
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

759 | P a g e

www.ijacsa.thesai.org

Integration of Grey Wolf Optimizer Algorithm with

Combinatorial Testing for Test Suite Generation

Muhamad Asyraf Anuar, Rosziati Ibrahim, Mazidah Mat Rejab, Nurezayana Zainal

Department of Software Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia

Abstract—Combinatorial Testing (CT) is a software testing

technique designed to detect defects in complex systems by

efficiently covering diverse combinations of input parameters

within given time and resource constraints. A common strategy in

CT is t-way testing, which ensures that all possible interactions

among any t parameters are tested at least once. The Grey Wolf

Optimization Algorithm (GWOA) is a nature-inspired

metaheuristic that has been successfully applied to various

optimization problems. In this study, we introduce the

Combinatorial Grey Wolf Optimization Algorithm (CGWOA),

which integrates GWOA with CT to enhance test suite generation.

Effectiveness of CGWOA is evaluated through experiments on a

real-world software system, where it is found that the number of

test cases was reduced by 98%, from 3000 to 40, while still

ensuring complete 2-way interaction coverage. Experimental

results demonstrate that CGWOA consistently produces smaller

test suites compared to pure computation methods such as Jenny,

IPOG, IPOG-D and TConfig, as CGWOA consistently

outperformed, especially in handling both lower and higher

interaction strengths. In scenarios with binary parameters,

CGWOA delivered the smallest test suites, while in more complex

configurations, even in MCA settings, it showed impressive

scalability, outperforming the other algorithms. Statistical

analysis using the Wilcoxon signed-rank test revealed that the

proposed approach significantly outperforms existing methods,

with all p-values less than 0.02 after applying the Holm correction.

The experimental results demonstrate that the proposed CGWOA

approach advances software testing by efficiently minimizing the

number of test cases required to achieve complete test coverage.

Keywords—Grey wolf optimizer algorithm; combinatorial

testing; metaheuristics; t-way testing

I. INTRODUCTION

Combinatorial Testing (CT) has been widely recognized for
its effectiveness in identifying software defects [1], as
demonstrated by numerous empirical studies. Its success
depends on a well-structured set of test cases, known as a
Covering Array (CA), which ensures that all interactions among
the parameters influencing the behavior of the System Under
Testing (SUT) are covered [2]. CT detects failures by examining
interactions between parameters in the testing process. It has
been used to automate test suite generation, aiming to produce a
reliable product that is usable across a wide range of inputs.
However, the high cost of CT can be a significant obstacle to its
widespread adoption. Developers spend approximately 50% of
their time identifying and fixing bugs [3] which highlights the
need for more efficient and cost-effective testing strategies.

As software systems grow in complexity and size, the
number of possible input combinations become overwhelmingly

large, making complete coverage challenging with traditional
CT methods. To address this, researchers and practitioners are
exploring cost-reduction strategies, such as leveraging machine
learning to automate test case generation [4] or prioritizing test
cases based on their defect detection potential [5]. Despite these
challenges, CT remains a crucial approach for ensuring software
quality and minimizing defects in complex systems.

To tackle CT challenges, various heuristic search techniques
have been introduced to optimize test case selection and reduce
the cost of CT. CT employs a covering array as a test suite to
systematically cover parameter combinations, aiming to balance
the number of test cases with their effectiveness in detecting
failures [3]. Among these approaches, the GWOA has gained
attention for its ability to balance exploration and exploitation,
where it first explores the search space and then converges
towards the best solutions. GWOA is a metaheuristic
optimization method [6] inspired by the hunting behavior of
grey wolves and has been applied to various optimization
problems.

This study proposes an innovative CT approach leveraging
GWOA, combining the strengths of both techniques to
maximize test coverage while minimizing the number of test
cases. It aims to investigate the effectiveness of integrating the
Grey Wolf Optimizer Algorithm with Combinatorial Testing to
reduce test suite size while ensuring complete t-way interaction
coverage across diverse parameter configurations. The goal is to
assess whether the proposed CGWOA approach offers a more
scalable and efficient solution than traditional combinatorial
testing techniques.

A. Combinatorial Testing

Combinatorial testing is a software testing technique that
systematically covers combinations of input parameters to detect
interaction faults efficiently. Instead of testing every possible
configuration, which can be infeasible, it focuses on ensuring
that all t-way combinations are tested at least once. A single test
suite can be designed to cover all t-wise combinations of these
parameters [1] while minimizing the total number of test cases.

This study addresses the combinatorial optimization
challenge of t-way interaction test generation, where t denotes
the interaction strength or combination degree. The goal is to
generate minimal yet effective test suites that ensure full t-wise
coverage across complex software configurations. In recent
years, various methodologies have been proposed to tackle this
problem, leading to numerous computation-based solutions.
Despite these advances, many existing approaches still suffer
from limitations in adaptability [7], especially when dealing
with systems involving diverse parameter types and values.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

760 | P a g e

www.ijacsa.thesai.org

B. Overview of T-way Testing

A test suite is structured as an N × k array, where N is the
number of test cases and k is the number of parameters. Each
row represents a unique combination of parameter values. The
suite is built by first enumerating all t-way value combinations
(t-tuples) and then selecting the minimal number of test cases
required to cover them. These test cases are used to assess the
system under different interaction scenarios, enabling the
identification of faults that arise from specific parameter
pairings. The following formal definitions clarify key terms
relevant to this approach:

 T-way testing is a combinatorial testing method that
ensures all possible combinations of t input parameters
are exercised at least once. It provides a balance between
test coverage and resource efficiency.

 A Covering Array (CA), denoted as CA(N; t; vp), is a
matrix covering all t-way combinations where each
parameter has v values.

 A Mixed Covering Array (MCA), denoted as MCA(N; t;
v₁^p₁, v₂^p₂, ..., vᵢ^pᵢ), generalizes the CA to support
varying numbers of values per parameter.

 A t-tuple is a t-length subset of parameter values that
must appear at least once across all test cases.

Mathematically, t-way testing can be described using
Orthogonal Arrays (OAs) [8], where each subarray contains all
ordered t-sized subsets of parameter values. OAs are typically
represented using parameters such as N (number of test cases),
k (number of parameters), v (number of values per parameter),
and t (interaction strength). However, a key limitation of OAs is
their requirement for uniform value counts across all parameters.

To address this issue, Covering Arrays (CAs) [9] were
introduced. CA, denoted as CA(N; t, k, v), guarantees that every
t-combination of values is covered at least once in a test suite.
For example, CA(N; 2, 5, 4) covers all pairwise interactions
among five parameters, each with four possible values. While
CAs offer improved flexibility over OAs, they still assume a
uniform number of values per parameter. For real-world systems
where parameters often have varying values, the Mixed
Covering Array (MCA) provides a more general solution. An
MCA is defined as MCA(N, t, C), where C represents the
configuration of parameter-value groupings, such as (v₁k₁, v₂k₂,
..., vₙkₙ). For instance, MCA(7, 3, 4⁶, 2⁴) refers to a 3-way
interaction test suite with 7 test cases, covering 6 parameters
with 6 values each and 4 parameters with 2 values each.

To illustrate the principles of t-way testing, consider a
hypothetical configuration scenario involving a mobile e-
commerce application where the system consists of four key
input parameters: Payment Method, Login Authentication,
Delivery Option, and Notification Type. The Payment Method
parameter supports three values of Credit Card (C), Digital
Wallet (W), and Cash on Delivery (D) while the other three
parameters each support two values of Password (P) or
Biometric (B) for Login Authentication, Standard (S) or Express
(E) for Delivery Option, and Email (E) or SMS (S) for
Notification Type, as shown in Table I.

TABLE I. INPUT PARAMETERS AND CORRESPONDING VALUES

Payment Auth Delivery Notification

Credit Card (C) Password (P) Standard (S) Email (E)

Digital Wallet (W) Biometric (B) Express (E) SMS (S)

Cash on Delivery (D)

Assuming a 2-way interaction strength (t = 2), the goal is to
construct a test suite in which all possible pairs of values across
all parameter combinations are covered at least once.
Exhaustively testing every possible configuration would require
3 × 2 × 2 × 2 = 24 test cases. However, by applying
combinatorial optimization, the number of required test cases
can be significantly reduced without sacrificing 2-way coverage.
Based on the configuration above, the following test suite of 12
test cases achieves complete 2-way coverage with a significantly
reduced number of tests compared to exhaustive enumeration,
as shown in Table II.

TABLE II. 2-WAY COVERING TEST SUITE

Test Case Payment Auth Delivery Notification

TC1 C P S E

TC2 W B E S

TC3 D P E S

TC4 C B S S

TC5 W P S E

TC6 D B S E

TC7 C P E E

TC8 W B S S

TC9 D P S S

TC10 C B E S

TC11 W P E S

TC12 D B E E

Based on the configuration of the mobile e-commerce
application above, the system can be formally represented as a
Mixed Covering Array as follows:

MCA (12;2;3123)

This denotes a test suite containing 12 test cases that
achieves full pairwise coverage across one 3-valued parameter
and three 2-valued parameters. The reduced test count
demonstrates the efficiency of combinatorial testing in
minimizing redundant combinations while preserving
interaction coverage. This test suite ensures that every pairwise
combination of parameter values appears in at least one test case.
For example, the pair (Wallet, Biometric) is covered in TC2 and
TC8, while (Credit Card, Express) appears in TC7 and TC10.
This approach demonstrates how combinatorial testing can yield
significant reductions in testing effort while maintaining robust
fault detection capabilities.

C. Metaheuristic Algorithm

Metaheuristic algorithms are a diverse class of nature-
inspired, derivative-free optimization techniques that excel in
solving complex real-world problems where traditional
analytical methods fall short [10]. These algorithms are
generally classified into four main categories of swarm-based,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

761 | P a g e

www.ijacsa.thesai.org

evolutionary, physics-based, and human-based approaches [11].
Evolutionary algorithms (EAs), for example, are inspired by
Darwinian natural selection, with genetic algorithms being a
well-known instance that simulates biological evolution [12].

Over the past two decades, metaheuristic algorithms have
been extensively adapted, modified, and integrated with other
intelligent techniques for various engineering applications,
ranging from Proton Exchange Membrane Fuel Cell (PEMFC)
design [13] to software testing, including their role in Test Case
Prioritization [14][15]. A survey of 14 metaheuristic algorithms
introduced between 2000 and 2020 [16] highlights the research
trends, the hybridization of metaheuristics, advancements in
parallel metaheuristics, unresolved challenges, and emerging
research opportunities of metaheuristic algorithms.

Metaheuristics are particularly well-suited for problems
involving complex constraints or mixed-integer variables [17],
where solutions are refined within predefined limits and
constraints are effectively managed to transform constrained
problems into unconstrained ones. While challenges remain in
fully understanding their convergence properties and
guaranteeing global optimality across diverse problem domains,
ongoing research continues to enhance their efficiency and
reliability. As advancements in metaheuristic design progress,
these algorithms are becoming increasingly adaptable and
robust, reinforcing their potential as powerful optimization
tools.

Metaheuristics serve as a powerful approach for tackling
optimization problems that are too complex or large to be solved
precisely. They are widely applicable across various
optimization challenges, including software testing, an essential
field in IT that encompasses diverse testing strategies,
methodologies, and techniques, including metaheuristic-based
approaches [18]. By providing a flexible and efficient means of
identifying high quality, near optimal solutions, metaheuristics
prove valuable in scenarios, where traditional optimization
methods may be impractical or ineffective.

The key contributions of this study are threefold. First, it
presents a comprehensive overview of CT techniques and the
Grey Wolf Algorithm (GWOA), outlining their strengths and
limitations. Second, it provides a detailed explanation of the
proposed approach that integrates CT with GWOA,
emphasizing its key features and advantages. Third, the
effectiveness of the proposed approach is evaluated by
comparing its performance with pure computation CT
techniques to assess its efficiency under various configurations.

D. Grey Wolf Optimizer Algorithm

Grey Wolf Optimizer Algorithm (GWOA) is an
optimization technique inspired by the social structure and
hunting strategies of grey wolves. In this method, wolves are
organized into four hierarchical levels of alpha, beta, delta, and
omega, reflecting a ranking from the strongest to the weakest
candidate solutions. The hunting process is mainly directed by
the top three wolves of alpha, beta, and delta, while the rest
adjust their positions based on these leaders [19].

To utilize GWOA, the input data must first be properly
defined and formatted, typically as an array or matrix. The
optimization begins with a randomly generated initial

population of grey wolves, each representing a potential solution
within the search space. These wolves are ranked according to
their fitness scores, with the three best classified as alpha (α),
beta (β), and delta (δ), while the others, referred to as omega (ω),
update their positions in response to the movements of the
leading wolves. The key phases of the hunting process of
tracking, encircling, and attacking prey are represented
mathematically. After identifying the prey, the grey wolves
begin to encircle it, which is mathematically modeled using the
following equations:

�⃗⃗� = |𝐶 × 𝑋𝑝
⃗⃗ ⃗⃗ (𝑡) − 𝑋 (𝑡)| (1)

𝑋 (𝑡 + 1) = 𝑋𝑝
⃗⃗ ⃗⃗ (𝑡) − 𝐴 × �⃗⃗� (2)

Eq. (1) models the step size taken by a wolf towards one of
the leading wolves (i.e., α, β, or δ), and Eq. (2) defines the final
updated position of the omega wolf. Here, t is the tth iteration,

𝑋𝑝
⃗⃗ ⃗⃗ (𝑡) are the position vectors of the prey, and the coefficient

vector of 𝐴 and 𝐶 calculated as:

𝐴 = 2𝑎 × 𝑟1⃗⃗⃗ − 𝑎 (3)

𝐶 = 2 × 𝑟2⃗⃗ ⃗ (4)

To simulate encircling behavior, the vectors 𝐴 and 𝐶 are
computed using Eq. (3) and Eq. (4), where 𝑎 decreases linearly

from 2 to 0, and 𝑟1⃗⃗⃗ and 𝑟2⃗⃗ ⃗ are random vectors in [0, 1]. 𝐴

controls step size and direction, while 𝐶 adjusts the influence of
the leader’s position, balancing exploration and exploitation.

To simulate hunting behavior, it is assumed that the α, β, and
δ wolves possess superior knowledge about the prey’s probable
location. Therefore, their positions are treated as the best
solutions discovered so far, and the remaining wolves (i adjust
their positions based on those of the leading wolves. This
adaptive behavior is mathematically expressed through the
following equations:

𝐷
→

𝛼 = |𝐶
→

1 × 𝑋
→

𝛼 − 𝑋
→

|, 𝐷
→

𝛽 = |𝐶
→

2 × 𝑋
→

𝛽 − 𝑋
→

|, 𝐷
→

𝛿 = |𝐶
→

3 × 𝑋
→

𝛿 −

𝑋
→

| (5)

𝑋
→

1 = 𝑋
→

𝛼 − 𝐴
→

1 × 𝐷
→

𝛼, 𝑋
→

2 = 𝑋
→

𝛽 − 𝐴
→

2 × 𝐷
→

𝛽, 𝑋
→

3 = 𝑋
→

𝛿 − 𝐴
→

3 × 𝐷
→

𝛿

(6)

𝑋
→

(𝑡 + 1) = (𝑋
→

1 + 𝑋
→

2 + 𝑋
→

3)/3 (7)

In this formulation, 𝑋
→

𝛼 , 𝑋
→

𝛽 , and 𝑋
→

𝛿 represent the best

positions identified by the α, β, and δ wolves, respectively. The

vectors 𝐶
→

1 , 𝐶
→

2 , and 𝐶
→

3 are randomly generated coefficients,

while 𝑋
→

 denotes the current position of the search agent under

evaluation. Likewise, 𝐴
→

1, 𝐴
→

2, and 𝐴
→

3 are randomly distributed
coefficient vectors, and 𝑡 represents the current iteration number.
Eq. (5) to Eq. (7) describe how the position of each search agent
is updated based on the influence of the leading wolves.

The fundamental principle of the GWO algorithm is that
omega wolves adjust their positions during the search process
according to the locations of the α, β, and δ wolves, thereby
simulating the surrounding and attacking of prey. This strategy

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

762 | P a g e

www.ijacsa.thesai.org

allows omegas to diverge from one another while collectively
converging towards the prey. When ∣A∣<1, convergence towards
prey is emphasized, promoting exploitation. However, this may
lead to premature convergence and local optima stagnation. To

mitigate this, values of 𝐴 greater than 1 or less than −1 are
introduced to encourage divergence from the prey and enhance
global exploration in search of better solutions. Additionally, the

vector 𝐶 contributes to exploration behavior. When 𝐶 >1, the
influence of the prey on the search agent is amplified.

Conversely, when 𝐶 <1, this influence is reduced, thereby
modifying the distance calculation in Equation (1). It is

important to note that the parameter 𝐴 decreases linearly
throughout the optimization process to promote exploitation in
later iterations.

In contrast, 𝐶 remains randomly distributed throughout the
process, balancing exploration and exploitation. This dynamic

adjustment of 𝐴 and 𝐶 has proven to be an effective strategy for
avoiding stagnation in local optima. The flowchart of the GWO
algorithm (Algorithm 1) is presented in Fig. 1.

Algorithm 1: GWOA Algorithm

Input: Objective function f(x)

 Output: X_alpha: Best-found solution

1. Initialize the grey wolf population X = {X₁, X₂, ..., X_N}
randomly

2. Evaluate the fitness of each search agent using f(x)

3. Identify the best three solutions as Alpha (X_alpha),
(X_beta), and Delta (X_delta)

4. Set iteration counter t = 0

5. while t < MaxIter do

6. a = 2 - 2 * (t / MaxIter)

7. for each wolf X_i do

8. for each dimension d = 1 to D do

9. Generate r₁, r₂ ∈ [0, 1]

10. A = 2 * a * r₁ - a

11. C = 2 * r₂

12. D_alpha = |C * X_alpha − X_i|

13. D_beta = |C * X_beta − X_i|

14. D_delta = |C * X_delta − X_i|

15. X₁ = X_alpha − A * D_alpha

16. X₂ = X_beta − A * D_beta

17. X₃ = X_delta − A * D_delta

18. X_i = (X₁ + X₂ + X₃) / 3

19. end for

20. end for

21. Evaluate new fitness values

22. Update X_alpha, X_beta, X_delta

23. t = t + 1

24. end while

1.

Fig. 1. Flowchart of grey wolf optimization algorithm.

One of the key advantages of GWOA is its ability to balance
exploration and exploitation. The algorithm initially explores a
wide range of solutions, but as iterations progress, it shifts focus
toward refining the best solutions found. Studies have shown
that GWOA performs competitively against other optimization
algorithms in terms of convergence speed and solution accuracy
[20], [21], [22]. Studies have demonstrated that GWOA is
effective in cancer detection [23], scheduling [24], and
engineering design [25], among other fields [26]. For instance,
research has shown that GWOA improved the decision tree
model through hyperparameter optimization for diabetes
classification [27].

However, like other metaheuristic algorithms, GWOA does
not guarantee the ability to pinpoint the exact position of the
global optimal solution in every case. The algorithm may
converge to a local optimum or fail to find the best solution
within the given number of iterations, particularly if the search
space is highly complex or if parameter tuning is not optimized.
Despite these challenges, GWOA remains a valuable tool for
solving problems with large search spaces and intricate
constraints due to its ability to balance exploration and
exploitation while requiring minimal prior knowledge of the
problem domain.

The remainder of this study is structured as follows: Section
II presents related work on combinatorial testing and the
application of metaheuristic algorithms in test generation.
Section III describes the proposed Combinatorial Grey Wolf

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

763 | P a g e

www.ijacsa.thesai.org

Optimizer Algorithm, including its design, parameters, and
workflow. Section IV discusses the experimental setup, results,
and performance analysis of CGWOA compared to existing
combinatorial testing methods. Finally, Section V concludes the
study and outlines potential directions for future research.

II. RELATED WORK

In existing research, various heuristic search algorithms have
been proposed to guide the process of Combinatorial Testing
(CT) and reduce its cost. These algorithms aim to enhance the
efficiency of CT by prioritizing the most relevant combinations
of input values and parameters. Grey Wolf Optimization
Algorithm (GWOA) has been successfully applied to various
optimization problems as it has demonstrated strong
exploration-exploitation capabilities. Given these
characteristics, GWOA has the potential to significantly
improve the efficiency of CT by optimizing test suite generation.
The following section reviews related work on CT and GWOA,
focusing on previous efforts to integrate metaheuristic
optimization techniques with CT. The key contributions and
limitations of these approaches are discussed, highlighting their
relevance to the proposed study. Additionally, an overview of
the current state of CT and GWOA research is provided, along
with the main research gaps this work aims to address.

Several studies have compared GWOA with other
metaheuristic algorithms, highlighting its effectiveness in
various optimization tasks. For instance, Pace demonstrated that
GWOA outperforms other algorithms in optimizing Transient
Electromagnetic (TDEM) data [22]. Similarly, a 2024 study
showed that GWOA delivers superior results in optimizing
battery performance and lifespan compared to alternative
approaches [21]. Due to its strong foundation, GWOA has been
the basis for numerous enhancements for optimization
problems. In 2022, the Cross-Dimensional Coordination Grey
Wolf Optimizer was introduced, outperforming 16 well-known
algorithms in benchmark functions and engineering
optimization tasks [28]. More recently, in 2025, the Memory-
Based Grey Wolf Optimizer (mGWO) was developed,
incorporating the personal best history of the wolves, crossover,
and greedy selection to improve search efficiency, solution
accuracy, and convergence rate [29]. Beyond direct
enhancements, researchers have also explored hybridizing
GWOA with other optimization techniques to further improve
its performance. Ahmad et al. combined GWOA with the Scout
Bee Operator function from the Artificial Bee Colony algorithm,
achieving superior results compared to multiple other algorithms
[30]. Additionally, a 2022 study explored the integration of
GWOA with Whale Optimization Algorithm and Harmony
Search [31] to optimize combinatorial testing, successfully
reducing the size of combinatorial test suites.

Metaheuristic algorithms have been extensively used in CT
to optimize test case generation and selection. Algorithms such
as Genetic Algorithms (GA), Simulated Annealing (SA),
Particle Swarm Optimization (PSO), Harmony Search (HS), and
many more have demonstrated their effectiveness in minimizing
test suites while maintaining high t-way coverage [32]. GWOA
has also been investigated for its application in CT. Prior
research has explored various methods of integrating GWOA

with CT, including its use in optimizing test suite generation and
improving the overall efficiency of the testing process.

However, further research is needed to fully harness the
potential of GWOA in CT and to explore additional optimization
strategies for improving test effectiveness. A 2024 study
explores the use of dynamic TWGH for scalable client-server
test suite generation [33]. Another study introduces SCHOP, an
approach that enhances the Harmony Search algorithm by
integrating seeding and constraint support while employing a
one-parameter-at-a-time strategy [34]. Additionally, 2024 saw
the introduction of the Binary Growth Optimizer (BGO), a
modified version of the Growth Optimizer algorithm,
specifically adapted for binary optimization to address the set-
covering problem [35]. Other metaheuristics approaches include
ROBDD-IPSO (Improved Particle Swarm Optimization) [36],
BM (Beautiful Mind) [37], Wingsuit Flying Search
Optimization Algorithm (WFSO) [38], Arquitetura Multi-
Agente para Metaheurísticas (AMAM) [39], Random-Key
Greedy Randomized Adaptive Search Procedure (RK-GRASP)
[40], and Pairwise Test Case Generation in Harmony Search
Algorithm with Seeding, Constraint Mechanism (PHOSC) [41],
Hybridization of Whale Optimization Algorithm and Long
Short Term Memory (WOA-LTSM) [42] and Enhanced
Harmony Search (EHS) algorithm [43]. Table III summarizes
the findings of the recent study.

TABLE III. RECENT STUDY SUMMARY

Study Baseline Method Dataset/Project
Evaluation

Criteria

[33] Dynamic TWGH Client-Server System Test Suite Size

[34] SCHOP
Bank Islam Online

Login System.
Test Suite Size

[35] BGO Set-Covering Problem Test Suite Size

[36] ROBDD-IPSO
Real-Time Boiler

System

Benchmark

Functions

[37] BM
Benchmark Covering

Array
Test Suite Size

[38] WFSO Synthetic Test Suites Test Suite Size

[39] AMAM

Vehicle Routing

Problem with Time
Windows

Test Suite Size

[40] RK-GRASP
Tree Of Hubs Location

Problem
Test Suite Size

[41] PHOSC
UBA Mobile-App
login screen

Test Cases

[42] WOA-LTSM Kaggle Dataset Test Suite Size

[43] EHS
Benchmark Covering

Array
Test Suite Size

III. PROPOSED CGWOA

Failures caused by system interactions can be effectively
detected through combinatorial testing, a powerful technique for
ensuring software reliability. Traditional methods often struggle
to identify optimal solutions for complex optimization
problems, especially when dealing with large input spaces. To
address this challenge, swarm intelligence and population-based
algorithms have been recommended to be applied to optimize
test suite generation. Metaheuristic search algorithms, such as
the Grey Wolf Optimizer (GWO), offer an effective approach
for generating compact and efficient t-way test suites.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

764 | P a g e

www.ijacsa.thesai.org

The T-tuple table is a key component in applying
combinatorial testing (CT) with the Grey Wolf Optimizer
Algorithm (GWOA) in this study, ensuring that all necessary t-
wise interactions among input parameters are covered. It is
initially populated with all possible T-tuples, where each tuple
represents a combination of parameter values that must be
tested. During the optimization process, test cases are evaluated
based on how many uncovered T-tuples they contain, and
selected test cases remove these tuples from the table once
covered. This iterative process continues until all T-tuples have
been accounted for. The T-tuple table thus serves as a guide,
preventing redundant test cases and ensuring an efficient
balance between test reduction and interaction testing.

The proposed CGWOA method is influenced by several key
parameters. The population size affects diversity and search
breadth as larger sizes increase exploration but also computation
time. The parameter a, which linearly decreases from 2 to 0,
governs the balance between exploration and exploitation over
time, guiding the wolves from broad searching to focused
refinement. The random coefficients r₁ and r₂ introduce
stochastic behavior that prevents premature convergence and
enhances global search ability. Algorithm 2 presents the
CGWOA algorithm.

Algorithm 2: CGWOA Algorithm

 Input: Parameters P with their respective values

 Output: Test suite covering all t-way combinations

1. Generate all t-way parameter combinations from P

2. Generate all value combinations for each t-way parameter
combination

3. Store all the parameter combinations and value combinations
pairs in T-tuple table

4. Initialize test suite T

5. while T-tuple_table is not empty do

6. Initialize grey wolf population X = {X₁, X₂, ...,
XN} as random test cases

7. Evaluate fitness for each wolf. Xᵢ based on covered
t-tuples

8. Identify the Alpha (Xα), Beta (Xβ), Delta (Xδ)
wolves

9. Set iter = 0

10. while iter < MaxIter do

11. a = 2 − 2 * (iter / MaxIter)

12. for each wolf Xᵢ do

14. Generate r₁, r₂ ∈ [0, 1]

15. A = 2 * a * r₁ − a

16. C = 2 * r₂

17. D_α = |C * X_α[d] − Xᵢ[d]|

18. D_β = |C * X_β[d] − Xᵢ[d]|

19. D_δ = |C * X_δ[d] − Xᵢ[d]|

20. X₁ = Xα[d] − A * Dα

21. X₂ = Xβ[d] − A * Dβ

22. X₃ = Xδ[d] − A * Dδ

23. Xᵢ[d] = round((X₁ + X₂ + X₃) / 3)

24. end for

25 Evaluate new fitness of Xᵢ

26. Update Xα, Xβ, Xδ based on current fitness

27. iter = iter + 1

28. end while

29. Add Xα to the test suite T

30. Remove all covered tuples of Xα from T-
tuple_table

31. end while

To begin the CGWOA process, the input parameters and
their possible values are first defined. These parameters, which
can be variables such as numbers or categorical values, are
typically structured into dictionaries or arrays. Then, all t-
strength interactions of t-tuples between the parameters are
generated and stored in a tuple table. At the start of the
optimization process, a population of random test cases of
wolves is initialized. Each test case represents a possible
solution and consists of randomly selected values for each
parameter. The test cases are then evaluated to determine how
many t-tuples they cover. The fitness function is calculated
based on how much of the test case covers the required T-tuples.
The test cases are then ranked based on their fitness, with the top
three solutions being designated as alpha, beta, and delta wolves.

The main optimization process proceeds in iterations. For
each iteration, the algorithm adjusts the position of each wolf in
the population. This is done using the standard GWOA
equations. These equations involve randomly generated
coefficients, and a linearly decreasing parameter named 'a'
which helps control the balance between exploration and
exploitation of the search space. The algorithm computes
distances from each wolf to the positions of the Alpha, Beta, and
Delta wolves and uses these distances to calculate three potential
new positions. These are averaged to form a new candidate
position for the wolf. If the test case at the new position covers
more T-tuples than the current one, the wolf is moved to that
new position. Once all wolves have been updated and evaluated,
the test case corresponding to the Alpha wolf is selected. If this
test case contributes any new t-tuples that are not yet covered, it
is added to the final test suite, and those t-tuples are removed
from the remaining table. The algorithm continues this process
until all T-tuples have been covered. The top-performing test
case in each iteration is selected for inclusion in the final test
suite, and the t-tuples it addresses are eliminated from the global
tuple set to avoid duplication. This cycle continues until either
all T-tuples are covered, or the maximum iteration limit is
reached. In brief, the algorithm starts by generating a random
population of test cases and evaluating their fitness based on
uncovered t-tuples. Test cases with higher coverage are added to
the suite, while others are refined through iterative updates using
the GWOA mechanism. By guiding candidate solutions toward
the best-performing wolves, the algorithm gradually achieves
full t-tuple coverage. Fig. 2 presents the CGWOA workflow
step-by-step.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

765 | P a g e

www.ijacsa.thesai.org

Fig. 2. Flowchart of combinational grey wolf optimization algorithm.

IV. RESULTS AND DISCUSSIONS

This section presents the performance of the proposed
CGWOA approach through test suite generation on real-world
software configurations, benchmarking against pure
computation combinatorial testing methods, and statistical
evaluation to assess the significance of observed differences in
performance.

A. Test Suite Generation on Real World Software

Configuration

To demonstrate the application of the proposed
Combinatorial Grey Wolf Optimizer Algorithm (CGWOA), a

case study was conducted using real-world parameter
configurations derived from the Microsoft Word Page Setup
Dialog Box. The CGWOA approach was applied by iteratively
selecting test cases that eliminated the largest number of
uncovered t-tuples from a dynamic t-tuple table. As each test
case was added to the suite, the corresponding covered
interactions were removed from the table, and the process
continued until full 2-way coverage was achieved. Fig. 3
illustrates the Microsoft Word Page Setup dialog [44], which
includes six key parameters relevant to document formatting of
Section Start (A), Header and Footer (B), From Edge Header
(C), From Edge Footer (D), Vertical alignment (E), and Apply
To (F). The full range of configurable options is summarized in
Table IV.

Fig. 3. MS Word page setup dialog box.

TABLE IV. MS WORD PAGE SETUP DIALOG BOX PARAMETERS VALUE

Input Values

Section Start (A) Headers and Footers (B) From Edge Header (C) From Edge Footer (D) Vertical Alignment (E) Apply To (F)

Continuous Different Odd and Even -10 -10 Top Selected Sections

New Column Different First Page 0 0 Center Whole Document

New Page 10 10 Justified

Even Page null null Bottom

Odd Page NaN NaN

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

766 | P a g e

www.ijacsa.thesai.org

Before applying CGWOA, the total number of possible test
case combinations was calculated to be 2000, based on the
following computation:

𝐴 = {Continuous, new column, new page, even page, odd
page}

B = {Different odd and even, Different first page}

C = {−10, 10, 0, 𝑛𝑢𝑙𝑙, 𝑁𝑎𝑁}}

D = {−10, 10, 0, 𝑛𝑢𝑙𝑙, 𝑁𝑎𝑁}

E = {Top, Center, Justified, Bottom}

F = {Selected Sections, Whole Document}

∴ |𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠| = |𝐴| × |𝐵| × |𝐶| × |𝐷| × |𝐸| × |𝐹|

 = 5 × 2 × 5 × 5 × 4 × 2

 = 2000

However, executing all 2000 test cases is computationally
expensive and inefficient, necessitating an optimization strategy
for test suite reduction while maintaining essential coverage. To
achieve this objective, a t-tuple table was constructed to
facilitate pairwise combinatorial testing. This table
systematically enumerates all T-tuples that consist of all possible
combinations of two parameters and their values that need to be
included in the final test suite. The optimization process begins
by generating the full set of t-tuples and subsequently selecting
test cases that maximize tuple coverage while minimizing
redundancy.

The original exhaustive test set contained numerous test
cases with overlapping t-tuples, leading to significant
redundancy. CGWOA addressed this by using the t-tuple table
as a structured mechanism to track essential interactions and
guide the search toward high-utility test cases. Table V
illustrates a substantial reduction of the test suite from 2000 to a
mere 40 cases, a 98% reduction with all coverage. The
algorithm's ability to continuously update its coverage goals and
remove redundant combinations ensured that each selected test
case contributed meaningfully to the overall efficiency and
completeness of the suite.

TABLE V. PERCENTAGE OF TEST CASES REDUCTION

Condition Test Cases Percentage Reduction

Exhaustive Combination 2000 Full Test Cases Count

With CGWOA 40 98%

The results indicate that GWOA provides a highly efficient
method for combinatorial test case selection, significantly
reducing the test suite size while preserving essential coverage.
The integration of the t-tuple table ensures that all required 2-
way combinations are methodically incorporated, while the
optimization process effectively minimizes unnecessary test
case execution. This efficiency underscores CGWOA's direct
applicability in software quality assurance.

These promising results highlight the potential of CGWOA
in generating compact and efficient test suites while maintaining
full interaction coverage. However, to fully evaluate its
effectiveness, it is essential to compare CGWOA's performance

against other well-established combinatorial testing strategies.
In the next section, we assess the performance of CGWOA in
comparison with techniques such as Jenny, IPOG, IPOG-D,
PICT, and TConfig. By examining these strategies across
various test configurations and strengths, we can better
understand the relative advantages and limitations of CGWOA
in the context of combinatorial test case generation. This
comparison will provide a comprehensive view of how
CGWOA performs in diverse scenarios and its potential for
improving testing efficiency in real-world applications.

B. CGWOA Benchmarking Against Pure Computation

Combinatorial Testing Techniques

To assess the performance of the proposed CGWOA, a
comparative evaluation was conducted against several
established pure computation combinatorial test generation
techniques, namely Jenny [45], IPOG [46], IPOG-D [47],
TConfig [48], and PICT [49]. Jenny is a fast, backtracking-based
tool for generating minimal t-wise test suites, suitable for small
to medium configurations. IPOG incrementally constructs t-
wise tests by covering interactions in stages, offering a good
balance between efficiency and scalability. IPOG-D extends
IPOG with a divide-and-conquer strategy, making it more
suitable for large systems and higher interaction strengths.
TConfig, associated with using mathematical methods to
generate covering arrays for efficient t-wise testing, is
particularly effective with uniform parameter configurations.
PICT, developed by Microsoft, employs a greedy, constraint-
solving approach to generate efficient pairwise and n-wise test
suites, widely adopted in industrial testing scenarios.

These algorithms were chosen due to their extensive use in
real-world applications, including implementation in well-
established companies like IBM and integration into widely
adopted open-source projects [49][50]. The inclusion of these
benchmark methods ensures a comprehensive and balanced
comparison, thereby facilitating an objective analysis of
CGWOA’s capability to construct minimal yet high-coverage
test suites.

The experiments were conducted on a laptop running a 64-
bit version of Windows 11, featuring an AMD Ryzen 5
processor operating at 3.30 GHz and 8 GB of RAM. The
proposed method was developed in Python. Testing was
organized into the following three datasets:

 Evaluating the CGWOA approach against existing
methods using CA (t, v7), where the number of
parameters is fixed, but the number of values varies.
Additionally, interaction strength ranges from 2 to 6.

 Evaluating the CGWOA approach compared to other
methods using five different Mixed Covering Array
(MCA) configurations.

 Evaluating the CGWOA approach against current
techniques using CA (t, 3P), where the number of
parameters varies while the number of values remains
constant and the interaction strength t ranges from 2 to
5.

Although reduction percentages were computed for all
combinatorial testing techniques, they were uniformly high,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

767 | P a g e

www.ijacsa.thesai.org

exceeding 99% across all parameter and strength configurations.
Due to this saturation effect, the inclusion of detailed reduction
statistics was deemed unnecessary, as such values offered
limited discriminatory insight into the relative performance of
the methods which is why the analysis focuses on absolute test
suite sizes, which provide a more meaningful basis for
evaluating the effectiveness and efficiency of each technique in
practical settings.

Firstly, the performance of CGWOA was assessed across
various interactions, with increasing levels of parameter
cardinality and benchmarked across configurations of CA (N; t,
3P). Based on Table VI, for t = 2, CGWOA consistently matched
or outperformed the compared tools in terms of minimizing test
suite size. It demonstrated particularly stable and competitive
performance as the number of parameters increased. The growth
in test suite size with increasing P remained modest, indicating
good scalability for pairwise testing. When moving to t = 3,
CGWOA continued to demonstrate efficient scaling behavior.
The growth in test size remained well-controlled, which
highlights the optimizer's ability to effectively manage the
combinatorial explosion typical at this level.

TABLE VI. TEST SUITE SIZE PERFORMANCE FOR CA(T, 3P)

t p CGWOA
Pure Computation Strategies

Jenny TConfig PICT IPOG-D IPOG

2

3 9 9 10 10 15 9

4 9 13 10 13 15 9

5 12 14 14 13 15 15

6 14 15 15 14 15 15

7 15 16 15 16 15 15

8 15 17 17 16 15 15

9 16 18 17 17 15 15

10 16 19 17 18 21 15

11 16 17 20 18 21 17

12 18 19 20 19 21 21

3

4 31 34 32 34 27 32

5 39 40 40 43 45 41

6 45 51 48 48 45 46

7 50 51 55 51 50 55

8 53 58 58 59 50 56

9 57 62 64 63 71 63

4

5 96 109 97 100 162 97

6 132 140 141 142 162 141

7 156 169 166 168 226 167

5
6 313 348 305 310 386 305

7 441 458 477 452 678 466

6
7 975 1089 921 1015 1201 921

8 1409 1466 1515 1455 1763 1493

As interaction strength increased further to t = 4 and t = 5,
the benefits of CGWOA became increasingly evident. The

differences were especially noticeable as the number of
parameters rose, indicating that CGWOA scaled more
efficiently with problem complexity. At the highest interaction
strength examined, t = 6, CGWOA continued to show strong
performance as it maintained smaller test suite sizes than others,
with only a few occasionally matching its output.

TABLE VII. TEST SUITE SIZE PERFORMANCE FOR MCA

Configuratio

ns

CGWO

A

Jenn

y

Tconfi

g

PIC

T

IPO

G

-D

IPO

G

MCA (N; 4, 34

45)
444 457 463 NA NA 499

MCA (N; 4, 51
38 22)

291 303 324 NA NA 302

MCA (N; 4, 82

72 62 52)
4323 4580 4776 NA NA 4317

MCA (N; 4, 65
54 32)

2475 3033 3273 NA NA NA

MCA (N; 4,

101 91 81 71

61 51 41 31 21)

5883 6138 5492 NA NA 5495

The results from Table VII show that CGWOA consistently
achieves adequate test suite sizes across all five Mixed Covering
Array configurations. For example, in MCA(N; 4, 34 45) and
MCA(N; 4, 51 38 22), it generates 444 and 291 test cases,
outperforming all other methods. Even in more complex
scenarios such as MCA(N; 4, 82 72 62 52) and MCA(N; 4, 65 54
32), CGWOA maintains superior performance, with smaller test
sizes than Jenny, Ipog, and Tconfig. In the largest configuration,
MCA(N; 4, 101 91 81 71 61 51 41 31 21), it again produces the most
compact suite with 5883 tests. These results highlight
CGWOA’s efficiency in handling mixed-level parameter sets.

Table VIII presents the performance comparison of
CGWOA with established combinatorial test generation tools
across configurations of CA(N; t, v⁷), where the interaction
strength t ranges from 2 to 6 and the number of values per
parameter v increases from 2 to 5. While interaction strength
influences test suite size, the results show that the increase in v
plays a more dominant role in driving complexity.

When t is fixed at 2, all tools generate relatively small test
suites, and the differences among them are minor. However, as
v increases, CGWOA consistently maintains its efficiency,
either matching or outperforming other tools, and demonstrates
stable, controlled growth in test suite size. As t increases to 3,
the interaction complexity deepens, but again, the rise in v
results in the most significant expansion in test suite size.
CGWOA continues to provide competitive results, especially at
higher values of v, where other tools begin to show sharper
increases. At t = 4, the impact of growing v becomes even more
pronounced.

It can be observed that the differences between CGWOA and
traditional tools are amplified, especially in higher-v scenarios,
as can be seen when t reaches 5, the increase in v continues to
dominate the growth trend. While all methods experience
substantial expansion in test suite size, CGWOA manages to
generate significantly leaner suites across all v values. Finally
for v = 6, all techniques show growth in test suite size, but
CGWOA consistently produces smaller suites across all v levels.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

768 | P a g e

www.ijacsa.thesai.org

These are visually summarized in Fig. 4, which highlights how
test suite size increases with higher values of v.

Overall, CGWOA demonstrates consistent and effective
performance across varying degrees of test complexity. Its
ability to scale gracefully with increasing interaction strength
and parameter diversity makes it a promising approach for
efficiently generating minimal yet comprehensive test suites.

The experimental results across all test scenarios consistently
demonstrate the effectiveness of the proposed CGWOA
approach in generating compact covering arrays. CGWOA
outperforms pure computation methods such as Jenny, IPOG,
IPOG-D, PICT, and Tconfig in the majority of configurations. It
achieves smaller test suite sizes across varying interaction
strengths and parameter combinations, indicating its robustness
and scalability.

TABLE VIII. TEST SUITE SIZE PERFORMANCE FOR CA(T, V7)

CA (t, v7)
CGWOA

Pure Computation Strategies

t p Jenny TConfig PICT IPOG-D IPOG

2

2 7 8 7 7 8 8

3 15 15 15 16 15 17

4 25 28 28 27 32 28

5 37 37 40 40 45 42

3

2 12 14 16 15 14 19

3 52 54 55 51 50 57

4 119 124 112 124 114 208

5 222 236 239 241 252 275

4

2 30 31 36 32 40 48

3 159 169 166 168 226 185

4 493 517 568 529 704 509

5 1174 1248 `1320 1279 1858 1349

5

2 54 57 56 57 80 128

3 440 458 477 452 678 608

4 1830 1938 1792 1933 2816 2560

5 5480 5895 N/A 5814 9198 8091

6

2 71 87 64 72 96 64

3 978 1087 921 1015 1201 1281

4 5629 6127 N/A 5847 5120 4096

5 21608 23492 N/A 22502 24808 28513

Fig. 4. Line graph of test suite size performance for CA(N;t, v7).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

769 | P a g e

www.ijacsa.thesai.org

C. Statistical Evaluation

To further evaluate the performance of the proposed
CGWOA, a statistical comparison was conducted against the
pure computation combinatorial test generation methods. To
evaluate whether the differences in test suite sizes between
CGWOA and other methods were statistically meaningful, we
applied the Wilcoxon signed-rank test. This is a non-parametric
statistical test used to compare two related samples. The test was
conducted at a 95% confidence level (α = 0.05), making it
appropriate for determining whether the observed differences
are likely to be due to chance.

The comparison was based on the test suite size data shown
in Table VI, which includes multiple configurations of
parameter counts and interaction strengths. Because several t-
strength comparisons were performed, we used the Holm–
Bonferroni method to correct for the increased risk of Type I
errors (false positives). The Holm–Bonferroni procedure works
by ranking the p-values from smallest to largest and adjusting
the significance threshold for each test accordingly. This helps
ensure that the conclusions remain statistically valid even when
multiple comparisons are made. The adjusted significance level
for each test (α Holm) was calculated following the method
described in Eq. (8))[51]:

𝛼 Holm
𝛼

𝑀−𝑖+1
 (8)

where, α is the initial significance level (0.05), M is the total
number of hypotheses tested, and i is the rank order of each p-
value.

As shown in Table VI, CGWOA outperformed all
competing strategies of Jenny, PICT, IPOG-D, TConfig, and
IPOG, in the majority of test configurations. Based on this data,
the Wilcoxon signed-rank test was applied, and the results are
presented in Table IX.

TABLE IX. WILCOXON SIGNED-RANK TEST ANALYSIS

Comparison
Asymp. Sig.

(2-tailed)
α Holm Conclusion

CGWOA vs
Jenny

0.000028 0.0100 Reject the null hypothesis

CGWOA vs

PICT
0.000127 0.0125 Reject the null hypothesis

CGWOA vs
IPOG-D

0.000826 0.0167 Reject the null hypothesis

CGWOA vs

TConfig
0.002871 0.0250 Reject the null hypothesis

CGWOA vs
IPOG

0.018355 0.0500 Reject the null hypothesis

All comparisons produced p-values below their
corresponding Holm-adjusted significance thresholds, leading
to the rejection of the null hypothesis in every case. This
confirms that the performance differences observed between
CGWOA, and the other methods are statistically significant.

This consistent statistical advantage reinforces the empirical
findings and substantiates the effectiveness of CGWOA in
producing more compact test suites. The results affirm that
CGWOA significantly outperforms pure computation
algorithms across diverse parameter and strength settings,
making it a robust and efficient choice for combinatorial test
suite generation.

V. CONCLUSION AND FUTURE WORK

Recent studies have demonstrated that combinatorial testing
(CT) can be effectively enhanced using metaheuristic
approaches, optimizing the test suite by significantly reducing
its size. However, prior research indicates that certain essential
test cases may still be omitted in the generated test suite,
potentially affecting overall test coverage.

This study introduces the Combinatorial Grey Wolf
Optimizer Algorithm (CGWOA) as an alternative metaheuristic
approach for combinatorial testing. The results demonstrate that
CGWOA effectively optimizes test suite generation while
ensuring full t-way coverage, consistently outperforming
conventional computation-based methods across a broad range
of configurations, including low to high interaction strengths,
parameter counts, and value cardinalities. Future research will
focus on refining CGWOA, particularly in the context of t-way
testing, to improve its applicability across diverse case studies.

Despite its effectiveness, this study's evaluation of CGWOA
was limited to a specific software system and parameter set.
Future research should expand validation to diverse
applications, higher-order interactions, and investigate
computational overhead for large-scale systems. Further
comparative studies and analysis of parameter tuning will also
enhance understanding of CGWOA's broader applicability and
performance.

Additionally, further improvements may be explored
through techniques such as adaptive parameter tuning,
hybridization with other optimization algorithms, and applying
multi-task optimization within combinatorial testing
environments. By incorporating these enhancements, it is
possible to develop a more effective test selection process while
ensuring thorough system validation.

ACKNOWLEDGMENT

This research was supported by Ministry of Higher
Education (MOHE) through Fundamental Research Grant
Scheme (FRGS/1/2024/ICT03/UTHM/01/1).

REFERENCES

[1] D. Kuhn, R. Kacker, and Y. Lei, “Practical Combinatorial Testing,” Oct.
2010, doi: 10.6028/NIST.SP.800-142.

[2] L. Kampel, “Combinatorial Design Theory and Applications for Software
Testing,” Thesis, Technische Universität Wien, 2025. doi:
10.34726/hss.2025.131527.

[3] H. Wu, L. Xu, X. Niu, and C. Nie, “Combinatorial testing of RESTful
APIs,” in Proceedings of the 44th International Conference on Software
Engineering, in ICSE ’22. New York, NY, USA: Association for
Computing Machinery, Jul. 2022, pp. 426–437. doi:
10.1145/3510003.3510151.

[4] A. Fontes and G. Gay, “The integration of machine learning into
automated test generation: A systematic mapping study,” Softw. Test.
Verification Reliab., vol. 33, no. 4, p. e1845, 2023, doi:
10.1002/stvr.1845.

[5] C. M. Tiutin, M.-T. Trifan, and A. Vescan, “Defect Prediction-Based Test
Case Prioritization,” Stud. Univ. Babeș-Bolyai Inform., vol. 65, p. 78,
Dec. 2020, doi: 10.24193/subbi.2020.2.06.

[6] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Adv.
Eng. Softw., vol. 69, pp. 46–61, 2014, doi:
https://doi.org/10.1016/j.advengsoft.2013.12.007.

[7] A. A. Al-Sewari and K. Z. Zamli, “An Orchestrated Survey on T-Way
Test Case Generation Strategies Based on Optimization Algorithms,” in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

770 | P a g e

www.ijacsa.thesai.org

The 8th International Conference on Robotic, Vision, Signal Processing
& Power Applications, Springer, Singapore, 2014, pp. 255–263. doi:
10.1007/978-981-4585-42-2_30.

[8] I. M. Chakravarti, “Orthogonal and partially balanced arrays and their
application in design of experiments,” Metrika, vol. 7, no. 1, pp. 231–243,
Dec. 1963, doi: 10.1007/BF02613974.

[9] N. J. A. Sloane, “Covering arrays and intersecting codes,” J. Comb. Des.,
vol. 1, no. 1, pp. 51–63, 1993, doi: 10.1002/jcd.3180010106.

[10] S. Ghosh, A. Singh, and S. Kumar, “HPB3C-3PG algorithm: A new
hybrid global optimization algorithm and its application to plant
classification,” Ecol. Inform., vol. 81, p. 102581, Jul. 2024, doi:
10.1016/j.ecoinf.2024.102581.

[11] S. Gopi and P. Mohapatra, “Fast random opposition-based learning
Aquila optimization algorithm,” Heliyon, vol. 10, no. 4, p. e26187, Feb.
2024, doi: 10.1016/j.heliyon.2024.e26187.

[12] A. Petrowski and S. Ben Hamida, Evolutionary Algorithms. Hoboken, NJ,
USA: John Wiley & Sons, 2016, doi: 10.1002/9781119136378

[13] S. Raji, A. Dehnamaki, B. Somee, and M. R. Mahdiani, “A new approach
in well placement optimization using metaheuristic algorithms,” J. Pet.
Sci. Eng., vol. 215, p. 110640, May 2022, doi:
10.1016/j.petrol.2022.110640.

[14] A. Samad, H. B. Mahdin, R. Kazmi, R. Ibrahim, and Z. Baharum,
“Multiobjective Test Case Prioritization Using Test Case Effectiveness:
Multicriteria Scoring Method,” Sci. Program., vol. 2021, no. 1, p.
9988987, 2021, doi: 10.1155/2021/9988987.

[15] M. A. Asyraf, M. Z. . Sahid, and N. . Zainal, “Comparative Analysis of
Test Case Prioritization Using Ant Colony Optimization Algorithm and
Genetic Algorithm”, jscdm, vol. 4, no. 2, pp. 52–58, Oct. 2023, Accessed:
Jul. 07, 2025. [Online]. Available:
https://publisher.uthm.edu.my/ojs/index.php/jscdm/article/view/13585

[16] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, and A. Cosar, “A survey on
new generation metaheuristic algorithms,” Comput. Ind. Eng., vol. 137,
p. 106040, Nov. 2019, doi: 10.1016/j.cie.2019.106040.

[17] V. Tomar, M. Bansal, and P. Singh, “Metaheuristic Algorithms for
Optimization: A Brief Review,” Eng. Proc., vol. 59, no. 1, Art. no. 1,
2024, doi: 10.3390/engproc2023059238.

[18] D. Madhavi, “A White Box Testing Technique in Software Testing : Basis
Path Testing,” Int. J. Sci. Res. Dev., vol. 2, no. 4, pp. 12–17, Jul. 2016.
[Online]. Available:
https://www.journal4research.org/Article.php?manuscript=J4RV2I4007

[19] Z. Mustaffa, M. H. Sulaiman, and Y. Yusof, “An Application of Grey
Wolf Optimizer for Commodity Price Forecasting,” Appl. Mech. Mater.,
vol. 785, pp. 473–478, 2015, doi:
10.4028/www.scientific.net/AMM.785.473.

[20] R. Ibrahim, “A Comparative Study of Metaheuristic Optimization
Algorithms on Distinct Benchmark Functions,” J. Soft Comput. Data
Min., vol. 6, no. 1, Art. no. 1, Jun. 2025, doi: 10.1002/9781119136378.

[21] M. Camas, A. Coronado, C. Vargas-Salgado, J. Aguila-Leon, and D.
Alfonso-Solar, “Optimizing Lithium-Ion Battery Modeling: A
Comparative Analysis of PSO and GWO Algorithms,” Energies, vol. 17,
p. 822, Feb. 2024, doi: 10.3390/en17040822.

[22] F. Pace, A. Raftogianni, and A. Godio, “A Comparative Analysis of Three
Computational-Intelligence Metaheuristic Methods for the Optimization
of TDEM Data,” Pure Appl. Geophys., vol. 179, no. 10, pp. 3727–3749,
Oct. 2022, doi: 10.1007/s00024-022-03166-x.

[23] R. Mohakud and R. Dash, “Designing a grey wolf optimization based
hyper-parameter optimized convolutional neural network classifier for
skin cancer detection,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34,
no. 8, Part B, pp. 6280–6291, Sep. 2022, doi:
10.1016/j.jksuci.2021.05.012.

[24] Z. Zhu, X. Zhou, D. Cao, and M. Li, “A shuffled cellular evolutionary
grey wolf optimizer for flexible job shop scheduling problem with tree-
structure job precedence constraints,” Appl. Soft Comput., vol. 125, p.
109235, Aug. 2022, doi: 10.1016/j.asoc.2022.109235.

[25] Y. Qiu, X. Yang, and S. Chen, “An improved gray wolf optimization
algorithm solving to functional optimization and engineering design
problems,” Sci. Rep., vol. 14, no. 1, p. 14190, Jun. 2024, doi:
10.1038/s41598-024-64526-2.

[26] X. Yu, N. Jiang, X. Wang, and M. Li, “A hybrid algorithm based on grey
wolf optimizer and differential evolution for UAV path planning,” Expert
Syst. Appl., vol. 215, p. 119327, Apr. 2023, doi:
10.1016/j.eswa.2022.119327.

[27] M. Sam’an, Farikhin, and M. Munsarif, “An improved decision tree
model through hyperparameter optimization using a modified gray wolf
optimization for diabetes classification,” Comput. Methods Biomech.
Biomed. Engin., pp. 1–17, Feb. 2025, doi:
10.1080/10255842.2025.2460178.

[28] B. Wang, L. Liu, Y. Li, and M. Khishe, “Robust Grey Wolf Optimizer for
Multimodal Optimizations: A Cross-Dimensional Coordination
Approach,” J. Sci. Comput., vol. 92, no. 3, Sep. 2022, doi:
10.1007/s10915-022-01955-z.

[29] S. Gupta and K. Deep, “A memory-based Grey Wolf Optimizer for global
optimization tasks,” Appl. Soft Comput., vol. 93, p. 106367, Aug. 2020,
doi: 10.1016/j.asoc.2020.106367.

[30] I. Ahmad, F. Qayum, S. U. Rahman, and G. Srivastava, “Using Improved
Hybrid Grey Wolf Algorithm Based on Artificial Bee Colony Algorithm
Onlooker and Scout Bee Operators for Solving Optimization Problems,”
Int. J. Comput. Intell. Syst., vol. 17, no. 1, Dec. 2024, doi:
10.1007/S44196-024-00497-6.

[31] H. M. Fadhil, M. N. Abdullah, and M. I. Younis, “TWGH: A Tripartite
Whale–Gray Wolf–Harmony Algorithm to Minimize Combinatorial Test
Suite Problem,” Electronics, vol. 11, no. 18, Art. no. 18, Jan. 2022, doi:
10.3390/electronics11182885.

[32] A. A. Muazu, A. S. Hashim, and A. Sarlan, “Review of Nature Inspired
Metaheuristic Algorithm Selection for Combinatorial t-Way Testing,”
IEEE Access, vol. 10, pp. 27404–27431, 2022, doi:
10.1109/ACCESS.2022.3157400.

[33] H. M. Fadhil, M. N. Abdullah, and M. I. Younis, “Dynamic TWGH:
Client-Server Optimization for Scalable Combinatorial Test Suite
Generation,” BIO Web Conf., vol. 97, p. 00115, 2024, doi:
10.1051/bioconf/20249700115.

[34] A. A. Muazu, A. S. Hashim, U. I. Audi, and U. D. Maiwada, “Refining a
One-Parameter-at-a-Time Approach Using Harmony Search for
Optimizing Test Suite Size in Combinatorial T-Way Testing,” IEEE
Access, vol. 12, pp. 137373–137398, 2024, doi:
10.1109/ACCESS.2024.3463953.

[35] D. Leiva, B. Ramos-Tapia, B. Crawford, R. Soto, and F. Cisternas-Caneo,
“A Novel Approach to Combinatorial Problems: Binary Growth
Optimizer Algorithm,” Biomimetics, vol. 9, no. 5, Art. no. 5, May 2024,
doi: 10.3390/biomimetics9050283.

[36] S. Li, Y. Song, and Y. Zhang, “Combinatorial Test Case Generation
Based on ROBDD and Improved Particle Swarm Optimization
Algorithm,” Appl. Sci., vol. 14, no. 2, Art. no. 2, Jan. 2024, doi:
10.3390/app14020753.

[37] S. Esfandyari, V. Rafe, E. Pira, and liela Yousofvand, “Beautiful Mind:
a meta-heuristic algorithm for generating minimal covering array,” Feb.
14, 2024, Research Square. doi: 10.21203/rs.3.rs-3195308/v2.

[38] A. Malaysia et al., “Wingsuit Flying Search Optimization Algorithm
Strategy for Combinatorial T-Way Test Suite Generation,” International
Journal of Advances in Soft Computing and its Applications, vol. 16, no.
3, pp. 272–293, Nov. 2024, doi: 10.15849/ijasca.241130.15.

[39] M. A. L. Silva, J. F. da Silva, S. R. de Souza, and M. J. F. Souza, “A
scalability analysis of a multi-agent framework for solving combinatorial
optimization via Metaheuristics,” Eng. Appl. Artif. Intell., vol. 142, p.
109738, Feb. 2025, doi: 10.1016/j.engappai.2024.109738.

[40] A. A. Chaves, M. G. C. Resende, and R. M. A. Silva, “A random-key
GRASP for combinatorial optimization,” arXiv preprint,
arXiv:2405.18681, May 2024. doi: 10.48550/arXiv.2405.18681

[41] A. A. Muazu, A. S. Hashim, U. D. Maiwada, U. A. Isma’ila, M. M.
Yakubu, and M. A. Ibrahim, “Pairwise test case generation with harmony
search, one-parameter-at-at-time, seeding, and constraint mechanism
integration,” Int. J. Electr. Comput. Eng. IJECE, vol. 14, no. 3, Art. no. 3,
Jun. 2024, doi: 10.11591/ijece.v14i3.pp3137-3149.

[42] S. Qiao, “Analysis of Test Suite Optimization in Software Engineering
Using Whale Algorithm,” Jun. 2025, doi: 10.2139/ssrn.5295864.

[43] A. A. Muazu and A. S. Hashim, “Enhancing Harmony Search
Metaheuristic Algorithm for Coverage Efficiency, Test Suite Reduction,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

771 | P a g e

www.ijacsa.thesai.org

and Running Time in Combinatorial Interaction Testing,” IEEE Access,
vol. 13, pp. 110828–110852, 2025, doi:
10.1109/ACCESS.2025.3583176.

[44] Microsoft Corporation, “Page Setup Dialog Box,” Microsoft 365.
[Online].]. Available: https://support.microsoft.com/en-us/office,
[Accessed: May 5, 2025].

[45] S. Bronnikov, “Jenny: A combinatorial testing tool,” GitHub repository,
Apr. 6, 2025. [Online]. Available: https://github.com/ligurio/jenny

[46] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “IPOG: A
General Strategy for T-Way Software Testing,” in 14th Annual IEEE
International Conference and Workshops on the Engineering of
Computer-Based Systems (ECBS’07), Mar. 2007, pp. 549–556. doi:
10.1109/ECBS.2007.47.

[47] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “IPOG/IPOG-
D: efficient test generation for multi-way combinatorial testing,” Softw.
Test. Verification Reliab., vol. 18, no. 3, pp. 125–148, 2008, doi:
10.1002/stvr.381.

[48] A. Williams, “TConfig Java Test Tool,” [Online]. Available:
http://www.site.uottawa.ca /~awilliam.

[49] Microsoft, “PICT: Pairwise independent combinatorial tool,” GitHub
repository, 2025. [Online]. Available: https://github.com/microsoft/pict

[50] R. Kuhn, “Practical applications of combinatorial testing,” NIST ECUs
presentation, 2012. [Online]. Available:
https://csrc.nist.gov/CSRC/media/Presentations/Practical-Applications-
of-Combinatorial-Testing-Pr/images-media/kuhn-ECU.pdf

[51] S. Holm, “A Simple Sequentially Rejective Multiple Test Procedure,”
Scand. J. Stat., vol. 6, no. 2, pp. 65–70, 1979, [Online]. Available:
https://www.jstor.org/stable/4615733 [Accessed: May 02, 2025].

