Peng et al., who compared the performance of 
different machine learning and deep learning models and found 
that hybrid model structures generally have stronger predictive 
power than single model architectures. Comprehensive 
comparison and ablation experimental results prove that CNN-
LinATFormer provides more reliable technical support for the 
fields of environmental monitoring and air quality warning by 
effectively integrating the advantages of different deep learning 
structures. 

B. Model Limitations and Challenges 

Although the CNN-LinATFormer model performs well in 
PM2.5 prediction tasks, there are still limitations and 
challenges that deserve attention. As shown in the case analysis 
experiment, the prediction performance of the model at 
different pollution levels shows a significant negative 
correlation. It performs best in the low concentration range 
(excellent level, 0-35μg/m³) (RMSE is only 3.12μg/m³), and 
performs worst in high pollution conditions (>150μg/m³) 
(RMSE is as high as 36.41μg/m³). Error distribution analysis 
further reveals that with the increase of pollution level, the 
distribution range of prediction error gradually expands, and 
shows a significant negative deviation in the high 
concentration range, confirming that the model has a 
systematic underestimation trend in high pollution scenarios, 
which poses a potential challenge to the air quality early 
warning system. This finding is consistent with the evaluation 
results of Zhou et al. [11] on the deep learning PM2.5 
prediction model. 

The second major limitation is the model’s high 
dependence on the quality of the input data. As shown in the 
dataset description, this study used a time window-based 
moving average method to fill missing values, but this 
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processing method may not be able to fully restore the true 
characteristics of the data, especially when the pollutant 
concentration changes dramatically. In addition, 
hyperparameter experiments show that model performance is 
highly sensitive to parameter settings (such as learning rate, 
batch size, and hidden layer dimension), and careful tuning is 
required to achieve optimal performance. Especially under the 
optimal configuration of learning rate 0.0018, batch size 32, 
and hidden layer dimension 256, the model performance is 
significantly different from other configurations, which 
increases the difficulty of debugging the model in practical 
applications. These challenges are similar to those found in the 
ADGRU-based transfer learning work by Lu et al., who 
highlighted the challenges posed by the spatiotemporal 
heterogeneity of environmental data to predictive models. 
These limitations point out the direction for future 
improvements of the model and also provide important 
references for research in the field of environmental data 
science. 

C. Future Research Directions 

Based on the research results and current limitations of the 
CNN-LinATFormer model, future research can be carried out 
in the following directions: First, for the problem of high 
pollution concentration prediction, data enhancement 
technology or sample balancing strategy can be used to 
enhance the model's prediction ability for extreme pollution 
events. When the PM2.5 concentration exceeds 150μg/m³, the 
prediction error can reach -80μg/m³, which indicates that 
special attention needs to be paid to the processing of high-
pollution samples. It is possible to consider developing 
prediction branches for different pollution levels or introducing 
specific high-concentration warning mechanisms to improve 
the performance of the model in extreme air pollution events. 
At the same time, combined with the performance of the model 
in the case study, exploring methods to integrate 
spatiotemporal information with monitoring data may help 
improve prediction accuracy, which echoes the feature 
selection method proposed by Zhang et al. 

Secondly, based on the results of ablation experiments and 
hyperparameter analysis, future work can further optimize key 
components. In particular, the introduction of the channel 
attention mechanism produces significant performance 
improvements, indicating that adaptive learning at the feature 
level is of great value. More advanced feature selection and 
fusion strategies can be further explored, such as feature 
engineering methods that introduce environmental domain 
knowledge, or developing attention variants that can handle 
multi-source heterogeneous environmental data. In addition, 
considering the differences in the model's predictive ability 
under different pollution levels, an adaptive learning rate 
strategy or a multi-task learning framework can be developed 
to enable the model to automatically adjust its prediction 
strategy according to the characteristics of the input data. The 
transfer learning method of Lu et al. [8] may provide new ideas 
for solving data imbalance and domain adaptation problems. 
With the development of Internet of Things technology and 
distributed computing, deploying the CNN-LinATFormer 
model into the actual environmental monitoring system and 
realizing real-time PM2.5 concentration prediction is also a 

valuable research direction, which is also the main 
development trend of deep learning environmental 
applications. 

VI. CONCLUSION 

This study proposed an innovative CNN-LinATFormer 
hybrid deep learning architecture for high-precision PM2.5 
concentration prediction. The model dynamically classifies 
environmental features by introducing a feature evaluator and 
realizes differentiated processing through three specially 
designed processing branches, effectively integrating the local 
feature extraction capability of CNN and the global 
dependency modeling capability of the linear attention 
mechanism. Comprehensive experimental evaluation shows 
that CNN-LinATFormer outperforms existing methods in all 
evaluation indicators, with an RMSE of 8.42 μg/m³, which is 
21.1% lower than the CNN-RF model with the closest 
performance. Ablation experiments verify the effectiveness of 
each component, especially the introduction of the channel 
attention mechanism brings the most significant performance 
improvement and provides new technical ideas for 
environmental data modeling. 

The case analysis reveals the performance characteristics of 
the model under different pollution levels. It performs best in 
the low concentration range (0-35μg/m³) (RMSE is only 
3.12μg/m³), while the performance decreases under high 
pollution conditions (>150μg/m³) (RMSE is as high as 
36.41μg/m³). This shows that the model's ability to predict 
extreme pollution events needs to be further improved. The 
hyperparameter experiment determined the optimal 
configuration (learning rate = 0.0018, batch size = 32, hidden 
layer dimension = 256), which is 22.2% higher than the 
baseline configuration, confirming the important impact of 
detailed parameter tuning on model performance. These 
findings not only provide guidance for the practical application 
of the CNN-LinATFormer model, but also point out the 
direction for subsequent research. 

Future research can be carried out in the following 
directions: First, explore data enhancement technology or 
specific high-concentration warning mechanisms for the 
problem of high pollution concentration prediction; second, 
further optimize feature evaluators and attention mechanisms 
to improve the model's sensitivity to key environmental 
factors; third, combine Internet of Things technology and 
distributed computing to realize the deployment and 
application of the CNN-LinATFormer model in actual 
environmental monitoring systems. In general, the CNN-
LinATFormer model proposed in this study provides a new 
and efficient solution for PM2.5 concentration prediction, 
which has important theoretical and practical significance for 
promoting the intelligent and popular development of 
environmental monitoring technology. 
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