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Abstract—The increasing complexity of machine learning 

models necessitates robust methods for interpretability, 

particularly in clustering applications, where understanding 

group characteristics is critical. To this end, this paper introduces 

a novel framework that integrates cooperative game theory and 

explainable artificial intelligence (XAI) to enhance the 

interpretability of black-box clustering models. Our framework 

integrates approximated Shapley values with multi-level 

clustering to reveal hierarchical feature interactions, enabling 

both local and global interpretability. The validity of this 

framework is achieved by conducting extensive empirical 

evaluations of two datasets, the Portuguese wine quality 

benchmark and Beijing Multi-Site Air Quality dataset the 

framework demonstrates improved clustering quality and 

interpretability, with features such as density and total sulfur 

dioxide emerging as dominant predictors in the wine analysis, 

while pollutants like PM2.5 and NO2 significantly influence air 

quality clustering. Key contributions include a multi-level 

clustering approach that reveals hierarchical feature attribution, 

use of interactive visualizations produced by Altair and a single 

interpretability framework that validate the state-of-art baselines. 

As a result, the framework forms a strong basis of interpretable 

clustering in essential fields like healthcare, finance, and 

environmental surveillance, which reinforces its generalization 

with respect to each domain. The results underline the need for 

interpretability in machine learning, providing actionable insights 

for stakeholders in a variety of fields. 
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I. INTRODUCTION 

Machine-learning models have achieved significant 
performance improvements across several areas, but the rise in 
success has been met by an equivalent rise in opaque decision- 
making systems, often referred to as black boxes, due to their 
internal complexity in these models [1]. The interpretation of 
group characteristics and feature interactions in clustering 
models is crucial, especially when applied to high-stakes areas 
such as healthcare, finance, environmental pollution monitoring, 
and business intelligence, where decisions made on the basis of 
model results can have far-reaching consequences [2]. For such 
applications, interpretability is not just a technical curiosity, but 
an imperative assurance of accountability, transparency, and 
regulatory compliance [3]. 

Classical machine-learning models, like decision trees or 
linear regression, are relatively easy to interpret. But the rise of 

more complex models, such as deep neural networks, has made 
it difficult to understand how they operate internally [4]. 
Clustering tasks provide this challenge in an especially 
pronounced form, where no predefined labels exist and the goal 
is to group data on the basis of its inherent patterns [5]. 
Clustering models such as K-means and hierarchical clustering 
are widely used across different domains. However their 
inability to explain which features led to a cluster formation 
makes it impossible to use them in decision-making contexts 
where the model should be interpretable [6]. 

To tackle these challenges, Explainable Artificial 
Intelligence (XAI) has emerged to address the challenge of 
interpreting complex models [7]. Of these, Shapley values, a 
concept from cooperative game theory, became particularly 
popular. Shapley values provide a mathematically rigorous 
approach for attributing contributions to individual features by 
quantifying their impact on model predictions [8]. This method 
has been particularly successful in classification models, where 
features can be easily mapped to predicted outcomes [9].  
Applications of Shapley values in thorough domains like 
prediction of fraud detection, risk of the patient, scoring of credit 
supports the necessity of in-depth attention to contribution of 
each feature in model’s validity and reliability. However, 
despite their success in classification tasks, the application of 
Shapley values to  learning, particularly clustering models, 
remains limited [10]. 

Current clustering interpretability methods focus on 
individual clusters, failing to capture global feature relationships 
across the entire dataset. Moreover, these techniques often do 
not work well with high-dimensional data which increases the 
complexity of feature interactions and makes interpretation 
difficult [11]. Although there has been exploration to use feature 
importance approaches like Shapley values for clustering, since 
they typically are not scalable, expensive in computation and do 
not supply both local and global insights. Therefore, we require 
scalable and interpretable techniques that can effectively handle 
clustering tasks in real-world complex datasets [12]. 

Accordingly, the central research question is: How can 
cooperative game-theoretic Shapley values be integrated with 
scalable multilevel clustering to provide both local and global 
interpretability for black-box clustering models on high-
dimensional and real-world datasets? 

We propose a new framework that combines the 
interpretability tool of Shapley value with multi-level clustering 
methods to obtain interpretability for clustering models, the 
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framework offers both local and global insights into feature 
contributions, allowing for more transparent explanations of 
how clusters are formed. The proposed method uses scalable 
Shapley value approximations, which make it feasible to handle 
large, high-dimensional datasets without excessive 
computational demands. Furthermore, the multi-level clustering 
technique reveals hierarchical relationships between features, 
offering insights into how features interact at different stages of 
the clustering process. 

The framework was adopted for the following reasons: 

1) Scalable computation: Approximate Shapley values 

keep run-time practical on high-dimensional data without 

sacrificing accuracy. 

2) End-to-end interpretability: Coupling Shapley 

attribution with multi-level clustering yields explanations at 

sample, cluster and dataset scales. 

3) Model‑agnostic pipeline: The PCA, k‑means, 

LightGBM and SHAP stack wraps any learner without 

retraining. 

4) Verified cluster quality: Silhouette and Davies–Bouldin 

indices confirm compact, well‑separated groups. 

Empirical studies on two real-world datasets, Portuguese 
wine quality [13] and Beijing Multi-Site Air Quality [14], 
validate the framework. The outcomes show that the introduced 
framework enhances clustering performance and 
interpretability. This indicates its significance for yielding 
actionable insights in areas such as environmental pollution 
monitoring, and business intelligence, where interpretability is 
vital. With increased interpretability of models, this work opens 
up avenues for developing such types of more interpretable and 
reliable clustering methods to use in sensitive applications. This 
is where explainability is of the utmost importance to deploy 
machine learning models. 

The remainder of this paper is organized as follows: Section 
II reviews relevant literature on model interpretation, game 
theory, and clustering approaches. Section III outlines the 
theoretical framework and methodology. Section IV presents 
empirical validation through experimental results and 
comparative analysis. Section V discusses broader implications 
and directions for future research, and Section VI concludes with 
a summary of findings. 

II. LITERATURE REVIEW 

A. Clustering Techniques and Interpretability 

Clustering is an essential activity in data mining and machine 
learning involving the division of data into a collection of non-
overlapping clusters of data with inbuilt regularities and 
features. K-means and hierarchical clustering as the most 
notable examples [15], are very time-efficient and easy to 
implement, however, their recent use in risky areas like 
healthcare, banking, and autonomous driving, has also increased 
the pressure to find a more understandable and explainable 
output [16]. 

Recent advancements in interpretable clustering have 
addressed challenges posed by high-dimensional data and the 

need for explainability. A taxonomy of interpretable clustering 
methods has been proposed, dividing the clustering process into 
three stages: pre-clustering (feature selection), in-clustering 
(model building), and post-clustering (model explanation) [17]. 
This framework helps in categorizing interpretable clustering 
methods according to their interpretability at different stages, 
providing a structured approach to understanding and 
developing these methods. 

Specifically, the use of tree-based models in interpretable 
clustering warrants attention since they provide an intuitive and 
conceptual explanation of cluster formation. Such models are 
developed with optimization techniques that aim at ensuring the 
validity of the clusters and they are also interpretable. Moreover, 
the use of minipatch learning [10] in consensus clustering has 
become a new approach, and it provides not only efficiency in 
the calculations but also interpretability where it discovers the 
features that best differentiate the cluster. 

B. The Role of Game Theory in AI 

Game theory has emerged as a powerful framework for 
analysing and modeling complex interactions in AI systems. In 
the context of machine learning, game theory provides a 
foundation for understanding multi-agent systems, where 
multiple AI agents interact or compete to achieve specific goals. 
These interactions can be cooperative or competitive, and game 
theory helps in modeling these dynamics [18]. 

Game theory has found numerous applications in machine 
learning, including: 

1) Multi-agent systems: Modeling interactions between 

multiple AI agents [19]. 

2) Generative Adversarial Networks (GANs): Two neural 

networks engage in a zero-sum game to generate realistic data 

[20]. 

3) Reinforcement learning: Agents learn and adapt 

strategies based on the actions of others [21]. 

4) Auction models and resource allocation: Designing 

efficient resource allocation systems [22]. 

5) Adversarial machine learning: Developing strategies to 

defend against attacks on ML models [23]. 

C. Shapley Values in Machine Learning 

Shapley values are a solid framework in the field of machine 
learning to explain model predictions and measure feature 
importance. They provide a way to fairly distribute the "payout", 
in this case, the prediction, among the features based on their 
contribution. Shapley values have essential properties such as 
efficiency, symmetry, and additivity, ensuring fair attribution of 
contributions. In the context of clustering, Shapley values help 
in understanding the contribution of features to the formation of 
clusters [6]. 

Recent advancements have also extended the use of Shapley 
values to cluster importance, treating clusters of training data as 
players in a game. This novel approach allows for the 
quantification of how different data clusters affect individual 
predictions, complementing traditional feature importance 
explanations [24]. 
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D. Interpretability in Machine Learning 

Interpretability in machine learning is crucial for ensuring 
that models are not only accurate but also understandable and 
trustworthy. This is particularly important in high-stakes fields 
such as healthcare, finance, and autonomous systems, where 
decisions made by ML models can have significant 
consequences [25]. 

Several challenges exist in interpreting complex machine 
learning models, including the black-box nature of many 
models, the trade-off between interpretability and performance, 
and the lack of standardization in interpretability methods [16]. 
To address these challenges, various interpretability methods 
have been developed, including: 

1) Post-Hoc interpretability: Analyzing models after 

training (e.g., LIME, SHAP) [26]. 

2) Intrinsic interpretability: Using inherently interpretable 

models (e.g., decision trees, linear models) [27]. 

3) Model-Specific techniques: Tailored to specific model 

types (e.g., attention mechanisms for neural networks). 

4) Surrogate models: Creating simpler, interpretable 

models that approximate complex ones. 

5) Visualization techniques: Using visual tools to help 

understand model predictions and feature importance. 

As the field of interpretable machine learning continues to 
evolve, our research focuses on developing method that not only 
provide accurate results but also offer clear, understandable 
explanations. This ongoing research plays a crucial role in 
shaping the future of clustering techniques and machine learning 
applications across various domains. 

III. METHODOLOGY 

This section presents the proposed framework that integrates 
dimensionality reduction, clustering algorithms, and model 
interpretation techniques to analyze complex datasets and 
discover underlying patterns. The framework consists of three 
main components: dimensionality reduction using Principal 
Component Analysis (PCA), K-means for generating cluster 
labels, and LightGBM for training a multi-classifier. The 
classifier is then interpreted using SHAP values to identify the 
key contributors to each cluster. This integrated approach aims 
to not only identify clusters within the data but also to provide 
meaningful interpretations of the features contributing to each 
cluster, enhancing the explainability of the results. Fig. 1 
illustrates this workflow, where data flows sequentially through 
each stage to produce interpretable clustering results. 

A. Dimensionality Reduction with PCA 

Principal Component Analysis (PCA) is employed as the 
initial step in the framework to address the challenges posed by 
high-dimensional datasets. PCA transforms the original dataset 
features into linearly uncorrelated components, ordered by their 
contribution to data variance. These components are ranked 
according to the amount of variance they explain in the data [3]. 
By reducing the dimensionality of the dataset, PCA ensures 
computational efficiency while retaining the most critical 
information. 

 
Fig. 1. Workflow of the proposed framework integrating PCA, K-Means, 

LightGBM, and SHAP analysis. 

Mathematically, PCA as defined in Eq. (1) identifies a set of 
orthogonal vectors that maximize the variance captured in the 
projected space. The PCA transformation is defined as follows: 

Y = XW, 

where 𝑋  is the standardized data matrix, 𝑊  contains 
eigenvectors of the covariance matrix, and 𝑌  represents 
transformed data. 

B. Clustering Framework 

The primary clustering method employed in this study is K-
means clustering, chosen for its efficiency and effectiveness in 
handling large datasets. K-means partitions the data into K 
distinct, non-overlapping clusters by minimizing the within-
cluster sum of squares. The algorithm iteratively assigns data 
points to centroid of the nearest cluster and updates the centroids 
until convergence [28], The explained variance ratio for the 𝑘 −
𝑡ℎ  principal component determines feature importance, as 
shown in Eq. (2): 

𝑟𝑘 =
𝜆𝑘

∑  𝑑
𝑖=1  𝜆𝑖

 

Following dimensionality reduction, we employ k-means 
clustering to minimize the objective function, as formalized in 
Eq. (3): 

𝐽 = ∑  𝑘
𝑖=1 ∑  𝐱∈𝐶𝑖

∥∥𝐱 − 𝜇𝑖∥∥
2


where 𝐶𝑖 represents cluster 𝑖 and 𝜇𝑖 its centroid. To evaluate 
clustering quality and determine the optimal number of clusters, 
we utilize two complementary metrics. The silhouette 
coefficient 𝑆(𝑥) shown in Eq. (4) measures cluster cohesion and 
separation, and it is calculated as follows: 

𝑠(𝑥) =
𝑏(𝑥)−𝑎(𝑥)

max{𝑎(𝑥),𝑏(𝑥)}
, 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 7, 2025 

719 | P a g e  

www.ijacsa.thesai.org 

while The Davies-Bouldin index 𝐷𝐵  calculated as i (5), 
evaluates the average similarity between each cluster and its 
most similar counterpart: 

𝐷𝐵 =
1

𝑘
∑  𝑘

𝑖=1 max
𝑗≠𝑖

  (
𝜎𝑖+𝜎𝑗

𝑑(𝜇𝑖,𝜇𝑗)
)

where 𝜎𝑖 represents the average distance of points in cluster 

𝑖 to its centroid, and 𝑑(𝜇𝑖 , 𝜇𝑗) measures the distance between 

centroids. These metrics work in conjunction to ensure robust 
cluster evaluation and optimal parameter selection for our 
framework. 

C. Model Interpretation 

1) Training the LightGBM classifier: To interpret the 

clustering results, a multi-class classification model was trained 

using LightGBM, a gradient boosting framework based on tree 

learning algorithms. The model predicted cluster membership 

from the original features, defined in Eq. (6). The objective 

function minimized during training is: 

ℒ(𝜙) = ∑  𝑛
𝑖=1 𝑙(𝑦𝑖 , �̂�𝑖) + ∑  𝐾

𝑘=1 Ω(𝑓𝑘)

 𝑙   is the loss function (e.g., cross-entropy loss for 
classification), 

 𝑦𝑖   is the true label, 

 �̂�𝑖 is the prediction, 

 Ω is the regularization term, 

 𝑘 is the number of trees. 

2) Computing SHAP values: To enhance the interpretability 

of clustering results, we integrate Shapley values with 

clustering methods. SHAP values were calculated to interpret 

the predictions of the LightGBM model. SHAP provides a 

unified measure of feature importance by computing the 

contribution of each feature to the prediction for individual data 

points, based on Shapley [24] (Fig. 2) . The Shapley value 𝜙𝑖 

of a feature 𝑖, is computed according to Eq. (7), quantifies its 

marginal contribution to a model's outcome by considering all 

possible subsets of features 𝑆 ⊆ 𝐹 ∖ {𝑖}. The Shapley value is 

calculated as: 

𝜙𝑖 = ∑  𝑆⊆𝐹∖{𝑖}
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!
[𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)]

where: 𝐹  is the set of all features,  𝑆  is a subset of 𝐹 
excluding 𝑖 and 𝑣(𝑆)  represents the value function, which 
measures the clustering quality when only features in 𝑆  are 
considered. 

Key properties of Shapley values ensure fairness and 
interpretability: 

 Efficiency: Stated in Eq. (8), ensures the sum of Shapley 
values equals the total model output: 

∑  𝑖∈𝐹 𝜙𝑖 = 𝑣(𝐹) − 𝑣(∅)

 Symmetry: Described in Eq. (9), guarantees equal 
contribution for features with identical impact: 

𝜙𝑖 = 𝜙𝑗  𝑖𝑓 𝑣(𝑆 ∪ {𝑖}) = 𝑣(𝑆 ∪ {𝑗})∀𝑆 ⊆ 𝐹 ∖ {𝑖, 𝑗}

 Additivity: Expressed in Eq. (10), allows contributions to 
be aggregated across different models: 

𝜙𝑖(𝑣1 + 𝑣2) = 𝜙𝑖(𝑣1) + 𝜙𝑖(𝑣2)

 
Fig. 2. SHAP (SHapley additive exPlanations) visualization of feature 

contributions to model output. 

D. Comparative Analysis with Existing Interpretability 

Methods 

SHAP was chosen for its ability to provide both local and 
global interpretability, supported by the rigorous mathematical 
foundation of cooperative game theory. Unlike LIME, which 
generates local explanations using surrogate models, SHAP 
ensures consistent and fair attribution of feature importance 
across all data points. While LIME is valued for its simplicity, 
its dependence on input perturbations and surrogate modeling 
can lead to inconsistencies, particularly in unsupervised or 
complex tasks [29] (see Table I). 

TABLE I.  COMPARISON OF INTERPRETABILITY TOOLS FOR MACHINE 

LEARNING MODELS 

Tool Advantages Limitations 

SHAP 

(SHapley 

Additive 

exPlanations) 

 Provides both local and 

global feature importance. 

 Model-agnostic and 

mathematically rigorous. 

 Based on Shapley values 

for fair contribution 
attribution. 

 Computationally 

expensive for large 

datasets. 

 Requires adaptation 
for unsupervised tasks 

like clustering 

LIME (Local 

Interpretable 

Model-
agnostic 

Explanations) 

 Simple and intuitive. 

 Local explanations for 

individual predictions. 

 Model-agnostic. 

 Limited to local 

interpretability. 

 Relies on surrogate 
models, which may 

oversimplify complex 

behaviors. 

 Sensitive to input 
perturbations, leading 

to inconsistent 
explanations. 

E. Theoretical Justification for Shapley Values in Clustering 

Shapley values help quantify feature importance without 
predefined labels, capturing both local and global trends. Their 
fair distribution of contributions ensures unbiased attribution, 
which is critical in fields like environmental pollution 
monitoring, and business intelligence. While computationally 
intensive, scalable approximations make Shapley values 
feasible for high-dimensional datasets. When integrated into 
multi-level clustering, they reveal hierarchical feature 
relationships, improving interpretability and bridging the gap 
between explainability and unsupervised learning's opacity. 
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F. Practical Implementation 

The implementation follows the steps detailed in Algorithm 

1. The implementation utilizes Python's scikit-learn for PCA and 

k-means, LightGBM for cluster prediction, and the SHAP 

library for feature attribution. The computational complexity is 

𝒪(𝑛𝑑2 + 𝑛𝑘|ℱ| + 𝑘|ℱ|𝑀)  for 𝑛  samples, 𝑑  dimensions, 𝑘 

clusters, and 𝑀 SHAP samples. Visualization is implemented 

using the Altair library, providing interactive exploration of 

feature contributions and cluster characteristics. 

Algorithm 1: Cluster Interpretation Framework 

Input: Dataset 𝐗, features ℱ 

Output Interpretable cluster explanations ℐ 

𝐗scaled ← Scale the features in 𝐗 using StandardScaler 

𝐗PCA ← PCA(𝐗scaled )  ▹ Apply PCA to reduce 
dimensionality 

k∗ ←  Determine optimal K via silhouette and Davies-Bouldin   

Fit KMeans with  𝑘∗: 𝐶 ← KMeans(𝐗scaled ) , 𝑘∗) 

M ← LightGBM(𝐗, {Ci}) Train multiclass classifier  

𝜙 ← Compute SHAP Values 

For each cluster 𝑗 ∈ {1, … , 𝑘∗} do 

 Extract per-cluster SHAP values: 𝜙𝑗 ← 𝜙[𝑗] 

Order features by importance: 𝒫𝑗 ← argsort(∑|𝜙𝑗|) 

Characterize the cluster: 𝑰𝑗 ← Interpret(ℱ𝑗 , 𝜙𝑗) 
End for 

return ℐ 

By adhering to this methodology, the study ensures that all 
analyses are reproducible and grounded in implemented 
techniques, providing a robust framework for interpreting 
clustering results in complex datasets. 

IV. EXPERIMENTAL RESULTS 

A. Datasets Description 

We evaluated our framework using two datasets from the 
UCI Machine Learning Repository: the "Vinho Verde" wine 
quality dataset and the Beijing Multi-Site Air Quality dataset. 
These datasets were chosen to demonstrate the framework's 
applicability across domains with distinct data structures. 

1) "Vinho verde" wine quality dataset: The wine dataset 

contains 4,898 observations with 11 physicochemical features 

and a quality score ranging from 0 to 10. Table II summarizes 

its key characteristics. This dataset served as the primary 

domain for developing and validating the framework. 

2) Beijing multi-site air quality dataset: The air quality 

dataset comprises approximately 383,000 observations with 11 

features, including PM2.5, PM10. Unlike the wine dataset, this 

dataset lacks a predefined target variable. PM2.5 was selected 

as a proxy target due to its established importance in air quality 

assessments. Table III provides its detailed characteristics. 

TABLE II.  WINE DATASET CHARACTERISTICS 

Characteristic Details 

Number of Instances 4,898 

Number of Features 11 

Feature Types All numeric 

Features 

fixed acidity, volatile acidity, citric acid, residual 

sugar, chlorides, free sulfur dioxide, total sulfur 

dioxide, density, pH, sulphates, alcohol 

Quality Range Scores between 0 and 10 

Missing Values None 

TABLE III.  BEIJING AIR QUALITY DATASET CHARACTERISTICS 

Characteristic Details 

Number of Instances 383585 

Number of Features 11 

Feature Types Numeric and temporal 

Features 
PM2.5, PM10, NO2, SO2, CO, O3, temperature, 

pressure, dew point, wind direction, wind speed 

Observation Period 2013–2017 

Missing Values handled by omission 

B. Optimization Strategies 

The optimization strategies employed in the study are 
summarized in Table IV This validation demonstrates the 
framework’s robustness and adaptability, confirming its 
effectiveness in handling datasets with diverse characteristics 
and domain-specific requirements. 

TABLE IV.  OPTIMIZATION STRATEGIES FOR CLUSTERING AND 

INTERPRETATION 

Technique Purpose 

Standard Scaling 
Normalize features for consistent processing 

and comparability. 

Principal Component 

Analysis (PCA) 

Reduce dimensionality while retaining 

variances. 

Multi-Criteria Cluster 

Evaluation 

Determine optimal (k) using Davies-

Bouldin index, silhouette score, and elbow. 

SHAP Value Computation 

Explain cluster assignments by analyzing 

feature importance derived from a classifier 
trained on cluster labels. 

Cluster Validation Metrics 
Evaluate clustering performance using 
multiple quantitative criteria. 

C. Validation Measures and Comparative Analysis 

Rigorous quantitative validation is indispensable for 
establishing the credibility of any interpretable-clustering 
framework. Accordingly, four widely accepted cluster-quality 
indices, Silhouette, Davies–Bouldin (DB) are reported for both 
benchmark datasets and confronted with the scores published in 
recent SHAP-based studies (Table V). Using the same battery of 
metrics ensures that performance gains are measurable, 
reproducible and attributable to the proposed methodology. 
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TABLE V.  COMPARISON OF VALIDATION METRICS WITH RELATED WORK 

Study Domain / Dataset XAI + Clustering pipeline 
Reported validation 

indices 
Key insight 

This Work 
Portuguese Wine Quality 

& Beijing Air Quality 

PCA →  K-means → 

LightGBM surrogate → 
multi-level SHAP 

Silhouette 0.63, DB 0.55; 

CH elbow used for 𝒌 
selection 

Hierarchical SHAP explanations 

uncover cross-dataset feature 
hierarchies and pinpoint the 

drivers of each cluster. 

SHAP and LIME: An 

Evaluation of Discriminative 

Power in Credit Risk [30] 

Italian SME credit 

defaults 

XGBoost → SHAP / LIME 

weights →  K-means & 

Spectral 

Silhouette 0.37 (SHAP) vs 

0.14 (LIME); DB ≈ 𝟏. 𝟏 

SHAP space forms markedly 

tighter clusters, boosting 

downstream AUROC over LIME. 

Interpretable Clustering of 

Spatio-Temporal Data by Using 
SHAP Method [31] 

NYC Taxi pick-ups (time 

× space) 

SHAP-guided feature 

pruning →  K-means / 
Kmedoids 

Silhouette, CH & DB 

collectively used to tune 𝒌 

SHAP ranks distance & travel-

time as dominant; composite 

metrics verify weekday/weekend 

cluster separation. 

Inferring Disease Subtypes 

from Clusters in Explanation 
Space [32] 

Fashion-MNIST, UK-

Biobank MRI, TCGA 
gene-sets 

RF classifier → 

instancelevel SHAP → 
Agglomerative 

Silhouette, DB, CH, AMI 

+0.45 vs raw space 

Clustering SHAP vectors 

consistently recovers latent 

disease subtypes better than 

classical feature space. 
 

D. Influence of Algorithm Parameters 

A brief sensitivity sweep was run on the three hyper-
parameters that most affect both quality and run-time, cluster 
count k, PCA dimensionality d, and the depth of the LightGBM 
surrogate used for SHAP. Table VI shows that keeping k=3 for 
both corpora, plotting the data in two PCA dimensions and using 
the default 100-tree / 31-leaf LightGBM model gives the best 
Silhouette, DB trade-off without inflating execution time. 

TABLE VI.  SENSITIVITY OF KEY PARAMETERS ON VALIDATION METRICS 

Parameter 
Wine-quality 

dataset 

Air-quality 

dataset 

Adopted 

setting 

k (clusters) 

(Silh. /DB) 

2 → 0.214 / 1.775 

3 → 0.144 / 2.097 

2 → 0.265 / 

1.503 

3 → 0.626 / 
0.553 

3, best overall 

balance of 

cohesion and 
separation 

PCA 

projection d 

2 components 

(9 PCs ≈ 97 % var.) 

2 components 

(9 PCs ≈ 97 % 
var.) 

2, clear 2-D 

plots; no loss in 
cluster quality 

LightGBM 

depth 

(num_leaves) 

31 leaves: +0.02 

absolute F1 (0.82 → 

0.84) costs +4 min 

run-time; default 
kept 

same trend 

31 leaves: F1 = 

0.82 (4 min) 
63 leaves: F1 = 

0.84 (8 min) 

E. Wine Quality Dataset Analysis 

1) Overall feature importance: Our analysis revealed the 

global impact of features across all clusters through SHAP 

value computation, demonstrating a clear hierarchy of feature 

importance and their relative contributions. The comprehensive 

analysis shown in Fig. 3 identifies density, pH, and fixed acidity 

as the most influential features, with sulfur dioxide compounds 

and residual sugar showing moderate influence across all 

clusters. 

2) In-Depth analysis of feature importance in cluster 

formation: To interpret cluster formation in the wine quality 

dataset, SHAP force plots were generated for representative 

samples selected using median SHAP magnitude (Fig. 4). In 

Cluster 0, predictions are strongly influenced by total sulfur 

dioxide, alcohol, and free sulfur dioxide, with density 

contributing positively and residual sugar slightly reducing 

cluster affiliation. Cluster 1 shows a distinct pattern where fixed 

acidity exerts the most influence, supported by free sulfur 

dioxide, density, and pH, indicating a profile defined by acidity 

and moderate sulfur content. In Cluster 2, contributions are 

driven by fixed acidity, alcohol, and citric acid, with pH slightly 

lowering the prediction. Each cluster reflects a unique chemical 

signature, enabling more interpretable groupings and practical 

insights into wine characterization. 

3) Cluster-specific analysis: Fig. 5 illustrates the distinct 

characteristics of each cluster in relation to wine quality: 

 
Fig. 3. Average SHAP value impact across clusters: Key features 

influencing cluster formation in the wine dataset. 
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(a) Cluster 0: Cluster affiliation is driven by high total and free sulfur dioxide and alcohol, with density exerting moderate influence. 

 
(b) Cluster 1: Dominated by fixed acidity, pH, and moderate sulfur content, reflecting balanced chemical profiles. 

 
(c) Cluster 2: Influenced by fixed acidity and citric acid, with pH slightly reducing affiliation, indicating acidity-driven groupings. 

Fig. 4. SHAP Force plots for representative samples in each wine quality cluster. 

 
(a) Cluster 0: Influenced by sulfur dioxide compounds and alcohol. 

 
(b) Cluster 1: Driven by fixed acidity, density, and pH. 

 
(c) Cluster 2: Dominated by alcohol, citric acid, and fixed acidity. 

Fig. 5. SHAP Summary plots showing the distribution of feature 

contributions across clusters for the wine quality dataset. 

Cluster 0 is defined by high density and elevated levels of 
total and free sulfur dioxide, indicating a strong correlation with 

wine quality ratings and preservation characteristics. the Cluster 
1, the relationships among pH and fixed acidity reveal a 
balanced chemical composition, aligning with traditional 
winemaking principles. The analysis underscores the critical 
role of acid balance in determining wine quality. Lastly, Cluster 
2 displays unique chemical patterns associated with extreme 
quality ratings. Significant variations in chemical composition 
highlight the interactions between features that influence quality 
assessments. 

F. Validation on the Beijing Air Quality Dataset 

The Beijing Multi-Site Air Quality dataset was analysed to 
assess the generalizability of the proposed framework to a larger 
and more diverse dataset. Pre-processing steps involved 
imputation of missing values, normalization using 
StandardScaler, and dimensionality reduction via PCA. 
Clustering was performed using 𝑘 = 3, determined through a 
multicriteria evaluation of silhouette score ((𝑘) = 0.63), Davies-
Bouldin index (𝐷(𝑘) = 0.55), on the full 11-feature matrix. 

1) Overall feature importance: Our analysis revealed the 

global impact of features across all clusters through SHAP 

value computation, demonstrating a clear hierarchy of feature 

importance and their relative contributions. The comprehensive 

analysis shown in Fig. 6 identifies temperature (TEMP), dew 

point (DEWP), and pressure (PRES) as the most influential 

features, with CO, NO2, and particulate matter compounds 

(PM10 and PM2.5) showing moderate influence across all 

clusters. 

 

Fig. 6. Global SHAP value impact for the Beijing Air Quality dataset. 
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(a) Cluster 0: Influenced by high ozone (O₃), dew point (DEWP), and temperature (TEMP), reflecting warm, photochemical pollution events. 

 
(b) Cluster 1: Characterized by elevated CO, SO₂, and PM₁₀, with dew point and wind speed acting as suppressors — indicative of wintertime smog. 

 
(c) Cluster 2: Driven by PM₁₀ and NO₂, but unusually high CO reduces cluster affiliation — suggesting divergent emission profiles. 

Fig. 7. SHAP Force plots demonstrating feature influence on cluster membership for representative samples from the Beijing Air Quality dataset. 

2) In-Depth analysis of feature importance in cluster 

formation: A similar interpretability approach was applied to 

the air quality dataset using SHAP force plots for representative 

samples (Fig. 7). In Cluster 0, elevated ozone and temperature 

are the primary drivers of cluster membership, with supportive 

roles from dew point and pressure—indicating warm, 

photochemical pollution events. Cluster 1 is characterized by 

high CO, SO₂, and PM10, while low dew point and wind speed 

act as suppressors, suggesting stagnant cold-air conditions 

typical of wintertime smog. Cluster 2 is heavily influenced by 

PM10, NO₂, and SO₂, with an unexpectedly negative 

contribution from extremely high CO, possibly reflecting 

divergence in emission source profiles. These results highlight 

how the model captures distinct atmospheric compositions that 

align with interpretable pollution scenarios. 

 
(a) Cluster 0: Influenced by high CO, NO₂, SO₂, and PM₁₀, indicating 

pollution-heavy urban zones. 

 
(b) Cluster 1: Driven by dew point, PM₁₀, and low wind speed, suggesting 

stagnant weather conditions. 

 
(c) Cluster 2: Shaped by high temperature and pressure, with pollutants 

contributing negatively, reflecting clean-air events. 

Fig. 8. SHAP Summary plots for each cluster in the Beijing Air Quality 

dataset. 

3) Cluster-specific analysis: Cluster-specific SHAP 

analyses were performed to evaluate feature contributions 

across the air quality dataset. In Cluster 0, predictions are driven 

by elevated levels of CO, NO₂, SO₂, and PM10, pointing to 

pollution-heavy conditions typical of urban emission hotspots 

[Fig. 8(a)]. Cluster 1 is shaped by the interaction of high dew 

point, moderate PM10, and low wind speed (WSPM), 

suggesting meteorologically stagnant conditions that hinder 

dispersion [Fig. 8(b)]. In Cluster 2, high temperature and 

atmospheric pressure dominate the contribution profile, while 

particulate and gaseous pollutants (PM10, NO₂, SO₂) exert 

negative influence, indicating cleaner air events supported by 

favorable dispersion conditions [Fig. 8(c)]. These results give 

us a better understanding of how environmental variables 

interact to define distinct air quality regimes. 

4) Discussion: The results from the Beijing dataset align 

with findings from the wine dataset, demonstrating the 

framework’s ability to extract meaningful feature contributions 

across diverse domains. The larger size and complexity of the 

air quality data highlight the framework’s scalability and 

adaptability, confirming its relevance in high-stakes 

applications such as environmental monitoring. The differing 

comparative results stem from the distinct nature of each 

dataset. The wine data, with consistent chemical features, 

yielded clearer attributions, while the air quality data required 

more nuanced interpretation due to its temporal and 
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environmental variability. This suggests the proposed 

algorithms are broadly applicable but especially effective for 

complex, high-dimensional data — reinforcing their robustness 

across domains. 

V. DISCUSSION AND BROADER IMPLICATIONS 

A. Contributions to the Field 

Our work advances the field of explainable AI through 
several key theoretical and practical contributions. The 
integration of game-theoretic principles with clustering analysis 
provides a novel framework for interpretable machine learning. 
The use of Shapley values for cluster interpretation bridges the 
gap between local and global explanations, offering insights at 
multiple levels of granularity. Our framework extends 
traditional SHAP applications by incorporating cluster-specific 
interaction effects, enabling quantitative assessment of feature 
relationships while maintaining interpretability. The 
hierarchical analysis of feature importance provides both 
detailed local insights and broader structural understanding of 
cluster formation. 

B. Applications and Use Cases 

The framework shows practical applicability in domains 
such as clinical diagnostics, regulatory finance, 
recommendation systems, and environmental risk monitoring. 
In healthcare diagnostics, our approach enables interpretation of 
patient groupings based on medical parameters while 
maintaining the high accuracy requirements of medical 
applications. The feature attribution methodology provides 
clinically relevant insights into diagnostic patterns. 

Financial risk assessment applications benefit from the 
framework's ability to identify and explain customer segments. 
The clear feature importance hierarchy supports regulatory 
compliance requirements while enabling sophisticated risk 
profiling. Beyond financial services, autonomous systems 
benefit from our framework's ability to explain behavioral 
patterns and decision boundaries, which is particularly crucial in 
safety-critical applications. 

This capability to interpret clusters meaningfully also 
strengthens its utility in healthcare applications, as shown by 
earlier discussions of patient grouping and outcome 
differentiation. Similarly in recommendation systems, the 
ability to explain user groupings and feature preferences 
enhances transparency and trust in personalized content 
delivery. These implications reinforce the practical value 
already outlined. 

C. Limitations and Future Work 

Our current implementation faces several limitations in 
computational scalability, particularly with extremely large 
datasets. The computational cost increases significantly with 
dataset size and feature dimensionality, becoming particularly 
evident in the calculation of exact Shapley values for large-scale 
applications. 

Future enhancements could address these computational 
challenges through methodological improvements in three key 
areas. Advanced approximation methods for Shapley 
computation could reduce computational overhead while 

maintaining accuracy. Parallel processing implementations 
could better handle large-scale datasets. Optimized feature 
selection strategies could improve efficiency in high-
dimensional data analysis. 

Future work will explore integrating deep learning with 
interpretability, enabling dynamic clustering, and developing 
domain-specific optimizations. Implementation will aim for 
real-time analysis, distributed processing, and improved 
visualizations for complex feature interactions. 

VI. CONCLUSION 

We introduced a framework that integrates multi-level 
clustering with Shapley-based explanations, enabling 
interpretable insights into unsupervised learning outcomes. Our 
experiments on wine and air quality datasets demonstrate its 
ability to uncover meaningful feature contributions. 

The implementation methodology demonstrates scalability 
across different domains, supported by thorough statistical 
validation. Through extensive testing on the wine quality 
dataset, we demonstrated the framework's ability to identify 
meaningful clusters while providing clear explanations of the 
underlying feature relationships. The analysis revealed distinct 
chemical profiles corresponding to different quality levels, with 
density, pH, and acidity emerging as key determinants of wine 
characteristics. 

The proposed framework proves the successful 
reconciliation between model sophistication and interpretability 
requirements. Clear feature attribution mechanisms enable 
stakeholders to understand complex model decisions, while 
maintaining the statistical rigor necessary for reliable analysis. 
The framework's application extends beyond wine and air 
analysis to other domains requiring both precision and 
explicability, such as healthcare diagnostics and financial risk 
assessment. 

While the framework demonstrates strong interpretability 
and generalizability across two real-world tabular datasets, 
several limitations remain. It has not yet been tested on non-
tabular data such as images or text, exact SHAP computations 
remain costly for large-scale or streaming data, and the current 
approach assumes static clusters. Future work will explore 
scalable SHAP approximations, dynamic clustering, and 
broader dataset types to address these challenges. 

The combination of theoretical soundness and practical 
applicability makes this framework a valuable tool for modern 
machine learning applications where interpretability is crucial. 
By providing both local and global explanations of cluster 
characteristics, our approach enables informed decision-making 
while maintaining model performance. This balance between 
sophistication and transparency establishes a foundation for 
future developments in explainable artificial intelligence, 
particularly in scenarios where understanding model decisions 
is as important as the decisions themselves. 
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