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Abstract—Combinatorial Testing (CT) is a software testing 

technique designed to detect defects in complex systems by 

efficiently covering diverse combinations of input parameters 

within given time and resource constraints.  A common strategy in 

CT is t-way testing, which ensures that all possible interactions 

among any t parameters are tested at least once. The Grey Wolf 

Optimization Algorithm (GWOA) is a nature-inspired 

metaheuristic that has been successfully applied to various 

optimization problems. In this study, we introduce the 

Combinatorial Grey Wolf Optimization Algorithm (CGWOA), 

which integrates GWOA with CT to enhance test suite generation. 

Effectiveness of CGWOA is evaluated through experiments on a 

real-world software system, where it is found that the number of 

test cases was reduced by 98%, from 3000 to 40, while still 

ensuring complete 2-way interaction coverage. Experimental 

results demonstrate that CGWOA consistently produces smaller 

test suites compared to pure computation methods such as Jenny, 

IPOG, IPOG-D and TConfig, as CGWOA consistently 

outperformed, especially in handling both lower and higher 

interaction strengths. In scenarios with binary parameters, 

CGWOA delivered the smallest test suites, while in more complex 

configurations, even in MCA settings, it showed impressive 

scalability, outperforming the other algorithms. Statistical 

analysis using the Wilcoxon signed-rank test revealed that the 

proposed approach significantly outperforms existing methods, 

with all p-values less than 0.02 after applying the Holm correction. 

The experimental results demonstrate that the proposed CGWOA 

approach advances software testing by efficiently minimizing the 

number of test cases required to achieve complete test coverage. 

Keywords—Grey wolf optimizer algorithm; combinatorial 

testing; metaheuristics; t-way testing  

I. INTRODUCTION 

Combinatorial Testing (CT) has been widely recognized for 
its effectiveness in identifying software defects [1], as 
demonstrated by numerous empirical studies. Its success 
depends on a well-structured set of test cases, known as a 
Covering Array (CA), which ensures that all interactions among 
the parameters influencing the behavior of the System Under 
Testing (SUT) are covered [2]. CT detects failures by examining 
interactions between parameters in the testing process. It has 
been used to automate test suite generation, aiming to produce a 
reliable product that is usable across a wide range of inputs. 
However, the high cost of CT can be a significant obstacle to its 
widespread adoption. Developers spend approximately 50% of 
their time identifying and fixing bugs [3] which highlights the 
need for more efficient and cost-effective testing strategies. 

As software systems grow in complexity and size, the 
number of possible input combinations become overwhelmingly 

large, making complete coverage challenging with traditional 
CT methods. To address this, researchers and practitioners are 
exploring cost-reduction strategies, such as leveraging machine 
learning to automate test case generation [4] or prioritizing test 
cases based on their defect detection potential [5]. Despite these 
challenges, CT remains a crucial approach for ensuring software 
quality and minimizing defects in complex systems. 

To tackle CT challenges, various heuristic search techniques 
have been introduced to optimize test case selection and reduce 
the cost of CT. CT employs a covering array as a test suite to 
systematically cover parameter combinations, aiming to balance 
the number of test cases with their effectiveness in detecting 
failures [3]. Among these approaches, the GWOA has gained 
attention for its ability to balance exploration and exploitation, 
where it first explores the search space and then converges 
towards the best solutions. GWOA is a metaheuristic 
optimization method [6] inspired by the hunting behavior of 
grey wolves and has been applied to various optimization 
problems. 

This study proposes an innovative CT approach leveraging 
GWOA, combining the strengths of both techniques to 
maximize test coverage while minimizing the number of test 
cases. It aims to investigate the effectiveness of integrating the 
Grey Wolf Optimizer Algorithm with Combinatorial Testing to 
reduce test suite size while ensuring complete t-way interaction 
coverage across diverse parameter configurations. The goal is to 
assess whether the proposed CGWOA approach offers a more 
scalable and efficient solution than traditional combinatorial 
testing techniques. 

A. Combinatorial Testing 

Combinatorial testing is a software testing technique that 
systematically covers combinations of input parameters to detect 
interaction faults efficiently. Instead of testing every possible 
configuration, which can be infeasible, it focuses on ensuring 
that all t-way combinations are tested at least once. A single test 
suite can be designed to cover all t-wise combinations of these 
parameters [1] while minimizing the total number of test cases. 

This study addresses the combinatorial optimization 
challenge of t-way interaction test generation, where t denotes 
the interaction strength or combination degree. The goal is to 
generate minimal yet effective test suites that ensure full t-wise 
coverage across complex software configurations. In recent 
years, various methodologies have been proposed to tackle this 
problem, leading to numerous computation-based solutions. 
Despite these advances, many existing approaches still suffer 
from limitations in adaptability [7], especially when dealing 
with systems involving diverse parameter types and values. 
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B. Overview of T-way Testing 

A test suite is structured as an N × k array, where N is the 
number of test cases and k is the number of parameters. Each 
row represents a unique combination of parameter values. The 
suite is built by first enumerating all t-way value combinations 
(t-tuples) and then selecting the minimal number of test cases 
required to cover them. These test cases are used to assess the 
system under different interaction scenarios, enabling the 
identification of faults that arise from specific parameter 
pairings. The following formal definitions clarify key terms 
relevant to this approach: 

 T-way testing is a combinatorial testing method that 
ensures all possible combinations of t input parameters 
are exercised at least once. It provides a balance between 
test coverage and resource efficiency. 

 A Covering Array (CA), denoted as CA(N; t; vp), is a 
matrix covering all t-way combinations where each 
parameter has v values. 

 A Mixed Covering Array (MCA), denoted as MCA(N; t; 
v₁^p₁, v₂^p₂, ..., vᵢ^pᵢ), generalizes the CA to support 
varying numbers of values per parameter. 

 A t-tuple is a t-length subset of parameter values that 
must appear at least once across all test cases. 

Mathematically, t-way testing can be described using 
Orthogonal Arrays (OAs) [8], where each subarray contains all 
ordered t-sized subsets of parameter values. OAs are typically 
represented using parameters such as N (number of test cases), 
k (number of parameters), v (number of values per parameter), 
and t (interaction strength). However, a key limitation of OAs is 
their requirement for uniform value counts across all parameters. 

To address this issue, Covering Arrays (CAs) [9] were 
introduced. CA, denoted as CA(N; t, k, v), guarantees that every 
t-combination of values is covered at least once in a test suite. 
For example, CA(N; 2, 5, 4) covers all pairwise interactions 
among five parameters, each with four possible values. While 
CAs offer improved flexibility over OAs, they still assume a 
uniform number of values per parameter. For real-world systems 
where parameters often have varying values, the Mixed 
Covering Array (MCA) provides a more general solution. An 
MCA is defined as MCA(N, t, C), where C represents the 
configuration of parameter-value groupings, such as (v₁k₁, v₂k₂, 
..., vₙkₙ). For instance, MCA(7, 3, 4⁶, 2⁴) refers to a 3-way 
interaction test suite with 7 test cases, covering 6 parameters 
with 6 values each and 4 parameters with 2 values each. 

To illustrate the principles of t-way testing, consider a 
hypothetical configuration scenario involving a mobile e-
commerce application where the system consists of four key 
input parameters: Payment Method, Login Authentication, 
Delivery Option, and Notification Type. The Payment Method 
parameter supports three values of Credit Card (C), Digital 
Wallet (W), and Cash on Delivery (D) while the other three 
parameters each support two values of Password (P) or 
Biometric (B) for Login Authentication, Standard (S) or Express 
(E) for Delivery Option, and Email (E) or SMS (S) for 
Notification Type, as shown in Table I. 

TABLE I.  INPUT PARAMETERS AND CORRESPONDING VALUES 

Payment Auth Delivery Notification 

Credit Card (C) Password (P) Standard (S) Email (E) 

Digital Wallet (W) Biometric (B) Express (E) SMS (S) 

Cash on Delivery (D)    

Assuming a 2-way interaction strength (t = 2), the goal is to 
construct a test suite in which all possible pairs of values across 
all parameter combinations are covered at least once. 
Exhaustively testing every possible configuration would require 
3 × 2 × 2 × 2 = 24 test cases. However, by applying 
combinatorial optimization, the number of required test cases 
can be significantly reduced without sacrificing 2-way coverage. 
Based on the configuration above, the following test suite of 12 
test cases achieves complete 2-way coverage with a significantly 
reduced number of tests compared to exhaustive enumeration, 
as shown in Table II. 

TABLE II.  2-WAY COVERING TEST SUITE 

Test Case Payment Auth Delivery Notification 

TC1 C P S E 

TC2 W B E S 

TC3 D P E S 

TC4 C B S S 

TC5 W P S E 

TC6 D B S E 

TC7 C P E E 

TC8 W B S S 

TC9 D P S S 

TC10 C B E S 

TC11 W P E S 

TC12 D B E E 

Based on the configuration of the mobile e-commerce 
application above, the system can be formally represented as a 
Mixed Covering Array as follows: 

MCA (12;2;3123) 

This denotes a test suite containing 12 test cases that 
achieves full pairwise coverage across one 3-valued parameter 
and three 2-valued parameters. The reduced test count 
demonstrates the efficiency of combinatorial testing in 
minimizing redundant combinations while preserving 
interaction coverage. This test suite ensures that every pairwise 
combination of parameter values appears in at least one test case. 
For example, the pair (Wallet, Biometric) is covered in TC2 and 
TC8, while (Credit Card, Express) appears in TC7 and TC10. 
This approach demonstrates how combinatorial testing can yield 
significant reductions in testing effort while maintaining robust 
fault detection capabilities. 

C. Metaheuristic Algorithm 

Metaheuristic algorithms are a diverse class of nature-
inspired, derivative-free optimization techniques that excel in 
solving complex real-world problems where traditional 
analytical methods fall short [10]. These algorithms are 
generally classified into four main categories of swarm-based, 
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evolutionary, physics-based, and human-based approaches [11]. 
Evolutionary algorithms (EAs), for example, are inspired by 
Darwinian natural selection, with genetic algorithms being a 
well-known instance that simulates biological evolution [12]. 

Over the past two decades, metaheuristic algorithms have 
been extensively adapted, modified, and integrated with other 
intelligent techniques for various engineering applications, 
ranging from Proton Exchange Membrane Fuel Cell (PEMFC) 
design [13] to software testing, including their role in Test Case 
Prioritization [14][15]. A survey of 14 metaheuristic algorithms 
introduced between 2000 and 2020 [16] highlights the research 
trends, the hybridization of metaheuristics, advancements in 
parallel metaheuristics, unresolved challenges, and emerging 
research opportunities of metaheuristic algorithms. 

Metaheuristics are particularly well-suited for problems 
involving complex constraints or mixed-integer variables [17], 
where solutions are refined within predefined limits and 
constraints are effectively managed to transform constrained 
problems into unconstrained ones. While challenges remain in 
fully understanding their convergence properties and 
guaranteeing global optimality across diverse problem domains, 
ongoing research continues to enhance their efficiency and 
reliability. As advancements in metaheuristic design progress, 
these algorithms are becoming increasingly adaptable and 
robust, reinforcing their potential as powerful optimization 
tools. 

Metaheuristics serve as a powerful approach for tackling 
optimization problems that are too complex or large to be solved 
precisely. They are widely applicable across various 
optimization challenges, including software testing, an essential 
field in IT that encompasses diverse testing strategies, 
methodologies, and techniques, including metaheuristic-based 
approaches [18]. By providing a flexible and efficient means of 
identifying high quality, near optimal solutions, metaheuristics 
prove valuable in scenarios, where traditional optimization 
methods may be impractical or ineffective. 

The key contributions of this study are threefold. First, it 
presents a comprehensive overview of CT techniques and the 
Grey Wolf Algorithm (GWOA), outlining their strengths and 
limitations. Second, it provides a detailed explanation of the 
proposed approach that integrates CT with GWOA, 
emphasizing its key features and advantages. Third, the 
effectiveness of the proposed approach is evaluated by 
comparing its performance with pure computation CT 
techniques to assess its efficiency under various configurations. 

D. Grey Wolf Optimizer Algorithm 

Grey Wolf Optimizer Algorithm (GWOA) is an 
optimization technique inspired by the social structure and 
hunting strategies of grey wolves. In this method, wolves are 
organized into four hierarchical levels of alpha, beta, delta, and 
omega, reflecting a ranking from the strongest to the weakest 
candidate solutions. The hunting process is mainly directed by 
the top three wolves of alpha, beta, and delta, while the rest 
adjust their positions based on these leaders [19]. 

To utilize GWOA, the input data must first be properly 
defined and formatted, typically as an array or matrix. The 
optimization begins with a randomly generated initial 

population of grey wolves, each representing a potential solution 
within the search space. These wolves are ranked according to 
their fitness scores, with the three best classified as alpha (α), 
beta (β), and delta (δ), while the others, referred to as omega (ω), 
update their positions in response to the movements of the 
leading wolves. The key phases of the hunting process of 
tracking, encircling, and attacking prey are represented 
mathematically. After identifying the prey, the grey wolves 
begin to encircle it, which is mathematically modeled using the 
following equations: 

�⃗⃗� = |𝐶 × 𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) − 𝑋 (𝑡)|                           (1) 

𝑋 (𝑡 + 1) = 𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) − 𝐴 × �⃗⃗�                          (2) 

Eq. (1) models the step size taken by a wolf towards one of 
the leading wolves (i.e., α, β, or δ), and Eq. (2) defines the final 
updated position of the omega wolf. Here,  t is the tth iteration, 

𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) are the position vectors of the prey, and the coefficient 

vector of 𝐴  and 𝐶   calculated as: 

𝐴 = 2𝑎 × 𝑟1⃗⃗⃗  − 𝑎                                    (3) 

𝐶 = 2 × 𝑟2⃗⃗  ⃗                                     (4) 

To simulate encircling behavior, the vectors 𝐴  and 𝐶  are 
computed using Eq. (3) and Eq. (4), where 𝑎  decreases linearly 

from 2 to 0, and 𝑟1⃗⃗⃗   and 𝑟2⃗⃗  ⃗  are random vectors in [0, 1]. 𝐴  

controls step size and direction, while 𝐶  adjusts the influence of 
the leader’s position, balancing exploration and exploitation. 

To simulate hunting behavior, it is assumed that the α, β, and 
δ wolves possess superior knowledge about the prey’s probable 
location. Therefore, their positions are treated as the best 
solutions discovered so far, and the remaining wolves (i adjust 
their positions based on those of the leading wolves. This 
adaptive behavior is mathematically expressed through the 
following equations: 

𝐷
→

𝛼 = |𝐶
→

1 × 𝑋
→

𝛼 − 𝑋
→

|, 𝐷
→

𝛽 = |𝐶
→

2 × 𝑋
→

𝛽 − 𝑋
→

|,  𝐷
→

𝛿 = |𝐶
→

3 × 𝑋
→

𝛿 −

𝑋
→

|          (5) 

𝑋
→

1 = 𝑋
→

𝛼 − 𝐴
→

1 × 𝐷
→

𝛼, 𝑋
→

2 = 𝑋
→

𝛽 − 𝐴
→

2 × 𝐷
→

𝛽, 𝑋
→

3 = 𝑋
→

𝛿 − 𝐴
→

3 × 𝐷
→

𝛿 

(6) 

𝑋
→

(𝑡 + 1) = (𝑋
→

1 + 𝑋
→

2 + 𝑋
→

3)/3                     (7) 

In this formulation, 𝑋
→

𝛼 , 𝑋
→

𝛽 , and 𝑋
→

𝛿  represent the best 

positions identified by the α, β, and δ wolves, respectively. The 

vectors 𝐶
→

1 , 𝐶
→

2 , and 𝐶
→

3 are randomly generated coefficients, 

while 𝑋
→

 denotes the current position of the search agent under 

evaluation. Likewise, 𝐴
→

1, 𝐴
→

2, and 𝐴
→

3 are randomly distributed 
coefficient vectors, and 𝑡 represents the current iteration number. 
Eq. (5) to Eq. (7) describe how the position of each search agent 
is updated based on the influence of the leading wolves. 

The fundamental principle of the GWO algorithm is that 
omega wolves adjust their positions during the search process 
according to the locations of the α, β, and δ wolves, thereby 
simulating the surrounding and attacking of prey. This strategy 
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allows omegas to diverge from one another while collectively 
converging towards the prey. When ∣A∣<1, convergence towards 
prey is emphasized, promoting exploitation. However, this may 
lead to premature convergence and local optima stagnation. To 

mitigate this, values of 𝐴  greater than 1 or less than −1 are 
introduced to encourage divergence  from the prey and enhance 
global exploration in search of better solutions. Additionally, the 

vector 𝐶  contributes to exploration behavior. When 𝐶 >1, the 
influence of the prey on the search agent is amplified. 

Conversely, when 𝐶 <1, this influence is reduced, thereby 
modifying the distance calculation in Equation (1). It is 

important to note that the parameter 𝐴  decreases linearly 
throughout the optimization process to promote exploitation in 
later iterations. 

In contrast, 𝐶  remains randomly distributed throughout the 
process, balancing exploration and exploitation. This dynamic 

adjustment of 𝐴  and 𝐶  has proven to be an effective strategy for 
avoiding stagnation in local optima. The flowchart of the GWO 
algorithm (Algorithm 1) is presented in Fig. 1. 

Algorithm 1: GWOA Algorithm 

Input: Objective function f(x) 

    Output: X_alpha: Best-found solution 

1. Initialize the grey wolf population X = {X₁, X₂, ..., X_N} 
randomly 

2. Evaluate the fitness of each search agent using f(x) 

3. Identify the best three solutions as Alpha (X_alpha),  
(X_beta), and Delta (X_delta) 

4. Set iteration counter t = 0 

5. while t < MaxIter do 

6. a = 2 - 2 * (t / MaxIter) 

7. for each wolf X_i do 

8.  for each dimension d = 1 to D do 

9.   Generate r₁, r₂ ∈ [0, 1] 

10.   A = 2 * a * r₁ - a 

11.   C = 2 * r₂ 

12.   D_alpha = |C * X_alpha − X_i| 

13.   D_beta = |C * X_beta − X_i| 

14.   D_delta = |C * X_delta − X_i| 

15.   X₁ = X_alpha − A * D_alpha 

16.   X₂ = X_beta − A * D_beta 

17.   X₃ = X_delta − A * D_delta 

18.   X_i = (X₁ + X₂ + X₃) / 3 

19.  end for 

20. end for 

21. Evaluate new fitness values 

22. Update X_alpha, X_beta, X_delta 

23. t = t + 1 

24. end while 

1.  

 
Fig. 1. Flowchart of grey wolf optimization algorithm. 

One of the key advantages of GWOA is its ability to balance 
exploration and exploitation. The algorithm initially explores a 
wide range of solutions, but as iterations progress, it shifts focus 
toward refining the best solutions found. Studies have shown 
that GWOA performs competitively against other optimization 
algorithms in terms of convergence speed and solution accuracy 
[20], [21], [22]. Studies have demonstrated that GWOA is 
effective in cancer detection [23], scheduling [24], and 
engineering design [25], among other fields [26]. For instance, 
research has shown that GWOA improved the decision tree 
model through hyperparameter optimization  for diabetes 
classification [27]. 

However, like other metaheuristic algorithms, GWOA does 
not guarantee the ability to pinpoint the exact position of the 
global optimal solution in every case. The algorithm may 
converge to a local optimum or fail to find the best solution 
within the given number of iterations, particularly if the search 
space is highly complex or if parameter tuning is not optimized. 
Despite these challenges, GWOA remains a valuable tool for 
solving problems with large search spaces and intricate 
constraints due to its ability to balance exploration and 
exploitation while requiring minimal prior knowledge of the 
problem domain. 

The remainder of this study is structured as follows: Section 
II presents related work on combinatorial testing and the 
application of metaheuristic algorithms in test generation. 
Section III describes the proposed Combinatorial Grey Wolf 
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Optimizer Algorithm, including its design, parameters, and 
workflow. Section IV discusses the experimental setup, results, 
and performance analysis of CGWOA compared to existing 
combinatorial testing methods. Finally, Section V concludes the 
study and outlines potential directions for future research. 

II. RELATED WORK 

In existing research, various heuristic search algorithms have 
been proposed to guide the process of Combinatorial Testing 
(CT) and reduce its cost. These algorithms aim to enhance the 
efficiency of CT by prioritizing the most relevant combinations 
of input values and parameters. Grey Wolf Optimization 
Algorithm (GWOA) has been successfully applied to various 
optimization problems as it has demonstrated strong 
exploration-exploitation capabilities. Given these 
characteristics, GWOA has the potential to significantly 
improve the efficiency of CT by optimizing test suite generation. 
The following section reviews related work on CT and GWOA, 
focusing on previous efforts to integrate metaheuristic 
optimization techniques with CT. The key contributions and 
limitations of these approaches are discussed, highlighting their 
relevance to the proposed study. Additionally, an overview of 
the current state of CT and GWOA research is provided, along 
with the main research gaps this work aims to address. 

Several studies have compared GWOA with other 
metaheuristic algorithms, highlighting its effectiveness in 
various optimization tasks. For instance, Pace demonstrated that 
GWOA outperforms other algorithms in optimizing Transient 
Electromagnetic (TDEM) data [22]. Similarly, a 2024 study 
showed that GWOA delivers superior results in optimizing 
battery performance and lifespan compared to alternative 
approaches [21]. Due to its strong foundation, GWOA has been 
the basis for numerous enhancements for optimization 
problems. In 2022, the Cross-Dimensional Coordination Grey 
Wolf Optimizer was introduced, outperforming 16 well-known 
algorithms in benchmark functions and engineering 
optimization tasks [28]. More recently, in 2025, the Memory-
Based Grey Wolf Optimizer (mGWO) was developed, 
incorporating the personal best history of the wolves, crossover, 
and greedy selection to improve search efficiency, solution 
accuracy, and convergence rate [29]. Beyond direct 
enhancements, researchers have also explored hybridizing 
GWOA with other optimization techniques to further improve 
its performance. Ahmad et al. combined GWOA with the Scout 
Bee Operator function from the Artificial Bee Colony algorithm, 
achieving superior results compared to multiple other algorithms 
[30]. Additionally, a 2022 study explored the integration of 
GWOA with Whale Optimization Algorithm and Harmony 
Search [31] to optimize combinatorial testing, successfully 
reducing the size of combinatorial test suites. 

Metaheuristic algorithms have been extensively used in CT 
to optimize test case generation and selection. Algorithms such 
as Genetic Algorithms (GA), Simulated Annealing (SA), 
Particle Swarm Optimization (PSO), Harmony Search (HS), and 
many more have demonstrated their effectiveness in minimizing 
test suites while maintaining high t-way coverage [32].  GWOA 
has also been investigated for its application in CT. Prior 
research has explored various methods of integrating GWOA 

with CT, including its use in optimizing test suite generation and 
improving the overall efficiency of the testing process. 

However, further research is needed to fully harness the 
potential of GWOA in CT and to explore additional optimization 
strategies for improving test effectiveness. A 2024 study 
explores the use of dynamic TWGH for scalable client-server 
test suite generation [33]. Another study introduces SCHOP, an 
approach that enhances the Harmony Search algorithm by 
integrating seeding and constraint support while employing a 
one-parameter-at-a-time strategy [34]. Additionally, 2024 saw 
the introduction of the Binary Growth Optimizer (BGO), a 
modified version of the Growth Optimizer algorithm, 
specifically adapted for binary optimization to address the set-
covering problem [35]. Other metaheuristics approaches include 
ROBDD-IPSO (Improved Particle Swarm Optimization) [36], 
BM (Beautiful Mind)  [37], Wingsuit Flying Search 
Optimization Algorithm (WFSO) [38], Arquitetura Multi-
Agente para Metaheurísticas (AMAM) [39], Random-Key 
Greedy Randomized Adaptive Search Procedure (RK-GRASP) 
[40], and Pairwise Test Case Generation in Harmony Search 
Algorithm with Seeding, Constraint Mechanism (PHOSC) [41], 
Hybridization of Whale Optimization Algorithm and Long 
Short Term Memory (WOA-LTSM) [42] and Enhanced 
Harmony Search (EHS) algorithm [43]. Table III summarizes 
the findings of the recent study. 

TABLE III.  RECENT STUDY SUMMARY 

Study Baseline Method Dataset/Project 
Evaluation 

Criteria 

[33] Dynamic TWGH Client-Server System Test Suite Size 

[34] SCHOP 
Bank Islam Online 

Login System. 
Test Suite Size 

[35] BGO Set-Covering Problem Test Suite Size 

[36] ROBDD-IPSO 
Real-Time Boiler 

System 

Benchmark 

Functions 

[37] BM 
Benchmark Covering 

Array 
Test Suite Size 

[38] WFSO Synthetic Test Suites Test Suite Size 

[39] AMAM 

Vehicle Routing 

Problem with Time 
Windows 

Test Suite Size 

[40] RK-GRASP 
Tree Of Hubs Location 

Problem 
Test Suite Size 

[41] PHOSC 
UBA Mobile-App 
login screen 

Test Cases 

[42] WOA-LTSM Kaggle Dataset Test Suite Size 

[43] EHS 
Benchmark Covering 

Array 
Test Suite Size 

III. PROPOSED CGWOA 

Failures caused by system interactions can be effectively 
detected through combinatorial testing, a powerful technique for 
ensuring software reliability. Traditional methods often struggle 
to identify optimal solutions for complex optimization 
problems, especially when dealing with large input spaces. To 
address this challenge, swarm intelligence and population-based 
algorithms have been recommended to be applied to optimize 
test suite generation. Metaheuristic search algorithms, such as 
the Grey Wolf Optimizer (GWO), offer an effective approach 
for generating compact and efficient t-way test suites. 
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The T-tuple table is a key component in applying 
combinatorial testing (CT) with the Grey Wolf Optimizer 
Algorithm (GWOA) in this study, ensuring that all necessary t-
wise interactions among input parameters are covered. It is 
initially populated with all possible T-tuples, where each tuple 
represents a combination of parameter values that must be 
tested. During the optimization process, test cases are evaluated 
based on how many uncovered T-tuples they contain, and 
selected test cases remove these tuples from the table once 
covered. This iterative process continues until all T-tuples have 
been accounted for. The T-tuple table thus serves as a guide, 
preventing redundant test cases and ensuring an efficient 
balance between test reduction and interaction testing. 

The proposed CGWOA method is influenced by several key 
parameters. The population size affects diversity and search 
breadth as larger sizes increase exploration but also computation 
time. The parameter a, which linearly decreases from 2 to 0, 
governs the balance between exploration and exploitation over 
time, guiding the wolves from broad searching to focused 
refinement. The random coefficients r₁ and r₂ introduce 
stochastic behavior that prevents premature convergence and 
enhances global search ability. Algorithm 2 presents the 
CGWOA algorithm. 

Algorithm 2: CGWOA Algorithm 

 Input: Parameters P with their respective values 

     Output: Test suite covering all t-way combinations 

1. Generate all t-way parameter combinations from P 

2. Generate all value combinations for each t-way parameter 
combination 

3. Store all the parameter combinations and value combinations 
pairs in T-tuple table 

4. Initialize test suite T 

5. while T-tuple_table is not empty do   

6. Initialize grey wolf population X = {X₁, X₂, ..., 
XN} as random test cases 

7. Evaluate fitness for each wolf. Xᵢ based on covered 
t-tuples  

8. Identify the Alpha (Xα), Beta (Xβ), Delta (Xδ) 
wolves 

9. Set iter = 0 

10. while iter < MaxIter do 

11.  a = 2 − 2 * (iter / MaxIter) 

12.  for each wolf Xᵢ do 

14.   Generate r₁, r₂ ∈ [0, 1] 

15.   A = 2 * a * r₁ − a 

16.   C = 2 * r₂ 

17.   D_α = |C * X_α[d] − Xᵢ[d]| 

18.   D_β = |C * X_β[d] − Xᵢ[d]| 

19.   D_δ = |C * X_δ[d] − Xᵢ[d]| 

20.   X₁ = Xα[d] − A * Dα 

21.   X₂ = Xβ[d] − A * Dβ 

22.   X₃ = Xδ[d] − A * Dδ 

23.   Xᵢ[d] = round((X₁ + X₂ + X₃) / 3)  

24.  end for 

25  Evaluate new fitness of Xᵢ 

26.  Update Xα, Xβ, Xδ based on current fitness 

27.  iter = iter + 1 

28. end while 

29. Add Xα to the test suite T 

30. Remove all covered tuples of Xα from T-
tuple_table 

31. end while 
 

To begin the CGWOA process, the input parameters and 
their possible values are first defined. These parameters, which 
can be variables such as numbers or categorical values, are 
typically structured into dictionaries or arrays. Then, all t-
strength interactions of t-tuples between the parameters are 
generated and stored in a tuple table. At the start of the 
optimization process, a population of random test cases of 
wolves is initialized. Each test case represents a possible 
solution and consists of randomly selected values for each 
parameter. The test cases are then evaluated to determine how 
many t-tuples they cover. The fitness function is calculated 
based on how much of the test case covers the required T-tuples. 
The test cases are then ranked based on their fitness, with the top 
three solutions being designated as alpha, beta, and delta wolves. 

The main optimization process proceeds in iterations. For 
each iteration, the algorithm adjusts the position of each wolf in 
the population. This is done using the standard GWOA 
equations. These equations involve randomly generated 
coefficients, and a linearly decreasing parameter named 'a' 
which helps control the balance between exploration and 
exploitation of the search space. The algorithm computes 
distances from each wolf to the positions of the Alpha, Beta, and 
Delta wolves and uses these distances to calculate three potential 
new positions. These are averaged to form a new candidate 
position for the wolf. If the test case at the new position covers 
more T-tuples than the current one, the wolf is moved to that 
new position. Once all wolves have been updated and evaluated, 
the test case corresponding to the Alpha wolf is selected. If this 
test case contributes any new t-tuples that are not yet covered, it 
is added to the final test suite, and those t-tuples are removed 
from the remaining table. The algorithm continues this process 
until all T-tuples have been covered. The top-performing test 
case in each iteration is selected for inclusion in the final test 
suite, and the t-tuples it addresses are eliminated from the global 
tuple set to avoid duplication. This cycle continues until either 
all T-tuples are covered, or the maximum iteration limit is 
reached. In brief, the algorithm starts by generating a random 
population of test cases and evaluating their fitness based on 
uncovered t-tuples. Test cases with higher coverage are added to 
the suite, while others are refined through iterative updates using 
the GWOA mechanism. By guiding candidate solutions toward 
the best-performing wolves, the algorithm gradually achieves 
full t-tuple coverage. Fig. 2 presents the CGWOA workflow 
step-by-step. 
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Fig. 2. Flowchart of combinational grey wolf optimization algorithm. 

IV. RESULTS AND DISCUSSIONS 

This section presents the performance of the proposed 
CGWOA approach through test suite generation on real-world 
software configurations, benchmarking against pure 
computation combinatorial testing methods, and statistical 
evaluation to assess the significance of observed differences in 
performance. 

A. Test Suite Generation on Real World Software 

Configuration 

To demonstrate the application of the proposed 
Combinatorial Grey Wolf Optimizer Algorithm (CGWOA), a 

case study was conducted using real-world parameter 
configurations derived from the Microsoft Word Page Setup 
Dialog Box. The CGWOA approach was applied by iteratively 
selecting test cases that eliminated the largest number of 
uncovered t-tuples from a dynamic t-tuple table. As each test 
case was added to the suite, the corresponding covered 
interactions were removed from the table, and the process 
continued until full 2-way coverage was achieved. Fig. 3 
illustrates the Microsoft Word Page Setup dialog [44], which 
includes six key parameters relevant to document formatting of 
Section Start (A), Header and Footer (B), From Edge Header 
(C), From Edge Footer (D), Vertical alignment (E), and Apply 
To (F). The full range of configurable options is summarized in 
Table IV. 

 
Fig. 3. MS Word page setup dialog box. 

TABLE IV.  MS WORD PAGE SETUP DIALOG BOX PARAMETERS VALUE 

Input Values 

Section Start (A) Headers and Footers (B) From Edge Header (C) From Edge Footer (D) Vertical Alignment (E) Apply To (F) 

Continuous Different Odd and Even -10 -10 Top Selected Sections 

New Column Different First Page 0 0 Center Whole Document 

New Page  10 10 Justified  

Even Page  null null Bottom  

Odd Page  NaN NaN   
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Before applying CGWOA, the total number of possible test 
case combinations was calculated to be 2000, based on the 
following computation: 

𝐴 = {Continuous, new column, new page, even page, odd 
page} 

B = {Different odd and even, Different first page} 

C = {−10, 10, 0, 𝑛𝑢𝑙𝑙, 𝑁𝑎𝑁}} 

D = {−10, 10, 0, 𝑛𝑢𝑙𝑙, 𝑁𝑎𝑁} 

E = {Top, Center, Justified, Bottom} 

F = {Selected Sections, Whole Document} 

∴ |𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠| = |𝐴| × |𝐵| × |𝐶| × |𝐷| × |𝐸| × |𝐹| 

                          = 5   ×  2  ×  5  ×  5  ×   4  ×  2 

                   =  2000 

However, executing all 2000 test cases is computationally 
expensive and inefficient, necessitating an optimization strategy 
for test suite reduction while maintaining essential coverage. To 
achieve this objective, a t-tuple table was constructed to 
facilitate pairwise combinatorial testing. This table 
systematically enumerates all T-tuples that consist of all possible 
combinations of two parameters and their values that need to be 
included in the final test suite. The optimization process begins 
by generating the full set of t-tuples and subsequently selecting 
test cases that maximize tuple coverage while minimizing 
redundancy. 

The original exhaustive test set contained numerous test 
cases with overlapping t-tuples, leading to significant 
redundancy. CGWOA addressed this by using the t-tuple table 
as a structured mechanism to track essential interactions and 
guide the search toward high-utility test cases. Table V 
illustrates a substantial reduction of the test suite from 2000 to a 
mere 40 cases, a 98% reduction with all coverage. The 
algorithm's ability to continuously update its coverage goals and 
remove redundant combinations ensured that each selected test 
case contributed meaningfully to the overall efficiency and 
completeness of the suite. 

TABLE V.  PERCENTAGE OF TEST CASES REDUCTION 

Condition Test Cases Percentage Reduction 

Exhaustive Combination 2000 Full Test Cases Count 

With CGWOA 40 98% 

The results indicate that GWOA provides a highly efficient 
method for combinatorial test case selection, significantly 
reducing the test suite size while preserving essential coverage. 
The integration of the t-tuple table ensures that all required 2-
way combinations are methodically incorporated, while the 
optimization process effectively minimizes unnecessary test 
case execution.  This efficiency underscores CGWOA's direct 
applicability in software quality assurance. 

These promising results highlight the potential of CGWOA 
in generating compact and efficient test suites while maintaining 
full interaction coverage. However, to fully evaluate its 
effectiveness, it is essential to compare CGWOA's performance 

against other well-established combinatorial testing strategies. 
In the next section, we assess the performance of CGWOA in 
comparison with techniques such as Jenny, IPOG, IPOG-D, 
PICT, and TConfig. By examining these strategies across 
various test configurations and strengths, we can better 
understand the relative advantages and limitations of CGWOA 
in the context of combinatorial test case generation. This 
comparison will provide a comprehensive view of how 
CGWOA performs in diverse scenarios and its potential for 
improving testing efficiency in real-world applications. 

B. CGWOA Benchmarking Against Pure Computation 

Combinatorial Testing Techniques 

To assess the performance of the proposed CGWOA, a 
comparative evaluation was conducted against several 
established pure computation combinatorial test generation 
techniques, namely Jenny [45], IPOG [46], IPOG-D [47], 
TConfig [48], and PICT [49]. Jenny is a fast, backtracking-based 
tool for generating minimal t-wise test suites, suitable for small 
to medium configurations. IPOG incrementally constructs t-
wise tests by covering interactions in stages, offering a good 
balance between efficiency and scalability. IPOG-D extends 
IPOG with a divide-and-conquer strategy, making it more 
suitable for large systems and higher interaction strengths. 
TConfig, associated with using mathematical methods to 
generate covering arrays for efficient t-wise testing, is 
particularly effective with uniform parameter configurations. 
PICT, developed by Microsoft, employs a greedy, constraint-
solving approach to generate efficient pairwise and n-wise test 
suites, widely adopted in industrial testing scenarios. 

These algorithms were chosen due to their extensive use in 
real-world applications, including implementation in well-
established companies like IBM and integration into widely 
adopted open-source projects [49][50]. The inclusion of these 
benchmark methods ensures a comprehensive and balanced 
comparison, thereby facilitating an objective analysis of 
CGWOA’s capability to construct minimal yet high-coverage 
test suites. 

The experiments were conducted on a laptop running a 64-
bit version of Windows 11, featuring an AMD Ryzen 5 
processor operating at 3.30 GHz and 8 GB of RAM. The 
proposed method was developed in Python. Testing was 
organized into the following three datasets: 

 Evaluating the CGWOA approach against existing 
methods using CA (t, v7), where the number of 
parameters is fixed, but the number of values varies. 
Additionally, interaction strength ranges from 2 to 6. 

 Evaluating the CGWOA approach compared to other 
methods using five different Mixed Covering Array 
(MCA) configurations. 

 Evaluating the CGWOA approach against current 
techniques using CA (t, 3P), where the number of 
parameters varies while the number of values remains 
constant and the interaction strength t  ranges from 2 to 
5. 

Although reduction percentages were computed for all 
combinatorial testing techniques, they were uniformly high, 
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exceeding 99% across all parameter and strength configurations. 
Due to this saturation effect, the inclusion of detailed reduction 
statistics was deemed unnecessary, as such values offered 
limited discriminatory insight into the relative performance of 
the methods which is why the analysis focuses on absolute test 
suite sizes, which provide a more meaningful basis for 
evaluating the effectiveness and efficiency of each technique in 
practical settings. 

Firstly, the performance of CGWOA was assessed across 
various interactions, with increasing levels of parameter 
cardinality and benchmarked across configurations of CA (N; t, 
3P). Based on Table VI, for t = 2, CGWOA consistently matched 
or outperformed the compared tools in terms of minimizing test 
suite size. It demonstrated particularly stable and competitive 
performance as the number of parameters increased. The growth 
in test suite size with increasing P remained modest, indicating 
good scalability for pairwise testing. When moving to t = 3, 
CGWOA continued to demonstrate efficient scaling behavior. 
The growth in test size remained well-controlled, which 
highlights the optimizer's ability to effectively manage the 
combinatorial explosion typical at this level. 

TABLE VI.  TEST SUITE SIZE PERFORMANCE FOR CA(T, 3P) 

t       p CGWOA 
Pure Computation Strategies 

Jenny TConfig PICT IPOG-D IPOG 

2 

3 9 9 10 10 15 9 

4 9 13 10 13 15 9 

5 12 14 14 13 15 15 

6 14 15 15 14 15 15 

7 15 16 15 16 15 15 

8 15 17 17 16 15 15 

9 16 18 17 17 15 15 

10 16 19 17 18 21 15 

11 16 17 20 18 21 17 

12 18 19 20 19 21 21 

3 

4 31 34 32 34 27 32 

5 39 40 40 43 45 41 

6 45 51 48 48 45 46 

7 50 51 55 51 50 55 

8 53 58 58 59 50 56 

9 57 62 64 63 71 63 

4 

5 96 109 97 100 162 97 

6 132 140 141 142 162 141 

7 156 169 166 168 226 167 

5 
6 313 348 305 310 386 305 

7 441 458 477 452 678 466 

6 
7 975 1089 921 1015 1201 921 

8 1409 1466 1515 1455 1763 1493 

As interaction strength increased further to t = 4 and t = 5, 
the benefits of CGWOA became increasingly evident. The 

differences were especially noticeable as the number of 
parameters rose, indicating that CGWOA scaled more 
efficiently with problem complexity. At the highest interaction 
strength examined, t = 6, CGWOA continued to show strong 
performance as it maintained smaller test suite sizes than others, 
with only a few occasionally matching its output. 

TABLE VII.  TEST SUITE SIZE PERFORMANCE FOR MCA 

Configuratio

ns 

CGWO

A 

Jenn

y 

Tconfi

g 

PIC

T 

IPO

G 

-D 

IPO

G 

MCA (N; 4, 34 

45) 
444 457 463 NA NA 499 

MCA (N; 4, 51 
38 22) 

291 303 324 NA NA 302 

MCA (N; 4, 82 

72 62 52) 
4323 4580 4776 NA NA 4317 

MCA (N; 4, 65 
54 32) 

2475 3033 3273 NA NA NA 

MCA (N; 4, 

101 91 81 71 

61 51 41 31 21) 

5883 6138 5492 NA NA 5495 

The results from Table VII show that CGWOA consistently 
achieves adequate test suite sizes across all five Mixed Covering 
Array configurations. For example, in MCA(N; 4, 34 45) and 
MCA(N; 4, 51 38 22), it generates 444 and 291 test cases, 
outperforming all other methods. Even in more complex 
scenarios such as MCA(N; 4, 82 72 62 52) and MCA(N; 4, 65 54 
32), CGWOA maintains superior performance, with smaller test 
sizes than Jenny, Ipog, and Tconfig. In the largest configuration, 
MCA(N; 4, 101 91 81 71 61 51 41 31 21), it again produces the most 
compact suite with 5883 tests. These results highlight 
CGWOA’s efficiency in handling mixed-level parameter sets. 

Table VIII presents the performance comparison of 
CGWOA with established combinatorial test generation tools 
across configurations of CA(N; t, v⁷), where the interaction 
strength t ranges from 2 to 6 and the number of values per 
parameter v increases from 2 to 5. While interaction strength 
influences test suite size, the results show that the increase in v 
plays a more dominant role in driving complexity. 

When t is fixed at 2, all tools generate relatively small test 
suites, and the differences among them are minor. However, as 
v increases, CGWOA consistently maintains its efficiency, 
either matching or outperforming other tools, and demonstrates 
stable, controlled growth in test suite size. As t increases to 3, 
the interaction complexity deepens, but again, the rise in v 
results in the most significant expansion in test suite size. 
CGWOA continues to provide competitive results, especially at 
higher values of v, where other tools begin to show sharper 
increases. At t = 4, the impact of growing v becomes even more 
pronounced. 

It can be observed that the differences between CGWOA and 
traditional tools are amplified, especially in higher-v scenarios, 
as can be seen when t reaches 5, the increase in v continues to 
dominate the growth trend. While all methods experience 
substantial expansion in test suite size, CGWOA manages to 
generate significantly leaner suites across all v values. Finally 
for v = 6, all techniques show growth in test suite size, but 
CGWOA consistently produces smaller suites across all v levels. 
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These are visually summarized in Fig. 4, which highlights how 
test suite size increases with higher values of v. 

Overall, CGWOA demonstrates consistent and effective 
performance across varying degrees of test complexity. Its 
ability to scale gracefully with increasing interaction strength 
and parameter diversity makes it a promising approach for 
efficiently generating minimal yet comprehensive test suites. 

The experimental results across all test scenarios consistently 
demonstrate the effectiveness of the proposed CGWOA 
approach in generating compact covering arrays. CGWOA 
outperforms pure computation methods such as Jenny, IPOG, 
IPOG-D, PICT, and Tconfig in the majority of configurations. It 
achieves smaller test suite sizes across varying interaction 
strengths and parameter combinations, indicating its robustness 
and scalability.

TABLE VIII.  TEST SUITE SIZE PERFORMANCE FOR CA(T, V7) 

CA (t, v7) 
CGWOA 

Pure Computation Strategies 

t p Jenny TConfig PICT IPOG-D IPOG 

2 

2 7 8 7 7 8 8 

3 15 15 15 16 15 17 

4 25 28 28 27 32 28 

5 37 37 40 40 45 42 

3 

2 12 14 16 15 14 19 

3 52 54 55 51 50 57 

4 119 124 112 124 114 208 

5 222 236 239 241 252 275 

4 

2 30 31 36 32 40 48 

3 159 169 166 168 226 185 

4 493 517 568 529 704 509 

5 1174 1248 `1320 1279 1858 1349 

5 

2 54 57 56 57 80 128 

3 440 458 477 452 678 608 

4 1830 1938 1792 1933 2816 2560 

5 5480 5895 N/A 5814 9198 8091 

6 

2 71 87 64 72 96 64 

3 978 1087 921 1015 1201 1281 

4 5629 6127 N/A 5847 5120 4096 

5 21608 23492 N/A 22502 24808 28513 

 

Fig. 4. Line graph of test suite size performance for CA(N;t, v7).
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C. Statistical Evaluation 

To further evaluate the performance of the proposed 
CGWOA, a statistical comparison was conducted against the 
pure computation combinatorial test generation methods. To 
evaluate whether the differences in test suite sizes between 
CGWOA and other methods were statistically meaningful, we 
applied the Wilcoxon signed-rank test. This is a non-parametric 
statistical test used to compare two related samples. The test was 
conducted at a 95% confidence level (α = 0.05), making it 
appropriate for determining whether the observed differences 
are likely to be due to chance. 

The comparison was based on the test suite size data shown 
in Table VI, which includes multiple configurations of 
parameter counts and interaction strengths. Because several t-
strength comparisons were performed, we used the Holm–
Bonferroni method to correct for the increased risk of Type I 
errors (false positives). The Holm–Bonferroni procedure works 
by ranking the p-values from smallest to largest and adjusting 
the significance threshold for each test accordingly. This helps 
ensure that the conclusions remain statistically valid even when 
multiple comparisons are made. The adjusted significance level 
for each test (α Holm) was calculated following the method 
described in Eq. (8))[51]: 

𝛼 Holm
𝛼

𝑀−𝑖+1
                                  (8) 

where, α is the initial significance level (0.05), M is the total 
number of hypotheses tested, and i is the rank order of each p-
value. 

As shown in Table VI, CGWOA outperformed all 
competing strategies of Jenny, PICT, IPOG-D, TConfig, and 
IPOG, in the majority of test configurations. Based on this data, 
the Wilcoxon signed-rank test was applied, and the results are 
presented in Table IX. 

TABLE IX.  WILCOXON SIGNED-RANK TEST ANALYSIS 

Comparison 
Asymp. Sig. 

(2-tailed) 
α Holm Conclusion 

CGWOA vs 
Jenny 

0.000028 0.0100 Reject the null hypothesis 

CGWOA vs 

PICT 
0.000127 0.0125 Reject the null hypothesis 

CGWOA vs 
IPOG-D 

0.000826 0.0167 Reject the null hypothesis 

CGWOA vs 

TConfig 
0.002871 0.0250 Reject the null hypothesis 

CGWOA vs 
IPOG 

0.018355 0.0500 Reject the null hypothesis 

All comparisons produced p-values below their 
corresponding Holm-adjusted significance thresholds, leading 
to the rejection of the null hypothesis in every case. This 
confirms that the performance differences observed between 
CGWOA, and the other methods are statistically significant. 

This consistent statistical advantage reinforces the empirical 
findings and substantiates the effectiveness of CGWOA in 
producing more compact test suites. The results affirm that 
CGWOA significantly outperforms pure computation 
algorithms across diverse parameter and strength settings, 
making it a robust and efficient choice for combinatorial test 
suite generation. 

V. CONCLUSION AND FUTURE WORK 

Recent studies have demonstrated that combinatorial testing 
(CT) can be effectively enhanced using metaheuristic 
approaches, optimizing the test suite by significantly reducing 
its size. However, prior research indicates that certain essential 
test cases may still be omitted in the generated test suite, 
potentially affecting overall test coverage. 

This study introduces the Combinatorial Grey Wolf 
Optimizer Algorithm (CGWOA) as an alternative metaheuristic 
approach for combinatorial testing. The results demonstrate that 
CGWOA effectively optimizes test suite generation while 
ensuring full t-way coverage, consistently outperforming 
conventional computation-based methods across a broad range 
of configurations, including low to high interaction strengths, 
parameter counts, and value cardinalities. Future research will 
focus on refining CGWOA, particularly in the context of t-way 
testing, to improve its applicability across diverse case studies. 

Despite its effectiveness, this study's evaluation of CGWOA 
was limited to a specific software system and parameter set. 
Future research should expand validation to diverse 
applications, higher-order interactions, and investigate 
computational overhead for large-scale systems. Further 
comparative studies and analysis of parameter tuning will also 
enhance understanding of CGWOA's broader applicability and 
performance. 

Additionally, further improvements may be explored 
through techniques such as adaptive parameter tuning, 
hybridization with other optimization algorithms, and applying 
multi-task optimization within combinatorial testing 
environments. By incorporating these enhancements, it is 
possible to develop a more effective test selection process while 
ensuring thorough system validation. 
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