
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

740 | P a g e

www.ijacsa.thesai.org

HGWWO: A Hybrid Grey Wolf–Whale Optimizer for

Load Balancing in Cloud Computing Environments

Yameng BAI1*, Junxia MENG2, Shuai ZHAO3, Ruoyu REN4

School of Information Engineering, Jiaozuo University, Jiaozuo 454150, China1, 2

School of Artificial Intelligence, Jiaozuo University, Jiaozuo 454150, China3

School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454150, China4

Abstract—This paper aims to develop an efficient and adaptive

load balancing algorithm for cloud computing environments using

a novel hybrid meta-heuristic approach. Effective load balancing

is necessary for optimum performance and resource utilization in

cloud computing systems. Most conventional meta-heuristic

algorithms suffer from premature convergence and poor

exploration–exploitation tradeoffs. An innovative hybrid meta-

heuristic algorithm, Hybrid Grey Wolf–Whale Optimizer

(HGWWO), is proposed for efficiently and dynamically balancing

cloud load. HGWWO integrates the leadership hierarchy and

adaptive hunting strategy of the Grey Wolf Optimizer (GWO)

with the spiral-shaped exploitation mechanism of the Whale

Optimization Algorithm (WOA), resulting in high convergence

rates. The algorithm is implemented in a multi-objective cloud

load balancing model to reduce response time, energy usage, and

makespan while optimizing resource utilization among virtual

machines. The experimental outcomes prove that HGWWO

outperforms existing algorithms regarding throughput, waiting

time, and execution efficiency. The suggested model has potential

for real-time cloud scheduling of resources and is an efficient

solution for scalable and heterogeneous cloud environments.

Keywords—Cloud computing; load balancing; hybrid meta-

heuristic; grey wolf optimizer; whale optimization algorithm

I. INTRODUCTION

Cloud computing has transformed the delivery of
computational resources and services, providing on-demand
access to shared, configurable resources like Virtual Machines
(VMs), storage, and applications over the Internet [1]. Cloud
paradigms facilitate scalability, flexibility, and cost-
effectiveness, essential in contemporary business and service
organizations [2]. Nevertheless, the dynamic nature and
dispersion of the cloud result in issues with providing resources,
primarily load balancing [3]. Ineffective load balancing leads to
bottlenecks in the system, resulting in poor resource utilization,
high response times, and overall poor system performance [4].
Optimizing workload distribution among existing VMs while
avoiding system imbalance is an essential design and
administration issue in cloud computing infrastructures [5].

These issues, however, have been addressed through the
design of numerous load balancing schemes, ranging from
simple static approaches to more advanced and adaptive
methodologies. Static algorithms in highly dynamic and
heterogeneous clouds are ineffective since they cannot adapt to
runtime variations in workloads and system resources [6]. In
such cases, load balancing algorithms, in the form of multi-
objective optimization, become pressing issues. The algorithms

attempt to balance multiple objectives concurrently, including
makespan, power usage, response time, and resource utilization
[7]. Such problem-solving demands state-of-the-art
optimization techniques for dealing with highly complicated
search spaces and allowing system state changes. Related work
across various fields, including machine learning for business
forecasting [8], innovative grid system optimization [9], and
security threat detection [10], similarly emphasizes the range
and promise of state-of-the-art optimization and intelligent
decision-making methodologies. Such models provide a
compelling argument for highly adaptive solutions that are
robust enough for intensive environments, such as cloud
computing.

Past research has demonstrated the effectiveness of nature-
inspired meta-heuristic algorithms for optimizing complex
multi-objective problems in the cloud [11]. Grey Wolf
Optimizer (GWO) and the Whale Optimization Algorithm
(WOA) are distinguished by their excellent exploration and
exploitation capacities. GWO mimics wolves' social hierarchy
and hunting strategy [12], while WOA mimics humpback
whale bubble-net hunting [13]. While the two algorithms
promise particular strengths, they both carry the flaw of
premature convergence, or a lack of thoroughness in local
search, when employed in isolation. Inspired by the
complementarities between the two tactics, this study proposes
a hybrid algorithm, HGWWO that combines the social
leadership process of GWO with the exploitation effectiveness
of WOA to improve load balancing efficiency in the cloud.

Although more meta-heuristic algorithms have recently
been applied to cloud load balancing, previous work often fails
to adequately resolve the exploration-exploitation tradeoff
under highly variable workloads. When used standalone,
algorithms such as GWO or WOA tend to converge
prematurely or become stuck in a local optimum. Although
hybrid methodologies also exist, they tend to incur heavy
computational overhead or be specialized for low scales,
thereby limiting their generality. This work closes this gap by
proposing HGWWO as a hybrid meta-heuristic that combines
GWO's adaptive leader structure with spiral-guided localized
searching from WOA, with a focus on being particularly
appropriate for variable heterogeneous clouds. By integrating
the merits of both algorithms, HGWWO will deliver a
computationally efficient and generic solution for resolving the
multi-objective cloud load balancing problem. Therefore, the
primary research question guiding this study is: How can a
hybrid meta-heuristic algorithm be developed to dynamically

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

741 | P a g e

www.ijacsa.thesai.org

handle workload in heterogeneous clouds with minimal
makespan, energy usage, and load deviation?

The rest of the paper is as follows: Section II reviews the
literature on load balancing and meta-heuristic optimization.
Section III describes the mathematical model of the load
balancing problem and its objective functions. Section IV
details the HGWWO algorithm. Section V provides simulation
results, comparison analysis, and performance assessment.
Section VI provides a critical discussion of the findings,
including improvements and limitations. Finally, Section VII
concludes the paper and offers directions for further work.

II. LITERATURE REVIEW

Cloud computing load balancing has garnered significant
research interest due to its importance in optimizing resource
usage, minimizing response time, and ensuring Quality of
Service (QoS). Several heuristic and meta-heuristic methods
have been proposed for addressing the dynamic and multi-
objective nature of the problem. Muteeh, et al. [14] presented
an Ant Colony Optimization (ACO)-based multi-resource load
balancing algorithm to solve the issues in the scheduling of
scientific workflows in cloud computing. Their approach
optimized the makespan and cost, ensuring balanced load
distribution among cloud resources. Experimental verification
showed enhanced resource utilization and a decrease in both the
price and the running time.

Sefati, et al. [15] proposed load balancing using GWO,
focusing on the algorithm for identifying overloaded and
underutilized nodes. The algorithm includes using the fitness
value and reliability of the nodes to direct resource assignment.
CloudSim experiments demonstrated significant reductions in
response time and execution cost compared to other typical
methods. Ramya and Ayothi [16] proposed a hybrid Dingo and
Whale Optimization Algorithm (HDWOA-LBM) by
integrating dingo and whale hunting behaviors to achieve
effective task allocation. The algorithm enhances both
exploration and exploitation capabilities. Simulation results

validated its efficiency, showing improvements in makespan
(22.9%), throughput (21.2%), and reliability (25.4%).

Geetha, et al. [17] created an innovative Intercrossed Chimp
and Bald Eagle Algorithm (IC&BA) incorporating chimp
optimization and bald eagle searching. Their approach
considers concurrently energy usage, execution cost,
makespan, and turnaround time. Study results validated
improved balancing and performance in heterogeneous
environments.

Emara, et al. [18] presented an advanced Harris Hawks
Optimization (HHO) for task scheduling in cloud computing.
Their approach enhanced the exploration and exploitation
stages through mutation-based diversification, thereby
outdoing the conventional HHO and other metaheuristics in
makespan, throughput, and load variance.

Haris and Zubair [19] developed a hybrid Battle Royale and
Deep Reinforcement Learning (BRDRL) dynamic load
balancing algorithm. The approach combines job migration
through DRL and VM selection through BRO. Simulations
demonstrated that BRDRL resulted in a 3.9% improvement in
throughput and a 15.3% improvement in response time
compared to existing models and hybrids.

Tabagchi Milan, et al. [20] suggested an Artificial Bee
Colony (ABC)-derived method for green cloud computing.
Overloaded VM tasks are migrated according to the bee
behavior to enhance QoS and energy savings. The experimental
results indicate improvement in energy and makespan.

While all the above approaches support load balancing in
cloud computing, most algorithms are plagued with tradeoffs
between convergence rates and exploitation accuracy, as
highlighted in Table I. For example, ACO and GWO-based
algorithms converge prematurely or become stuck in local
optima in dynamic environments. Hybrid algorithms like
HDWOA and BRDRL improve performance at the expense of
being computationally intensive and having limited
generalizability for use in other cloud infrastructures.

TABLE I. AN OVERVIEW OF RECENT CLOUD LOAD BALANCING ALGORITHMS

Ref Algorithm Features Limitations

[14] Ant colony optimization
It supports multi-resource allocation, workflow-aware

scheduling, and effectively reduces cost and execution time.

May experience slow convergence and exhibit limited

adaptability to dynamic load variations.

[15] Grey wolf optimizer
It accounts for node reliability and adapts to load conditions,
including underloaded and overloaded nodes.

Prone to entrapment in local optima and characterized by
limited exploitation capability.

[16]
Hybrid dingo and whale
optimization algorithm

The approach enhances exploration and exploitation

mechanisms, improving makespan and increasing system

reliability.

Exhibits high computational complexity, with potential

performance degradation under task overload or in the

presence of noisy objective functions.

[17]
Intercrossed chimp and

bald eagle algorithm

The method employs a multi-criteria load balancing

approach that accounts for cost, energy consumption, and

response time through a hybrid strategy.

The approach may require extensive parameter tuning and

demonstrates limited scalability for general-purpose use.

[18] Harris hawks optimization
It employs adaptive mutation to strengthen global search

efficiency, improving task scheduling accuracy.

Remains sensitive to the initial population and incurs

additional computational overhead.

[19]

Hybrid battle royale and

deep reinforcement
learning

It combines DRL for job transfer with the BRO algorithm

for VM selection, facilitating dynamic and adaptive
decision-making.

It necessitates large volumes of training data, and

integrating deep models contributes to substantial
computational overhead.

[20] Artificial bee colony
It utilizes bio-inspired task migration techniques to reduce

energy consumption while maintaining or improving QoS.

Demonstrates reduced effectiveness under high-load

conditions and prioritizes energy efficiency at the expense
of load balancing.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

742 | P a g e

www.ijacsa.thesai.org

Moreover, in a unified architecture, most algorithms
individually optimize performance measures, power
consumption, or both, excluding the multiple objective
parameters. In response, we introduce HGWWO, the union of
the exploration power in GWO and the exploitation power in
WOA. The new approach guarantees better load balancing
performance by simultaneously minimizing makespan, energy
consumption, and load deviation.

III. PROBLEM FORMULATION

VMs are the primary entities for executing user tasks and
managing workload distribution in cloud computing
environments. Each VM has distinct resource capacities such
as memory, processing power, disk space, and bandwidth. Let
us define the set of VMs as 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑚} , where 𝑚
denotes the total number of virtual instances available in the
system. Each VM can be modeled using a multi-dimensional
vector that captures the required levels of different resources.

The infrastructure comprises several identical physical
servers, with one designated as the master controller that
delegates incoming task requests to appropriate VMs. VM
creation is conditional on memory availability. A host lacking
adequate memory cannot spawn a new VM instance. In this
scenario, we assume there are 𝑛 independent tasks to be
executed across 𝑚 available VMs.

Efficient task scheduling is critical to ensure equitable load
distribution and to enhance performance metrics. Each user
request is characterized by a parameter vector 𝑈 =
(𝜌, 𝜎, 𝛾, 𝜇, 𝜒) , where 𝜌 stands for the average frequency of
online user requests, 𝜎 is the size of each request, 𝛾 denotes
the required CPU resources, 𝜇 signifies the needed memory for
task execution, and 𝜒 refers to the request frequency per minute.
The memory load for VM i is given by Eq. (1).

ℳ𝒾 = Rem𝑖 +
ω𝑖
Ω𝑖
× 100% (1)

Where Rem𝑖 is the residual memory before assignment, 𝜔𝑖
is the task memory usage, and Ω𝑖 is the total available memory.

The CPU load for VM i is calculated using Eq. (2).

𝒞𝒾 = Cpu
𝑖
+
τ𝑖
Θ𝑖
× 100% (2)

Where Cpu𝑖 is the CPU capacity left before execution, 𝜏𝑖 is
the CPU demand of tasks, and Θ𝑖 is the total CPU available.

The overall workload on VM i is the weighted combination
of memory and CPU load, as expressed in Eq. (3).

Φ𝑖 = α ⋅ℳ𝒾 + β ⋅ 𝒞𝒾 (3)

Where 𝛼 + 𝛽 = 1 are the memory and CPU weight factors.

The total load on host 𝑗 is derived by summing all VM loads
on the host, as shown in Eq. (4).

Ψ𝑗 =∑Φ𝑖

𝑚𝑗

𝑖=1

=∑(α ⋅ℳ𝒾𝒿 + β ⋅ 𝒞𝒾𝒿)

𝑚𝑗

𝑖=1

 (4)

The average load across all physical machines in the
network is calculated using Eq. (5).

Ψ̅ =
1

𝑝
∑Ψ𝑗

𝑝

𝑗=1

=
1

𝑝
∑∑(α ⋅ℳ𝒾𝒿 + β ⋅ 𝒞𝒾𝒿)

𝑚𝑗

𝑖=1

𝑝

𝑗=1

 (5)

The first fitness objective, aiming to minimize the load
deviation across hosts, is formulated in Eq. (6).

𝐹1 =∑|Ψ𝑗 − Ψ̅|

𝑝

𝑗=1

 (6)

The task assignment is represented by the binary variable
defined in Eq. (7).

𝛿𝑖𝑗 = {
1, 𝑖𝑓 𝑡𝑎𝑠𝑘 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑉𝑀𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7)

The total execution time on VM 𝑗 is computed as per Eq.
(8).

𝒯𝒿 =∑δ𝑖𝑗

𝑛

𝑖=1

⋅ 𝒯𝒾𝒿 (8)

The completion time for task 𝑖 on VM 𝑗 is evaluated using
Eq. (9).

𝒯𝒾𝒿 =
𝐿𝑖

Proc𝑗
 (9)

Where 𝐿𝑖 is the task length in MIPS, and Proc𝑗 is the

processing speed of the VM.

The makespan represents the maximum execution time
among all VMs and is defined in Eq. (10).

ℳ𝓈 = max(𝒯𝒿) , 1 ≤ 𝑗 ≤ 𝑚 (10)

The second objective function, total energy consumption,
accounts for both active and idle states of VMs and is
formulated in Eq. (11).

𝐹2 =∑[𝒯𝒿 ⋅ α𝑗 + (ℳ𝓈 − 𝒯𝒿) ⋅ β𝑗]

𝑚

𝑗=1

⋅ Procj (11)

Where 𝛼𝑗 and 𝛽𝑗 are the energy coefficients (joules per

instruction) in active and idle states, respectively.

The third fitness objective considers task instruction
overhead and delay penalty. It is denoted as 𝐹 3 F 3 and defined
in Eq. (12).

𝐹3 = 𝑤1 ⋅
Instr𝑖

MaxInstr
+ 𝑤2 ⋅ 𝐷𝑖 (12)

Where Instr𝑖 is the instruction count of task 𝑖, MaxInstr is
the maximum throughput of any processor, and 𝐷𝑖 is the delay
penalty. The weights are fixed as 𝑤1 = 0.7 and 𝑤2 = 0.3.

The final goal is to minimize the overall fitness function 𝐹,
a weighted sum of the three sub-objectives. This is
mathematically given by Eq. (13).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

743 | P a g e

www.ijacsa.thesai.org

𝐹 = λ1 ⋅ 𝐹1 + λ2 ⋅ 𝐹2 + λ3 ⋅ 𝐹3 (13)

where 𝜆1 = 1 , 𝜆2 = 0.5 , and 𝜆3 = 0.5 are the respective
weights for load deviation, energy consumption, and task
allocation cost.

IV. PROPOSED METHOD

A new hybrid meta-heuristic algorithm, HGWWO, is
presented here to solve the complex multi-objective load
balancing problem in cloud computing, reducing makespan,
energy usage, and load deviation. HGWWO combines the best
features of two popular optimization algorithms: GWO and
WOA. The HGWWO is explicitly formulated to optimize task-
to-VM allocation in dynamic cloud environments to improve
convergence accuracy and prevent premature stagnation.

A. Grey Wolf Phase: Resource-aware Encircling Strategy

GWO mimics the leadership-driven hunting and encircling
behavior observed in natural grey wolf packs. In the context of
this study, where the primary goal is to allocate independent
cloud computing tasks to VMs efficiently, each "grey wolf"
represents a potential solution, a vector encoding task-to-VM
assignments. The metaphorical "prey" is the optimal solution
that minimizes makespan, balances resource utilization, and
reduces energy consumption.

Wolves are hierarchically classified into four roles, Alpha
(α) that represents the best-known task scheduling solution at
the current iteration; beta (β) and delta (δ) that represent the
second and third-best solutions, contributing diversity and
assisting in refining the search direction; and omega (ω) as
follower solutions that are guided by the leading trio to explore
the broader search space.

The optimization begins with the encircling behavior, where
wolves adjust their positions relative to the prey, i.e., the current
best-known scheduling pattern. Each VM allocation solution is
iteratively updated using the encircling formulation, which
introduces stochastic coefficients to balance intensification and
diversification. The position update rule is given by Eq. (14).

𝑋new
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡 + 1) = 𝑋prey

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡) − 𝐴 ⋅ �⃗⃗� where �⃗⃗�

= |𝐶 ⋅ 𝑋prey
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡) − 𝑋 (𝑡)|

(14)

Where 𝑋prey⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑡) is the position vector of the current best task

scheduling solution, 𝑋 (𝑡) denotes the position of the candidate

VM allocation, �⃗⃗� refers to the encircling vector (distance

between candidate and prey), 𝐴 is an adaptive coefficient

vector controlling convergence intensity, 𝐶 is a coefficient

vector introducing randomness. The adaptive coefficient 𝐴 is
derived as follows:

𝐴 = 2 ⋅ 𝑎 ⋅ 𝑟1⃗⃗⃗ − 𝑎 (15)

Where 𝑎 linearly decreases from 2 to 0 across iterations,
gradually shifting the search from exploration to exploitation,

and 𝑟1⃗⃗⃗ is a random vector in [0, 1]. The vector 𝐶 is similarly
calculated using Eq. (16).

𝐶 = 2 ⋅ 𝑟2⃗⃗ ⃗ (16)

With 𝑟2⃗⃗ ⃗ being another random vector in [0, 1]. These
stochastic variables help diversify the search paths and prevent
premature convergence.

Once the encircling step is complete, the algorithm enters
the position updating phase, where each solution is recalibrated
by referencing the top three leaders (α, β, and δ). This phase
ensures the search agents (candidate solutions) are drawn
toward the most balanced and energy-efficient task assignments
identified. The distances from each leader are computed, and
new intermediate positions are derived as follows:

𝑋α⃗⃗ ⃗⃗ = 𝑋α⃗⃗ ⃗⃗ − 𝐴1⃗⃗⃗⃗ ⋅ |𝐶1⃗⃗⃗⃗ ⋅ 𝑋α⃗⃗ ⃗⃗ − 𝑋 |

𝑋𝛽⃗⃗ ⃗⃗ = 𝑋𝛽⃗⃗ ⃗⃗ − 𝐴2⃗⃗ ⃗⃗ ⋅ |𝐶2⃗⃗⃗⃗ ⋅ 𝑋𝛽⃗⃗ ⃗⃗ − 𝑋 |

𝑋𝛿⃗⃗ ⃗⃗ = 𝑋𝛿⃗⃗ ⃗⃗ − 𝐴3⃗⃗ ⃗⃗ ⋅ |𝐶3⃗⃗⃗⃗ ⋅ 𝑋𝛿⃗⃗ ⃗⃗ − 𝑋 |

(17)

The final updated position for the VM scheduling solution
is obtained by averaging the guidance from the three leaders, as
defined in Eq. (18).

𝑋 (𝑡 + 1) =
1

3
(𝑋α⃗⃗ ⃗⃗ + 𝑋β⃗⃗ ⃗⃗ + 𝑋δ⃗⃗⃗⃗) (18)

This rule ensures that each task-to-VM mapping benefits
from the consensus of the top-performing strategies. In the load
balancing context, this corresponds to scheduling tasks such
that the CPU and memory demands are evenly distributed,
minimizing execution bottlenecks and energy overhead.

B. Whale Phase: Exploitation Via Spiral Search

While the grey wolf phase provides deep global exploration
and informed leader-based direction for task delegation, it falls
short when dealing with local exploitation, especially in
convergence towards remarkably optimized task-VM mapping.
The proposed HGWWO incorporates an enhanced local search
mechanism adopted from the WOA to increase search depth
and overcome stagnation.

WOA simulates humpback whale bubble-net feeding
behavior. In the analogy, there is one candidate task schedule
for each whale, and the target is the ideal VM assignment with
the shortest makespan and evenly distributed CPU/memory
usage. WOA alternates between encircling, spiral motion
exploitation, and random search, exploring and exploiting the
solution space more efficiently.

The first behavioral pattern of WOA involves encircling the
best solution discovered so far. In the cloud computing, this
action refers to refining task allocations around the best-known
task-VM mapping. This behavior mirrors the GWO encircling
mechanism but contributes to localized convergence. This step
is mathematically represented by Eq. (19).

𝑋new
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡 + 1) = 𝑋best

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡) − 𝐴 ⋅ �⃗⃗� where �⃗⃗�

= |𝐶 ⋅ 𝑋best
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡) − 𝑋 (𝑡)|

(19)

Where 𝑋best⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡) refers to the current best task assignment

solution and 𝑋 (𝑡) stands for the position of the current whale
(solution).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

744 | P a g e

www.ijacsa.thesai.org

To fine-tune the best solutions near optima, whales perform
a spiral movement, which enables candidate solutions to follow
a logarithmic path toward the best allocation found. This is
crucial for minimizing minor inefficiencies in task scheduling,
such as slight VM overloading or imbalance in memory usage.
This phase probabilistically alternates with the encircling step
using a control parameter 𝑝 ∈ [0,1]. The spiral search is applied
if 𝑝 ≥ 0.5, and the position update is calculated by Eq. (20).

𝑋new
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡 + 1) = |𝑋best

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡) − 𝑋 (𝑡)| ⋅ 𝑒𝑏𝑙 ⋅ cos(2π𝑙)

+ 𝑋best
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡)

(20)

Where 𝑏 is a constant defining the spiral shape, 𝑙 is a random
number in [−1,1] determining movement orientation.

WOA includes a prey search mechanism randomly
generating new task scheduling solutions to maintain diversity
and avoid local optima traps. This phase becomes dominant
when the algorithm needs to escape plateaus in the fitness
landscape. The exploration behavior is modeled by Eq. (21).

𝑋new
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡 + 1) = 𝑋rand

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝐴 ⋅ �⃗⃗� where �⃗⃗�

= |𝐶 ⋅ 𝑋rand
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑋 (𝑡)|

(21)

Where 𝑋rand⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ is a randomly selected solution from the
population. This component is especially important for
diversifying the task assignments and discovering new

combinations that reduce energy consumption or execution
delay.

In the hybrid HGWWO algorithm, the whale phase is used
during the optimization cycle's exploitation phase. Following
the population being navigated into fruitful areas in the search
area by the GWO, random and spiral updates in WOA refine
task allocations, offsetting near-optimal load oversights or
inefficiencies that the GWO might overlook. Dynamic load
redistribution among underloaded VMs, slight reduction in
makespan, and progressive energy-based assignment
refinement result from adaptive switching between random
exploration and spiral refinement.

C. Combined Update Strategy for Load Balancing

HGWWO integrates the exploratory efficiency of the GWO
with the local refinement capability of the WOA to solve the
multi-objective load balancing problem in cloud computing.
Fig. 1 shows the flowchart of the proposed algorithm. In typical
cloud environments, scheduling tasks across multiple
heterogeneous VMs must account for CPU utilization, memory
demand, execution time, and energy cost. Algorithms that only
explore broadly (like GWO) may converge slowly or stagnate
near suboptimal allocations. Conversely, algorithms like WOA,
which are good at refining solutions, may not escape poor initial
guesses. HGWWO resolves these challenges by dynamically
adapting its search strategy at each iteration, blending the
strengths of both methods.

Fig. 1. Flowchart of proposed algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

745 | P a g e

www.ijacsa.thesai.org

At every iteration of the optimization process, each
candidate solution (task allocation vector) chooses its update
mechanism based on a random probability 𝑝 ∈ [0,1]. If 𝑝 <
0.5 , the solution is updated using a GWO-style encircling
behavior, otherwise the solution undergoes WOA-style spiral
exploitation. This probabilistic strategy allows HGWWO to
dynamically balance global and local search throughout the
optimization timeline. It avoids premature convergence (via
random exploration) and accelerates convergence near optimal
points (via spiral tightening). The hybrid update rule is
mathematically defined in Eq. (22).

𝑋𝐻𝐺𝑊𝑊𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑡 + 1)

=

{

 𝑚𝑖𝑛 (𝑋𝑝𝑟𝑒𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝐴 ∙ �⃗⃗� , 𝑋𝑒𝑙𝑖𝑡𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑡)) ,

𝑖𝑓 𝑝 < 0.5

𝑚𝑖𝑛 (|𝑋𝑝𝑟𝑒𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑋 (𝑡)| ∙ 𝑒𝑏𝑙 ∙ 𝑐𝑜𝑠(2𝜋𝑙)) +

𝑋𝑝𝑟𝑒𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑋𝑒𝑙𝑖𝑡𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑡), 𝑖𝑓 𝑝 ≥ 0.5

(22)

Where 𝑋𝑒𝑙𝑖𝑡𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑡) denotes the best composite solution
generated by the GWO leadership strategy.

The elite solution is calculated as a weighted average of the
top three solutions identified by GWO: alpha (best), beta
(second best), and delta (third best). These roles correspond to
the most balanced, energy-efficient task assignments in the
current population, given by Eq. (23).

𝑋elite
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡) =

1

3
(𝑋α⃗⃗ ⃗⃗ + 𝑋β⃗⃗ ⃗⃗ + 𝑋δ⃗⃗⃗⃗) (23)

Each of these leader positions is computed by subtracting a
scaled distance from their current state, as described below:

𝑋α⃗⃗ ⃗⃗ = 𝑋α⃗⃗ ⃗⃗ − 𝐴1⃗⃗⃗⃗ ⋅ |𝐶1⃗⃗⃗⃗ ⋅ 𝑋α⃗⃗ ⃗⃗ − 𝑋 (𝑡)|

𝑋𝛽⃗⃗ ⃗⃗ = 𝑋𝛽⃗⃗ ⃗⃗ − 𝐴2⃗⃗ ⃗⃗ ⋅ |𝐶2⃗⃗⃗⃗ ⋅ 𝑋𝛽⃗⃗ ⃗⃗ − 𝑋 (𝑡)|

𝑋𝛿⃗⃗ ⃗⃗ = 𝑋𝛿⃗⃗ ⃗⃗ − 𝐴3⃗⃗ ⃗⃗ ⋅ |𝐶3⃗⃗⃗⃗ ⋅ 𝑋𝛿⃗⃗ ⃗⃗ − 𝑋 (𝑡)|

(24)

Each updated solution is then evaluated against the multi-
objective fitness function. This function combines the load
deviation across hosts, the energy consumption of active and
idle VMs, and the delay and task overhead due to scheduling
inefficiencies.

The proposed HGWWO initiates with a diverse population
of candidate solutions, each representing a potential task-to-
VM mapping configuration in a cloud computing environment.
These initial solutions are randomly generated to promote
exploration across the search space. The optimization process
proceeds through successive iterations, during which each
candidate is iteratively refined based on either a randomly
chosen peer or the current global best.

A linearly decreasing control parameter, denoted by 𝛼,
governs the balance between exploration and exploitation.
Specifically, 𝛼 starts at a maximum value of 2 and reduces to 0
throughout iterations. This parameter is used to compute the

adaptive coefficient vector 𝐴 , which determines the intensity of

position updates. When the magnitude 𝐴 > 1, the algorithm
emphasizes exploration by referencing a randomly selected

solution. Conversely, when 𝐴 < 1, the emphasis shifts toward
exploitation, refining solutions around the current optimum.

Simultaneously, the algorithm incorporates a probabilistic
decision model based on a random number 𝑝 to alternate
between encircling and spiral movements for solution updates.
The update mechanism is bifurcated into two cases, GWO-style
refinement and WOA-inspired spiral exploitation.

When 𝑝 < 0.5, the solution update follows a leader-guided
search strategy, combining the difference between the best-
known task allocation and the current candidate, and the elite
average position. When 𝑝 ≥ 0.5, the algorithm adopts a spiral
search path influenced by the Whale Optimization concept.
This update models the tightening bubble-net motion that
localises optimal solutions through logarithmic spirals. The
position is recalculated by incorporating the proximity to the
best-known solution and a decaying spiral motion.

V. RESULTS

To assess the efficacy of the proposed HGWWO in
optimizing task scheduling and load balancing in cloud
environments, comprehensive simulations were conducted
using CloudSim 3.0.3 on a Windows 7 machine equipped with
an Intel Core i7 processor, 8 GB RAM, and a 3.4 GHz CPU.
The experimental setup is described in Table II.

TABLE II. SIMULATION CONFIGURATION AND SYSTEM SPECIFICATIONS

Component Quantity Attributes Specification

Hosts 20 CPU cores 6

 Bandwidth 15 GB/s

 RAM 16.0 GB

 Hypervisor Xen

 Storage volume 4.0 TB

 Computational power 177,730 MIPS

Virtual

machines
10-100 Hypervisor Xen

 Processing elements 1

 Disk image size 10 GB

 Bandwidth 1 GB/s

 RAM 0.5 GB

 Processing capability 9726 MIPS

Data center 1
Storage allocation cost (per

unit)
0.001

Memory allocation cost
(per unit)

0.05

 Base usage cost 3.0 units

 Virtualization platform Xen

 Operating system Linux

 Architecture type x86

The performance of HGWWO was compared against five
prominent algorithms, ACO, GWO, WOA, ABC, and HHO, on
a large scale of tasks and VM configurations. The comparison
was made based on multi-objective measures such as
makespan, energy usage, resource usage, migration rate,
imbalance factor, throughput, and idle time.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

746 | P a g e

www.ijacsa.thesai.org

Two principal scenarios were experimented with, varying
the tasks (100 to 2000) while the number of VMs (100) remains
fixed, and fixing the tasks (1000) while varying the number of
VMs (10 to 100). The fitness function, defined in Eq. (13),

integrates load deviation, energy consumption, and task cost.
Optimal weight values λ1 = 1 , λ2 = 0.5 , and λ3 = 0.5 were
obtained through trial-and-error and are detailed in Table III.

TABLE III. IMPACT OF FITNESS WEIGHTS ON LOAD BALANCING METRICS

Weights Simulation outcomes

𝛌𝟏 𝛌𝟐 𝛌𝟑 Energy usage (kJ) Load variance Throughput (req/ms) Makespan (ms)

1 0.9 0.9 305.08 0.355 9.05 6570.31

 0.8 294.62 0.349 8.51 6352.19

 0.7 290.29 0.338 8.29 9105.88

 0.6 283.84 0.374 8.05 8995.02

 0.5 279.43 0.361 7.88 8906.53

 0.8 0.9 245.66 0.351 8.59 9389.11

 0.8 240.38 0.342 8.40 9313.76

 0.7 224.17 0.318 8.17 9109.31

 0.6 221.02 0.285 7.94 8976.19

 0.5 211.27 0.253 7.77 8911.42

 0.7 0.9 291.18 0.331 8.42 9102.35

 0.8 282.65 0.296 8.19 9085.72

 0.7 283.45 0.304 7.76 9106.79

 0.6 276.38 0.294 7.60 8987.46

 0.5 266.18 0.232 7.55 8519.17

 0.6 0.9 261.09 0.275 8.18 9015.41

 0.8 256.21 0.256 8.01 8722.15

 0.7 251.60 0.247 7.79 8613.91

 0.6 246.52 0.219 7.25 8482.31

 0.5 242.96 0.203 7.01 8314.20

 0.5 0.9 235.15 0.255 7.29 8818.73

 0.8 229.23 0.161 7.05 8416.29

 0.7 217.26 0.094 6.64 8093.19

 0.6 209.41 0.079 5.73 7914.46

 0.5 170.77 0.063 5.39 7751.62

 0.4 0.9 251.63 0.351 7.74 8386.94

 0.8 242.10 0.285 7.26 8352.28

 0.7 221.48 0.244 6.93 8109.12

 0.6 204.19 0.206 6.75 8059.26

 0.5 183.69 0.186 6.41 7903.13

Fig. 2 and Fig. 3 show that HGWWO has the lowest energy
consumption among all rival algorithms. This results from its
innovative adaptive hybrid architecture, which inhibits
unnecessary task migration and accurately assigns workloads to
idle VMs. It maintains efficient CPU and memory usage while
minimizing excessive idle energy consumption by integrating
GWO’s leadership-based global exploration mechanism with
WOA’s local spiral exploitation.

Fig. 4 and Fig. 5 indicate that HGWWO beats its
competitors in make-span reduction, a key contributor to

system responsiveness and QoS. The reduction is a result of
spreading out global exploration and switching to local
optimization inherent in HGWWO, which facilitates faster
convergence on optimum task allocations. The effect is a more
deterministic response time with less latency, resulting in
increased user service availability. The load standard deviation
between the VMs (as depicted in Fig. 6) quantifies the
uniformity in the distribution of resources. HGWWO maintains
the lowest deviation, notably after t=3700 ms, reflecting stable
and efficient load balancing. HGWWO’s leader-based update
approach, in which alpha, beta, and delta wolves collectively

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

747 | P a g e

www.ijacsa.thesai.org

affect each candidate's position, and spiral movement adjusts
the load in finer-grained steps, minimizes oscillations between
overloaded and under-loaded nodes.

Fig. 2. Energy consumption comparison with increasing task volume at

constant VM count.

Fig. 3. Energy consumption comparison with increasing VM count at

constant task volume.

Fig. 4. Makespan comparison with increasing task volume at constant VM

count.

As evident from Fig. 7, HGWWO migrates fewer tasks than
its competitors. This is the result of its strategy for allocation
based on fitness, which predicts upcoming changes in load

ahead of time and assigns tasks to the appropriate VMs in
advance, resulting in fewer runtime reassignments and reduced
overhead. Fig. 7 shows that HGWWO achieves higher
throughput for most conditions, particularly under heavy load
conditions. The locations' proximity-based update policies,
along with spiral exploitation policies in the algorithm, enable
timely job completion with constant service continuity, thus
enhancing the cloud system's ability to service user demands.

Fig. 5. Makespan comparison with increasing VM count at constant task

volume.

Fig. 6. Temporal variation of load imbalance levels.

Fig. 7. Task migration volume comparison.

Number of tasks

0 500 1000 1500 2000

A
v

er
ag

e
co

n
su

m
ed

 e
n

er
g
y
 (

k
J)

0

50

100

150

200

250

300

ACO
ABC
WOA

GWO
HHO
HGWWO

Number of VMs

0 50 100 150 200 250 300

A
v

er
ag

e
co

n
su

m
ed

 e
n

er
g
y
 (

k
J)

0

50

100

150

200

250

300

ACO
ABC
WOA

GWO
HHO
HGWWO

Number of tasks

0 500 1000 1500 2000

A
v
er

ag
e

m
ak

es
p
an

 (
m

s)

0

2000

4000

6000

8000

10000

12000

ACO
ABC
WOA

GWO
HHO
HGWWO

Number of VMs

50 100 150 200 250 300

A
v

er
ag

e
m

ak
es

p
an

 (
m

s)

0

2000

4000

6000

8000

ACO
ABC
WOA

GWO
HHO
HGWWO

Simulation runtime (ms)

2000 4000 6000 8000 10000

D
is

p
er

si
o

n
 o

f
V

M
 w

o
rk

lo
ad

s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ACO
ABC
WOA

GWO
HHO
HGWWO

Number of tasks

0 500 1000 1500 2000

N
u

m
b
er

 o
f

m
ig

ra
ti

o
n
s

0

200

400

600

800

1000

ACO
ABC
WOA

GWO
HHO
HGWWO

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

748 | P a g e

www.ijacsa.thesai.org

VI. DISCUSSION

Experimental findings reveal that our proposed HGWWO
algorithm produces significant advancements in dynamic load
balancing for cloud computing infrastructures. The
hybridization of GWO and WOA exhibits a higher convergence
trend, a reduced value for makespan, reduced energy
consumption, and an equalized task allotment between virtual
machines. These advantages result from several primary design
attributes of the proposed HGWWO algorithm.

Firstly, incorporating GWO's hierarchical structure for
leadership with WOA's exploitation strategy based on a spiral
allows HGWWO to obtain a more stable tradeoff between local
exploration and global exploitation, thereby reducing the risk
of early convergence, which is prone to single standalone meta-
heuristics such as GWO, WOA, and ABC. Secondly, adaptive
behavior is achieved by incorporating auto-tuning algorithmic
parameters into a variable workload distribution based on its
state. This is needed in heterogeneous clouds due to sudden
changes in task intensity alongside available resources.

Additionally, the multi-objective optimization model
employed in this work contributes to these enhancements. As it
optimizes makespan, energy consumption, and load deviation
simultaneously, HGWWO handles the practical tradeoffs that
cloud service providers face. This end-to-end optimization
results in more efficient resource utilization and a higher level
of QoS compared to alternative algorithms.

However, our proposed model also has several weaknesses
that need to be addressed. One of these principles is that, due to
its multi-objective optimization with a hybrid structure, the
algorithm's computational complexity is higher than that of
simpler, single-heuristic schemes. Although this tradeoff
allows for superior performance, it may not be suitable for
extremely large-scale implementations or applications that
depend highly on latency and for which speed of execution is a
concern. In addition, validation was conducted using synthetic
workloads within the CloudSim simulation platform.
Nonetheless, a widely adopted benchmarking platform,
validation within realistic real-world infrastructures (e.g.,
OpenStack, Kubernetes) would be more convincing in practical
terms.

It also has the limitation that it requires manual setting of
algorithm parameters, including weight coefficients and control
factors. Although they were tuned experimentally, an adaptive
or self-tuning system would be suitable for further enhancing
the robustness of HGWWO when environmental conditions
vary. Lastly, security, fault tolerance, or energy-aware
geographic distribution are not explicitly addressed by the
current model, but become significant in specific scenarios of
cloud deployment.

VII. CONCLUSION

This study introduced the HGWWO algorithm for the
rigorous problem of dynamic load balancing and task
scheduling in cloud computing. HGWWO was compared with

five algorithms, ACO, GWO, WOA, HHO, and ABC, along
with significant performance metrics such as makespan, energy
usage, the standard deviation, throughput, task migration, the
degree of imbalance, and idle time, based on comprehensive
simulations under different workloads and VM settings using
CloudSim 3.0.3, and further validated using a physical cloud
testbed. Experimental results showed that HGWWO
outperforms all baseline algorithms in balanced energy-aware
and resource allocation. Notably, it achieved a smaller
makespan, less energy consumption, and fewer task migrations
while maintaining high throughput with even load distribution.

Compared with other meta-heuristics and hybrid solutions,
our proposed HGWWO algorithm possesses several practical
merits. It converges faster due to leveraging GWO's initial
global exploration and WOA's terminal local exploitation. This
adaptive switching also minimizes task migration and improves
throughput, particularly for heterogeneous or load-intensive
environments. It also distinguishes itself from deep-learning-
based models, which require extensive training datasets and
produce significant overheads. Our proposed HGWWO is thus
lightweight and usable even in resource-constrained cloud
nodes, including real-time scheduling. Its merits qualify it as a
viable contender for cloud production use, particularly where
task patterns change dynamically, and deterministic scheduling
is infeasible.

Although the suggested HGWWO algorithm demonstrates
promising behavior for fluctuating and varying cloud
conditions, several weaknesses must be considered. First, even
though HGWWO converges faster than standalone GWO or
WOA, its hybridization also incurs more computational
overhead, which may be noticeable for ultra-large scales.
Secondly, the algorithm's behavior is now evaluated under
synthetic workloads and simulated environments. Realistic
deployment environments with non-deterministic workload
spikes and hardware faults may require further fine-tuning or
complementing with learning-based adaptive modules. This
limitation presents opportunities for enhancing HGWWO with
real-time or predictive feedback mechanisms in future work.

Based on the positive outcome by HGWWO, future work
will focus on expanding the algorithm to distributed and
federated cloud environments such as multi-cloud computing,
edge computing, and fog computing. They outline more
demanding scenarios, such as latency-aware task assignment,
limited resource availability, and asynchronous message
passing, which can be tailored for handling by HGWWO.
Combining workload prediction with deep reinforcement
learning will also enable proactive resource allotment and
improve scalability in real-time. Further enhancements would
include adaptive parameter self-tuning methodologies for
reducing manual weight modifications in the fitness function.
Others would include security-aware policy-making for
scheduling purposes, along with carbon-aware optimization for
eco-friendly cloud control. Long-term verification will consist
of practical deployment and benchmarking on running cloud
infrastructures (e.g., OpenStack) for demonstrating robustness
under realistic constraint scenarios.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

749 | P a g e

www.ijacsa.thesai.org

ACKNOWLEDGEMENT

This work was supported by the project of Science and
Technology Program of Henan Province (252102320051).

REFERENCES

[1] T. Khan, W. Tian, G. Zhou, S. Ilager, M. Gong, and R. Buyya, "Machine
learning (ML)-centric resource management in cloud computing: A
review and future directions," Journal of Network and Computer
Applications, vol. 204, p. 103405, 2022.

[2] V. Hayyolalam, B. Pourghebleh, M. R. Chehrehzad, and A. A. Pourhaji
Kazem, "Single‐ objective service composition methods in cloud
manufacturing systems: Recent techniques, classification, and future
trends," Concurrency and Computation: Practice and Experience, vol. 34,
no. 5, p. e6698, 2022, doi: https://doi.org/10.1002/cpe.6698.

[3] J. K. Samriya, S. Kumar, M. Kumar, H. Wu, and S. S. Gill, "Machine
learning based network intrusion detection optimization for cloud
computing environments," IEEE Transactions on Consumer Electronics,
2024.

[4] N. Devi et al., "A systematic literature review for load balancing and task
scheduling techniques in cloud computing," Artificial Intelligence
Review, vol. 57, no. 10, p. 276, 2024.

[5] B. Pourghebleh and V. Hayyolalam, "A comprehensive and systematic
review of the load balancing mechanisms in the Internet of Things,"
Cluster Computing, vol. 23, no. 2, pp. 641-661, 2020.

[6] D. A. Shafiq, N. Z. Jhanjhi, A. Abdullah, and M. A. Alzain, "A load
balancing algorithm for the data centres to optimize cloud computing
applications," Ieee Access, vol. 9, pp. 41731-41744, 2021.

[7] A. R. Khan, "Dynamic load balancing in cloud computing: optimized RL-
based clustering with multi-objective optimized task scheduling,"
Processes, vol. 12, no. 3, p. 519, 2024.

[8] M. B. Bagherabad, E. Rivandi, and M. J. Mehr, "Machine Learning for
Analyzing Effects of Various Factors on Business Economic," Authorea
Preprints, 2025, doi:
https://doi.org/10.36227/techrxiv.174429010.09842200/v1.

[9] M. Ahmadi et al., "Optimal allocation of EVs parking lots and DG in
micro grid using two‐stage GA‐PSO," The Journal of Engineering,
vol. 2023, no. 2, p. e12237, 2023, doi: https://doi.org/10.1049/tje2.12237.

[10] S. M. Sanjari, A. M. Shibli, M. Mia, M. Gupta, and M. M. A. Pritom,
"SmishViz: Towards A Graph-based Visualization System for
Monitoring and Characterizing Ongoing Smishing Threats," in
Proceedings of the Fifteenth ACM Conference on Data and Application
Security and Privacy, 2024, pp. 257-268, doi:
https://doi.org/10.1145/3714393.3726499.

[11] B. Pourghebleh, A. Aghaei Anvigh, A. R. Ramtin, and B. Mohammadi,
"The importance of nature-inspired meta-heuristic algorithms for solving
virtual machine consolidation problem in cloud environments," Cluster
Computing, vol. 24, no. 3, pp. 2673-2696, 2021, doi:
https://doi.org/10.1007/s10586-021-03294-4.

[12] S. N. Makhadmeh et al., "Recent advances in Grey Wolf Optimizer, its
versions and applications," Ieee Access, vol. 12, pp. 22991-23028, 2023.

[13] S. Mirjalili and A. Lewis, "The whale optimization algorithm," Advances
in engineering software, vol. 95, pp. 51-67, 2016.

[14] A. Muteeh, M. Sardaraz, and M. Tahir, "MrLBA: multi-resource load
balancing algorithm for cloud computing using ant colony optimization,"
Cluster Computing, vol. 24, no. 4, pp. 3135-3145, 2021.

[15] S. Sefati, M. Mousavinasab, and R. Zareh Farkhady, "Load balancing in
cloud computing environment using the Grey wolf optimization algorithm
based on the reliability: performance evaluation," The Journal of
Supercomputing, vol. 78, no. 1, pp. 18-42, 2022.

[16] K. Ramya and S. Ayothi, "Hybrid dingo and whale optimization
algorithm ‐ based optimal load balancing for cloud computing
environment," Transactions on Emerging Telecommunications
Technologies, vol. 34, no. 5, p. e4760, 2023.

[17] P. Geetha, S. Vivekanandan, R. Yogitha, and M. Jeyalakshmi, "Optimal
load balancing in cloud: Introduction to hybrid optimization algorithm,"
Expert Systems with Applications, vol. 237, p. 121450, 2024.

[18] F. A. Emara, A. A. Gad-Elrab, A. Sobhi, A. S. Alsharkawy, M. E. Embabi,
and M. Abd El-Baky, "Multi-objective task scheduling algorithm for load
balancing in cloud computing based on improved Harris hawks
optimization," The Journal of Supercomputing, vol. 81, no. 6, pp. 1-38,
2025.

[19] M. Haris and S. Zubair, "Battle Royale deep reinforcement learning
algorithm for effective load balancing in cloud computing," Cluster
Computing, vol. 28, no. 1, p. 19, 2025.

[20] S. Tabagchi Milan, N. Jafari Navimipour, H. Lohi Bavil, and S. Yalcin,
"A QoS-based technique for load balancing in green cloud computing
using an artificial bee colony algorithm," Journal of Experimental &
Theoretical Artificial Intelligence, vol. 37, no. 2, pp. 307-342, 2025.

https://doi.org/10.1145/3714393.3726499

