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Abstract—This paper aims to develop an efficient and adaptive 

load balancing algorithm for cloud computing environments using 

a novel hybrid meta-heuristic approach. Effective load balancing 

is necessary for optimum performance and resource utilization in 

cloud computing systems. Most conventional meta-heuristic 

algorithms suffer from premature convergence and poor 

exploration–exploitation tradeoffs. An innovative hybrid meta-

heuristic algorithm, Hybrid Grey Wolf–Whale Optimizer 

(HGWWO), is proposed for efficiently and dynamically balancing 

cloud load. HGWWO integrates the leadership hierarchy and 

adaptive hunting strategy of the Grey Wolf Optimizer (GWO) 

with the spiral-shaped exploitation mechanism of the Whale 

Optimization Algorithm (WOA), resulting in high convergence 

rates. The algorithm is implemented in a multi-objective cloud 

load balancing model to reduce response time, energy usage, and 

makespan while optimizing resource utilization among virtual 

machines. The experimental outcomes prove that HGWWO 

outperforms existing algorithms regarding throughput, waiting 

time, and execution efficiency. The suggested model has potential 

for real-time cloud scheduling of resources and is an efficient 

solution for scalable and heterogeneous cloud environments. 

Keywords—Cloud computing; load balancing; hybrid meta-

heuristic; grey wolf optimizer; whale optimization algorithm 

I. INTRODUCTION 

Cloud computing has transformed the delivery of 
computational resources and services, providing on-demand 
access to shared, configurable resources like Virtual Machines 
(VMs), storage, and applications over the Internet [1]. Cloud 
paradigms facilitate scalability, flexibility, and cost-
effectiveness, essential in contemporary business and service 
organizations [2]. Nevertheless, the dynamic nature and 
dispersion of the cloud result in issues with providing resources, 
primarily load balancing [3]. Ineffective load balancing leads to 
bottlenecks in the system, resulting in poor resource utilization, 
high response times, and overall poor system performance [4]. 
Optimizing workload distribution among existing VMs while 
avoiding system imbalance is an essential design and 
administration issue in cloud computing infrastructures [5]. 

These issues, however, have been addressed through the 
design of numerous load balancing schemes, ranging from 
simple static approaches to more advanced and adaptive 
methodologies. Static algorithms in highly dynamic and 
heterogeneous clouds are ineffective since they cannot adapt to 
runtime variations in workloads and system resources [6]. In 
such cases, load balancing algorithms, in the form of multi-
objective optimization, become pressing issues. The algorithms 

attempt to balance multiple objectives concurrently, including 
makespan, power usage, response time, and resource utilization 
[7]. Such problem-solving demands state-of-the-art 
optimization techniques for dealing with highly complicated 
search spaces and allowing system state changes. Related work 
across various fields, including machine learning for business 
forecasting [8], innovative grid system optimization [9], and 
security threat detection [10], similarly emphasizes the range 
and promise of state-of-the-art optimization and intelligent 
decision-making methodologies. Such models provide a 
compelling argument for highly adaptive solutions that are 
robust enough for intensive environments, such as cloud 
computing. 

Past research has demonstrated the effectiveness of nature-
inspired meta-heuristic algorithms for optimizing complex 
multi-objective problems in the cloud [11]. Grey Wolf 
Optimizer (GWO) and the Whale Optimization Algorithm 
(WOA) are distinguished by their excellent exploration and 
exploitation capacities. GWO mimics wolves' social hierarchy 
and hunting strategy [12], while WOA mimics humpback 
whale bubble-net hunting [13]. While the two algorithms 
promise particular strengths, they both carry the flaw of 
premature convergence, or a lack of thoroughness in local 
search, when employed in isolation. Inspired by the 
complementarities between the two tactics, this study proposes 
a hybrid algorithm, HGWWO that combines the social 
leadership process of GWO with the exploitation effectiveness 
of WOA to improve load balancing efficiency in the cloud. 

Although more meta-heuristic algorithms have recently 
been applied to cloud load balancing, previous work often fails 
to adequately resolve the exploration-exploitation tradeoff 
under highly variable workloads. When used standalone, 
algorithms such as GWO or WOA tend to converge 
prematurely or become stuck in a local optimum. Although 
hybrid methodologies also exist, they tend to incur heavy 
computational overhead or be specialized for low scales, 
thereby limiting their generality. This work closes this gap by 
proposing HGWWO as a hybrid meta-heuristic that combines 
GWO's adaptive leader structure with spiral-guided localized 
searching from WOA, with a focus on being particularly 
appropriate for variable heterogeneous clouds. By integrating 
the merits of both algorithms, HGWWO will deliver a 
computationally efficient and generic solution for resolving the 
multi-objective cloud load balancing problem. Therefore, the 
primary research question guiding this study is: How can a 
hybrid meta-heuristic algorithm be developed to dynamically 
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handle workload in heterogeneous clouds with minimal 
makespan, energy usage, and load deviation? 

The rest of the paper is as follows: Section II reviews the 
literature on load balancing and meta-heuristic optimization. 
Section III describes the mathematical model of the load 
balancing problem and its objective functions. Section IV 
details the HGWWO algorithm. Section V provides simulation 
results, comparison analysis, and performance assessment. 
Section VI provides a critical discussion of the findings, 
including improvements and limitations. Finally, Section VII 
concludes the paper and offers directions for further work. 

II. LITERATURE REVIEW 

Cloud computing load balancing has garnered significant 
research interest due to its importance in optimizing resource 
usage, minimizing response time, and ensuring Quality of 
Service (QoS). Several heuristic and meta-heuristic methods 
have been proposed for addressing the dynamic and multi-
objective nature of the problem. Muteeh, et al. [14] presented 
an Ant Colony Optimization (ACO)-based multi-resource load 
balancing algorithm to solve the issues in the scheduling of 
scientific workflows in cloud computing. Their approach 
optimized the makespan and cost, ensuring balanced load 
distribution among cloud resources. Experimental verification 
showed enhanced resource utilization and a decrease in both the 
price and the running time. 

Sefati, et al. [15] proposed load balancing using GWO, 
focusing on the algorithm for identifying overloaded and 
underutilized nodes. The algorithm includes using the fitness 
value and reliability of the nodes to direct resource assignment. 
CloudSim experiments demonstrated significant reductions in 
response time and execution cost compared to other typical 
methods. Ramya and Ayothi [16] proposed a hybrid Dingo and 
Whale Optimization Algorithm (HDWOA-LBM) by 
integrating dingo and whale hunting behaviors to achieve 
effective task allocation. The algorithm enhances both 
exploration and exploitation capabilities. Simulation results 

validated its efficiency, showing improvements in makespan 
(22.9%), throughput (21.2%), and reliability (25.4%). 

Geetha, et al. [17] created an innovative Intercrossed Chimp 
and Bald Eagle Algorithm (IC&BA) incorporating chimp 
optimization and bald eagle searching. Their approach 
considers concurrently energy usage, execution cost, 
makespan, and turnaround time. Study results validated 
improved balancing and performance in heterogeneous 
environments. 

Emara, et al. [18] presented an advanced Harris Hawks 
Optimization (HHO) for task scheduling in cloud computing. 
Their approach enhanced the exploration and exploitation 
stages through mutation-based diversification, thereby 
outdoing the conventional HHO and other metaheuristics in 
makespan, throughput, and load variance. 

Haris and Zubair [19] developed a hybrid Battle Royale and 
Deep Reinforcement Learning (BRDRL) dynamic load 
balancing algorithm. The approach combines job migration 
through DRL and VM selection through BRO. Simulations 
demonstrated that BRDRL resulted in a 3.9% improvement in 
throughput and a 15.3% improvement in response time 
compared to existing models and hybrids. 

Tabagchi Milan, et al. [20] suggested an Artificial Bee 
Colony (ABC)-derived method for green cloud computing. 
Overloaded VM tasks are migrated according to the bee 
behavior to enhance QoS and energy savings. The experimental 
results indicate improvement in energy and makespan. 

While all the above approaches support load balancing in 
cloud computing, most algorithms are plagued with tradeoffs 
between convergence rates and exploitation accuracy, as 
highlighted in Table I. For example, ACO and GWO-based 
algorithms converge prematurely or become stuck in local 
optima in dynamic environments. Hybrid algorithms like 
HDWOA and BRDRL improve performance at the expense of 
being computationally intensive and having limited 
generalizability for use in other cloud infrastructures. 

TABLE I.  AN OVERVIEW OF RECENT CLOUD LOAD BALANCING ALGORITHMS 

Ref Algorithm Features Limitations 

[14] Ant colony optimization 
It supports multi-resource allocation, workflow-aware 

scheduling, and effectively reduces cost and execution time. 

May experience slow convergence and exhibit limited 

adaptability to dynamic load variations. 

[15] Grey wolf optimizer 
It accounts for node reliability and adapts to load conditions, 
including underloaded and overloaded nodes. 

Prone to entrapment in local optima and characterized by 
limited exploitation capability. 

[16] 
Hybrid dingo and whale 
optimization algorithm 

The approach enhances exploration and exploitation 

mechanisms, improving makespan and increasing system 

reliability. 

Exhibits high computational complexity, with potential 

performance degradation under task overload or in the 

presence of noisy objective functions. 

[17] 
Intercrossed chimp and 

bald eagle algorithm 

The method employs a multi-criteria load balancing 

approach that accounts for cost, energy consumption, and 

response time through a hybrid strategy. 

The approach may require extensive parameter tuning and 

demonstrates limited scalability for general-purpose use. 

[18] Harris hawks optimization 
It employs adaptive mutation to strengthen global search 

efficiency, improving task scheduling accuracy. 

Remains sensitive to the initial population and incurs 

additional computational overhead. 

[19] 

Hybrid battle royale and 

deep reinforcement 
learning 

It combines DRL for job transfer with the BRO algorithm 

for VM selection, facilitating dynamic and adaptive 
decision-making. 

It necessitates large volumes of training data, and 

integrating deep models contributes to substantial 
computational overhead. 

[20] Artificial bee colony 
It utilizes bio-inspired task migration techniques to reduce 

energy consumption while maintaining or improving QoS. 

Demonstrates reduced effectiveness under high-load 

conditions and prioritizes energy efficiency at the expense 
of load balancing. 
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Moreover, in a unified architecture, most algorithms 
individually optimize performance measures, power 
consumption, or both, excluding the multiple objective 
parameters. In response, we introduce HGWWO, the union of 
the exploration power in GWO and the exploitation power in 
WOA. The new approach guarantees better load balancing 
performance by simultaneously minimizing makespan, energy 
consumption, and load deviation. 

III. PROBLEM FORMULATION 

VMs are the primary entities for executing user tasks and 
managing workload distribution in cloud computing 
environments. Each VM has distinct resource capacities such 
as memory, processing power, disk space, and bandwidth. Let 
us define the set of VMs as 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑚} , where 𝑚 
denotes the total number of virtual instances available in the 
system. Each VM can be modeled using a multi-dimensional 
vector that captures the required levels of different resources. 

The infrastructure comprises several identical physical 
servers, with one designated as the master controller that 
delegates incoming task requests to appropriate VMs. VM 
creation is conditional on memory availability. A host lacking 
adequate memory cannot spawn a new VM instance. In this 
scenario, we assume there are 𝑛 independent tasks to be 
executed across 𝑚 available VMs. 

Efficient task scheduling is critical to ensure equitable load 
distribution and to enhance performance metrics. Each user 
request is characterized by a parameter vector 𝑈 =
(𝜌, 𝜎, 𝛾, 𝜇, 𝜒) , where 𝜌 stands for the average frequency of 
online user requests, 𝜎 is the size of each request, 𝛾 denotes 
the required CPU resources, 𝜇 signifies the needed memory for 
task execution, and 𝜒 refers to the request frequency per minute. 
The memory load for VM i is given by Eq. (1). 

ℳ𝒾 = Rem𝑖 +
ω𝑖
Ω𝑖
× 100% (1) 

Where Rem𝑖  is the residual memory before assignment, 𝜔𝑖 
is the task memory usage, and Ω𝑖  is the total available memory. 

The CPU load for VM i is calculated using Eq. (2). 

𝒞𝒾 = Cpu
𝑖
+
τ𝑖
Θ𝑖
× 100% (2) 

Where Cpu𝑖 is the CPU capacity left before execution, 𝜏𝑖 is 
the CPU demand of tasks, and Θ𝑖 is the total CPU available. 

The overall workload on VM i is the weighted combination 
of memory and CPU load, as expressed in Eq. (3). 

Φ𝑖 = α ⋅ℳ𝒾 + β ⋅ 𝒞𝒾 (3) 

Where 𝛼 + 𝛽 = 1 are the memory and CPU weight factors. 

The total load on host 𝑗 is derived by summing all VM loads 
on the host, as shown in Eq. (4). 

Ψ𝑗 =∑Φ𝑖

𝑚𝑗

𝑖=1

=∑(α ⋅ℳ𝒾𝒿 + β ⋅ 𝒞𝒾𝒿)

𝑚𝑗

𝑖=1

 (4) 

The average load across all physical machines in the 
network is calculated using Eq. (5). 

Ψ̅ =
1

𝑝
∑Ψ𝑗

𝑝

𝑗=1

=
1

𝑝
∑∑(α ⋅ℳ𝒾𝒿 + β ⋅ 𝒞𝒾𝒿)

𝑚𝑗

𝑖=1

𝑝

𝑗=1

 (5) 

The first fitness objective, aiming to minimize the load 
deviation across hosts, is formulated in Eq. (6). 

𝐹1 =∑|Ψ𝑗 − Ψ̅|

𝑝

𝑗=1

 (6) 

The task assignment is represented by the binary variable 
defined in Eq. (7). 

𝛿𝑖𝑗 = {
1,   𝑖𝑓 𝑡𝑎𝑠𝑘 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑉𝑀𝑗
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              

 (7) 

The total execution time on VM 𝑗 is computed as per Eq. 
(8). 

𝒯𝒿 =∑δ𝑖𝑗

𝑛

𝑖=1

⋅ 𝒯𝒾𝒿 (8) 

The completion time for task 𝑖 on VM 𝑗 is evaluated using 
Eq. (9). 

𝒯𝒾𝒿 =
𝐿𝑖

Proc𝑗
 (9) 

Where 𝐿𝑖  is the task length in MIPS, and Proc𝑗  is the 

processing speed of the VM. 

The makespan represents the maximum execution time 
among all VMs and is defined in Eq. (10). 

ℳ𝓈 = max(𝒯𝒿) ,  1 ≤ 𝑗 ≤ 𝑚 (10) 

The second objective function, total energy consumption, 
accounts for both active and idle states of VMs and is 
formulated in Eq. (11). 

𝐹2 =∑[𝒯𝒿 ⋅ α𝑗 + (ℳ𝓈 − 𝒯𝒿) ⋅ β𝑗]

𝑚

𝑗=1

⋅ Procj (11) 

Where 𝛼𝑗 and 𝛽𝑗 are the energy coefficients (joules per 

instruction) in active and idle states, respectively. 

The third fitness objective considers task instruction 
overhead and delay penalty. It is denoted as 𝐹 3 F 3  and defined 
in Eq. (12). 

𝐹3 = 𝑤1 ⋅
Instr𝑖

MaxInstr
+ 𝑤2 ⋅ 𝐷𝑖 (12) 

Where Instr𝑖  is the instruction count of task 𝑖, MaxInstr is 
the maximum throughput of any processor, and 𝐷𝑖  is the delay 
penalty. The weights are fixed as 𝑤1 = 0.7 and 𝑤2 = 0.3. 

The final goal is to minimize the overall fitness function 𝐹, 
a weighted sum of the three sub-objectives. This is 
mathematically given by Eq. (13). 
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𝐹 = λ1 ⋅ 𝐹1 + λ2 ⋅ 𝐹2 + λ3 ⋅ 𝐹3 (13) 

where 𝜆1 = 1 , 𝜆2 = 0.5 , and 𝜆3 = 0.5  are the respective 
weights for load deviation, energy consumption, and task 
allocation cost. 

IV. PROPOSED METHOD 

A new hybrid meta-heuristic algorithm, HGWWO, is 
presented here to solve the complex multi-objective load 
balancing problem in cloud computing, reducing makespan, 
energy usage, and load deviation. HGWWO combines the best 
features of two popular optimization algorithms: GWO and 
WOA. The HGWWO is explicitly formulated to optimize task-
to-VM allocation in dynamic cloud environments to improve 
convergence accuracy and prevent premature stagnation. 

A. Grey Wolf Phase: Resource-aware Encircling Strategy 

GWO mimics the leadership-driven hunting and encircling 
behavior observed in natural grey wolf packs. In the context of 
this study, where the primary goal is to allocate independent 
cloud computing tasks to VMs efficiently, each "grey wolf" 
represents a potential solution, a vector encoding task-to-VM 
assignments. The metaphorical "prey" is the optimal solution 
that minimizes makespan, balances resource utilization, and 
reduces energy consumption. 

Wolves are hierarchically classified into four roles, Alpha 
(α) that represents the best-known task scheduling solution at 
the current iteration; beta (β) and delta (δ) that represent the 
second and third-best solutions, contributing diversity and 
assisting in refining the search direction; and omega (ω) as 
follower solutions that are guided by the leading trio to explore 
the broader search space. 

The optimization begins with the encircling behavior, where 
wolves adjust their positions relative to the prey, i.e., the current 
best-known scheduling pattern. Each VM allocation solution is 
iteratively updated using the encircling formulation, which 
introduces stochastic coefficients to balance intensification and 
diversification. The position update rule is given by Eq. (14). 

𝑋new
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡 + 1) = 𝑋prey

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡) − 𝐴 ⋅ �⃗⃗�  where �⃗⃗� 

= |𝐶 ⋅ 𝑋prey
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡) − 𝑋 (𝑡)| 

(14) 

Where 𝑋prey⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡) is the position vector of the current best task 

scheduling solution, 𝑋 (𝑡) denotes the position of the candidate 

VM allocation, �⃗⃗�  refers to the encircling vector (distance 

between candidate and prey), 𝐴  is an adaptive coefficient 

vector controlling convergence intensity, 𝐶  is a coefficient 

vector introducing randomness. The adaptive coefficient 𝐴  is 
derived as follows: 

𝐴 = 2 ⋅ 𝑎 ⋅ 𝑟1⃗⃗⃗  − 𝑎  (15) 

Where 𝑎  linearly decreases from 2 to 0 across iterations, 
gradually shifting the search from exploration to exploitation, 

and 𝑟1⃗⃗⃗   is a random vector in [0, 1]. The vector 𝐶  is similarly 
calculated using Eq. (16). 

𝐶 = 2 ⋅ 𝑟2⃗⃗  ⃗ (16) 

With 𝑟2⃗⃗  ⃗  being another random vector in [0, 1]. These 
stochastic variables help diversify the search paths and prevent 
premature convergence. 

Once the encircling step is complete, the algorithm enters 
the position updating phase, where each solution is recalibrated 
by referencing the top three leaders (α, β, and δ). This phase 
ensures the search agents (candidate solutions) are drawn 
toward the most balanced and energy-efficient task assignments 
identified. The distances from each leader are computed, and 
new intermediate positions are derived as follows: 

𝑋α⃗⃗ ⃗⃗  = 𝑋α⃗⃗ ⃗⃗  − 𝐴1⃗⃗⃗⃗ ⋅ |𝐶1⃗⃗⃗⃗ ⋅ 𝑋α⃗⃗ ⃗⃗  − 𝑋 | 

𝑋𝛽⃗⃗ ⃗⃗  = 𝑋𝛽⃗⃗ ⃗⃗  − 𝐴2⃗⃗ ⃗⃗ ⋅ |𝐶2⃗⃗⃗⃗ ⋅ 𝑋𝛽⃗⃗ ⃗⃗  − 𝑋 | 

𝑋𝛿⃗⃗ ⃗⃗  = 𝑋𝛿⃗⃗ ⃗⃗  − 𝐴3⃗⃗ ⃗⃗ ⋅ |𝐶3⃗⃗⃗⃗ ⋅ 𝑋𝛿⃗⃗ ⃗⃗  − 𝑋 | 

(17) 

The final updated position for the VM scheduling solution 
is obtained by averaging the guidance from the three leaders, as 
defined in Eq. (18). 

𝑋 (𝑡 + 1) =
1

3
(𝑋α⃗⃗ ⃗⃗  + 𝑋β⃗⃗ ⃗⃗ + 𝑋δ⃗⃗⃗⃗ ) (18) 

This rule ensures that each task-to-VM mapping benefits 
from the consensus of the top-performing strategies. In the load 
balancing context, this corresponds to scheduling tasks such 
that the CPU and memory demands are evenly distributed, 
minimizing execution bottlenecks and energy overhead. 

B. Whale Phase: Exploitation Via Spiral Search 

While the grey wolf phase provides deep global exploration 
and informed leader-based direction for task delegation, it falls 
short when dealing with local exploitation, especially in 
convergence towards remarkably optimized task-VM mapping. 
The proposed HGWWO incorporates an enhanced local search 
mechanism adopted from the WOA to increase search depth 
and overcome stagnation. 

WOA simulates humpback whale bubble-net feeding 
behavior. In the analogy, there is one candidate task schedule 
for each whale, and the target is the ideal VM assignment with 
the shortest makespan and evenly distributed CPU/memory 
usage. WOA alternates between encircling, spiral motion 
exploitation, and random search, exploring and exploiting the 
solution space more efficiently. 

The first behavioral pattern of WOA involves encircling the 
best solution discovered so far. In the cloud computing, this 
action refers to refining task allocations around the best-known 
task-VM mapping. This behavior mirrors the GWO encircling 
mechanism but contributes to localized convergence. This step 
is mathematically represented by Eq. (19). 

𝑋new
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡 + 1) = 𝑋best

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡) − 𝐴 ⋅ �⃗⃗�  where �⃗⃗� 

= |𝐶 ⋅ 𝑋best
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡) − 𝑋 (𝑡)| 

(19) 

Where 𝑋best⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡) refers to the current best task assignment 

solution and 𝑋 (𝑡) stands for the position of the current whale 
(solution). 
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To fine-tune the best solutions near optima, whales perform 
a spiral movement, which enables candidate solutions to follow 
a logarithmic path toward the best allocation found. This is 
crucial for minimizing minor inefficiencies in task scheduling, 
such as slight VM overloading or imbalance in memory usage. 
This phase probabilistically alternates with the encircling step 
using a control parameter 𝑝 ∈ [0,1]. The spiral search is applied 
if 𝑝 ≥ 0.5, and the position update is calculated by Eq. (20). 

𝑋new
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡 + 1) = |𝑋best

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡) − 𝑋 (𝑡)| ⋅ 𝑒𝑏𝑙 ⋅ cos(2π𝑙)

+ 𝑋best
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡) 

(20) 

Where 𝑏 is a constant defining the spiral shape, 𝑙 is a random 
number in [−1,1] determining movement orientation. 

WOA includes a prey search mechanism randomly 
generating new task scheduling solutions to maintain diversity 
and avoid local optima traps. This phase becomes dominant 
when the algorithm needs to escape plateaus in the fitness 
landscape. The exploration behavior is modeled by Eq. (21). 

𝑋new
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡 + 1) = 𝑋rand

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝐴 ⋅ �⃗⃗�  where �⃗⃗� 

= |𝐶 ⋅ 𝑋rand
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑋 (𝑡)| 

(21) 

Where 𝑋rand⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  is a randomly selected solution from the 
population. This component is especially important for 
diversifying the task assignments and discovering new 

combinations that reduce energy consumption or execution 
delay. 

In the hybrid HGWWO algorithm, the whale phase is used 
during the optimization cycle's exploitation phase. Following 
the population being navigated into fruitful areas in the search 
area by the GWO, random and spiral updates in WOA refine 
task allocations, offsetting near-optimal load oversights or 
inefficiencies that the GWO might overlook. Dynamic load 
redistribution among underloaded VMs, slight reduction in 
makespan, and progressive energy-based assignment 
refinement result from adaptive switching between random 
exploration and spiral refinement. 

C. Combined Update Strategy for Load Balancing 

HGWWO integrates the exploratory efficiency of the GWO 
with the local refinement capability of the WOA to solve the 
multi-objective load balancing problem in cloud computing. 
Fig. 1 shows the flowchart of the proposed algorithm. In typical 
cloud environments, scheduling tasks across multiple 
heterogeneous VMs must account for CPU utilization, memory 
demand, execution time, and energy cost. Algorithms that only 
explore broadly (like GWO) may converge slowly or stagnate 
near suboptimal allocations. Conversely, algorithms like WOA, 
which are good at refining solutions, may not escape poor initial 
guesses. HGWWO resolves these challenges by dynamically 
adapting its search strategy at each iteration, blending the 
strengths of both methods. 

 
Fig. 1. Flowchart of proposed algorithm. 
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At every iteration of the optimization process, each 
candidate solution (task allocation vector) chooses its update 
mechanism based on a random probability 𝑝 ∈ [0,1]. If 𝑝 <
0.5 , the solution is updated using a GWO-style encircling 
behavior, otherwise the solution undergoes WOA-style spiral 
exploitation. This probabilistic strategy allows HGWWO to 
dynamically balance global and local search throughout the 
optimization timeline. It avoids premature convergence (via 
random exploration) and accelerates convergence near optimal 
points (via spiral tightening). The hybrid update rule is 
mathematically defined in Eq. (22). 

𝑋𝐻𝐺𝑊𝑊𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡 + 1)

=

{
 
 

 
 𝑚𝑖𝑛 (𝑋𝑝𝑟𝑒𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝐴 ∙ �⃗⃗� ,  𝑋𝑒𝑙𝑖𝑡𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡)) ,

𝑖𝑓 𝑝 < 0.5

𝑚𝑖𝑛 (|𝑋𝑝𝑟𝑒𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑋 (𝑡)| ∙ 𝑒𝑏𝑙 ∙ 𝑐𝑜𝑠(2𝜋𝑙)) +  

𝑋𝑝𝑟𝑒𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ,  𝑋𝑒𝑙𝑖𝑡𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡), 𝑖𝑓 𝑝 ≥ 0.5

 
(22) 

Where  𝑋𝑒𝑙𝑖𝑡𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡)  denotes the best composite solution 
generated by the GWO leadership strategy. 

The elite solution is calculated as a weighted average of the 
top three solutions identified by GWO: alpha (best), beta 
(second best), and delta (third best). These roles correspond to 
the most balanced, energy-efficient task assignments in the 
current population, given by Eq. (23). 

𝑋elite
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡) =

1

3
(𝑋α⃗⃗ ⃗⃗  + 𝑋β⃗⃗ ⃗⃗ + 𝑋δ⃗⃗⃗⃗ ) (23) 

Each of these leader positions is computed by subtracting a 
scaled distance from their current state, as described below: 

𝑋α⃗⃗ ⃗⃗  = 𝑋α⃗⃗ ⃗⃗  − 𝐴1⃗⃗⃗⃗ ⋅ |𝐶1⃗⃗⃗⃗ ⋅ 𝑋α⃗⃗ ⃗⃗  − 𝑋 (𝑡)| 

𝑋𝛽⃗⃗ ⃗⃗  = 𝑋𝛽⃗⃗ ⃗⃗  − 𝐴2⃗⃗ ⃗⃗ ⋅ |𝐶2⃗⃗⃗⃗ ⋅ 𝑋𝛽⃗⃗ ⃗⃗  − 𝑋 (𝑡)| 

𝑋𝛿⃗⃗ ⃗⃗  = 𝑋𝛿⃗⃗ ⃗⃗  − 𝐴3⃗⃗ ⃗⃗ ⋅ |𝐶3⃗⃗⃗⃗ ⋅ 𝑋𝛿⃗⃗ ⃗⃗  − 𝑋 (𝑡)| 

(24) 

Each updated solution is then evaluated against the multi-
objective fitness function. This function combines the load 
deviation across hosts, the energy consumption of active and 
idle VMs, and the delay and task overhead due to scheduling 
inefficiencies. 

The proposed HGWWO initiates with a diverse population 
of candidate solutions, each representing a potential task-to-
VM mapping configuration in a cloud computing environment. 
These initial solutions are randomly generated to promote 
exploration across the search space. The optimization process 
proceeds through successive iterations, during which each 
candidate is iteratively refined based on either a randomly 
chosen peer or the current global best. 

A linearly decreasing control parameter, denoted by 𝛼, 
governs the balance between exploration and exploitation. 
Specifically, 𝛼 starts at a maximum value of 2 and reduces to 0 
throughout iterations. This parameter is used to compute the 

adaptive coefficient vector 𝐴 , which determines the intensity of 

position updates. When the magnitude 𝐴 > 1, the algorithm 
emphasizes exploration by referencing a randomly selected 

solution. Conversely, when 𝐴 < 1, the emphasis shifts toward 
exploitation, refining solutions around the current optimum. 

Simultaneously, the algorithm incorporates a probabilistic 
decision model based on a random number 𝑝 to alternate 
between encircling and spiral movements for solution updates. 
The update mechanism is bifurcated into two cases, GWO-style 
refinement and WOA-inspired spiral exploitation. 

When 𝑝 < 0.5, the solution update follows a leader-guided 
search strategy, combining the difference between the best-
known task allocation and the current candidate, and the elite 
average position. When 𝑝 ≥ 0.5, the algorithm adopts a spiral 
search path influenced by the Whale Optimization concept. 
This update models the tightening bubble-net motion that 
localises optimal solutions through logarithmic spirals. The 
position is recalculated by incorporating the proximity to the 
best-known solution and a decaying spiral motion. 

V. RESULTS 

To assess the efficacy of the proposed HGWWO in 
optimizing task scheduling and load balancing in cloud 
environments, comprehensive simulations were conducted 
using CloudSim 3.0.3 on a Windows 7 machine equipped with 
an Intel Core i7 processor, 8 GB RAM, and a 3.4 GHz CPU. 
The experimental setup is described in Table II. 

TABLE II.  SIMULATION CONFIGURATION AND SYSTEM SPECIFICATIONS 

Component Quantity Attributes Specification 

Hosts 20 CPU cores 6 

  Bandwidth 15 GB/s 

  RAM 16.0 GB 

  Hypervisor Xen 

  Storage volume 4.0 TB 

  Computational power 177,730 MIPS 

Virtual 

machines 
10-100 Hypervisor Xen 

  Processing elements 1 

  Disk image size 10 GB 

  Bandwidth 1 GB/s 

  RAM 0.5 GB 

  Processing capability 9726 MIPS 

Data center 1 
Storage allocation cost (per 

unit) 
0.001 

  
Memory allocation cost 
(per unit) 

0.05 

  Base usage cost 3.0 units 

  Virtualization platform Xen 

  Operating system Linux 

  Architecture type x86 

The performance of HGWWO was compared against five 
prominent algorithms, ACO, GWO, WOA, ABC, and HHO, on 
a large scale of tasks and VM configurations. The comparison 
was made based on multi-objective measures such as 
makespan, energy usage, resource usage, migration rate, 
imbalance factor, throughput, and idle time. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 7, 2025 

746 | P a g e  

www.ijacsa.thesai.org 

Two principal scenarios were experimented with, varying 
the tasks (100 to 2000) while the number of VMs (100) remains 
fixed, and fixing the tasks (1000) while varying the number of 
VMs (10 to 100). The fitness function, defined in Eq. (13), 

integrates load deviation, energy consumption, and task cost. 
Optimal weight values λ1 = 1 , λ2 = 0.5 , and λ3 = 0.5  were 
obtained through trial-and-error and are detailed in Table III. 

TABLE III.  IMPACT OF FITNESS WEIGHTS ON LOAD BALANCING METRICS 

Weights Simulation outcomes 

𝛌𝟏 𝛌𝟐 𝛌𝟑 Energy usage (kJ) Load variance Throughput (req/ms) Makespan (ms) 

1 0.9 0.9 305.08 0.355 9.05 6570.31 

  0.8 294.62 0.349 8.51 6352.19 

  0.7 290.29 0.338 8.29 9105.88 

  0.6 283.84 0.374 8.05 8995.02 

  0.5 279.43 0.361 7.88 8906.53 

 0.8 0.9 245.66 0.351 8.59 9389.11 

  0.8 240.38 0.342 8.40 9313.76 

  0.7 224.17 0.318 8.17 9109.31 

  0.6 221.02 0.285 7.94 8976.19 

  0.5 211.27 0.253 7.77 8911.42 

 0.7 0.9 291.18 0.331 8.42 9102.35 

  0.8 282.65 0.296 8.19 9085.72 

  0.7 283.45 0.304 7.76 9106.79 

  0.6 276.38 0.294 7.60 8987.46 

  0.5 266.18 0.232 7.55 8519.17 

 0.6 0.9 261.09 0.275 8.18 9015.41 

  0.8 256.21 0.256 8.01 8722.15 

  0.7 251.60 0.247 7.79 8613.91 

  0.6 246.52 0.219 7.25 8482.31 

  0.5 242.96 0.203 7.01 8314.20 

 0.5 0.9 235.15 0.255 7.29 8818.73 

  0.8 229.23 0.161 7.05 8416.29 

  0.7 217.26 0.094 6.64 8093.19 

  0.6 209.41 0.079 5.73 7914.46 

  0.5 170.77 0.063 5.39 7751.62 

 0.4 0.9 251.63 0.351 7.74 8386.94 

  0.8 242.10 0.285 7.26 8352.28 

  0.7 221.48 0.244 6.93 8109.12 

  0.6 204.19 0.206 6.75 8059.26 

  0.5 183.69 0.186 6.41 7903.13 
 

Fig. 2 and Fig. 3 show that HGWWO has the lowest energy 
consumption among all rival algorithms. This results from its 
innovative adaptive hybrid architecture, which inhibits 
unnecessary task migration and accurately assigns workloads to 
idle VMs. It maintains efficient CPU and memory usage while 
minimizing excessive idle energy consumption by integrating 
GWO’s leadership-based global exploration mechanism with 
WOA’s local spiral exploitation. 

Fig. 4 and Fig. 5 indicate that HGWWO beats its 
competitors in make-span reduction, a key contributor to 

system responsiveness and QoS. The reduction is a result of 
spreading out global exploration and switching to local 
optimization inherent in HGWWO, which facilitates faster 
convergence on optimum task allocations. The effect is a more 
deterministic response time with less latency, resulting in 
increased user service availability. The load standard deviation 
between the VMs (as depicted in Fig. 6) quantifies the 
uniformity in the distribution of resources. HGWWO maintains 
the lowest deviation, notably after t=3700 ms, reflecting stable 
and efficient load balancing. HGWWO’s leader-based update 
approach, in which alpha, beta, and delta wolves collectively 
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affect each candidate's position, and spiral movement adjusts 
the load in finer-grained steps, minimizes oscillations between 
overloaded and under-loaded nodes. 

 
Fig. 2. Energy consumption comparison with increasing task volume at 

constant VM count. 

 
Fig. 3. Energy consumption comparison with increasing VM count at 

constant task volume. 

 
Fig. 4. Makespan comparison with increasing task volume at constant VM 

count. 

As evident from Fig. 7, HGWWO migrates fewer tasks than 
its competitors. This is the result of its strategy for allocation 
based on fitness, which predicts upcoming changes in load 

ahead of time and assigns tasks to the appropriate VMs in 
advance, resulting in fewer runtime reassignments and reduced 
overhead. Fig. 7 shows that HGWWO achieves higher 
throughput for most conditions, particularly under heavy load 
conditions. The locations' proximity-based update policies, 
along with spiral exploitation policies in the algorithm, enable 
timely job completion with constant service continuity, thus 
enhancing the cloud system's ability to service user demands. 

 
Fig. 5. Makespan comparison with increasing VM count at constant task 

volume. 

 
Fig. 6. Temporal variation of load imbalance levels. 

 
Fig. 7. Task migration volume comparison. 
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VI. DISCUSSION 

Experimental findings reveal that our proposed HGWWO 
algorithm produces significant advancements in dynamic load 
balancing for cloud computing infrastructures. The 
hybridization of GWO and WOA exhibits a higher convergence 
trend, a reduced value for makespan, reduced energy 
consumption, and an equalized task allotment between virtual 
machines. These advantages result from several primary design 
attributes of the proposed HGWWO algorithm. 

Firstly, incorporating GWO's hierarchical structure for 
leadership with WOA's exploitation strategy based on a spiral 
allows HGWWO to obtain a more stable tradeoff between local 
exploration and global exploitation, thereby reducing the risk 
of early convergence, which is prone to single standalone meta-
heuristics such as GWO, WOA, and ABC. Secondly, adaptive 
behavior is achieved by incorporating auto-tuning algorithmic 
parameters into a variable workload distribution based on its 
state. This is needed in heterogeneous clouds due to sudden 
changes in task intensity alongside available resources. 

Additionally, the multi-objective optimization model 
employed in this work contributes to these enhancements. As it 
optimizes makespan, energy consumption, and load deviation 
simultaneously, HGWWO handles the practical tradeoffs that 
cloud service providers face. This end-to-end optimization 
results in more efficient resource utilization and a higher level 
of QoS compared to alternative algorithms. 

However, our proposed model also has several weaknesses 
that need to be addressed. One of these principles is that, due to 
its multi-objective optimization with a hybrid structure, the 
algorithm's computational complexity is higher than that of 
simpler, single-heuristic schemes. Although this tradeoff 
allows for superior performance, it may not be suitable for 
extremely large-scale implementations or applications that 
depend highly on latency and for which speed of execution is a 
concern. In addition, validation was conducted using synthetic 
workloads within the CloudSim simulation platform. 
Nonetheless, a widely adopted benchmarking platform, 
validation within realistic real-world infrastructures (e.g., 
OpenStack, Kubernetes) would be more convincing in practical 
terms. 

It also has the limitation that it requires manual setting of 
algorithm parameters, including weight coefficients and control 
factors. Although they were tuned experimentally, an adaptive 
or self-tuning system would be suitable for further enhancing 
the robustness of HGWWO when environmental conditions 
vary. Lastly, security, fault tolerance, or energy-aware 
geographic distribution are not explicitly addressed by the 
current model, but become significant in specific scenarios of 
cloud deployment. 

VII. CONCLUSION 

This study introduced the HGWWO algorithm for the 
rigorous problem of dynamic load balancing and task 
scheduling in cloud computing. HGWWO was compared with 

five algorithms, ACO, GWO, WOA, HHO, and ABC, along 
with significant performance metrics such as makespan, energy 
usage, the standard deviation, throughput, task migration, the 
degree of imbalance, and idle time, based on comprehensive 
simulations under different workloads and VM settings using 
CloudSim 3.0.3, and further validated using a physical cloud 
testbed. Experimental results showed that HGWWO 
outperforms all baseline algorithms in balanced energy-aware 
and resource allocation. Notably, it achieved a smaller 
makespan, less energy consumption, and fewer task migrations 
while maintaining high throughput with even load distribution. 

Compared with other meta-heuristics and hybrid solutions, 
our proposed HGWWO algorithm possesses several practical 
merits. It converges faster due to leveraging GWO's initial 
global exploration and WOA's terminal local exploitation. This 
adaptive switching also minimizes task migration and improves 
throughput, particularly for heterogeneous or load-intensive 
environments. It also distinguishes itself from deep-learning-
based models, which require extensive training datasets and 
produce significant overheads. Our proposed HGWWO is thus 
lightweight and usable even in resource-constrained cloud 
nodes, including real-time scheduling. Its merits qualify it as a 
viable contender for cloud production use, particularly where 
task patterns change dynamically, and deterministic scheduling 
is infeasible. 

Although the suggested HGWWO algorithm demonstrates 
promising behavior for fluctuating and varying cloud 
conditions, several weaknesses must be considered. First, even 
though HGWWO converges faster than standalone GWO or 
WOA, its hybridization also incurs more computational 
overhead, which may be noticeable for ultra-large scales. 
Secondly, the algorithm's behavior is now evaluated under 
synthetic workloads and simulated environments. Realistic 
deployment environments with non-deterministic workload 
spikes and hardware faults may require further fine-tuning or 
complementing with learning-based adaptive modules. This 
limitation presents opportunities for enhancing HGWWO with 
real-time or predictive feedback mechanisms in future work. 

Based on the positive outcome by HGWWO, future work 
will focus on expanding the algorithm to distributed and 
federated cloud environments such as multi-cloud computing, 
edge computing, and fog computing. They outline more 
demanding scenarios, such as latency-aware task assignment, 
limited resource availability, and asynchronous message 
passing, which can be tailored for handling by HGWWO. 
Combining workload prediction with deep reinforcement 
learning will also enable proactive resource allotment and 
improve scalability in real-time. Further enhancements would 
include adaptive parameter self-tuning methodologies for 
reducing manual weight modifications in the fitness function. 
Others would include security-aware policy-making for 
scheduling purposes, along with carbon-aware optimization for 
eco-friendly cloud control. Long-term verification will consist 
of practical deployment and benchmarking on running cloud 
infrastructures (e.g., OpenStack) for demonstrating robustness 
under realistic constraint scenarios. 
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