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Abstract—Early and accurate fault diagnosis in power 

distribution systems is essential to ensure stable electricity delivery 

and prevent outages. This study presents a deep learning-based 

anomaly detection framework that analyzes 3D LiDAR point 

cloud data to identify structural defects in power distribution 

lines. Leveraging advancements in deep learning and 3D sensing, 

a hybrid architecture combining PointNet++ and 3D 

Convolutional Neural Networks (3D CNN) is proposed. The 

system processes point clouds from the TS40K dataset, comprising 

high-resolution, annotated scans of power infrastructure, and uses 

a feature fusion strategy to integrate fine-grained local geometry 

from PointNet++ with global volumetric features from 3D CNN. 

Implemented in Python, the method achieves a 94.7% accuracy in 

fault diagnosis, outperforming standalone models. It robustly 

detects anomalies such as sagging wires, leaning poles, and broken 

insulators, maintaining precision, recall, and F1-scores above 

90%, even under noisy and sparse conditions. Visualization of 

detected faults on 3D models confirms its precise localization 

capability, supporting real-time monitoring and maintenance 

planning in smart grids. By integrating complementary deep 

learning techniques, this approach offers a scalable, accurate, and 

automated solution for anomaly detection and fault diagnosis in 

power distribution systems. Future work will focus on multi-

sensor fusion and semi-supervised learning to reduce dependence 

on labeled data and broaden applicability to other infrastructure 

use cases. 
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I. INTRODUCTION 

Power distribution networks are critical components of 
today's infrastructure, providing a reliable supply of electricity 
from substations to consumers. As urbanization and 
industrialization grow, so does the level of complexity and size 
of power distribution networks [1] [2]. Their uninterrupted 
operation is crucial to economic well-being and society's well-
being [3] [4]. These systems, however, are exposed to 
environmental degradation, mechanical failure, and aging 
infrastructure [5]. Regular inspection and maintenance of power 
lines are required to avoid service outages, safety risks, and 
equipment damage. Conventional inspection practices are 
labour-intensive and based on manual processes, which are 
time-consuming, costly, and susceptible to human error. 
Additionally, visual inspection based on 2D images does not 
provide the spatial depth necessary to comprehend the full three-

dimensional geometry of power lines, hindering the 
identification of concealed or slight abnormalities [6]. 

With advancements in remote sensing technologies, 
particularly LiDAR and Unmanned Aerial Vehicles (UAVs), the 
doors have been opened to acquiring high-resolution 3D point 
cloud data for power distribution lines [7] [8]. Such point clouds 
provide accurate spatial models of infrastructure, facilitating 
enhanced monitoring and analysis. Interpretation and processing 
of such unstructured 3D data, however, remains a problem [9]. 
Conventional machine learning models are also not effective in 
handling the sparsity, irregularity, and noise inherent in point 
cloud data. Traditional models have a great deal of feature 
engineering and cannot generalize across diverse spatial 
configurations. Moreover, conventional models are unable to 
learn the capacity to understand local and relevant geometric 
features that can be used in identifying fragile defects in power 
line components [10] [11]. To address these limitations, deep 
learning approaches specifically designed for point clouds have 
been developed. PointNet and its updated version, PointNet++, 
have presented promising performance on point cloud 
classification and segmentation by learning spatial features from 
raw points in an end-to-end manner. PointNet++ maintains both 
local and global contextual details, making it extremely efficient 
in the analysis of power infrastructure elements. On the contrary, 
voxel-based approaches, such as 3D Convolutional Neural 
Networks, transform point clouds into structured grids, enabling 
the effective detection of spatial patterns through the application 
of convolutional operations. 

This paper suggests a fusion deep learning framework which 
leverages the strengths of point-based and voxel-based 
techniques for comprehensive fault detection in power 
distribution lines. By combining PointNet++ for detailed feature 
learning with 3D CNNs for contextualization, the proposed 
method achieves high accuracy in detecting a wide range of 
anomalies from small-scale insulator leakage to large-scale pole 
misalignment. The architecture employs a feature fusion 
approach that fuses outputs from both networks to enable the 
model to be trained on complementary information [12] [13], 
[14] [15]. The approach not only enhances the robustness of data 
against noise and sparsity but also improves fault localisation 
and classification. Furthermore, it is real-time inference-
friendly, thereby allowing it to be accommodated in smart grid 
monitoring systems. The approach is scalable and versatile 
enough to support numerous power distribution scenarios, with 
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an applied solution to autonomous infrastructure inspection. It 
bridges the gap between traditional inspection and modern AI-
based alternatives, opening the door to smarter, safer, and more 
efficient power distribution grids. The proposed framework not 
only enhances anomaly detection but also facilitates predictive 
maintenance and system resilience in future power systems. Key 
contributions of this research paper are, 

1) This research introduces a hybrid deep learning 

framework that combines PointNet++ and 3D CNNs for 

analysing power distribution line point cloud data. 

2) It effectively extracted both local and global features to 

detect various anomalies such as damaged insulators, sagging 

wires, and pole misalignments. 

3) A novel feature fusion strategy was implemented to 

integrate point-based and voxel-based representations for 

improved fault diagnosis. 

4) The suggested method reached higher accuracy, 

precision, and recall compared to traditional 2D and standalone 

deep learning approaches. 

5) It enabled real-time and scalable fault detection suitable 

for deployment in smart grid monitoring systems using edge–

cloud architectures. 

The remaining section of the article is organized as follows: 
Section II gives a literature review of the current works in the 
areas of point cloud analysis, deep learning-based anomaly 
detection, and fault diagnosis of power systems. Section III 
formulates the problem statement accurately, identifying the 
issues associated with detecting structural faults and anomalies 
in unstructured 3D point clouds of power distribution lines. 
Section IV presents the proposed approach, utilising PointNet++ 
and 3D CNN, for robust feature extraction, fusion, and 
classification. Section V describes the experimental setup, 
presents the results obtained, and provides a critical analysis of 
the models' performance using various evaluation parameters. 
Discussion is given in Section VI. Section VII summarizes the 
research and suggests potential future directions of research to 
enhance the accuracy and real-time acceptability of the proposed 
framework in smart grids. 

II. RELATED WORKS 

Deep learning for 3D point cloud analysis has witnessed 
rapid growth, particularly in the context of infrastructure 
inspection and fault detection. Existing approaches can be 
broadly grouped into point-based, voxel-based, hybrid 
architectures, and domain-specific applications, such as those 
used in power grid monitoring and other similar fields. This 
section reviews the key contributions under these categories. 

A. Point-Based Architectures 

Point-based models operate directly on raw point clouds, 
eliminating the need for voxelization and thereby preserving 
geometric fidelity. A foundational approach is PointNet, 
introduced by Qi et al., which uses symmetric functions to 
handle unordered point sets and demonstrates strong 
performance in 3D object classification and segmentation [16]. 
Its extension, PointNet++, developed by Qi et al., incorporated 
hierarchical feature learning, enhancing local structure 

representation an essential capability for complex infrastructure 
fault detection [17]. To better capture local geometric 
relationships, the Dynamic Graph CNN (DGCNN) by Wang et 
al. dynamically constructs and updates graph edges during 
training, thereby improving the contextual understanding of 3D 
structures [18]. Li et al. developed PointCNN, a model that 
applies X-transforms to reorder points canonically before 
performing convolution, leading to effective feature extraction 
from irregular point clouds [19]. 

Further progress was made by Thomas et al. through the use 
of KPConv (Kernel Point Convolution), which applied 
deformable kernel filters directly to point sets, thereby avoiding 
voxelization while adapting to local geometries [20]. For 
unsupervised learning, Yang et al. introduced FoldingNet, 
which uses an autoencoder to reconstruct 3D shapes from 2D 
grid deformations, preserving both global and local structure 
[21]. 

Recent surveys, such as those by Zhang et al. and Liu et al., 
offer comprehensive taxonomies of point-based models, 
classifying them based on their learning strategies and 
highlighting their applicability to infrastructure tasks like fault 
detection [22] [23]. 

B. Voxel-Based Architectures 

Voxel-based methods convert unstructured point clouds into 
regular voxel grids, allowing the use of 3D Convolutional 
Neural Networks (3D CNNs) for structured learning. Maturana 
and Scherer proposed the foundational VoxNet model, which 
performed efficient 3D shape recognition on voxelized inputs 
[24]. More recent models extend this idea with deeper layers, 
enhanced normalisation, and advanced pooling strategies. 

Jin et al. introduced a convolutional GAN-based framework 
for semantic segmentation in power line inspection, merging 
voxel grid input with adversarial training [25]. Similarly, Wen 
et al.proposed a directionally constrained 3D CNN that 
improved classification performance on airborne LiDAR data 
by modeling orientation between points [26]. 

C. Hybrid and Fusion-Based Methods 

Recognizing the trade-offs between point- and voxel-based 
models, hybrid architectures aim to leverage the strengths of 
both. The method proposed in this paper exemplifies this trend 
by combining PointNet++ for local geometric learning with 3D 
CNNs for capturing global spatial context, thereby improving 
robustness in fault classification tasks. A closely related model 
is VoteNet by Qi et al. and Li et al.  couples PointNet++ with a 
Hough voting mechanism for 3D object detection [16] [19]. 
Similarly, Fast Point R-CNN, introduced by Shi et al. enhances 
detection efficiency through faster region proposals adapted to 
3D data [27]. 

Label efficiency has become a critical challenge in large-
scale applications. Xiao et al. addressed this by surveying 
techniques like domain adaptation and weak supervision to 
reduce annotation burdens [28]. In parallel, Sohail et al. 
presented a comprehensive study on deep transfer learning for 
3D point cloud perception, emphasizing its role in mitigating 
data sparsity challenges [29]. 
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D. Applications in Power Grid Fault Detection 

The field of smart grid infrastructure has embraced 3D deep 
learning for anomaly detection. Zideh and Solanki proposed 
physics-informed autoencoders for improved interpretability in 
fault diagnostics [30]. Kyuroson et al. developed an 
unsupervised point cloud segmentation framework for power 
line inspection using LiDAR, demonstrating high accuracy in 
identifying vegetation and line sag [31]. Lu and Shi reviewed 
scalable deep learning approaches for 3D point cloud perception 
tasks such as detection and segmentation, confirming the 
framework's viability in hazard analysis along power corridors 
[32]. Zhu et al. and Faisal et al. explored generative and 
adversarial methods to refine semantic segmentation and 
automate power line monitoring [33] [34]. Finally, Chen et al. 
presented DCPLD-Net [35], a real-time diffusion-coupled CNN 
for detecting transmission lines from UAV-LiDAR data. Other 
efforts, including those by Shin et al. and Lin et al. , combine 
thermal, RGB, and LiDAR data for multi-modal anomaly 
detection, reflecting an emerging trend toward sensor fusion and 
real-time deployment in smart grids [10] [13]. Basani et al. 
(2024) developed a deep multi-scale fusion neural network for 
fault diagnosis in IoT environments. Inspired by this, our work 
adopts multi-scale feature fusion to extract and combine 
geometric features from power line point cloud data. This 
approach enhances fault detection accuracy and robustness 
across varying spatial resolutions [36]. A real-time safety 
management framework using machine learning on TBM data 
is presented by Devarajan and Sambas (2022) to enhance 
infrastructure monitoring. Our proposed work applies this real-
time data-driven approach for anomaly detection in power 
distribution line point cloud data. This enables proactive fault 
diagnosis, reduces risks, and improves the reliability of power 
infrastructure systems [37]. Rajya Lakshmi Gudivaka (2023) 
implemented a neural network-based framework for real-time 
imperfection prediction in robotic process automation. Our 
study employs this approach to detect anomalies in power 
distribution line point cloud data using deep learning techniques. 
This integration facilitates automated fault inspection, improves 
detection speed, and enhances system reliability [38]. Our 
proposed work on fault diagnosis in power distribution lines 
adopts the signal preprocessing strategy introduced by 
Harikumar and Khalid (2022), which utilizes Butterworth filters 
to enhance signal clarity in IoT systems. By incorporating this 
denoising technique into our point cloud data pipeline, we 
ensure cleaner input for deep learning-based anomaly detection. 
This improves diagnostic precision, minimizes false positives, 
and strengthens the reliability of fault classification outcomes 
[39]. A hybrid machine learning framework for financial fraud 
detection using big data was proposed by Naresh Kumar Reddy 
Panga (2021). Our framework builds on this hybrid learning 
strategy by combining point-based feature extraction and deep 
classification for 3D anomaly detection. This integration 
improves model generalization, enhances fault detection 
accuracy, and ensures robustness across varying point cloud 
conditions [40]. 

III. PROBLEM STATEMENT 

Traditional methods of fault detection in power distribution 
networks—such as visual examination and 2D image analysis—
are insufficient to describe the complex spatiality of modern 

infrastructure [41] [42], resulting in inefficiency and missed 
anomalies. Although 3D point cloud data from LiDAR and 
UAVs offer a more detailed description, their unstructured and 
irregular nature is extremely difficult for traditional machine 
learning models to process [43], [44], [45]. This work 
overcomes such limitations by proposing a hybrid deep learning 
framework that combines PointNet++ and voxel-based 3D 
CNNs for learning global spatial patterns. By integrating point-
wise and voxel-wise features, the method enhances both noise 
robustness and the accuracy of fault diagnosis and anomaly 
detection. This end-to-end framework supports the precise 
detection of structural defects—such as insulator failure and 
pole misalignment—while enabling real-time edge inference on 
the edge–cloud platform, thus overcoming the limitations of 
existing models and offering an extensible autonomous power 
infrastructure monitoring solution. To address the limitations of 
traditional fault detection techniques and the challenges of 
processing unstructured LiDAR point cloud data, this study 
investigates the following research question: How can a hybrid 
deep learning architecture that combines PointNet++ and 3D 
CNN be developed to accurately and efficiently detect and 
classify structural anomalies in power distribution line point 
cloud data, while maintaining robustness under real-world smart 
grid conditions? 

Objectives 

1) Develop a deep learning-based framework capable of 

analyzing unstructured 3D point cloud data from power 

distribution lines. 

2) Extract meaningful local and global geometric features 

from point clouds using PointNet++ architecture. 

3) Apply voxel-based 3D CNNs for contextual analysis and 

detection of large-scale structural anomalies. 

4) Design a fusion mechanism that combines point-based 

and voxel-based features for enhanced fault classification. 

5) Validate the performance of the proposed method on 

real-world datasets in terms of accuracy, scalability, and real-

time applicability. 

IV. PROPOSED POINTNET++ AND 3D CNN-BASED DEEP 

GRID FAULT NET FOR ANOMALY DETECTION AND FAULT 

DIAGNOSIS IN POWER DISTRIBUTION LINE POINT CLOUD DATA 

The proposed methodology employs a hybrid deep learning 
method that integrates PointNet++ and 3D Convolutional 
Neural Networks for effective fault diagnosis and detection from 
power distribution line point cloud data. Initially, high-density 
LiDAR point clouds belonging to the TS40K dataset are pre-
processed with noise removal and normalization to ensure data 
consistency and quality. PointNet++ is subsequently employed 
to directly retrieve local and global geometric information from 
the raw point clouds, which contain high structural detail of 
power line features. Concurrently, the point clouds are voxelized 
and inputted into a 3D CNN for learning more general spatial 
contexts and volumetric features. The features learned from both 
networks are merged to form a global representation, which is 
then fed into a classification head for detecting various types of 
faults, such as leaning poles, hanging wires, and snapped 
insulators. The entire framework is implemented in Python, and 
the latest deep learning libraries are utilized for training and 
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inference. This point-based and voxel-based feature extraction 
integration enhances the robustness and accuracy of the model 
in identifying anomalies in complex 3D situations; thus, it is 
optimally suited for real-world smart grid monitoring 

applications. Fig. 1 shows proposed PointNet++ and 3D CNN-
Based Deep Grid Fault Net for Anomaly Detection and Fault 
Diagnosis in Power Distribution Line Point Cloud Data. 

 
Fig. 1. Proposed PointNet++ and 3D CNN-Based deep grid fault net for anomaly detection and fault diagnosis in power distribution line point cloud data. 

Fig. 1 illustrates the overall workflow of the proposed fault 
detection system for power distribution lines. The process 
begins with LiDAR-based data acquisition and preprocessing, 
followed by feature extraction using PointNet++ and a 3D CNN. 
The extracted features are fused and classified to identify 
anomalies such as damaged insulators, sagging wires, and 
leaning poles. 

A. Data Collection 

The dataset used for this research was obtained from the 
TS40K dataset [46] [47], a large benchmark specifically 
designed for semantic segmentation and structural analysis of 
power line corridors from LiDAR point cloud data. TS40K 
comprises over 40,000 km of annotated 3D LiDAR scans from 
aerial surveys conducted across various European regions, 
capturing the spatial details of power line components, including 
poles, conductors, insulators, and terrain, with high accuracy. 
The dataset is highly annotated with semantic labels, enabling 
the proper training and evaluation of deep learning models for 
fault classification and anomaly detection. Its high resolution 
and real-world coverage make it highly suitable for examining 
structural integrity and detecting faults such as sagging lines, 

leaning poles, or broken insulators. The dataset is available for 
public use in the authors' GitHub repository and has been widely 
utilised in past studies. Table I shows TS40K Dataset Summary. 

TABLE I.  TS40K DATASET SUMMARY 

Attribute Description 

Dataset Name TS40K 

Data Type 3D LiDAR Point Cloud 

Total Coverage ~40,000 km of power line corridors 

Key Components 
Captured 

Poles, Conductors, Insulators, Ground, 
Vegetation 

Annotations Semantic labels for each point 

Data Source Aerial LiDAR (helicopter/UAV-based surveys) 

Resolution High-resolution (dense point clouds) 

Geographic Coverage 
Various real-world environments across 
Europe 

Use Case 
Semantic segmentation, anomaly detection, 

infrastructure inspection 

License 
Publicly available for academic and research 
use 
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B. Data Preprocessing Using Voxelization and Normalization 

for 3D Point Cloud-Based Fault Diagnosis 

Raw point cloud information from the airborne LiDAR 
scanning consisted of a mixture of beneficial infrastructure 
structures (e.g., wires, poles, insulators). Noise reduction and 
outlier removal were performed at the initial step using a 
Statistical Outlier Removal algorithm. A point 𝐩𝑖 was retained 
if its distance to its 𝑘 -nearest neighbors did not exceed a 
specified threshold 𝜇 + 𝛼 ⋅ 𝜎, where 𝜇 and 𝜎 are the mean and 
standard deviation of neighbor distances, and 𝛼  is a tuning 
parameter, it is given in Eq. (1): 

Keep 𝐩𝑖  if 
1

𝑘
∑  𝑘

𝑗=1 ‖𝐩𝑖 − 𝐩𝑗‖ ≤ 𝜇 + 𝛼 ⋅ 𝜎             (1) 

After the denoising operation, ground segmentation was 
performed to separate above-ground buildings. Ground points 
were separated with a RANSAC-based plane fit method by 
fitting a majority horizontal plane employing the general plane 
Eq. (2): 

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0            (2) 

Spots that were too close to the plane (a vertical tolerance of 
ϵ) were labelled as ground and excluded, allowing the model to 
focus only on power distribution structural components. 

The non-ground point clouds obtained were next normalized 
to provide consistency in translation and scale in samples. Each 
point 𝐩𝑖  was transformed using min-max scaling to map all 
coordinates into the unit cube [0,1]3 it is given in Eq. (3): 

𝐩𝑖
′ =

𝐩𝑖−min(𝐏)

max(𝐏)−min(𝐏)
                                (3) 

Here, min(𝐏)  and max(𝐏)  denote the minimum and 
maximum coordinates in the point cloud 𝐏. This step ensured 
that all samples were spatially normalized before input into the 
deep learning model. 

Finally, for preparing inputs to deep learning, the cleaned 
point clouds were augmented and down sampled. Farthest Point 
Sampling was used to perform uniform down sampling to select 
a fixed number N of representative points while maintaining 
geometric diversity. Additionally, augmentations such as 
random rotation 𝑅𝑧(𝜃) , jitter noise 𝒩(0, 𝜎2) , and scaling 
factors were applied during training and is given in Eq. (4): 

𝐩𝑖
′′ = 𝑠 ⋅ 𝑅𝑧(𝜃) ⋅ 𝐩𝑖

′ + 𝒩(0, 𝜎2)               (4) 

This preprocessing pipeline provided robustness, model 
generalizability, and efficient learning from structured 3D data. 
Algorithm 1 shows Point Cloud Data Preprocessing. 

Algorithm 1: Point Cloud Data Preprocessing 

Input: Raw point cloud P = {p₁, p₂, ..., p_N} 

Output: Preprocessed and augmented point cloud P_aug 

1: // Step 1: Noise Reduction using Statistical Outlier Removal 
(SOR) 

2: For each point pᵢ in P: 

       a. Compute distance to k-nearest neighbors 

       b. Retain pᵢ if its mean distance ≤ μ + α · σ 

3: Remove all points that do not satisfy the SOR criterion 

4: Let P_clean denote the denoised point cloud 

5: // Step 2: Ground Segmentation using RANSAC 

6: Fit a plane using RANSAC to estimate ground surface 

7: For each point pᵢ in P_clean: 

       a. Compute vertical distance dᵢ to the estimated plane 

       b. If dᵢ ≤ ϵ, label as ground and discard 

8: Let P_non_ground denote the remaining above-ground 
structures 

9: // Step 3: Coordinate Normalization (Min-Max Scaling) 

10: Compute min(P_non_ground) and max(P_non_ground) for 
all dimensions 

11: For each point pᵢ in P_non_ground: 

        Normalize coordinates: 

        pᵢ' = (pᵢ - min(P)) / (max(P) - min(P)) 

12: Let P_norm denote the normalized point cloud 

 

13: // Step 4: Downsampling with Farthest Point Sampling 
(FPS) 

14: Select N representative points using FPS from P_norm 

15: Let P_sampled be the resulting uniformly sampled point 
cloud 

16: // Step 5: Data Augmentation 

17: For each point pᵢ in P_sampled: 

        a. Apply random rotation R_z(θ) around z-axis 

        b. Apply random scaling s 

        c. Apply Gaussian jitter noise N (0, σ²) 

        d. Compute final point: pᵢ'' = s · R_z(θ) · pᵢ + N (0, σ²) 

18: Let P_aug = {p₁'', p₂'', ..., p_N''} 

19: Return P_aug 

Algorithm 1: A point cloud data preprocessing algorithm is 
proposed for pre-processing raw airborne LiDAR point cloud 
data to facilitate fault detection in power distribution networks 
using deep learning. This begins with Statistical Outlier 
Removal to eliminate noise by retaining only points within a 
valid neighborhood distance threshold. Ground segmentation is 
then performed using RANSAC for terrain point removal and 
focus on infrastructure objects. Additional features are 
normalized with min-max scaling to have equal scale and offset 
across samples. Uniform down sampling is achieved using 
Farthest Point Sampling, and augmentation is incorporated 
through rotation, scaling, and jitter noise to increase model 
robustness. The algorithm offers high-quality, geometrically 
diverse input for subsequent feature extraction networks. Table 
II presents a summary of Data Preprocessing Techniques. 

TABLE II.  SUMMARY OF DATA PREPROCESSING TECHNIQUES 

Step Method Used Purpose 

Noise Removal 
Statistical Outlier 

Removal 

Eliminate outliers based on 

neighborhood statistics 

Ground Segmentation 
RANSAC Plane 

Fitting 

Separate ground from 

infrastructure points 

Normalization Min-Max Scaling 

Scale point clouds into a 

unit cube for model 
consistency 

Downsampling 
Farthest Point 

Sampling 

Reduce number of points 

while preserving structure 

Augmentation 
Rotation, Jittering, 
Scaling 

Improve model robustness 
and generalization 
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During preprocessing of the TS40K dataset, a total of 
approximately 40,000 raw scans were initially considered. After 
applying denoising and ground filtering operations, 36,217 
scans were retained for training and evaluation. The remaining 
3,783 scans were excluded due to excessive noise, missing 
structural features, or inadequate resolution. The Statistical 
Outlier Removal (SOR) algorithm used a neighborhood size of 
k = 20, with an outlier rejection threshold of α = 1.5. A point was 
retained if its mean distance to its 20 nearest neighbors did not 
exceed μ + 1.5σ, where μ and σ are the mean and standard 
deviation of distances. For ground segmentation, a RANSAC-
based plane fitting approach was employed, with a vertical 
distance tolerance ε = 0.3 meters. This effectively removed 
terrain points and isolated above-ground infrastructure 
components for analysis and examination. 

C. Feature Extraction Using PointNet++ 

PointNet++ is utilized in this research to learn hierarchical 
features from raw 3D point cloud data for power distribution 

lines. Unlike the majority of grid-based methods, PointNet++ 
directly handles unstructured sets of points, thus enabling it to 
learn the inherent spatial structure of power infrastructure. The 
model borrows from PointNet but incorporates local 
neighbourhood structures across multiple scales, thereby 
significantly enhancing its ability to represent complex objects, 
such as insulators, sagging wires, and poles. Fig. 2 shows 
Feature Extraction Using PointNet++. 

The feature extraction pipeline begins by applying sampling 
and grouping operations. The point set 𝒫 =  {𝐩1, 𝐩2, … , 𝐩𝑁} is 
first downsampled using Farthest Point Sampling to select a 
subset of centroids 𝒞 ⊂ 𝒫 . For each centroid 𝐜𝑖 ∈ 𝒞 , a local 
region 𝒩𝑖  is defined using ball query or k-nearest neighbors to 
collect surrounding points. These local neighborhoods are then 
passed through shared Multi-Layer Perceptrons to generate local 
features 𝑓𝑖 as given in Eq. (5): 

𝑓𝑖 = MLP({𝐩𝑗 − 𝐜𝑖 ∣ 𝐩𝑗 ∈ 𝒩𝑖})                  (5) 

 
Fig. 2. Feature Extraction Using PointNet++. 

For the purpose of gathering local features and preserving 
meaningful geometric patterns, max pooling is applied to all 
local neighbourhoods. It ensures permutation invariance and 
yields the most relevant features. The outcome is a set of feature 
vectors 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑀}  that is a representation of a 
downsampled area and describes the local geometry thereof. 
Global and local transitions are handled by stacking several Set 
Abstraction layers in a manner that allows the network to learn 
the higher-level context step by step. 

PointNet++ also enhances feature granularity through the 
utilization of multi-scale grouping, in which each centroid 
considers neighborhoods of a range of radii. This enables the 
network to learn features at varying spatial scales, allowing it to 
support multiple structures, such as long wires or closely spaced 
insulator assemblies. The multi-scale feature vector for each 

centroid 𝑓𝑖
𝑀𝑆𝐺  is formed by concatenating features extracted 

from all scales, it is given in Eq. (6): 

𝑓𝑖
𝑀𝑆𝐺 = Concat(𝑓𝑖

𝑟1 , 𝑓𝑖
𝑟2 , … , 𝑓𝑖

𝑟𝑘)             (6) 

Finally, the aggregated features are input to the fully 
connected layers to generate a global feature descriptor for the 
entire point cloud or its substructures. Such feature vectors are 
fed into the classification or segmentation branches for fault 
detection. The ability of PointNet++ to preserve spatial topology 

and capture rich hierarchical features renders it well-suited for a 
thorough investigation of power distribution line faults. 
Algorithm 2 shows Feature Extraction Using PointNet++. 

Algorithm 2: Feature Extraction Using PointNet++ 

Input: Raw point cloud P = {p1, p2, ..., pN} 

Output: Global feature descriptor F_global 

1: Perform Farthest Point Sampling (FPS) on P to select 
centroids C ⊂ P 

2: for each centroid ci in C do 

3:     Define local neighborhood Ni using ball query or k-nearest 
neighbors 

4:     Normalize points in Ni relative to ci 

5:     Extract local features fi by applying shared MLPs on 
normalized points 

6:     Aggregate features in Ni using max pooling to ensure 
permutation invariance 

7: end for 

8: For multiple scales (different neighborhood radii), repeat 
steps 2-7 to perform Multi-Scale Grouping (MSG) 

9: Concatenate multi-scale features for each centroid to form 
fi_MSG 

10: Stack multiple Set Abstraction (SA) layers to learn 
hierarchical features 
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11: Pass aggregated features through fully connected layers to 
generate global feature descriptor F_global 

12: Return F_global 

Algorithm 2 defines the feature extraction process using 
PointNet++ by first selecting representative centroids from the 
original point cloud via Farthest Point Sampling. Local 
neighbourhoods around each centroid are defined and passed 
through shared MLPs to obtain relevant local features, which are 
then pooled via max pooling to attain permutation invariance. 
Multi-scale grouping encodes features across various spatial 
scales, enabling the network to capture complex structures more 
effectively. Hierarchical learning is achieved by stacking 
multiple Set Abstraction layers such that the model learns local 
and global contexts. Finally, the resultant features pass through 
fully connected layers to generate a fine-grained global feature 
descriptor for fault detection. Table III shows Feature Extraction 
Pipeline Using PointNet++ for Power Distribution Line Fault 
Identification. 

D. Voxelization and 3D CNN-Based Global Analysis 

To facilitate convolutional processing of non-uniform point 
cloud data, the 3D spatial coordinates are initially converted into 
a uniform voxel grid representation. This process, known as 

voxelization, divides the 3D space into discrete, uniformly sized 
cubes (voxels), where each voxel 𝑣𝑖,𝑗,𝑘  accumulates points 

falling within its bounds. Formally, for a point 𝐩 =  (𝑥, 𝑦, 𝑧), the 
voxel index is computed as in Eq. (7): 

(𝑖, 𝑗, 𝑘) = (⌊
𝑥−𝑥min

𝑠
⌋ , ⌊

𝑦−𝑦min

𝑠
⌋ , ⌊

𝑧−𝑧min

𝑠
⌋)            (7) 

where 𝑠  is the voxel size and 𝑥min, 𝑦min, 𝑧min  define the 
minimum coordinate bounds of the scene. Fig. 3 shows 
Architecture of CNN. 

Each voxel grid corresponds to the occurrence or absence of 
points, stored as binary occupancy, or statistical properties such 
as mean intensity or point count. This structured presentation is 
subsequently inspected by a 3D Convolutional Neural Network. 
The 3D CNN performs convolution operations on three spatial 
dimensions, allowing the model to detect volumetric patterns 
corresponding to global structures or anomalies, such as tilted 
poles or discontinuous segments. 

The core operation in a 3D CNN is the 3D convolution, 

where a filter 𝐊 ∈ ℝ𝑑×𝑑×𝑑  is applied over the voxel input 𝐕. 
The output feature map 𝐅 is computed as in Eq. (8): 

𝐅𝑥,𝑦,𝑧 = ∑  𝑑−1
𝑖=0 ∑  𝑑−1

𝑗=0 ∑  𝑑−1
𝑘=0 𝐊𝑖,𝑗,𝑘 ⋅ 𝐕𝑥+𝑖,𝑦+𝑗,𝑧+𝑘       (8) 

TABLE III.  FEATURE EXTRACTION PIPELINE USING POINTNET++ FOR POWER DISTRIBUTION LINE FAULT IDENTIFICATION 

Stage Operation Description Output 

1. Input Raw Point Cloud Unstructured 3D point set representing power infrastructure elements Input point cloud 

2. Sampling 
Farthest Point 

Sampling 
Selects a subset of well-spaced centroids from the input point cloud Sampled centroids 

3. Grouping Ball Query or k-NN Identifies neighboring points around each centroid to form local regions Local neighborhoods 

4. Feature 
Learning 

Shared Multi-Layer 
Perceptrons 

Learns geometric features from each local neighborhood Local feature vectors 

5. Pooling Max Pooling Aggregates local features to retain the most informative representation Pooled local features 

6. Hierarchical 

Learning 
Set Abstraction Layers 

Builds multi-level context by repeating sampling, grouping, and feature 

extraction 
Hierarchical feature maps 

7. Multi-Scale 
Grouping 

Multiple Neighborhood 
Radii 

Captures features at various spatial scales to handle objects of different 
sizes 

Multi-scale feature vectors 

8. Global Feature 

Aggregation 

Fully Connected 

Layers 

Aggregates local and multi-scale features into a comprehensive global 

descriptor 
Global feature representation 

9. Output 
Classification or 
Segmentation Branch 

Uses extracted features to detect and localize faults in power distribution 
components 

Fault classification or segmentation 

 
Fig. 3. Architecture of CNN. 
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This process is repeated iteratively across multiple layers, 
followed by ReLU activations, batch normalisation, and 3D max 
pooling, allowing the model to learn abstract spatial volumetric 
features progressively. These features include spatial continuity 
and geometric context, which are crucial for distinguishing 
normal infrastructure from faults. 

Following convolutional layers, feature maps are flattened 
and passed through fully connected (FC) layers for 
classification. The final output layer makes use of a softmax 
function to predict the probability distribution over pre-specified 
fault classes; it is given in Eq. (9): 

�̀�𝑖 =
𝑒𝑧𝑖

∑  𝐶
𝑗=1  𝑒

𝑧𝑗
, 𝑖 = 1,2, … , 𝐶                 (9) 

where 𝑧𝑖   is the logit score for class i, and C is the number 
of fault categories. Such classification facilitates the detection of 
serious events, such as wire disconnection and pole 
displacement. 

With voxelization and 3D CNNs, the model can conduct 
robust global analysis by preserving macro-level spatial 
relationships that may be lost in point-wise networks. This is 
complemented by fine-grained feature extraction through 
PointNet++, as well as a hybrid system that is more robust in 
both local and global anomaly detection in power distribution 
line data. Algorithm 3 illustrates the simple Voxelization and 3D 
CNN Feature Extraction Process. Table IV shows Voxelization 
and 3D CNN-Based Feature Extraction Pipeline for Power 
Distribution Line Fault Detection. 

Algorithm 3: Simple Voxelization and 3D CNN Feature 
Extraction 

def voxelize (points, voxel_size, min_coord): 

    # Create empty 3D grid 

def simple_3d_cnn(voxel_grid): 

    # Dummy function to represent 3D CNN processing 

    # In practice, this is where CNN layers extract features and 
classify 

    features = some_3d_cnn_model(voxel_grid) # placeholder 

    probabilities = softmax(features)   # output class probabilities 

    return probabilities 

def detect_fault_in_pointcloud (points, voxel_size): 

    min_coord = points.min(axis=0) 

    voxel_grid = voxelize(points, voxel_size, min_coord) 

    fault_probs = simple_3d_cnn(voxel_grid) 

          return fault_probs 

E. Fusion and Fault Classification 

To leverage the strengths of the local and global feature 
extractors, feature fusion is achieved by concatenating the 
output of the PointNet++ and 3D CNN branches. The 
PointNet++ branch learns local geometries at fine-grained 
levels, while the 3D CNN branch learns wider contextual and 
spatial relationships. captures broader contextual and spatial 
relationships. Let the feature vector from PointNet++ be 𝐟point ∈

ℝ𝑑1  and from the 3D CNN be 𝐟voxel ∈ ℝ𝑑2 . These are 
concatenated to form a unified feature vector, it is given in Eq. 
(10): 

𝐟fusion = [𝐟point ‖𝐟voxel ] ∈ ℝ𝑑1+𝑑2              (10) 

This joint representation 𝐟fusion  captures both the macro-
contextual and micro-structural features of the power 
distribution scenario. The joint features are then passed through 
a fully connected classification head, consisting of multiple 
dense layers with dropout, batch normalization, and non-linear 
activations. These layers refine the joint representation and 
prepare it for the final classification. 

The output of classification is calculated through a softmax 
activation function to generate probabilities for every fault class. 
Given 𝐶  categories (e.g., damaged insulator, sagging wire, 
leaning pole), the predicted class probabilities �̀�𝑖 are shown in 
Eq. (11): 

�̀�𝑖 =
𝑒𝑊𝑖

⊤𝐟fusion +𝑏𝑖

∑  𝐶
𝑗=1  𝑒

𝑊𝑗
⊤𝐟fusion +𝑏𝑗

, 𝑖 = 1,2, … , 𝐶        (11) 

TABLE IV.  VOXELIZATION AND 3D CNN-BASED FEATURE EXTRACTION 

PIPELINE FOR POWER DISTRIBUTION LINE FAULT DETECTION 

Stage Operation Description Output 

1. Input 
Raw Point 
Cloud 

Unstructured 3D 

point data collected 
from power 

distribution lines 

Input point 
cloud 

2. Voxelization 
Coordinate 

Discretization 

Converts 3D points 
into a uniform voxel 

grid based on 

predefined voxel 
size and scene 

bounds 

3D voxel 

grid 

3. Voxel 

Encoding 

Binary / 
Statistical 

Mapping 

Represents each 
voxel by occupancy 

(binary), point 

count, or statistical 

features like mean 

intensity 

Encoded 

voxel grid 

4. 3D 
Convolution 

3D CNN 
Layers 

Applies 3D filters 

over voxel space to 
learn spatial and 

volumetric patterns 

3D feature 
maps 

5. Activation & 
Normalization 

ReLU & Batch 
Normalization 

Introduces non-
linearity and 

stabilizes training 

by normalizing 
activations 

Activated 

and 
normalized 

features 

6. Pooling 
3D Max 

Pooling 

Downsamples 

spatial dimensions 

while retaining 
dominant features 

Pooled 

feature maps 

7. Deep Feature 

Learning 

Stacked 
Convolutional 

Layers 

Hierarchical 

abstraction of 
volumetric patterns 

across deeper 

network layers 

High-level 
volumetric 

features 

8. Flattening 
Feature Vector 

Creation 

Converts 3D feature 
maps into 1D 

vectors for 
classification 

Flattened 

feature 
vector 

9. 
Classification 

Head 

Fully 

Connected 

Layers + 
Softmax 

Predicts fault class 
probabilities from 

learned features 

Probability 

distribution 

over fault 
types 
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where 𝑊𝑖 and 𝑏𝑖 are the weights and biases for class 𝑖. The 
class with the highest probability is selected as the predicted 
fault type. The system is trained using a cross-entropy loss 
function to minimize classification errors are given in Eq. (12): 

ℒ = − ∑  𝐶
𝑖=1 𝑦𝑖log (�̀�𝑖)        (12) 

Here, 𝑦𝑖 is the ground truth one-hot label for class i. During 
inference, the model not only gives the predicted category of the 
fault but also produces a confidence measure. Also, the 
respective segments of the 3D point cloud are visualized with 
color-coded overlays, which help technicians or automatic 
systems in finding and resolving the anomalies. 

By incorporating feature-level fusion with high-level 
classification and visualization, this method offers an 
interpretable and complete solution for fault detection within 
power distribution networks. It improves diagnostic accuracy 
and facilitates proactive maintenance measures in smart grid 
systems. Algorithm 4 shows Fusion and Fault Classification. 
Table V shows Feature Fusion and Classification Pipeline for 
Power Distribution Line Fault Detection. 

Algorithm 4: Fusion and Fault Classification 

1: // Step 1: Feature Fusion 

2: f_fusion ← Concat (f_point, f_voxel) ∈ ℝ^ {d₁ + d₂} 

3: // Step 2: Classification Head 

4: z ← FC_ReLU_BN(f_fusion)       // Apply fully connected 
layers with ReLU and BatchNorm 

5: z ← Dropout(z) 

6: z ← FC(z)                         // Final fully connected layer to 
obtain logits ∈ ℝ^C 

7: // Step 3: Softmax for Class Probabilities 

8: for i = 1 to C do 

9:     ŷ_probs[i] ← exp(z[i]) / ∑_{j=1}^{C} exp(z[j]) 

10: end for 

11: // Step 4: Prediction 

12: ŷ ← argmax(ŷ_probs) 

13: // Step 5: Training Loss (if training mode) 

14: if Training then 

15:     L ← - ∑_{i=1} ^{C} y[i] * log(ŷ_probs[i])    // Cross-
entropy loss 

16: end if 

17: return ŷ, ŷ_probs 

TABLE V.  FEATURE FUSION AND CLASSIFICATION PIPELINE FOR POWER 

DISTRIBUTION LINE FAULT DETECTION 

Stage Operation Description Output 

1.Input 

Features 

Local and 

Global 

Feature 
Extraction 

PointNet++ extracts 

fine-grained local 

features; 3D CNN 

extracts global spatial-

contextual features 

Two separate 

feature 

vectors 

2.Feature 

Fusion 

Concatenatio

n 

Combines both feature 
vectors into a single, 

unified representation 

Joint fused 

feature vector 

3.Fully 

Connected 

Layers 

Dense 
Network 

Refines the fused 
representation through 

layers with activation, 

dropout, and batch 
normalization 

Refined high-

level feature 

vector 

4.Classifica
tion Head 

Softmax-

Based 

Prediction 

Predicts probabilities 

across multiple fault 

categories 

Probability 

scores for 
each fault 

class 

5.Decision 

Output 

Fault Type 

Identification 

Selects the fault class 
with the highest 

predicted probability 

Predicted 

fault label 

6.Visualizat

ion 

Color-Coded 

3D Overlay 

Highlights segments of 

the point cloud 
corresponding to 

detected faults for 

human interpretation 

Interpretable 
3D visual 

fault maps 

7.Training 

Objective 

Cross-

Entropy Loss 
Optimization 

Minimizes 

classification error by 

comparing predicted 
and actual fault labels 

during training 

Optimized 

classification 
model 

V. RESULTS AND DISCUSSION 

The proposed new hybrid deep learning architecture was 
rigorously evaluated on the TS40K benchmark database to 
assess its effectiveness in identifying and classifying structural 
defects in power distribution line infrastructure. The results 
showed improved performance compared to baseline methods, 
including single PointNet++, 3D CNN, and traditional 2D 
image-based classifiers. 

 

 

  
Fig. 4. Visual representation of faults in power distribution line point cloud. 

Fig. 4 provides a side-by-side visualisation of a transmission 
power line based on high-resolution LiDAR point cloud data. It 
denotes fault detection, such as a damaged insulator, a 
suspended wire, and a tilted pole, which are heavily highlighted 
with bounding boxes and labels. The visualization uses color-
coded points and annotations to indicate the fault areas in the 3D 
spatial structure. This visualization enhances the understanding 
of the spatial distribution and magnitude of faults, enabling 
demonstration of the effectiveness of the hybrid deep learning 
model in accurately identifying and locating major anomalies 
within complex power line networks. 
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Fig. 5. Precision-Recall (PR) curve. 

The Precision-Recall (PR) curve in Fig. 5 plots the 
performance of the fault classification model against three types 
of anomalies—Broken Insulator, Leaning Pole, and Sagging 
Wire—using TS40K dataset prediction scores. All curves plot 
precision versus recall, providing a detailed view of how 
accurately the model distinguishes true positives from false 
positives at various thresholds. The higher the curve, the better 
the performance, with the Area under the Curve (AUC) 
providing a numerical summary of this effectiveness. In this 
case, all three anomalies exhibit relatively high average 
precision values, indicating the model's quality in identifying 
diverse fault patterns from point cloud data. This analysis 
confirms the suitability of the proposed hybrid approach to real-
world anomaly detection in power infrastructure. 

TABLE VI.  CLASS-WISE DETECTION ACCURACY 

Anomaly Type 
PointNet++ 

(%) 

3D CNN 

(%) 

Fusion Model 

(%) 

Broken Insulator 90.1 86.7 94.0 

Leaning Pole 89.3 85.0 92.6 

Sagging Wire 93.0 88.5 95.1 

Background 

Noise 
92.1 89.7 94.8 

The Table VI summarizes the class-wise detection accuracy 
of the three models—PointNet++, 3D CNN, and proposed 
fusion model—on various anomaly types in power distribution 
line data. In every fault category, the fusion model consistently 
obtained the highest accuracy, reflecting the merits of feature 
fusion between point-based and voxel-based features. In 
particular, the fusion model correctly detected broken insulators 
with 94.0% accuracy, outperforming PointNet++ (90.1%) and 
3D CNN (86.7%). Correspondingly, it detected leaning poles 
with 92.6% accuracy, sagging wires with 95.1%, and separated 
background noise with 94.8%. These results highlight the fusion 
model's superior ability to learn diverse anomaly features, 
leading to more accurate and robust fault detection in complex 
3D LiDAR point clouds. 

 
Fig. 6. Multi-class fault classification confusion matrix. 

The Multi-Class Fault Classification Confusion Matrix in 
Fig. 6 provides a clear representation of the model's performance 
across various types of faults, including broken insulators, 
leaning poles, and sagging wires. Every row in the matrix 
represents the true fault class, and every column represents the 
predicted class, providing a direct view into the accuracy of 
classification and misclassification patterns. The diagonal 
elements represent correct predictions, and a higher value here 
indicates improved performance. Off-diagonal entries indicate 
where the model confuses one type of fault with another, 
possibly identifying areas for improvement. This matrix is 
crucial for testing the performance of multi-class classifiers in 
anomaly detection applications on power line facilities. 

 
Fig. 7. Feature distribution of detected faults. 

The feature variation plot of the identified faults in Fig. 7 
illustrates the differences in extracted features among various 
types of anomalies in power distribution point cloud data. Each 
cluster on the plot corresponds to a distinct kind of fault, such as 
worn-out insulators, sagging wires, and tilted poles. Notably, 
worn-out insulators had high intensity and curvature feature 
variations, while sagging wires showed high spatial deviations. 
Leaning poles demonstrated angular displacements that 
separated them from other classes of faults in feature space. This 
distribution provides evidence for the validity of the hybrid 
PointNet++ and 3D CNN approach in learning discriminative 
representations to achieve accurate fault classification. 
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Fig. 8. ROC Curve for fault classes. 

The ROC curve in Fig. 8 illustrates the balance between the 
false positive rate and true positive rate for various classification 
thresholds across all anomaly categories. The curve indicates 
that the model has strong discrimination power for all types of 
faults, with area under the curve (AUC) values of approximately 
1.0, indicating very good sensitivity and specificity. 
Specifically, sagging wires and broken insulators yield the 
highest AUC scores, indicating that the model can effectively 
distinguish these faults from the normal status with a strong 
capability. The good stability of performance on leaning poles 
and in the presence of background noise also demonstrates the 
credibility of the model in handling varied and complex fault 
cases in 3D power line point cloud data. Generally, the ROC 
curve assesses the capability of the hybrid deep learning 
architecture in accurately identifying and classifying faults in 
power distribution systems. 

 

Fig. 9. Detection rate of various anomalies. 

The bar graph in Fig. 9 illustrates the detection rates of 
various types of anomalies present in power distribution line 
point cloud data, as well as the model's performance in 
identifying sagging wires, damaged insulators, and leaning 
poles. Of these, damaged insulators saw the highest rate of 
detection at 95.1%, followed by sagging wires at 92.5%, and 
leaning poles at 90.8%. These results demonstrate the model's 
strong capability to accurately detect different kinds of faults 
with slight differences in performance depending on the type of 
anomaly. In general, the graph confirms the robustness and 

stability of the proposed hybrid deep learning method in 
identifying critical faults in sophisticated 3D LiDAR data of 
power plants. 

 
(a)                                              (b) 

Fig. 10. (a) Inter-relation: Power line component detection. (b) Inter-relation: 

power line fault diagnosis. 

Fig. 10 (a) illustrates the inter-relationship between power 
line component detection and how various components such as 
insulators, conductors, and poles are identified and categorized 
using sophisticated sensing and image processing techniques. 
Fig. 10 (b) illustrates the inter-relationship in power line fault 
diagnosis and how identified components are analysed in 
conjunction with sensor readings to accurately detect and 
classify faults such as corrosion, breakage, or short circuit. 
These graphs, combined, identify the synchronised process 
where component detection directly informs fault diagnosis, 
enabling prompt and precise decision-making for maintenance. 
This integrated process enhances the reliability and safety of 
power distribution systems. 

TABLE VII.  PERFORMANCE EVALUATION 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

2D CNN (Image-
Based) [48] 

82.4 80.1 78.9 79.5 

3D CNN (Voxel-

Based) [24] 
89.6 87.3 88.1 87.7 

PointNet++ (Point-
Based) [17] 

91.2 90.4 89.6 90.0 

Proposed Hybrid 

(PointNet++ + 3D 
CNN) 

94.7 93.0 92.0 92.0 

Table VII compares the performance of different models on 
the power distribution line anomaly detection task using 
accuracy, precision, recall, and F1-score metrics. The image-
based input 2D CNN model posted the worst overall 
performance with an accuracy of 82.4%, indicating the least 
effectiveness for this task in the 3D space. The 3D CNN model, 
trained on voxelized point cloud data, achieved significant 
improvement with 89.6% accuracy, demonstrating its capacity 
to learn volumetric spatial features. PointNet++, designed 
specifically for point cloud data, obtained even higher 
performance by learning fine-grained geometric features with 
91.2% accuracy. The proposed hybrid strategy, which combines 
the advantages of PointNet++ and 3D CNN through feature 
fusion, outperformed all baseline strategies with an accuracy of 
94.7% and balanced precision, recall, and F1-score values of 
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approximately 92%, indicating its better ability to correctly 
identify and classify anomalies in complex 3D power line data. 

 
Fig. 11. Performance comparison of models on power line fault detection. 

The bar plot in Fig. 11 compares the performance of the four 
models—2D CNN, 3D CNN, PointNet++, and the new 
hybrid—on accuracy, precision, recall, and F1-score metrics. 
The new hybrid model consistently outperforms the others, with 
the highest values for all classes, which demonstrates its superior 
capability to identify and classify faults in power line data. 
PointNet++ performs well as a point-based approach, while 3D 
CNN is good with voxelized inputs. Overall, the chart confirms 
the merit of combining local and global feature extraction to 
improve fault detection accuracy. 

VI. DISCUSSION 

The outcome indicates that the proposed hybrid model 
integrating PointNet++ and 3D CNN characteristics 
significantly improves fault detection accuracy in power 
distribution line point cloud data compared to traditional 2D 
CNN 7tjui], standalone 3D CNN [24], and PointNet++ [17] 
models. Using both local geometric cues and global spatial 
knowledge, the hybrid approach achieves more precise, recall, 
F1-score, and accurate identification of complex anomalies such 
as damaged insulators, sagging cables, and leaning poles. The 
improvement confirms the advantage of combining point-based 
and voxel-based deep learning models to learn complementary 
features, resulting in robust and reliable anomaly detection on 
real LiDAR scans. Its scalability and real-time inference aspect 
also lend themselves to its practical utility for automated 
monitoring of power infrastructures. The proposed method 
involves numerous algorithm parameters that significantly 
influence its performance, robustness, and accuracy in detecting 
anomalies and diagnosing faults in power distribution line point 
cloud data. In the preprocessing stage, parameters such as the 
number of neighbors ( 𝑘 ) and outlier threshold multiplier ( 𝛼 ) 
used in Statistical Outlier Removal (SOR) determine the balance 
between removing noise and preserving relevant data-too 
aggressive filtering can discard important features. At the same 
time, lenient settings may allow unwanted noise to remain. 
Ground segmentation relies on the tolerance parameter ( 𝜀 ) in 
the RANSAC plane fitting algorithm, which affects how 
effectively ground points are separated from infrastructure 
elements. Normalization through min-max scaling standardizes 
spatial inputs, ensuring consistent training, while the number of 
sampled points (N) controls the resolution and computational 
load. Data augmentation parameters like rotation angles, jitter 

noise level, and scaling factors enhance model generalization, 
though excessive augmentation can introduce unrealistic 
variations. Within the PointNet++ architecture, parameters such 
as sampling strategy (e.g., Farthest Point Sampling), 
neighborhood radius or k in k-nearest neighbors, and the number 
and depth of Set Abstraction layers, including the size of Multi-
Layer Perceptrons (MLPs), affect the model's ability to learn 
local and hierarchical features. Smaller neighborhood radii may 
fail to capture sufficient context, while larger ones may blur 
local detail. Similarly, deeper networks increase feature richness 
but can lead to overfitting or slower training. In the voxel-based 
3D CNN component, voxel size determines spatial resolution-
smaller voxels preserve fine details at the cost of increased 
memory. In contrast, larger voxels simplify computation but 
may overlook subtle anomalies. Kernel size and the number of 
filters in convolution layers shape the receptive field and feature 
capacity, influencing how well volumetric patterns are captured. 
Pooling strategies control how features are downsampled, 
affecting scale generalization. Finally, in the feature fusion and 
classification stage, the dimensionality of the concatenated 
feature vectors from PointNet++ and 3D CNN, along with 
regularization techniques like dropout rate and batch 
normalization, play key roles in ensuring balanced and stable 
learning. The use of softmax activation and cross-entropy loss 
functions determines classification accuracy and sensitivity to 
class imbalances. Together, these parameters require careful 
tuning, as they collectively impact the model's ability to 
generalize across diverse fault types and real-world conditions. 

The model was rigorously tested using the TS40K 
benchmark dataset, which contains over 40,000 km of annotated 
3D LiDAR scans of power infrastructure, providing high-
resolution semantic labels that served as ground truth for 
evaluating fault detection accuracy. Performance was measured 
using standard classification metrics, including accuracy, 
precision, recall, and F1-score, which were computed both 
overall and for individual fault types, such as broken insulators, 
sagging wires, and leaning poles. Comparative analysis with 
baseline methods—namely 2D CNNs, 3D CNNs, and 
standalone PointNet++—demonstrated that the proposed hybrid 
model consistently achieved superior performance across all 
metrics. Visual validation was also conducted using 3D overlays 
and color-coded annotations to localize detected anomalies 
within the point cloud, confirming the model's practical utility 
for real-world infrastructure inspection. Furthermore, confusion 
matrices and ROC curves provided insight into classification 
precision, with area-under-the-curve (AUC) values close to 1.0, 
indicating excellent sensitivity and specificity. Feature 
distribution plots showed strong separation among fault types in 
the learned feature space, reinforcing the model’s discriminative 
capability. Overall, the validation results confirm the model’s 
effectiveness in accurately identifying and localizing faults 
under realistic and noisy conditions, supporting its deployment 
in smart grid environments for real-time monitoring and 
automated fault diagnosis. 

VII. CONCLUSION AND FUTURE WORKS 

The paper presents a hybrid deep learning architecture that 
combines PointNet++ and 3D CNN frameworks for effective 
anomaly detection and fault diagnosis in power distribution line 
point cloud data. Employing the TS40K dataset, the proposed 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 7, 2025 

738 | P a g e  

www.ijacsa.thesai.org 

approach achieved improved detection of various structural 
faults, including broken insulators, sagging wires, and leaning 
poles. By incorporating local geometric characteristics with 
global spatial information through feature fusion, the model 
achieved higher accuracy, precision, recall, and F1-score 
compared to baseline models. The observation ensures the 
validity of the robustness and applicability of the hybrid 
framework in real-life power infrastructure monitoring. 

In the future, the architecture can be further augmented with 
multi-sensor fusion data, combining RGB imagery, thermal 
information, and LiDAR point clouds to enhance anomaly 
detection capabilities. Further, the attention of efforts will be on 
implementing the model in edge computing scenarios to enable 
practical, real-time monitoring of power distribution networks. 
Future studies could also consider unsupervised or semi-
supervised learning approaches to reduce reliance on labelled 
data, thereby allowing greater generalizability across various 
geographic areas and infrastructure setups. 
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