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Abstract—This study presents a hybrid deep learning 

approach for automated detection of bubbles in contact lenses, 

aiming to enhance quality assurance in the manufacturing 

process. A hybrid AlexNet+SVM model was developed using 

transfer learning, where AlexNet’s convolutional features were 

leveraged for binary classification (bubble vs. normal) via a 

Support Vector Machine (SVM) classifier. The dataset consisted 

of 320 images (160 bubbles, 160 normal) pre-processed using 

median filtering, local histogram equalization, and circular 

masking to improve image clarity and consistency. Through 

systematic hyperparameter tuning, the model achieved 100% 

testing accuracy and 97.92% validation accuracy, with perfect 

precision (100%) and high recall (96%). Comparative evaluation 

against ResNet and VGGNet demonstrated that the 

AlexNet+SVM model offered superior generalization and 

robustness, particularly for small-scale datasets. While VGGNet 

also achieved 100% testing accuracy with 95.83% validation 

accuracy, ResNet underperformed in recall (89%), likely due to 

its deeper architecture and data limitations. The findings 

underscore the suitability of hybrid models for binary 

classification tasks in limited-data scenarios. Identified 

challenges, including dataset size and risk of overfitting, point to 

future research directions involving expanded datasets and more 

advanced pre-processing techniques. This research contributes to 

the advancement of automated defect detection systems for 

contact lens manufacturing, offering a reliable and efficient 

quality control solution. 
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I. INTRODUCTION 

The eye is one of the most sensitive and vital organs in the 
human body, serving as the primary means of gathering 
information from the external environment. Humans rely 
heavily on vision, more than any other sensory modality, for 
perception and interaction with their surroundings [1]. The 
development of contact lenses has significantly advanced 
vision correction since their inception. In 1888, the first glass 
contact lenses were developed by Adolf E. Fick and Edouard 
Kalt, opticians based in Paris. However, glass contact lenses 
were associated with several limitations, including excessive 
weight, high cost, and safety concerns. Their fragility made 
them prone to breaking upon impact, necessitating careful 
handling. These drawbacks led to the development of 
alternative materials, culminating in the invention of the first 

hydrophilic hydrogel soft contact lenses by Czech chemists 
Drahoslav Lim and Otto Wichterle in 1959 [2]. 

Despite these advancements, the manufacturing process of 
soft contact lenses is not without challenges. One significant 
issue is the formation of bubbles during production. The 
manufacturing process involves heating the lens material until 
it reaches a molten state, followed by injection into computer-
designed molds under high pressure. After cooling, the lenses 
are removed from the mold and undergo polishing to achieve 
smooth edges and surfaces. The lenses are then hydrated and 
subjected to quality assurance testing. However, improper 
handling or suboptimal manufacturing conditions can lead to 
the entrapment of bubbles during the heating and molding 
stages. These bubbles compromise the structural integrity and 
optical performance of the lenses. 

Current inspection methods for detecting bubbles in contact 
lenses often depend on subjective human judgment, resulting in 
inconsistencies that can compromise quality control and allow 
defective lenses to reach end-users, potentially leading to 
discomfort or vision issues. While significant advancements 
have been made in contact lens classification and quality 
assessment using deep learning, the automated and highly 
accurate detection of specific manufacturing defects—
particularly air bubbles—remains insufficiently addressed in 
both academic research and industrial practice. Existing 
systems frequently struggle with precision, especially in 
scenarios involving small datasets or variable imaging 
conditions and tend to overlook the importance of 
preprocessing techniques in improving model reliability. 

To bridge this gap, this study introduces a hybrid deep 
learning model that combines AlexNet with a Support Vector 
Machine (SVM) classifier, specifically optimized for robust 
bubble detection in constrained data environments. Enhanced 
by image quality-focused preprocessing strategies, the 
proposed approach aims to improve inspection consistency, 
reduce reliance on manual evaluation, and support the 
development of reliable, fully automated quality assurance 
systems for contact lens manufacturing. The remainder of this 
paper is structured as follows: Section II presents a 
comprehensive review of related work. Section III describes 
dataset acquisition and preprocessing techniques. Section IV 
details the proposed methodology, including model 
architecture and tuning strategies. Section V discusses the 
results and comparative analysis. Section VI presents the 
conclusion, study limitations, and recommendations for future 
research. 
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II. RELATED WORK 

This section reviews key studies relevant to bubble 
detection in contact lenses. Gautam and Mukhopadhyay [3] 
employed AlexNet as a deep convolutional neural network 
(CNN) architecture, combined with an SVM-based Error-
Correcting Output Code (ECOC) classifier. They evaluated 
Linear, Quadratic, Cubic, and Gaussian SVM models, focusing 
on validation accuracy to assess performance. Their work 
demonstrated the effectiveness of deep CNNs for contact lens 
detection. Raghavendra, Raja, and Busch [4] extended SVM 
applications by using it for a three-class classification problem: 
no lens, soft contact lens, or textured contact lens. This 
approach highlighted SVM's utility in multi-class lens 
detection tasks. 

In image preprocessing, Arvind Kumar [5] compared 
Median and Gaussian filters for denoising, concluding that the 
Median filter achieved better results in less time, emphasizing 
its efficiency for image enhancement. Mandalapu, 
Ramachandra, and Busch [6] utilized the Blind/Referenceless 
Image Spatial Quality Evaluator (BRISQUE) to extract texture 
features from textured contact lenses. This method provided 
insights into image quality and texture patterns across different 
manufacturers, showcasing the potential of quality metrics for 
lens analysis. 

In deep learning, H. Hou et al. [20] using a new detection 
network of YOLOv8-BGA model as a baseline, which can 
achieve effective identification of leakage bubbles and bubble 
images collected under different lighting conditions in a 
practical industrial inspection environment. Convolutional 
neural networks have been used to detect and classify defects 
in colored contact lenses. Kim Ty et al. [21] employed CNN 
GoogLeNet V4 to detect defective contact lenses in the AOI 
system that yielded a good product recognition rate of 83.3% 
despite the limitations of computational resources and data. 

While these studies reflect advancements in contact lens 
classification and quality assessment, most existing approaches 
rely heavily on large datasets and lack targeted solutions for 
specific defects such as bubbles. Furthermore, limited attention 
has been given to preprocessing strategies and model 
robustness under small-scale data and varied lighting 
conditions. To address these challenges, this paper proposes a 
lightweight, generalizable deep learning framework—
integrating AlexNet with SVM—enhanced by quality-focused 
preprocessing techniques, specifically designed for accurate 
and automated bubble detection in contact lens manufacturing. 

III. METHODOLOGY 

The workflow of the bubble detection system is illustrated 
in Fig. 1. The process begins with data collection, where 
images of contact lens specimens are captured using the 
experimental setup described earlier. No Reference Image 
Quality Assessment (NR-IQA) is performed on the raw images 
to evaluate the quality of images captured with and without 
additional lighting. Following this, data augmentation and 
image cropping are applied to prepare the dataset for pre-
processing. 

The pre-processing stage involves several image 
enhancement techniques, including median filtering, Gaussian 
filtering, power law transformation, local histogram 
equalization, circle detection, and circle masking. To validate 
the effectiveness of these preprocessing methods, Image 
Quality Assessment (IQA) metrics such as Peak Signal-to-
Noise Ratio (PSNR), Mean Squared Error (MSE), and 
Absolute Mean Brightness Error (AMBE) are employed. After 
preprocessing, the images are resized to a uniform dimension 
to ensure consistency before classification. The classification 
stage utilizes the AlexNet convolutional neural network (CNN) 
model with transfer learning, incorporating Support Vector 
Machines (SVM) for enhanced performance. Parameter tuning 
is conducted to optimize hyperparameters such as epoch count, 
batch size, learning rate, and the number of workers. The 
model's performance is evaluated using a confusion matrix to 
assess its accuracy in detecting normal lenses and lenses with 
bubbles. 

Finally, the proposed AlexNet model with SVM transfer 
learning is compared against two other state-of-the-art models, 
AlexNet, VGGNet and ResNet, to benchmark its effectiveness 
in bubble detection. This comprehensive approach ensures a 
robust and reliable system for identifying defects in contact 
lenses. 

A. Dataset and Data Collection 

The dataset used in this study was curated from real-world 
contact lens manufacturing samples provided by an industrial 
supplier. It includes 20 images of lenses with bubbles and 16 
images of normal lenses for analysis. These images represent 
actual production defects, making the dataset highly relevant 
for developing industrial-grade defect detection systems. 
Though small in size, the dataset’s authenticity and diversity in 
lighting conditions support the development of robust models 
using transfer learning and data augmentation techniques. 

These specimens were imaged using a Logitech C922 Pro 
Stream Webcam for detailed inspection. The experimental 
setup included hardware (laptop, Logitech C922 camera, tripod 
stand, USB Type-A 2.0 cable) and software (PyCharm IDE) 
[7]. The camera, set to 1080p resolution, was mounted on a 
tripod at a 90-degree angle, 6 cm above the specimens as in 
Fig. 2. A black cardboard background was used to enhance 
contrast, facilitating bubble visualization against the white 
lenses. Two imaging modes were utilised: one without 
additional lighting and one with phone camera light. A custom 
camera app developed using PyQt5, QtGui, and Pyshine 
libraries, featured ‘Start’ and ‘Take picture’ buttons for image 
capture. All images were saved in PNG format at 1440×1080 
resolution. 

B. No Reference Image Quality Assessment 

No Reference Image Quality Assessment (NR-IQA) was 
conducted using the Blind/Referenceless Image Spatial Quality 
Evaluator (BRISQUE) on the raw images to evaluate the 
quality of images captured with and without additional lighting 
[8]. BRISQUE was selected for its ability to quantify image 
quality without a reference image. The imaging mode yielding 
lower BRISQUE values, indicating higher quality, was chosen 
for subsequent data augmentation. 
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Fig. 1. Methodology workflow. 

 
Fig. 2. Experimental setup. 
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C. Data Augmentation 

Data augmentation was applied to enhance the dataset. For 
the 20 images of lenses with bubbles, each image was rotated 
at 0°, 90°, 180°, and 270°, resulting in 80 augmented images. 
For the 16 normal lens images, the first 10 images were rotated 
at 0°, 90°, 180°, and 270°, producing 40 images. The 
remaining 6 images were rotated at 0°, 45°, 90°, 135°, 180°, 
225°, 270°, and 315°, generating an additional 48 images. This 
resulted in a total of 88 normal lens images. Horizontal flipping 
was then applied to all augmented images, producing a final 
dataset of 320 images (160 with bubbles and 160 normal). 

D. Image Cropping 

The Region of Interest (ROI) for the dataset was the contact 
lens area, excluding the plastic mold and black cardboard 
background. Auto-cropping was performed on each image to 
remove unwanted regions, ensuring the background did not 
affect preprocessing. The cropped images varied in size 
between 240×240 and 350×350 pixels, as the ROI dimensions 
differed across specimens. 

E. Image Pre-processing 

Image pre-processing is essential for improving image 
quality, addressing factors like lighting intensity and camera 
quality. The process begins with segmenting the Region of 
Interest (ROI) within the boundary of interest, followed by 
focusing on the object of interest, categorized as either bubbles 
or normal. 

1) Median filter: A non-linear filter used to reduce 

impulsive (salt-and-pepper) noise while preserving edges [9]. 

For a 5×5 filter, the centre pixel is replaced by the median 

value of the 25-pixel window, calculated by sorting pixel 

values and selecting the 13th value as in Eq. (1). This process 

is repeated across the image. 

𝑓(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛
(𝑠,𝑡)∈𝑆𝑥𝑣

{𝑔(𝑠, 𝑡)}

2) Gaussian filter: A linear filter applied to blur images or 

reduce noise. It performs a weighted average of surrounding 

pixels based on the filter size. A 5×5 kernel was used, with the 

sigma parameter controlling the blurring effect. The process 

iterates by shifting the window across the image by using Eq. 

(2). 

𝑔(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
(𝑥2+𝑦2)

2𝜎2 

3) Local histogram equalization: Enhances contrast by 

adjusting image intensities using regional information. It 

spreads frequent intensity values, stretching the intensity range 

[10] to improve local contrast by using Eq. (3). 

𝑚𝑠𝑥𝑦
= ∑ 𝑟𝑖𝑃𝑆𝑥𝑦

(𝑟𝑖)𝐿−1
𝑖=0 

4) Power law transformation: Maps narrow ranges of 

dark input values to wider output ranges or vice versa [11]. 

The transformation uses Eq. (4), where s and r are output and 

input pixel values, c is a constant, and γ controls the mapping. 

A γ value of 2 was chosen to darken the image, enhancing 

bubble edges. 

𝑠 = 𝑐 ∙  𝑟𝛾 

F. Image Quality Assessment 

Image Quality Assessment (IQA) evaluates distortions and 
degradations in images. Four pre-processing approaches were 
analyzed using Peak Signal-to-Noise Ratio (PSNR), Mean 
Squared Error (MSE), and Absolute Mean Brightness Error 
(AMBE). The approach yielding the best results across these 
metrics was selected for further processing. 

1) PSNR: Measures the peak-to-noise ratio in decibels 

between the original and processed images. Higher PSNR 

values indicate better image quality [12]. It is calculated using 

Eq. (5), where R is the maximum fluctuation in the input 

image data type, and MSE is the mean squared error. 

𝑃𝑆𝑁𝑅 = 𝑙𝑜𝑔10(
𝑅2

𝑀𝑆𝐸
)

2) MSE: Represents the cumulative squared error between 

the original and processed images. Lower MSE values 

indicate smaller errors and better image quality [13]. Equation 

(6) calculates MSE, where n is the number of data points, Yᵢ is 

the observed value, and Ŷᵢ is the predicted value. 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − �̂�𝑖)

2𝑛
𝑖=1 

3) AMBE: Assesses the preservation of original 

brightness. Lower AMBE values indicate better brightness 

preservation. Eq. (7) calculates AMBE, where E(X) and E(Y) 

represent the mean errors of the original and processed 

images, respectively. 

𝐴𝑀𝐵𝐸 = 𝐸(𝑋) − 𝐸(𝑌)

G. Circle Detection and Masking 

Circle detection was performed using OpenCV's Hough 
Gradient Method, which leverages gradient information from 
edges. The function cv.HoughCircles (image, method, dp, 
minDist, param1, param2, minRadius, maxRadius) was utilized 
with the following parameters: 

 image: Pre-processed input images. 

 method: cv2.HOUGH_GRADIENT for gradient-based 
edge detection. 

 dp: Set to 1 to match the accumulator resolution with 
the input image. 

 minDist: Set to 200 to avoid false detection of 
overlapping circles. 

 param1: Set to 50 as the higher threshold for the Canny 
edge detector. 

 param2: Set to 30 as the accumulator threshold for 
circle center detection. 

 minRadius and maxRadius: Both set to 0 to detect 
circles of any size. 
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The circle detection process is defined by Eq. (8), where 
represents the circle's (xcentre, ycentre) and r is its radius. The 
output, HoughCircles, provides the detected circle parameters. 
After circle detection, masking was applied to isolate the 
Region of Interest (ROI). A mask was created by hiding the 
outer region of the detected circle. The original image was then 
combined with the mask, resulting in an output image where 
only the contact lens ROI is visible, and the background is 
black. This step ensures focus on the lens area while 
eliminating irrelevant background information. 

(𝑥 − 𝑥𝑐𝑒𝑛𝑡𝑟𝑒  )2 + (𝑥 − 𝑦𝑐𝑒𝑛𝑡𝑟𝑒)2 = 𝑟 − 𝐻𝑜𝑢𝑔ℎ𝐶𝑖𝑟𝑐𝑙𝑒𝑠()  (8) 

H. Convolution Neural Network AlexNet + SVM Model 

This study employs a transfer learning approach by 
integrating the AlexNet architecture with a linear Support 
Vector Machine (SVM) for bubble detection in contact lenses. 
The output images after the circle masking were resized to 227 
by 227 as this is the optimum image size acceptable by the 
AlexNet CNN model. AlexNet, chosen for its robust 
performance in visual recognition tasks [3], consists of 8 
layers: 5 convolutional and 3 fully connected. To adapt it to the 

binary classification task (bubbles vs. normal), the original 
1000-class output layer [14] is replaced with a linear SVM 
classifier. Key modifications include: 

 ReLU Activation: Replaces Tanh to accelerate training 
speed by sixfold [15]. 

 Dropout (Rate: 0.5): Mitigates overfitting, though 
doubling training time. 

 Overlap Pooling: Reduces network size [16] and error 
rates (0.4% top-1, 0.3% top-5). 

The model leverages transfer learning to address limitations 
of small datasets and binary classification. The dataset (320 
images: 160 bubbles, 160 normal) is partitioned into 70% 
training, 15% validation, and 15% testing. The SVM classifier 
is applied to the final fully connected layer (fc8), enabling 
precise two-class categorization as shown in Fig. 3. This hybrid 
approach optimizes AlexNet’s feature extraction capabilities 
with SVM’s efficiency in linear classification, ensuring robust 
performance despite dataset constraints. 

 

Fig. 3. Classification model of AlexNet + SVM on contact lens images. 

IV. RESULT AND DISCUSSION 

This section presents a comprehensive analysis of the 
experimental results, focusing on three critical phases of the 
study: (1) the evaluation of image pre-processing techniques to 
enhance dataset quality, (2) the optimization of 
hyperparameters for the AlexNet+SVM classification model, 
and (3) a comparative assessment of the performance of 
AlexNet, ResNet, and VGGNet architectures under identical 
conditions. First, the effectiveness of pre-processing methods is 
validated through No Reference Image Quality Assessment 
(NR-IQA) metrics, ensuring optimal input data for model 
training. Next, systematic parameter tuning—spanning epochs, 
batch size, learning rate, and workers—identifies 
configurations that maximize classification accuracy while 
mitigating overfitting. Finally, the optimized model is 
benchmarked against ResNet and VGGNet to determine the 

most robust architecture for bubble detection in contact lenses. 
The results highlight the interplay between data quality, model 
configuration, and architectural design, providing insights into 
achieving high precision and generalizability in defect 
detection tasks. 

A. Result for Image Pre-processing 

The BRISQUE scores for images captured without and 
with camera light were analyzed in Table I. For bubble 
specimens, the average BRISQUE values were 36.67 (without 
light) and 45.39 (with light). For normal specimens, the values 
were 43.89 (without light) and 48.98 (with light). Lower 
BRISQUE scores indicate better perceptual quality. Since 
images captured without camera light consistently showed 
lower BRISQUE values, they were selected for further pre-
processing. 
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Four pre-processing approaches were evaluated using 
PSNR, MSE, and AMBE metrics as shown in Table II. The 
results showed that the median filter combined with local 
histogram equalization achieved the highest PSNR (27.870) 
and the lowest MSE (106.725) and AMBE (0.10518), 
indicating superior image quality. Consequently, this method 
was selected for pre-processing before model implementation. 

TABLE I.  BRISQUE VALUE FOR RAW DATA WITH AND WITHOUT 

CAMERA LIGHT 

Data 
BRISQUE (Average values) 

Without camera light With camera light 

Bubble 36.67259 45.38722 

Normal 43.89439 48.9829 

TABLE II.  AVERAGE IMAGE QUALITY ASSESSMENT OF THE ORIGINAL 

IMAGE AND IMAGE AFTER PRE-PROCESSING 

Approach Pre-processing Method PSNR MSE AMBE 

1 

Median filter + 
Local histogram 

equalization 

27.8700

0 

106.7250

0 

0.1051

8 

2 
Median filter + 
Power law transformation 

26.7550
0 

144.3920
0 

0.1892
1 

3 

Gaussian filter + 

Local histogram 

equalization 

27.8690
0 

106.7950
0 

0.1052
0 

4 
Gaussian filter + 

Power law transformation 

26.7510

0 

144.2980

0 

0.1887

4 

B. Optimizing Turning Parameters for Deep Learning 

Classification Model 

This section analyzes the performance of the 
AlexNet+SVM model by evaluating the impact of varying 
parameters. The training and validation accuracy and loss were 
recorded and analyzed based on graph patterns. The results 
were compared between testing and validation accuracy for 
each tuning to identify optimal configurations. 

1) Turning on Epoch: Epoch values of 40, 60, 80, 100, 

120, and 140 were tested while keeping other parameters 

constant (learning rate: 0.0001, batch size: 6, workers: 8, 

optimizer: Adam, model: AlexNet, binary classification). The 

highest testing and validation accuracy (89.58%) were 

achieved at 100 epochs, indicating optimal performance as in 

Fig 4. Fig. 5 shows minimal gaps between training and 

validation accuracy and loss at this epoch, confirming model 

stability. 

2) Turning on batch size: Batch sizes of 2, 4, 8, 16, and 32 

were evaluated with other parameters fixed (epochs: 100, 

learning rate: 0.0001, workers: 8, optimizer: Adam, model: 

AlexNet, binary classification). A batch size of 32 yielded the 

highest testing accuracy (93.75%) and validation accuracy 

(83.33%). Larger batch sizes improved model performance, 

but further increases were impractical due to the validation 

size limit. Fig. 6 and Fig. 7 show the smallest gap between 

training and validation accuracy and loss at this batch size. 

 
Fig. 4. Relationship between epoch and accuracy of testing and validation. 

 
Fig. 5. Training and validation for accuracy and loss for tuning on epoch of 

100. 

 
Fig. 6. Relationship between batch size and accuracy of testing and 

validation. 
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Fig. 7. Training and validation for accuracy and loss for tuning on batch size 

of 32. 

3) Turning on learning rate: Learning rates of 0.1, 0.01, 

0.001, 0.0001, 0.00001, and 0.000001 were tested while 

keeping other parameters constant (epoch: 100, batch size: 32, 

workers: 8, optimizer: Adam, model: AlexNet, binary 

classification). A learning rate of 0.0001 achieved the highest 

testing accuracy (87.5%) and validation accuracy (91.67%). 

Extremely low or high learning rates degraded performance, 

with 0.0001 providing the best balance. Fig. 8 and Fig. 9 

demonstrate minimal gaps between training and validation 

accuracy and loss at this learning rate. 

 
Fig. 8. Relationship between learning rate and accuracy of testing and 

validation. 

 
Fig. 9. Training and validation for accuracy and loss for tuning on learning 

rate of 0.0001. 

4) Turning on worker: Worker values of 1, 2, 4, and 8 

were tested with other parameters fixed (epochs: 100, learning 

rate: 0.0001, batch size: 32, optimiser: Adam, model: 

AlexNet, binary classification). A single worker achieved the 

highest testing and validation accuracy (93.75%). Additional 

workers did not improve performance, as the first worker 

efficiently managed batch loading and processing. Fig. 10 and 

Fig. 11 show the smallest gap between training and validation 

accuracy and loss with one worker. 

 
Fig. 10. Relationship between workers and accuracy of testing and validation. 
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Fig. 11. Training and validation for accuracy and loss for tuning on workers of 

1. 

C. Comparison of Evaluation performance for AlexNet, 

ResNet and VGGNet and AlexNet+SVM at Optimum 

Tuning Parameters 

After obtaining the optimal configuration, it was applied to 
AlexNet, ResNet, VGGNet and AlexNet+SVM to identify the 
best performing deep learning model for detecting bubble in 

contact lenses. This comparative analysis aimed to evaluate the 
effectiveness of each architecture under the same conditions, 
ensuring a robust and reliable solution for bubble detection. 
Table III presents the confusion matrix and its metrics of 
testing and validation accuracy results for AlexNet, ResNet, 
VGGNet and AlexNet+SVM models using identical 
parameters. 

The AlexNet+SVM model achieved the highest validation 
accuracy (97.92%), outperforming VGGNet (95.83%) and 
ResNet (100%), while matching VGGNet’s perfect testing 
accuracy (100%). All models demonstrated flawless precision 
(100%) and specificity (100%), confirming robust 
discrimination between bubbles and normal lenses. However, 
recall varied significantly: AlexNet and ResNet exhibited 
lower sensitivity (testing: 89%; validation: 89% and 100%, 
respectively), whereas VGGNet and AlexNet+SVM achieved 
perfect recall (100%) in testing, with AlexNet+SVM 
maintaining superior validation sensitivity (96%). 

The AlexNet+SVM hybrid model’s enhanced performance 
stems from integrating SVM’s linear classification efficiency 
with AlexNet’s feature extraction capabilities, mitigating 
overfitting risks inherent in deeper architectures like ResNet 
(138M parameters) [17]. VGGNet’s intermediate parameter 
count (60.3M) and hierarchical feature learning likely 
contributed to its strong testing accuracy, though validation 
performance lagged slightly due to dataset variability [18]. 
AlexNet’s moderate parameter size (62M) and SVM-driven 
classification optimized generalization, as evidenced by its 
balanced F1 scores (testing: 94; validation: 97.96). These 
results align with theoretical expectations: larger models 
(ResNet) risk overfitting on small datasets, while hybrid 
approaches (AlexNet+SVM) enhance stability by combining 
convolutional feature learning with linear discriminative power 
[19]. 

TABLE III.  COMPARISON OF MODEL PERFORMANCE 

 Model TP FP TN FN Accuracy Precision Sensitivity Specificity F1 score 

Testing 

AlexNet 24 0 21 3 93.75 100 89 100 94 

ResNet 24 0 21 3 93.75 100 89 100 94 

VGGNet 24 0 24 0 100 100 100 100 100 

AlexNet+SVM 24 0 24 0 100 100 100 100 100 

Validation 

AlexNet 24 0 21 3 93.75 100 89 100 94 

ResNet 24 0 24 0 100 100 100 100 100 

VGGNet 24 0 22 2 95.83 100 92.31 100 96 

AlexNet+SVM 24 0 23 1 97.92 100 96 100 97.96 
 

V. CONCLUSION 

In conclusion, this study successfully achieved its 
objectives of developing a hybrid deep learning framework that 
integrates AlexNet with an SVM classifier to detect bubbles in 
contact lenses.  The AlexNet model, optimized with specific 
parameters, achieved testing and validation accuracies of 
93.75%. Performance evaluation using confusion matrix 
metrics demonstrated high precision, recall, specificity, and F1 
scores. Comparative analysis revealed that the hybrid 

AlexNet+SVM model outperformed conventional AlexNet, 
ResNet, and VGGNet models achieving 100% testing accuracy 
and 97.92% validation accuracy, along with superior recall 
(96%) and F1 scores (97.96%). 

Image preprocessing using median filtering and local 
histogram equalization significantly enhanced the quality of 
input data, contributing to superior classification performance. 
The optimized hyperparameters further ensured stable training 
and validation behavior. Although the model achieved high 
accuracy and demonstrated strong robustness, its reliance on a 
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small dataset may limit generalizability to broader production 
environments. This constraint, along with the observed risk of 
overfitting in deeper architectures like ResNet, highlights the 
need for larger, more diverse datasets to further validate the 
model’s suitability for real-time industrial deployment. Future 
recommendations include enhancing pre-processing 
techniques, such as sharpening, and expanding the dataset to 
improve model accuracy and robustness. Additionally, 
exploring other hybrid architectures or advanced data 
augmentation techniques could further enhance model 
generalization and performance; and integrating the system 
into a live quality control pipeline. 
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