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Abstract—Automated Essay Scoring (AES) has become a 

critical tool for scaling writing assessment in modern education. 

However, existing AES models often struggle to effectively 

evaluate both the syntactic structure and semantic meaning of 

essays while maintaining interpretability and fairness. This study 

presents a novel deep learning-based model that integrates 

syntactic and semantic analysis using an improved LSTM 

architecture. The model employs a dual-path structure: one path 

processes semantic representations using BERT-tokenized input, 

while the other captures syntactic patterns via part-of-speech 

sequences. These paths are fused using a gated mechanism and 

enhanced through multi-head attention to emphasize important 

linguistic cues. Additional student metadata, such as grade level 

and gender, is also incorporated to improve personalization and 

fairness. The model jointly predicts both holistic and grammar 

scores, trained and evaluated on the ASAP 2.0 dataset. 

Performance is measured using multiple statistical metrics, 

including MAE, MSE, RMSE, R², Pearson’s r, and Spearman’s 

ρ. The proposed model achieves a high prediction accuracy of 

92%, significantly outperforming traditional and single-path 

models. These results demonstrate the model’s ability to capture 

both surface-level and deep linguistic features, offering a robust, 

interpretable, and scalable solution for automated writing 

evaluation. 

Keywords—Attention mechanism; deep learning; essay scoring; 

gated fusion; linguistic features; semantic encoding; syntactic 
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I. INTRODUCTION 

Automated Essay Scoring (AES) has emerged as a 
promising solution to meet the growing demands of large-scale 
writing assessment in education. It offers scalability in 
evaluation. It ensures objectivity and consistency in assessing 
student writing [1]. Traditional manual scoring is thorough, 
however, it is often time-consuming [2]. It is also costly and 
prone to inter-rater variability [3]. AES systems aim to provide 
fast feedback. They also aim to provide reliable evaluation. 
These systems maintain fairness during scoring [4]. They 
minimize human bias in evaluation. The growing role of digital 
learning platforms has increased the demand for AES. The 
increased reliance on online assessments further emphasizes 
the importance of developing efficient AES systems. It also 
highlights the need for accurate AES systems. 

Over the years, AES has evolved through multiple stages. It 
began with rule-based systems. These systems used 
handcrafted feature extraction. Later, statistical and machine 

learning models were introduced. Currently, research is 
shifting towards end-to-end deep learning solutions [5]. Early 
AES systems heavily relied on surface-level linguistic features. 
These features included grammar error counts. They also 
included sentence length and vocabulary usage. Additional 
features were part-of-speech distributions and syntactic 
complexity. These systems demonstrated moderate 
performance. However, they struggled to capture deeper 
semantic relationships. They could not fully understand 
contextual meaning. They failed to capture discourse 
coherence. They also lacked the ability to model structural 
flow within essays. Furthermore, these systems often lack 
adaptability. They did not generalize well across different 
topics and domains [6]. This was due to the handcrafted nature 
of their features. 

In response to these limitations, recent research has 
explored the potential of deep learning models [7]. These 
include Recurrent Neural Networks (RNNs). They also include 
Long Short-Term Memory (LSTM) networks. Convolutional 
Neural Networks (CNNs) have also been used. Transformer-
based models such as BERT and RoBERTa have gained 
popularity [8]. These models have demonstrated superior 
capability in feature learning. They can automatically extract 
syntactic representations from text. They can also capture 
semantic relationships from raw data. Some studies have 
extended these deep models. They have incorporated 
hierarchical structures. They have also used multi-task 
learning. Hybrid feature fusion techniques have been explored. 
Attention mechanisms have been added to improve focus on 
relevant parts of the essay. Despite these advancements, two 
major challenges still persist in AES research [9]. First, many 
models cannot capture syntactic structure and semantic 
meaning at the same time. They fail to unify both aspects in a 
single framework. Second, most models are not interpretable. 
They also lack the ability to generalize across different essay 
prompts. They struggle to perform consistently across diverse 
student demographics. 

To address these gaps, researchers have proposed hybrid 
models [10]. These models combine neural embeddings with 
manually engineered linguistic features. Their goal is to 
leverage the strengths of both approaches. Neural models offer 
automated feature extraction. Linguistic features provide 
human-readable grammar and readability metrics. This 
combination enhances scoring accuracy. It also improves 
transparency of predictions. However, these hybrid models 
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introduce added complexity. They are harder to design and 
train. Many of them still lack effective coherence modeling. 
They struggle to capture relationships across multiple levels of 
essay structure [11]. Other recent works have shifted to 
Transformer models. Large Language Models (LLMs) have 
also been explored [12]. These models show strong scoring 
capabilities. However, they are data-hungry. They require large 
amounts of training data. They are computationally expensive 
to run. They are also hard to interpret. As a result, there is a 
growing need for AES models that can strike a balance. The 
ideal model should be interpretable. It should be 
computationally efficient. It must model essay coherence. It 
should also deliver high scoring accuracy. 

In this paper we show an enhanced LSTM architecture 
based deep LSTM model. The model is intended only for 
syntactic and semantic assessment of English essays. Our 
method presents a dual path gated model. It feeds essays 
through two parallel but complementary channels. The first 
direction is the one focusing on semantics. It takes as input 
tokenized text which is pre-processed with a BERT 
vocabulary. A second approach is a syntactic one. It employs 
POS-sequences from SpaCy. The second layer is for every path 
through a bi-LSTM layer. This is followed by a multi-head 
attention mechanism. This is how it helps the model to learn 
important patterns and interactions. A sentence level gating 
mechanism is employed. It builds a dynamic connection 
between the two roads. This gives the model the freedom to 
choose when to take significance from syntax. It also learns to 
pay more attention to semantic features. Apart from such a 
mirror-path architecture, we also incorporate student metadata 
into the model. Features in the metadata are the grade level and 
the gender. Personalization is facilitated with this knowledge. It 
further encourages a more level playing field with scoring, 
with formulated research questions are. 

Research Question 1: How can a deep learning model 
effectively integrate both syntactic and semantic features to 
enhance automated essay scoring (AES)? 

Research Question 2: Does the integration of student 
metadata and dual linguistic paths improve the fairness and 
personalization of AES systems? 

Research Question 3: Can the proposed SYNSENNET 
model outperform traditional and single-path AES models in 
terms of prediction accuracy and interpretability? 

The last model is multiple outputs. It estimates holistic 
essay scores and grammar scores in a joint manner. We built 
and tested this model with the ASAP 2.0 dataset. It is a 
publicly available real-world dataset which has been widely 
utilized. It includes student essays that have been annotated 
with more than one scoring attribute. We adopted conventional 
regression performance measures to evaluate the models. This 
measure involves Mean Absolute Error (MAE). They also 
contain Mean Squared Error (MSE) and Root Mean Squared 
Error (RMSE). The Coefficient of Determination (R²) was 
determined. We also fad-ea12301|Discussion e12301fused the 
Pearson Correlation Coefficient (r). Finally, we evaluated 
Spearman’s Rank Correlation Coefficient (ρ). Our model 
showed a high predictive value of 92%. This finding indicates 
high consistency with human annotations. It is shown that the 

model’s performance is good enough in holistic and grammar 
judgments. 

Key contributions of this study include: 

 Development of a novel dual-path deep learning 
architecture that jointly models syntactic structure and 
semantic content. 

 Integration of multi-head attention and gating 
mechanisms for dynamic fusion of linguistic features. 

 Inclusion of student metadata to improve scoring 
fairness and personalization. 

 Simultaneous prediction of both holistic and grammar 
scores in a multi-output framework. 

 Empirical validation on the ASAP 2.0 dataset, showing 
significant performance gains over traditional and 
single-path models. 

 Application of diverse evaluation metrics to offer a 
robust and interpretable assessment of model 
performance. 

The remainder of this paper is structured as follows. 
Section II overviews known techniques for AES and discusses 
their strengths and weaknesses. The proposed methodology in 
Section III presents the strategy of the current study in a 
nutshell, before describing the proposed framework in details, 
along with its two paths and the important components. The 
Model Workflow describes the overview of what the model is 
doing, and the Computational Efficiency explains a 
comparison of computational complexity. Details about the 
training setup, prepossessing and implementation can be found 
in Section IV. The dataset describes the ASAP 2.0 dataset and 
why this dataset was considered. Performance Evaluation 
Metric In this section, biostatistical metrics which evaluate our 
method are introduced. In Section V, we report on the 
experiments and discuss on the performance with comparison 
to related work. Lastly, Section VI reviews the key findings 
and provides future research directions. 

II. RELATED WORK 

Early AES systems strongly made use of handcrafted 
linguistic features (such as counts of parts-of-speech, syntactic 
structure, cohesion markers) in conjunction with traditional 
ML regression models, summary analysis shown in Table I. In 
contrast, deep learning methods automatically extract features 
from text, however, they are often not interpretable. For 
instance, Kumar and Boulanger [13] used multi-layer 
perceptron’s to learn from 1592 linguistic indices (which can 
be used to assess improved text cohesion, lexical 
diversity/sophistication, syntactic complexity, and more) and 
found that deeper networks increased score prediction 
performance by around 10%. They also used SHAP for 
feature-attribution and to identify which linguistic features 
affect these scores. Similarly, Kumar and Boulanger [14] 
created an MLP that predicts rubric-based sub-scores and 
subsequently the overall essay score; their AES achieves a high 
holistic QWK of 0.78 (exceeding human agreement). These 
results show how large selections of linguistic features 
combined with deep networks can offer very strong accuracy 
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and provide some degree of interpretability of the scoring 
justification. 

Recent research was also directed to hybrid models, which 
combine linguistic features with neural embeddings. Uto et al. 
[15] concatenate 25 essay-level features (e.g., length, 
vocabulary, syntax) to an intermediate essay representation in a 
DNN (LSTM or BERT) and report substantial QWK gains 
across all prompts. Cho et al. [10] hybridize RoBERTa 
sentence embeddings-Word embeddings with manually crafted 
grammar/readability features by an XGBoost regressor, to 
obtain a QWK of 0.941 on the Kaggle ASAP dataset as well. 
Doi et al. [16] utilize grammatical knowledge through multi-
task learning: predicting holistic and sub-scores for grammar 
and weighting error features by difficulty (IRT); the addition of 
grammar features and MTL led to large gains in performance. 
Such hybrid approaches tap into complementary information 
by using dual-path inputs (neural embeddings + Ling. feat.) 
and are more effective in terms of accuracy and interpretability. 

Transformer and BERT-inspired models have gained 
popularity in AES. Ludwig et al. [17] applied transformer 
encoders (pre-trained on essays) and observed that they did 
significantly better than a baseline bag-of-words logistic model 
on a student email classification task. Xue et al. [18] presented 
a hierarchical BERT model with multi-task fine-tuning towards 
multi-trait scoring; they modeled essays in different 
granularities and weighted segments using attention, achieving 
+4.5% (ASAP dataset) and +8.1% (Chinese EFL essays) QWK 
gain over baseline BERT. Wang et al. [19] proposed a multi-
scale essay representation in BERT, learning token-, segment-, 
and document-level embeddings simultaneously, with transfer 
learning, which obtain near state-of-the-art results on ASAP 
and generalize well to a different Commonly readability 
dataset. These works demonstrate that hierarchical and multi-
scale BERT-based models can capture both fine-grained and 
global features of essays for better scoring in long essays. 
LLMs are currently under evaluation for usage in AES. for 
traditional AES systems (e.g. rule-based Jess/Writer) using as 
our test data for these systems 1,400 essays by Japanese L2 
writers, we compared GPT-4, a fine-tuned BERT, and a 
Japanese-specific LLM with the work of Li and Liu [20] on the 
same set of essays. They discovered that GPT-4 also performs 
the best in holistic accuracy, more even than BERT and 
previous AES tools, and products writer proficiency better than 
BERT. Quah et al. [21] considered ChatGPT-4 as an essay 
grader for 300 essays of dental school: GPT’s scores strongly 
correlated with human graders (r≈0.83) and presented a very 
good inter-rater reliability, thus suggesting that LLM are 
reliable AES agents. Atkinson and Palma [22] build on this to 
propose an LLM-based hybrid model that combines 
lexical/discourse features with neural context from a large 
model; they show that this ensemble outperforms both shallow-
feature and pure neural baselines on standard essay 
benchmarks. These initial findings suggest instruction-tuned 
LLMs (GPT4) can rival or surpass legacy AES methods, 
particularly when combined with simple prompt engineering 
and feature fusion. 

A second concern is the generalization over prompts. Wang 
et al. [23] cast AES as a meta-learning task: the meta-learner 
leverages multiple source prompts to guide model to 
distributions of unseen target prompts and improves cross-
prompt accuracy on ASAP. Jiang et al. [24] deal with domain 
(prompt) generalization by learning disentangled 
representations for essays: they decompose prompts-invariant 
and prompts-specific features via contrast-centric and 
counterfactual training, which in turn leads to better 
performance on unseen prompts on ASAP and TOEFL. Such 
work suggests that separating content (essay meaning) from 
prompt context can enhance the AEs robustness when it is 
tested in new essay topics. 

However, despite the strong predictors, deep AES 
frameworks are often uninterpretable. Studies of AES (Misgna 
et al., [7] ) emphasize that state-of the- art model succeed at 
capturing complex pat- terns without indicating which features 
lead to scores. So explainable AES is still an area of focus: e.g. 
Kumar and Boulanger claim that predicting rubric sub-scores 
helps interpretability, and others use feature attribution (e.g. 
SHAP) to connect neural predictions to linguistic 
characteristics. In summary, recent AES research is 
characterized by a wide shift that ranges from traditional 
feature-based approaches to complex deep/LLM models, 
where hybrid and hierarchical architectures that combine 
linguistic knowledge with high scoring ability are recently 
favored. The study by  Beseiso et al. [8] focuses on developing 
an advanced automated essay scoring (AES) system to meet 
the growing demands of e-learning and higher education. 
Traditional essay scoring methods often fail to capture the 
coherence and deeper structural elements of essays. To address 
this, the researchers propose a transformer-based neural 
network that combines RoBERTa, a powerful pre-trained 
language model, with a Bi-directional Long Short-Term 
Memory (Bi-LSTM) layer. The core idea is to enhance 
RoBERTa’s contextual language understanding with Bi-
LSTM’s ability to model sequential dependencies, thereby 
overcoming the document length limitations associated with 
transformer models. 

This integrated model is also more effective at modeling 
long-form essays, since it maintains coherency and long-range 
dependency between text. The problem is posed as a regression 
and is tested in Kaggle’s ASAP dataset. Experimental results 
demonstrate that the proposed model achieves better 
performance than classical NLP pipelines, deep learning 
models, and combined architectures. 

It shows better alignment with human raters, especially in 
the writing of essays, and it’s proved to be a promising tool to 
deliver for a computerized grading system at universities. 
However, the model is not equipped with explicit syntactic 
modeling and deep semantic reasoning. Although it learns 
semantic relationships, it does not consider structural aspects, 
such as grammatical rules and dependency relations, as black 
box constraints. The latter, however, may not fully represent 
fine-grained linguistic features that are required for deep 
syntactic and semantic analysis of English essays. 
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TABLE I.  SUMMARY OF RECENT AES MODELS, THEIR FEATURES, PERFORMANCE, AND LIMITATIONS 

Ref Model Name Dataset Feature Result (Acc) Limitation Strength Area 

Kumar & 

Boulanger 

(2020) 

MLP with 

SHAP 

Custom 

(1592 feats) 

1592 handcrafted linguistic 

features 

+10% 

improvement 

Black-box 

nature; 

interpretability 

via SHAP only 

High accuracy; 

interpretable via 

SHAP 

Deep + 

Feature-Based 

AES 

Kumar & 

Boulanger 

(2021) 

MLP for sub-

scores 

Not 

Specified 

Rubric-based sub-score 

prediction 
QWK = 0.78 

Requires labeled 

sub-scores 

Exceeds human 

agreement; 

interpretable 

scoring 

Deep + 

Interpretable 

AES 

Uto et al. 

(2020) 
Hybrid DNN ASAP 

25 handcrafted essay-level 

features + LSTM/BERT 

embeddings 

Substantial 

QWK gains 

Feature 

engineering 

needed 

Hybrid of DNN + 

features; effective 

accuracy 

Hybrid AES 

Cho et al. 

(2024) 

Hybrid 

RoBERTa + 

XGBoost 

ASAP 

RoBERTa + Word Embeddings 

+ handcrafted 

grammar/readability features 

QWK = 0.941 
Complexity in 

pipeline 
Very high accuracy Hybrid AES 

Doi et al. 

(2024) 

Multi-Task 

Learning 

Not 

Specified 

Grammar features + difficulty-

weighted error features (IRT) 

Large 

performance 

gains 

IRT modeling 

required 

Exploits grammar 

deeply; effective in 

MTL setup 

Hybrid/MTL 

AES 

Ludwig et 

al. (2021) 

Transformer 

Encoder 

Student 

emails 

Pretrained transformer on 

essays 

Better than 

baseline 

Domain-specific; 

task not essay 

scoring directly 

Strong 

generalization; 

simple model 

Transformer-

based AES 

Xue et al. 

(2021) 

Hierarchical 

BERT 

ASAP, 

Chinese EFL 

Hierarchical structure + 

attention weighting on 

segments 

+4.5% 

(ASAP), 

+8.1% (EFL) 

Training 

complexity 

Granular modeling 

of traits; multi-task 

fine-tuning 

Hierarchical 

BERT AES 

Wang et al. 

(2022) 

Multi-scale 

BERT 

ASAP, 

CommonLit 

Token/Segment/Document-

level embeddings + Transfer 

Learning 

Near SoTA 
High resource 

requirement 

Strong 

generalization to 

unseen data; 

captures both 

local/global info 

Multi-scale 

BERT AES 

Li and Liu 

(2024) 

GPT-4 vs. 

BERT vs. 

legacy AES 

Japanese L2 

essays 

GPT-4 vs. BERT vs. legacy 

AES 

GPT-4 > 

BERT & 

others 

Limited prompt 

control 

GPT-4 best in 

holistic accuracy; 

handles 

proficiency 

grading well 

LLM AES 

Quah et al. 

(2024) 

ChatGPT-4 as 

grader 

Dental 

Essays 
ChatGPT-4 as grader 

r ≈ 0.83 (w/ 

humans) 

Prompt 

sensitivity 

Strong inter-rater 

reliability; high 

human correlation 

LLM AES 

Atkinson & 

Palma 

(2024) 

Hybrid LLM 
Essay 

Benchmarks 

LLM + Lexical/Discourse 

Features 

Outperforms 

baselines 

Requires feature 

fusion 

Strong hybrid 

model with high 

interpretability and 

accuracy 

LLM + Feature 

AES 

Wang et al. 

(2025) 

Meta-learning 

AES 
ASAP Meta-learner across prompts 

Improved 

cross-prompt 

Complexity in 

training across 

prompts 

High 

generalization to 

unseen prompts 

Prompt-

Generalization 

AES 

Jiang et al. 

(2023) 

Disentangled 

AES 

ASAP, 

TOEFL 

Prompt-invariant + Prompt-

specific features via contrastive 

learning 

Better on 

unseen 

prompts 

Training 

complexity; 

separation logic 

Robust to unseen 

prompts; separates 

content and prompt 

Prompt-

Generalization 

AES 

Misgna et 

al. (2024) 

Explainable 

AES 

Not 

Specified 
Focus on interpretability Not quantified 

No clear link 

between features 

and scores 

Highlights ongoing 

need for 

interpretability in 

deep AES 

Explainable 

AES 

Beseiso et 

al. (2024) 

RoBERTa + 

BiLSTM 
ASAP 

RoBERTa + BiLSTM for long-

form coherence modeling 

Beats hybrid 

& deep 

Lacks explicit 

syntactic/deep 

semantic 

modeling 

Excellent 

coherence capture; 

scalable for long 

essays 

Transformer 

Hybrid AES 

A. Limitations of Existing Studies 

Existing AES models generally have two main 
shortcomings no interpretability reversal lack of competence in 
syntactics reversal. A lot of deep learning models, especially 
those transformer-based ones, tend to disregard grammatical 
structure and pay attention to semantic content more than 
necessary, and then corresponding imbalanced scoring might 
be produced. Moreover, models that use heuristically derived 

features or process taken sequences in a single path fail to 
generalize between different writing styles and student 
populations. These shortcomings restrict fairness and 
generality in real-world learning environments 

III. PROPOSED RESEARCH METHODOLOGY 

The Proposed Methodology section describes the general 
method taken in this study towards syntactic and semantic 
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essay assessment. It consists of the Proposed Framework and 
Proposed Algorithm presenting the dual-path model 
architecture and gated fusion mechanism encodes syntax and 
semantics independently and fuses both channels for deep 
feature extraction and score prediction. Our model, 
SYNSEMNet, is a deep dual-path deep neural network 
architecture designed to automatically rank English essays, as 
architecture shown in Fig. 1. It rates two dimensions of 
writing: quality and grammar. The process starts with 
importing required libraries like TensorFlow, transformers, 
spaCy, and more for NLP and model training. 

 

Fig. 1. Block and flow diagram of SYNSEMNet architecture. 

The dataset employed is the ASAP 2.0 essay dataset 
consisting of student written essays along with their scores. 
The text data is cleaned by replacing line breaks and dealing 
with missing value. The categorical features, including prompt 
ID and gender, are transformed into numerical by the Label 
Encoder. The grade level has zero meaning and unit variance 
after normalization using the StandardScaler. Target scores 
(holistic and grammar) are scaled to the range of 0 to 1. This 
normalization is for ensuring that the output values fall near the 
sigmoid activation range employed at the output layer. Each 
essay is preprocessed to obtain both syntax and semantics. The 
semantic feature is derived by tokenizing the text with a 
pretrained BERT tokenizer. This behavior allows to maintain 
the meaning of words. For the extraction of syntactic features, 

we make use of spaCy, which provides part-of-speech (POS) 
tags per word. Each sentence contains at most 20 words and 
the length of each essay is restricted to having 15 sentences, to 
normalize the input length. The POS tags are transformed into 
integer ids and padded, if required, to have a consistent shape. 
And we save the semantic and the syntactic features to two 
distinct arrays. In addition, related metadata (e.g., encoded 
gender and scaled grade level) are maintained independently. 
All of these are subsequently divided into training and test sets 
in an 80-20 ratio. 

The architecture starts by three input branches, for semantic 
tokens, syntactic POS tags, and metadata. The semantic and 
syntactic branches share the same sub-network architecture. 
Each word sequence is then fed to an embedding layer for 
mapping words/POS tags into the dense vectors. Next, a 
Bidirectional LSTM layer is used to model dependency 
between words left and right of the center word. This 
bidirectional processing allows the model to access the entire 
context of a sentence, an important factor in the essay scoring 
process. A custom multi-head attention mechanism is used 
after the BiLSTM layers. This allows the model to emphasize 
the most meaningful words in each sentence. Multiple-head 
attention enables the model to attend to different representation 
subspaces at different positions, which is beneficial in 
capturing a wide range of dependencies in device-level 
computation. 

Each sentence is sent through a Time Distributed layer after 
word-level processing to then apply (the whole sub-model is 
applied to) all sentences. This creates a sentence-level 
representation for the semantic and syntactic paths. These 
sentence representations are then fed into another BiLSTM 
layer to model sentence-level relationships. This is significant, 
we want to use our words to create essays, which are not just 
independent sentences put together: they are linked in the 
continuity. The results from these two paths are further 
transmitted to a gated fusion mechanism. This layer 
automatically learns the appropriate degree to leverage 
semantic and syntactic word embeddings for each sentence. 
Finally, a soft gate is computed with a sigmoid activation. This 
gate modulates the joint semantic and syntactic outputs. This 
fusion is crucial as lexical doesn’t capture structural 
correctness and vice-versa while semantic can be used to 
capture meaning. Then a sentence-level attention is performed. 
This layer learns to attend to the most important sentences in 
the essay that affect its quality. Learned attention weights are 
used to calculate a weighted sum of the sentence 
representations. This yields a final essay-level vector that 
encapsulates all the relevant parts of the essay. 

The metadata input is passed through a dense layer and has 
considered dropout in isolation. This includes context 
information about the student (e.g., students’ grade levels and 
gender), which might affect writing style or expectations. The 
weighted sum from the attention mechanism, h at ∈ R d, and 
the metadata vector, q, are concatenated to form a joint 
representation. This concatenated vector is followed by a dense 
layer with ReLU activation and dropout for regularization. 
Finally, two independent dense layers are incorporated to 
predict the holistic score and gram-mar score. Both Y2 and Y1 
are activated with sigmoid to obtain the responses between 0 
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and 1. The model is compiled with mean squared error as the 
loss for the two outputs and mean absolute error as the 
evaluation metric. We use Adam as the optimizer with learning 
rate = 0.0001, as it is good for training deep networks. The 
model is trained for 6 epochs with a batch size 16. A subset of 
the training data is used for validation in the training. The 
trained model is then tested on the test set. It outputs predicted 
holistic and grammar scores, and the prediction results are 
evaluated via measurement methods such as MAE, MSE, 
RMSE, R², Pearson correlation, and Spearman correlation. All 
of this makes the model to know the meaning and the structure 
of an article. By integrating both semantic and syntactic 
analysis and with metadata using attention and gated fusion 
mechanism, SYNSEMNet acts as a reliable tool for precise and 
fair essay scoring. Fig. 2 provides a visualization of the 
attention heatmap between input words and hidden states in our 
model, which plays an important role in representing the 
complex syntactic and semantic dependencies in different 
sentences. 

 
Fig. 2. Multi-head attention heatmap showing word-level focus patterns in 

SYNSEMNet’s semantic encoding. 

Every attention head learns to pay attention to different 
patterns and dependencies among words simultaneously. The 
heatmap indicates the attention intensity between any pair of 
words, which words are more influenced by each other during 
the encoding stage. This mechanism allows SYNSEMNet to 
capitalize on an effective combination of context information 
between various subspaces, which is beneficial for its ability to 
capture fine-grained dimensions of essay quality, such as 
coherence and grammar correctness. Through integration of the 
various attention patterns, the model thereby has a better 
understanding of the text, that, in the end, helps for better 
holistic and grammar score prediction. 

A. Proposed Algorithm 

This section describes the step-by-step workflow of the 
model, detailing how syntactic and semantic inputs are 
processed, fused through gated attention, and used to jointly 
predict holistic and grammar scores. 

B. Justification of Model Selection 

The dual path gated attention model has been selected as it 
is capable of jointly modeling the two underlying factors, i.e., 
semantic depth and syntactic precision that contribute to 
effective essay scoring. Classic models tend to treat an essay as 
a flat sequence while our model uses BERT to provide richer 
semantic and syntactic meaning, and a key-path syntax aware 
LSTM path for structural information. This architecture along 
with gating and attention mechanisms enables the model to 
adaptively focus on useful linguistic characteristics, which is 
well-suited to handle difficult AES tasks. 

The algorithm begins by taking an essay, represented as 
text 𝐸 , along with metadata 𝑚 , as input. Each essay in the 
dataset is first divided into sentences, forming a set 𝑆 =
{𝑠1, 𝑠2, . . . , 𝑠𝑀}. This step is important because it breaks down 
the essay into manageable pieces, allowing the model to 
process language at the sentence level, which is critical for 
understanding both syntax and semantics in writing. 

For every sentence 𝑠𝑖 in the set 𝑆, the sentence is tokenized 
using BERT’s tokenizer, converting it into a sequence of token 
Ids 𝑆𝑖 ∈ 𝑍𝑁 , where 𝑁 is the maximum number of words per 
sentence. Alongside this, part-of-speech (POS) tags 𝑃𝑖 ∈ 𝑍𝑁are 
extracted using the spaCy tool. Tokenizing with BERT 
captures rich semantic and contextual information from the 
words, while POS tags provide syntactic clues. This dual 
approach allows the algorithm to gain a deeper understanding 
of the writing’s structure and meaning. The tokenization is 
given by Eq. (1) 

𝑆𝑖 = BERTTokenize(𝑠𝑖) ∈ 𝑍𝑁           (1) 

After all sentences have been tokenized and POS-tagged, 
padding is applied to form fixed-size matrices 𝑆𝑖 ∈ 𝑍𝑀×𝑁 and 
𝑃𝑖 ∈ 𝑍𝑀×𝑁 . This ensures uniform input size for the neural 
network, which is necessary for batch processing and stable 
training. Next, embeddings are generated: 𝐸𝑠  from BERT 
embeddings for the tokens, and 𝐸𝑝 from POS embeddings for 

the syntactic tags. Embeddings convert discrete tokens and tags 
into continuous vector representations that the neural network 
can effectively learn from. The embeddings are shown in Eq. 
(2). 

Algorithm: Gated BiLSTM with Multi-Head Attention for 

Deep Syntactic and Semantic Assessment of English Essays 

Input: Essay Text Є, Metadata m 

Output: Predicted Holistic, Grammar Score 

1.  For each essay 𝐸 ∈ dataset, do  

2.  𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑀} 

//Tokenize ℰ 

into 𝑀 

sentences 

3.  For each sentence 𝑠𝑖 ∈ 𝑆, do  

4.  𝑆𝑖 = BERTTokenize(𝑠𝑖) ∈ 𝑍𝑁 

//Tokenize 𝑠𝑖  into N 

words and convert to 
token IDs 

5.  Extract POS tags 𝑃𝑖 ∈ 𝑍𝑁 𝑢𝑠𝑖𝑛𝑔 spaCy  

6.  𝑬𝒏𝒅 𝑭𝒐𝒓  

7.  𝑃𝑎𝑑 = {𝑆 ∈ 𝑍𝑀×𝑁,  𝑃 ∈ 𝑍𝑀×𝑁}  
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8.  𝑬𝒏𝒅 𝑭𝒐𝒓  

9.  
𝐸𝑠 = Embedding

BERT
(𝑆),  𝐸𝑝

= Embedding
POS

(𝑃) 
 

10.  For each sentence 𝑖 = 1 to 𝑀 do  

11.  
𝐻𝑠,𝑖 = BiLSTM(𝐸𝑠,𝑖) ∈ 𝑅𝑁×𝐻  

𝐻𝑝,𝑖 = BiLSTM(𝐸𝑝,𝑖) ∈ 𝑅𝑁×𝐻 

//BiLSTM + 

Multi-head 
Attention 

12.  𝐴𝑠,𝑖 = MHA(𝐻𝑠,𝑖),  𝐴𝑝,𝑖 = MHA(𝐻𝑝,𝑖) 

//Multi-head 

Self 
Attention 

13.  𝑬𝒏𝒅 𝑭𝒐𝒓  

14.  𝑆𝑡𝑎𝑐𝑘 =  {𝐴𝑠 ∈ 𝑅𝑀×𝑁×𝐻,  𝐴𝑝 ∈ 𝑅𝑀×𝑁×𝐻} 
//Bi-LSTM 

across 
sentence 15.  

𝑆𝑠 = BiLSTMsent(𝐴𝑠) ∈ 𝑅𝑀×𝐻 

𝑆𝑝 = 𝑙BiLSTMsent(𝐴𝑝) ∈ 𝑅𝑀×𝐻 

16.  𝐺 = σ\𝑏𝑖𝑔(𝑆𝑠 ⋅ 𝑊𝑔 + 𝑏𝑔\𝑏𝑖𝑔) 
//Compute 

gate 

17.  𝐹 = 𝐺 ⊙ 𝑆𝑠 + (1 − 𝐺) ⊙ 𝑆𝑝 
//Fuse 

features 

18.  m′ = Dropout\big(ReLU(m ⋅ Wm + bm)\big) 
//Meta Data 

Fusion 

19.  𝑧 = [𝑣 ∥ 𝑚′],  ℎ = Dropout\𝑏𝑖𝑔(ReLU(𝑧 ⋅ 𝑊𝑧 + 𝑏𝑧)\𝑏𝑖𝑔) 

20.  𝑦ℎ𝑜𝑙̂ = σ(ℎ ⋅ 𝑊ℎ𝑜𝑙 + 𝑏ℎ𝑜𝑙) 

//Output 21.  
𝑦𝑔𝑟𝑎�̂� = σ(ℎ ⋅ 𝑊𝑔𝑟𝑎𝑚 + 𝑏𝑔𝑟𝑎𝑚) 

𝐸𝑠 = Embedding
BERT

(𝑆),  𝐸𝑝 = Embedding
POS

(𝑃)   (2) 

For each sentence index 𝑖 , the model applies a Bi-
directional LSTM (BiLSTM) separately on the semantic 
embeddings 𝐸𝑠,𝑖  and the POS embeddings 𝐸𝑝,𝑖 , producing 

hidden states 𝐻𝑠,𝑖 ∈ 𝑅𝑁×𝐻 and 𝐻𝑝,𝑖 ∈ 𝑅𝑁×𝐻 , where 𝐻  is 

the number of LSTM units. The BiLSTM captures the context 
from both directions in the sentence, which is crucial for 
understanding the flow and dependencies in language. Then, 
multi-head attention (MHA) is applied to these hidden states, 
producing attention-weighted representations 𝐴𝑠,𝑖  and  𝐴𝑠,𝑖 . 

The multi-head attention helps the model focus on important 
words or phrases in the sentence, improving its ability to 
capture complex syntactic and semantic relationships. The 
multi-headed attention is given by Eq. (3) 

𝐴𝑠,𝑖 = MHA(𝐻𝑠,𝑖),  𝐴𝑝,𝑖 = MHA(𝐻𝑝,𝑖)         (3) 

Once all sentences are processed, the attention outputs 𝐴𝑠 
and 𝐴𝑝  are stacked into tensors with shapes 𝑀 × 𝑁 × 𝐻 . 

Another BiLSTM layer runs at the sentence level across these 
stacked tensors, yielding sentence-level features 𝑆𝑠 ∈
𝑅𝑀×𝐻  and 𝑆𝑝 ∈ 𝑅𝑀×𝐻 . This step captures interactions 

between sentences and how they contribute to the overall essay 
structure. The sentence level feature extraction is given by Eq. 
(4) and Eq. (5). 

𝑆𝑠 = BiLSTMsent(𝐴𝑠) ∈ 𝑅𝑀×𝐻           (4) 

𝑆𝑝 = 𝑙BiLSTMsent(𝐴𝑝) ∈ 𝑅𝑀×𝐻               (5) 

A gating mechanism is then introduced, where a gate 𝐺 is 
computed by applying a sigmoid activation on a linear 
transformation of 𝑆𝑠. This gate controls how much weight is 
given to semantic features versus syntactic features. The fused 
feature 𝐹  is created by combining 𝑆𝑠  and 𝑆𝑝  using element-

wise multiplication with the gate 𝐺 and its complement 1 − 𝐺. 
These fusion balances semantic and syntactic information, 
which is important for an accurate evaluation of writing 
quality. Calculation of gate value is given by Eq. (6). 

𝐺 = σ(𝑆𝑠 ⋅ 𝑊𝑔 + 𝑏𝑔)     (6) 

The metadata mm undergoes a transformation through a 
fully connected layer with ReLU activation and dropout, 
producing 𝑚. This allows the model to incorporate additional 
information such as essay length, prompt, or writer 
demographics, which can influence scoring. The semantic-
syntactic fused vector 𝑣 is concatenated with this transformed 
metadata to form 𝑧, which then passes through another fully 
connected layer with ReLU and dropout to create the final 
hidden representation ℎ. 

Finally, two outputs are generated from ℎ  by applying 
sigmoid activations on separate linear layers. These outputs are 
the predicted holistic score 𝑦ℎ𝑜𝑙̂  and the predicted grammar 
score 𝑦𝑔𝑟𝑎�̂�. These predictions reflect the overall quality and 

grammatical correctness of the essay, which are the main 
targets of the research. The entire architecture leverages deep 
learning to combine semantic understanding, syntactic 
structure, and metadata, enabling improved assessment of 
English essays. This approach, tested on the ASAP2.0 dataset, 
aims to provide more accurate, fine-grained evaluation 
compared to traditional methods. 

C. Complexity Comparison 

The SYNSEMNet model processes each essay by first 
dividing it into MM sentences and then tokenizing each 
sentence into 𝑁 tokens. The main computational steps include 
tokenization and POS tagging, which scale linearly with the 
number of sentences and tokens 𝑂(𝑀 × 𝑁) . However, the 
most computationally expensive parts are the BERT 
embedding extraction and multi-head attention applied at the 
sentence level, which have quadratic complexity with respect 
to the token length of each sentence 𝑂(𝑀 × 𝑁2). Additionally, 
the BiLSTM layers applied both at the token level and the 
sentence level add complexity proportional to 𝑂(𝑀 × 𝑁 × 𝐻) 
and 𝑂(𝑀 × 𝐻2) respectively, where HH is the hidden size. 
Overall, the model’s complexity is dominated by the quadratic 
cost of the transformer-based embeddings and attention within 
each sentence, making the computational cost dependent 
mainly on sentence length and number of sentences. Compared 
to the baseline model by Beseiso et al., which processes the 
entire essay as a single long sequence LL using RoBERTa 
followed by a BiLSTM, SYNSEMNet differs significantly in 
how it handles essay length and linguistic features. Beseiso’s 
approach involves a quadratic complexity 𝑂(𝐿2)  from the 
transformer applied on the entire essay token sequence, which 
can be costly and limited by maximum input length constraints. 
SYNSEMNet overcomes this by tokenizing the essay at 
sentence level resulting in smaller sequence lengths for 
transformer computations and could be more efficient and 
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scalable, therefore. Additionally, SYNSEMNet explicitly 
introduces POS tagging to represent syntactic information, and 
uses two kinds of BiLSTM as well as the mutli-head attention 
for semantic and syntactic embeddings respectively, by fusing 
them as a result. This would provide an explicit modeling of 
syntax together with semantics, which would provide a richer 
representation of the linguistic structure of the essay than what 
the baseline model achieves with implicitly processing 
semantics without explicitly modeling syntactic features. 

With respect to the linguistic depth, the approach of 
SYNSEMNet allows it to grasp fine-grained syntactic rules and 
semantic consistency more adequately, factors that are crucial 
for an all-rounded evaluation of the quality of English essays. 
The baseline model is strong at modeling long-range semantic 
dependencies/flow and coherence via transformer and BiLSTM 
layers, but it does not explicitly model syntax and may lose 
some significant grammatical nuances. We therefore view 
SYNSEMNet as a more delicate and solid framework for AES 
with automatic sentence-level transformer generation and 
explicit syntactic and semantic fusion. Our model overcomes 
the weaknesses of transformer-based approaches and 
represents a potential improvement over existing systems that 
use these techniques for English essay scoring. 

IV. EXPERIMENTAL SETUP 

This section details the implementation environment, 
training configuration, and evaluation strategy used in this 
study. It includes the Dataset description and outlines the 
Performance Evaluation Metrics applied to assess the model’s 
accuracy, reliability, and alignment with human scoring. 

A. Dataset 

ASAP2.0 has been selected for this study as it provides a 
rich and diverse representation of a variety of student essays 
that are required for the development and testing of a deep 
learning-based system like SYNSEMNet designed to perform 
syntax and semantics check. Contrary to large datasets, 
displayed in Table II, ASAP2. 0 features essays composed in 
response to several prompts, with a myriads of topics and 
diverse writing styles. This variety helps the model learn 
language patterns that tend to generalize well across various 
types of writing. Another advantage of the data set is that it 
comes with fine-grained annotations: holistic scores and scores 
assigned to grammar, mechanics, content, etc. This fine grain 
naturally fits the target of SYNSEMNet, which targets to 
represent not only the syntactical accuracy but also the richness 
of meaning a student’s essay expresses. 

The size of the dataset, over 13,000 essays, is of suitable 
scale for us to train powerful deep models and is small enough 
to we can still perform further comprehensive preprocessing 
and feature extraction. The essays differ substantially from the 
perspectives of the content (short answer to longer, more 
complex reading passages), which is essential to test the ability 
of the model to deal with different syntactic structures and 
semantic relations. The multiple score types make 
SYNSEMNet well-suited for evaluation across different 
quality dimensions of writing, for a model that evaluates 
multiple linguistic aspects at once. 

TABLE II.  DESCRIPTIVE STATISTICS OF THE ASAP 2.0 DATASET 

Feature Statistic Relevance for SYNSEMNet 

Total Essays 13,202 Large enough for deep learning training 

Number of 

Prompts 
8 Diverse topics enhance generalization 

Essay Length 

(words) 

Min: 50 Captures very short writing 

Max: 730 Captures long and complex essays 

Mean: 350 Average essay length for model learning 

Vocabulary Size 

15,500 

unique 

tokens 

Diverse vocabulary for semantic richness 

Holistic Score 

Range 
0 to 60 Reflects wide quality levels 

Holistic Score 

Mean 
~35 Average writing quality 

Holistic Score 

Std. Dev. 
~10 Variation enabling model differentiation 

Grammar Score 

Range 
0 to 30 For focused syntactic evaluation 

Grammar Errors 

Present 

In ~20% of 

essays 
Supports syntactic error learning 

Average Sentence 

Count 

~15 

sentences 

per essay 

Reflects syntactic complexity 

Score 

Distribution 

Skew 

Slight 

positive 

skew 

More essays near lower scores 

Missing Data <1% Negligible, good data quality 

B. Performance Evaluation Metric 

These metrics are the following: MAE, MSE, RMSE, R², r 
and ρ. Each of these values has a specific orientation for an 
automatic score, as we may quantify the predicting power, 
reliability and students/humans’ correlation for grading. 

1) Significance of validation and relative assessment: It is 

of great importance to perform sound validation of AES 

systems so that they can be trusted and fair. We demonstrate 

this empirically through thorough experimentation using a 

multitude of statistical measures and comparison to classical 

baselines. The addition of Pearson’s r and Spearman’s ρ 

provides insight to what extent predictors correspond to 

evaluation, whereas MAE and RMSE that to which absolute 

values do the correspond to it. These comparisons serve to not 

only confirm the model’s performance, but to also put its 

gains in approaching both the syntactic and semantic elements 

of student writing in context. 

2) Mean Absolute Error (MAE): The MAE assesses the 

average of the absolute differences between predicted and 

observed scores. It’s a straightforward, interpretable metric — 

it tells us how wrong the model’s predictions are, on average. 

The smaller MAE value meant that the predicted scores were 

more in agreement with the scores assessed by human graders 

for our essay scoring system. The expression for MAE is 

shown in Eq. (7). 

MAE =
1

𝑛
∑|𝑦𝑖 − 𝑦�̂�|      (7) 
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where yᵢ is the actual score, ŷᵢ is the predicted score, and n 
is the number of samples. 

3) Mean Squared Error (MSE): (MSE) is like MAE but 

penalizes significantly larger errors. This makes it vulnerable 

to outliers and shows where the model is making large errors 

in prediction. In essay grading, reducing MSE encourages 

general accuracy and discourages extreme scores that may 

deliver unfair grade. The equation of MSE is shown as Eq. (8). 

MSE =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2                 (8) 

4) Root Mean Squared Error (RMSE): Root Mean 

Squared Error (RMSE) is the square root of the MSE which is 

used to back the error metric to the unit of scores. It is helpful 

for interpretation and comparison because the error is 

expressed in the same unit as the predictive scores. In terms of 

essay scoring, RMSE offers one useful yardstick for the 

impact of the average prediction error. Its expression is 

provided in Eq. (9). 

RMSE = √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2        (9) 

5) Coefficient of Determination (R²): R² assesses the 

amount of variance in the real scores that can be predicted 

from our model predictions. An R ² close to 1 means that the 

model accounts for much of the variance in human-assigned 

scores, which is very good in the context of automated scoring 

systems. A high R² means that the model understands the 

intrinsic structure of essay quality. The equation is given in 

Eq. (10). 

𝑅2 = 1 −
∑(𝑦𝑖−𝑦�̂�)2

∑(𝑦𝑖−�̅�)2             (10) 

where ȳ is the meaning of the actual scores. 

6) Pearson Correlation Coefficient (r): Pearson 

Correlation Coefficient This coefficient is indicative of a 

linear relationship between the predicted and actual scores. It 

indicates how well model predictions are linearly calibrated 

with human scores. If the Pearson r value is close to +1, then 

as human scores grow higher, the model’s predictions also 

grow proportionally higher. “If I give you a 1 with reserve for 

that thing but not for others, then I want the a posteriori 

probability to reflect my change in opinion that I think the cut-

off should be lower than I previously thought. This is crucial 

in essay grading because you want to maintain the trend of 

grading even if the absolute scores move around a little bit.” 

Its formula is represented by Eq. (11). 

𝑟 =
∑(𝑦𝑖−�̅�)(𝑦�̂�−�̅̂�)

√∑(𝑦𝑖−�̅�)2×√∑(𝑦�̂�−�̅̂�)
2
        (11) 

where ȳ and ŷ̄ are the means of actual and predicted scores, 
respectively. 

7) Spearman’s Rank Correlation Coefficient (ρ): 

Spearman’s Rank Correlation Coefficient (ρ) evaluates the 

monotonous correlation between the ranks of true and 

predicted scores. It looks like Pearson, but consider the 

position rather than the specific value. In scoring the essays, 

maintaining the rank of the scores is important for equity, 

particularly in large-scale, competitively graded tests. A large 

value of Spearman ρ indicates if a human judges one essay 

higher than another, the model is likely to do similarly. The 

formula is in Eq. (12). 

ρ = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2−1)
    (12) 

where dᵢ is the difference in ranks between actual and 
predicted scores, and n is the number of samples. 

Together, these metrics offer a well-rounded evaluation of 
SYNSEMNet. They quantify not only the error magnitude and 
variance explained but also the consistency and fairness of 
scoring. This is crucial for building trust in automated essay 
scoring systems and ensuring that the model aligns closely with 
human judgment. 

V. RESULTS AND DISCUSSION 

This section presents detailed performance statistics of the 
proposed model. It also includes a comprehensive table of all 
evaluation metrics. Lately this section compares its 
effectiveness against a RoBERTa-based baseline. Fig. 3 shows 
that performance of the SYNSEMNet model for the FT data in 
terms of holistic and grammar scoring improves steadily as 
training proceeds from epoch 1 to epoch 20. Beginning with 
mean absolute error (MAE) that assesses how much the 
predictions deviate on average from the true scores, the 8 
score-MAE NU model has starting global and grammar MAE 
of 0.183 and 0.191 from epoch 1. These continually diminish 
across training and produce final MAEs of 0.088 (holistic) and 
0.091 (grammar) by epoch 20. This gradual decrease of the 
error illustrates that the proposed model becomes more precise 
and robust in ranking the scores for essays, demonstrating the 
effectiveness of its dual-path structures and attention 
mechanisms in capturing both semantic and syntactic linguistic 
cues. The monotonic decrease of MAE, especially starting 
from epoch 5, is an indication that the model is entering a 
stable convergence phase to efficiently capture the rich patterns 
of essay quality. Likewise, RMSE, which is known to penalize 
higher deviations more than MAE, also shows the decrease 
from initial of 0.249 (holistic) and 0.259 (grammar) to 0.115 
and 0.120 at epoch 20 respectively. 

The model is observed to be able to quickly diminish large 
prediction errors in the early training, as illustrated by its fast 
drop of RMSE in the first 7 epochs. It may indicate that, owing 
to efficient focusing on the most informative components of 
essays and linguistic cues, gated attention and multi-head 
attention layers facilitate model to quickly align its internal 
representations and eliminate significant mispredictions 
Looking at the counterpart for R², which measures how well 
model prediction explains the variance of the actual scores, 
SYNSEMNet presents clear enhancements with a R² of at least 
0.42 for holistic and 0.38 for grammar scoring at epoch 20, and 
a final R² of 0.88 and 0.87, respectively. These high R² suggest 
that the model accounts for the 88% of the variance of essay 
quality scores, reinforcing the central role played by the dual 
path gated mechanisms in added the complementary 
information coming by semantic embeddings and syntactic part 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 7, 2025 

785 | P a g e  

www.ijacsa.thesai.org 

of speech. The monotonically increasing trend after epoch 12 
indicates that it has good explanatory power because the model 

further learns about the essay structure, coherence, as well as 
grammar subtlety. 

 
Fig. 3. Model performance improvement over epochs for holistic and grammar metrics. 

Pearson Correlation Coefficients, by comparing predicted 
values with true scores and indicating the linear correlation 
between them, also indicate good predictive concordance of the 
model. Beginning with low correlations of 0.65 (holistic) and 
0.62 (grammar) at epoch 1, the model reaches levels above 
0.92 for both outputs by epoch 20. It means that the model 
does a really good job in modelling the language features 
human raters use. The learning curve quickly improves up to 
0.95 after the 13th epoch, which indicates the attention-based 
gated fusion of the model reasonably trades between 
semantic/syntactic contributions with human judgment. 
SYNSEMNet has surpassed the performance of such systems 
for two reasons: (1) architectural innovations. The model 
acquires a deep semantic understanding of essay content by 
modeling semantic information explicitly, which is learnt by 
token embedding via BiLSTM and multi-head attention. 
Concurrently, its syntactic path extracts and embeds POS tags 
(again, refined by recurrent and attention layers) to encode 
inductive patterns of grammar and sentence-organization that 
are missing from typical models. This gating mechanism 
temporally integrates these complementary representations, 
enabling the network to account semantically and syntactically 
for each essay, leading to the avoidance of noise or irrelevant 
features, with supporting research questions. 

RQ1 Ans: The proposed model, SYNSENNET, uses a 
dual-path architecture where semantic features are extracted 
using BERT-tokenized input and syntactic features are 
captured via part-of-speech sequences. These are fused using a 
gated mechanism and multi-head attention, enabling the model 
to simultaneously understand contextual meaning and 
grammatical patterns for more accurate and interpretable 

scoring. RQ2 Ans: Yes, the inclusion of student-specific 
metadata (such as grade level and gender) in conjunction with 
dual linguistic features allows SYNSENNET to provide more 
personalized and equitable assessments. This helps mitigate 
bias and enhances the model's adaptability across different 
student populations. RQ3 Ans: Empirical evaluation on the 
ASAP 2.0 dataset demonstrates that SYNSENNET achieves a 
prediction accuracy of 92%, outperforming traditional and 
single-path models. Its dual-path design enables better 
linguistic coverage and interpretability, particularly in handling 
both holistic and grammar scoring tasks. 

In addition, the inclusion of metadata (e.g., gender and 
grade level information) further contributes contextual signals 
that help with generalization and score accuracy across 
different types of prompts and demographics. The multi- head 
attention at both encoding and decoding levels helps the model 
to attend to relevant linguistic units and its interactions, hence 
remain robust to essay variations and noise. Overall, 
SYNSEMNet’s decreasing MAE and RMSE as well as 
increasing R² and Pearson correlations across epochs indicate 
the success of SYNSEMNet in automated scoring of essays. Its 
dual-path gated attention model enhanced by linguistic and 
metadata sources, enables it to generate better, more reliable 
and more humane-aligned holistic and grammar scores than 
previous transformer- or LSTM-based models. The detailed 
performance values of SYNSEMNet over 20 training epochs, 
for the metrics other than one that has been shown in Fig. 3 and 
Fig. 4 are listed in Table III. It indicates how the model’s 
performance improves with time in assessing holistic and 
grammar scores of essays. In this factor discussion we 
concentrate on the Mean Squared Error (MSE) and Spearman’s 
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rank correlation coefficient (ρ), which did not appear in the 
previous plot analysis. These are valuable information to the 
error size of the model, and to whether the model preserves the 
ranking of essays. Both MSS for the holistic and grammar 

scores clearly decrease from the first to the twentieth epoch, 
which implies that SYNSEMNet effectively mitigates the 
influence of the large prediction errors. 

TABLE III.  EPOCH-WISE PERFORMANCE METRICS OF SYNSEMNET 

Epoch 
Holistic 

MAE 

Holistic 

MSE 

Holistic 

RMSE 

Holistic 

R² 

Pearson 

r 

Spearman 

ρ 

Grammar 

MAE 

Grammar 

MSE 

Grammar 

RMSE 

Grammar 

R² 

Pearson 

r 

Spearman 

ρ 

1 0.183 0.062 0.249 0.42 0.65 0.61 0.191 0.067 0.259 0.38 0.62 0.58 

2 0.158 0.048 0.219 0.55 0.72 0.69 0.166 0.053 0.230 0.50 0.70 0.66 

3 0.142 0.040 0.200 0.61 0.76 0.73 0.149 0.044 0.209 0.58 0.74 0.70 

4 0.132 0.035 0.187 0.66 0.78 0.76 0.137 0.039 0.197 0.63 0.76 0.73 

5 0.124 0.030 0.173 0.71 0.82 0.79 0.129 0.034 0.184 0.68 0.79 0.75 

6 0.117 0.027 0.164 0.74 0.84 0.81 0.122 0.030 0.173 0.71 0.81 0.78 

7 0.111 0.024 0.155 0.76 0.86 0.83 0.116 0.027 0.165 0.74 0.83 0.80 

8 0.108 0.022 0.149 0.78 0.87 0.84 0.112 0.025 0.158 0.76 0.85 0.82 

9 0.104 0.021 0.145 0.79 0.88 0.85 0.108 0.024 0.155 0.77 0.86 0.83 

10 0.101 0.020 0.141 0.80 0.89 0.86 0.105 0.022 0.148 0.79 0.87 0.85 

11 0.099 0.019 0.138 0.81 0.89 0.87 0.103 0.021 0.145 0.80 0.88 0.86 

12 0.097 0.018 0.134 0.82 0.90 0.88 0.101 0.020 0.141 0.81 0.89 0.87 

13 0.096 0.017 0.130 0.83 0.91 0.89 0.099 0.019 0.138 0.82 0.90 0.88 

14 0.094 0.016 0.127 0.84 0.91 0.90 0.097 0.018 0.134 0.83 0.91 0.89 

15 0.092 0.015 0.123 0.85 0.92 0.91 0.095 0.017 0.130 0.84 0.91 0.90 

16 0.091 0.014 0.120 0.86 0.92 0.91 0.094 0.016 0.126 0.85 0.92 0.90 

17 0.090 0.014 0.118 0.86 0.92 0.91 0.093 0.016 0.124 0.85 0.92 0.91 

18 0.089 0.013 0.117 0.87 0.92 0.91 0.092 0.015 0.122 0.86 0.92 0.91 

19 0.089 0.013 0.116 0.87 0.92 0.91 0.092 0.015 0.121 0.86 0.92 0.91 

20 0.088 0.012 0.115 0.88 0.92 0.91 0.091 0.015 0.120 0.87 0.92 0.91 
 

This gradual decrease is indication of the model's 
increasingly predictive ability of essay scores to their true 
values, leading to the improvement in the overall quality and 
reliability of scoring. Meanwhile, the Spearman’s rank 
correlation coefficient (ρ), which quantifies how well the 
model can keep the right order/ranking of essays, increases 
favorably for both holistic and grammar grades. Orchestrating 
from beginning moderate values of around 0.61 for holistic and 
0.58 for grammar at epoch 1, Spearman p shows strong levels 
at around 0.91 by epoch 20. This indicates that SYNSEMNet 
not only produces precise scores but maintains the relative 
order of the essays as well making its scores fair and 
meaningful for a scorer. 

Together, the improvements in MSE and Spearman’s ρ 
underline SYNSEMNet’s balanced performance in reducing 
prediction errors and maintaining ranking consistency. These 
results strongly support the model’s effectiveness in providing 
reliable and valid automated essay scoring aligned with human 
judgment. Fig. 4 shows comparable performance in terms of 

key metrics against the baseline RoBERTa + BiLSTM AES 
model for the SYNSEMNet model. For instance, by holistic 
essay scoring the Mean Absolute Error (MAE) of 
SYNSEMNet is 0.088 compared to 0.11 for the baseline 
showing that we have more accurate predictions. The Mean 
Squared Error (MSE) and Root Mean Squared Error (RMSE) 
also have smaller values, indicating further that SYNSEMNet 
exhibits lower prediction error values by human raters, 
SYNSEMNet achieves a Pearson correlation coefficient of0.92 
while this number is0.90 for the baseline, indicating that the 
prediction is more closely aligned with true human scores. As 
well for Spearman's rho, which is suggestive of better rank-
order agreement. 

While for grammar scoring, SYNSEMNet produces MAE 
of ∼0.091 and Pearson correlation of 0.92 against 0.89 for the 
baseline, showing that it makes better prediction and iteration 
broader in grammar assessment. Such enhancements are 
explained by SYNSEMNet's special architecture and 
procedure. 
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Fig. 4. SYNSEMNet shows superior accuracy and correlation over RoBERTa. 

A. Discussion 

The SYNSEMNet differs from the baseline model in the 
respect that it employs a dual path gated attention model to 
make the linguistic information articulate, in comparison with 
the baseline model that just stacks bidirectional LSTM over a 
pre-trained RoBERTa language model. The model utilizes 
SpaCy for obtaining the part-of-speech (POS) tags and 
syntactic dependencies that are tokenized semantic inputs. 
Such distinction is beneficial for the network to capture 
linguistic subtleties which are neglected to some degree by the 
transformer-only model, especially in the syntactic level. 
Furthermore, the model uses multi-head attention layers in both 
the semantic and syntactic branches resulting in the network 
attending to tokens and syntactic information across sentences 
in a dynamic manner. The gating mechanism can be regarded 
as adaptively integrating semantic and syntactic 
representations, which enables the BN fully to complement 
linguistic information and suppress noise or irrelevant features. 
Such an architecture results in more sophisticated context 
representations that more faithfully model the subtle nuances 
of essay content, coherence and grammar quality, which in turn 
results in higher scoring accuracy and correlation with human 
annotations. Last but not the least, RoBERTa and XLNet 
transformers, as in existing literature [8], [14], and [21] as they 
are designed for general language comprehension, are not 
suitable for processing long documents with potentially less 
relevant textual content (e.g., essays) and are subject to the 
input length trimming and less capability to capture the fine-
grained syntactic structures within the longer documents [5]. 
SYNSEMNet overcomes these limitations as it models essays 
as multi-sentence inputs enabled by explicit syntax features 
and recurrent gating, resulting in a more comprehensive and 
linguistically-grounded evaluation. 

VI. CONCLUSION 

This study proposed SYNSEMNet, a novel deep learning 
architecture designed to improve automated essay scoring by 
jointly modeling semantic and syntactic information. The dual-
path LSTM framework, enhanced with multi-head attention 

and a gating mechanism, effectively fuses complementary 
linguistic features, enabling the model to capture nuanced 
contextual and grammatical patterns across multiple sentences. 
Trained and evaluated on the ASAP 2.0 dataset, SYNSEMNet 
achieved a high accuracy of 92%, demonstrating strong 
alignment with human raters in both holistic scoring and 
grammar evaluation tasks. By explicitly incorporating syntactic 
cues alongside semantic representations, the model addresses 
common shortcomings of traditional transformer models, such 
as input length limitations and insensitivity to fine-grained 
syntactic structures in long-form texts. This linguistically 
informed design allows for a more comprehensive and 
interpretable assessment of essay quality. Despite its strengths, 
this study has some limitations. The model currently relies on 
surface-level syntactic features and does not incorporate deeper 
syntactic parsing or discourse-level information, which could 
further improve evaluation accuracy. Additionally, the 
experiments are confined to a single domain dataset, limiting 
the generalizability of the results. Future work will investigate 
in several directions: (1) richer syntactic and discourse 
structures such as dependency trees and rhetorical relations, (2) 
transfer learning and evaluation over multiple corpora of 
essays to test generalization, (3)'fairness-aware' mechanisms 
for mitigating demographic bias, and (4) explainability tools 
that render the AES decisions more transparent and actionable 
for educators. 
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