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Abstract—Many existing systems struggle to strike a balance 

between global feature discrimination and local semantic 

understanding, despite the growing popularity of Self-Supervised 

Learning (SSL) for representation learning with unlabeled image 

data. This study introduces a novel SSL framework—Contrastive 

and Contextual Self-Supervised Representation Learning 

(C2SRL)—which integrates contrastive learning mechanisms with 

auxiliary context-based pretext tasks, specifically rotation 

prediction and jigsaw puzzle solving. The proposed C2SRL 

enhances two leading constructive models, SimCLR and MoCo, by 

incorporating contextual modules and a unified multi-task loss 

function, thereby improving the robustness and generalizability of 

the learned representations. A lightweight ResNet backbone is 

employed for encoding, followed by a dual-view augmentation 

strategy and a projection head that maps features into a 

contrastive embedding space. The proposed C2SRL outperforms 

existing SSL approaches in terms of classification accuracy and 

clustering coherence on the STL-10 and CIFAR-10 datasets, two 

benchmark datasets. It demonstrates strong scalability, as 

evidenced by its 89.6% mAP and 0.81 NMI, achieved using only 

10% labeled data for fine-tuning. These results highlight the 

potential of combining contextual and contrastive learning 

objectives to generate rich, transferable visual representations for 

low-label or label-free applications. 

Keywords—Self-supervised learning (SSL); unlabeled image 

data; representation learning; contrastive learning; convolutional 
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I. INTRODUCTION 

A. Background and Motivation 

Self-supervised learning (SSL) has emerged as a game-
changing method for machine learning (ML), particularly in 
fields where labeled data is scarce or nonexistent [1]. With SSL, 
models can learn meaningful representations from unlabeled 
data, unlike standard supervised learning that depends 
significantly on manually annotated datasets [2]. This is 
especially helpful in areas such as voice recognition, natural 
language processing (NLP), and computer vision, where 
obtaining labeled data isn't always feasible, expensive, or 
practical [3]. One significant benefit of SSL is that it can utilize 
pretextual jobs to generate supervisory signals directly from the 
data, allowing it to extract high-level characteristics [4]. Without 
human oversight, the model can acquire rich, generalizable 
representations due to these assignments [5]. Many currently 
consider SSL an effective method for developing scalable 
models that can utilize what they've learned for subsequent 
tasks, such as segmentation, object identification, and image 
classification [6]. An increasing number of real-world 

applications have found that obtaining labeled data is a 
significant challenge, and SSL provides a possible solution for 
model creation in these situations [7]. For example, specific 
fields include medical imaging, autonomous driving, and 
surveillance, where annotating data would be impractical or 
expensive [8]. 

B. Problem Statement 

Despite the significant advances in SSL, developing robust 
algorithms to handle complex visual data effectively remains a 
key challenge [9]. To achieve existing performance, traditional 
deep learning (DL) models, such as CNNs, often require 
massive labeled datasets [10]. Unlabeled data poses a significant 
challenge for these models when generalizing to real-world 
problems, as it is difficult to extract discriminative features [11]. 
The absence of supervisory signals is the primary obstacle in 
SSL, as it hinders models' ability to acquire valuable 
representations [12]. The use of positive and negative pairings 
for learning representations has shown promise in contrastive 
learning-based techniques (e.g., MoCo, SimCLR), yet these 
methods still encounter challenges with scalability and feature 
variety [13]. There is still a need for fine-tuning and a thorough 
examination across various tasks for non-contrastive techniques, 
which do not depend on negative pairings yet still offer certain 
advantages [14]. In addition, better criteria for evaluating the 
quality of learnt representations are required, particularly for 
feature uniformity, clustering behavior, and generalization to 
downstream tasks [15]. 

C. Motivation for the Proposed Framework 

How can self-supervised learning (SSL) learn visual 
characteristics from unlabeled photographs better? Present SSL 
algorithms generally disregard image-wide changes to analyze 
isolated regions or vice versa, instead using local features. 
C2SRL, a novel approach, is the primary focus of this study in 
addressing this challenge. This method combines contextual 
learning for local knowledge and contrastive learning for global 
comprehension by utilizing image rotation predictions and 
puzzles. SSL models should be more accurate and helpful when 
labeled data is scarce. 

The novelty of the study lies in the fact that Self-Supervised 
Learning (SSL) has made significant strides in visual 
representation learning; however, existing methods generally 
fail to integrate global feature discrimination with local semantic 
comprehension. Most modern models employ contrastive aims, 
which overlook fine-grained picture context in favor of instance-
level differences, particularly in the cases of SimCLR and 
MoCo. They struggle with spatial awareness and structural 
coherence tests due to this deficiency. Although some have 
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attempted to do so, most systems address supplementary 
activities separately rather than integrating them into a 
comprehensive learning framework. Thus, learned 
representations may not be resilient, generalizable, or 
semantically rich enough for future applications, particularly 
when labels are unavailable or when there are only a few labels 
available. This study presents a hybrid SSL approach that 
utilizes contrastive learning and context-aware auxiliary tasks to 
address these issues. The model optimizes many tasks. It aims 
to give more meaningful and generalizable feature 
representations. Therefore, the proposed study is essential for 
bridging the gap created by existing contrastive learning 
approaches and fulfilling the rising requirement for accurate, 
label-efficient visual representations in practice. 

D. Objectives and Scope 

The primary objectives of this research are: 

 To propose a novel SSL model that integrates 
contrastive learning and pretext tasks to learn robust 
image representations without labeled data. 

 This study evaluates the performance of the proposed 
approach using standard datasets, including CIFAR-10, 
STL-10, and ImageNet, and compares the results with 
those of existing SSL models. 

 To introduce new evaluation metrics, such as embedding 
uniformity, t-SNE visualization, and normalized mutual 
information (NMI), which provide a more 
comprehensive assessment of learned features and 
clustering behavior. 

This work focuses on unsupervised learning using unlabeled 
image data and aims to demonstrate how SSL techniques can be 
effectively applied in settings where annotated data is limited or 
unavailable. 

E. Contributions of the Study 

The contributions of this research are as follows: 

 Introducing a contrastive learning framework 
incorporating multiple pre-text tasks to improve the 
quality and diversity of learned representation. 

 Evaluating the proposed Contrastive and Contextual 
Self-Supervised Representation Learning (C2SRL) 
framework across several standard image datasets, using 
both traditional metrics (e.g., accuracy) and novel 
evaluation techniques (e.g., embedding uniformity 
score). 

 A detailed comparison with existing SSL approaches, 
such as SimCLR and MoCo, demonstrates the 
effectiveness of the proposed approach in learning 
representations that generalize well to downstream 
tasks. 

F. Structure of the Study 

The study is prearranged as follows: Section II describes 
related works. Section III describes the suggested C2SRL 
model. Section IV offers experimental outcomes. Section V 
presents the discussion. Finally, Section VI concludes the study 
by discussing potential future work. 

II. LITERATURE SURVEY 

Banafshe Felfeliyan et al. [16] suggested the Mask-Region-
based Convolutional Neural Network (MRCNN) for Medical 
Image Segmentation with Limited Data Annotation. This study 
utilizes the Osteoarthritis Initiative dataset to evaluate the 
effectiveness of the proposed approach for segmentation tasks 
under various pre-training and fine-tuning conditions. The Dice 
score was 20% higher after using this self-supervised pre-
training strategy instead of starting from scratch during training. 
Anomaly detection, segmentation, and classification are just a 
few examples of medical image analysis tasks that may benefit 
from the proposed SSL. This learning model is easy to 
implement and produces optimal findings. 

Xin Zhang and Liangxiu Han [17] proposed a generic SSL 
for Representation Learning from Spectral Spatial Features of 
Unlabeled images. Innovative pretext problems for object- or 
pixel-based remote sensing data interpretation systems are 
planned. One pretext task can retrieve spectral characteristics 
from masked data. This allows pixel data extraction and activity 
acceleration via pixel-based analysis. Two popular downstream 
task evaluation activities show how the SSL approach learns a 
target representation from vast volumes of unlabeled spatial and 
spectral data. 

Soroosh Tayebi Arasteh et al. [18] recommended the vision 
transformer (ViT) for diagnostic DL via self-supervised pre-
training on large-scale, unlabeled non-medical images. To train 
a vision transformer, the author used three different sets of data: 
i) SSL pre-training on medical images, ii) SL pre-training on 
non-medical images (ImageNet database), and iii) SL pre-
training on chest X-rays, which is the biggest publicly available 
labeled chest radiograph dataset to date. Over 800,000 chest X-
rays from 6 massive worldwide databases were used to evaluate 
the technique, which diagnosed over 20 dissimilar imaging 
results. Statistical significance was assessed using 
bootstrapping, and performance was measured by computing the 
area under the ROC curve. Selecting the appropriate pre-training 
technique, particularly with SSL, is crucial for accurate medical 
imaging AI diagnosis. 

Jiahe Shi et al. [19] discussed the Self-supervised On-device 
Federated Learning (SSL-OD-FL) from Unlabeled Streams. 
Even though federated learning has become popular for enabling 
privacy-preserving distributed ML, the traditional framework 
can't manage these massive amounts of decentralized unlabeled 
data with limited edge storage resources because it doesn't have 
a data selection method to choose streaming data efficiently. 
Data privacy is maintained since clients do not exchange raw 
data while acquiring accurate visual representations. The results 
of the experiments demonstrate that the proposed strategy is 
effective and successful in learning visual representations. 

Chen Zhang et al. [20] discussed Federated Global Self-
Supervised Learning (FGSS) for large-scale unlabeled images. 
The author devised an accumulation technique that takes into 
account the fact that every customer's local data is unique by 
adjusting the weight of each local model according to the size of 
its dataset and the frequency of its contacts. The experimental 
findings demonstrate that, under certain conditions  proposed 
framework achieves better performance than existing 
approaches in both IID and non-IID environments. 
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M.A.F. Abdollah et al. [21] presented a Transformer 
encoder-based SSL approach for HVAC fault recognition using 
unlabeled images. The two-state Markov chain method 
deliberately hides parts of the multivariate time-series 
information. Predicting these hidden parts trains the model. This 
method offers a scalable solution for real-world HVAC 
applications that is not reliant on labeled data. The Peak Over 
Threshold (POT) technique assigns labels to anomalies by 
fitting the reconstruction error to a comprehensive Pareto 
distribution, which dynamically defines thresholds. The model's 
capacity to identify both sequential and individual errors is 
shown. A failure period was identified from October 19th to 
December 23rd due to a change in the data trend observed by the 
monitoring system. 

Depeng Kong et al. [22] introduced the contrastive learning-
based knowledge transfer technique (CLTrans) for semi-
supervised fault analysis. Using unsupervised similarity 
matching on massive amounts of unlabeled data, CLTrans 
improves downstream tasks. A CLTrans-pre-trained feature 
encoder can effectively adapt to varied tasks, regardless of the 
data distribution, and extract a discriminative representation of 
the vibration signal. Experimental findings show that CLTrans 
beats traditional DL and existing semi-supervised fault 
diagnostic methods in terms of accuracy and domain 
adaptability, particularly when working with restricted labels. 
Data collecting and annotating can be made easier with the help 
of unsupervised knowledge transfer and mining. 

Zhonglin Zuo et al. [23] examined an unlabeled multi-class 
non-leak data system for autonomously identifying leaks in 
natural gas collecting pipelines. The representation learning of 
the semi-supervised model is enhanced by the suggested SSL 
approach, and unlabeled multi-class non-leak data is modeled 
using the supplied multi-sphere support vector data description. 
Through the integration of feature clustering and pseudo-label-
based classification, the ability to learn unsupervised multi-class 
non-leakage information categories is made possible. Improving 
the solution's performance is as simple as using a reliable 
technique for calculating leak scores. Finally, the experimental 
findings using pipeline field data demonstrate that the proposed 
strategy is effective. 

Most current methods focus on context-based tasks or 
contrastive learning alone, overlooking the potential synergistic 
advantages of combining the two paradigms, despite SSL 
having made significant progress with models like MoCo and 
SimCLR. Much previous work overlooks generalizability to 
downstream tasks without supervision or resilience across 
various augmentation contexts, instead focusing on the quality 
of representation. One important area, where research is lacking, 
is a cohesive framework that might improve feature 
expressiveness by combining global instance discrimination 
with local semantic comprehension. To address this, the 
Contrastive and Contextual Self-Supervised Representation 
Learning (C2SRL) model employs a hybrid learning approach 
that integrates context-based auxiliary tasks, such as jigsaw 
solving and rotation prediction, into a multi-task optimization 
framework. This model aims to close the gap between the two 
approaches. Due to this integration, the learned representations 
become more flexible and robust in terms of semantic richness 
and structural coherence. To achieve better results on 

downstream picture interpretation tasks, even in situations with 
little labeled data, the C2SRL model's unique dual-focus design 
combines global contrastive goals with fine-grained contextual 
cues. 

III. CONTRASTIVE AND CONTEXTUAL SELF-SUPERVISED 

REPRESENTATION LEARNING (C2SRL) 

The capability to learn visual representations from unlabeled 
image data using pretext tasks, such as transformation prediction 
and instance discrimination, has been demonstrated by existing 
self-supervised methods. Many methods have been developed to 
improve performance on subsequent tasks; one of them is the 
instance discrimination and masked image modeling strategy, 
which uses a contrastive learning goal to train and treats each 
picture as a separate class. There is a significant data gap 
between this achievement and real-world data for future 
purposes, including city sceneries or crowd scenes, as it relies 
on the carefully selected object-centric dataset ImageNet. 
Without understanding the scene's fundamental architecture—
its numerous objects and intricate layouts—instance 
discrimination pretext would severely limit the use of scene-
centric data for pre-training. Accordingly, it will prioritize 
learning scene-centric visual representations from untagged 
data. Two major schools of thought have emerged in recent 
years to address this question. Dense representation learning's 
one stream simplifies the instance discrimination problem to a 
pixel-level problem, making it more applicable to the dense 
prediction challenges that follow. However, these approaches 
are still unable to learn representations because they cannot 
replicate the object-level interactions observed in scene-centric 
data. Unsupervised clustering, saliency estimators, unsupervised 
object proposal algorithms, and handcrafted segmentation 
algorithms rely on domain-specific priors for object 
identification. However, there is another line of study that 
attempts to accomplish object-level representation learning. 

Fig. 1 shows the proposed C2SRL Model. The first step of 
the pipeline involves taking an input picture and applying 
random changes, such as cropping, color jittering, and flipping, 
to create two additional views. Following the passage of these 
views through a common encoder network, typically a 
convolutional neural network such as ResNet, a projection head 
is used to convert the high-dimensional features into a lower-
dimensional embedding space that is optimal for computing 
contrastive loss. Utilizing the InfoNCE loss, this component 
combines positive pairings (identical picture views) and 
distinguishes negative pairs (dissimilar image views). Rotation 
prediction and jigsaw puzzle solving are context-aware auxiliary 
tasks with the same encoder. With rotation prediction, this 
research can train a classifier to anticipate which of four 
predetermined angles to rotate pictures by, prompting the 
network to identify characteristics unique to each orientation. A 
jigsaw puzzle is a type of spatial thinking exercise in which a 
solver attempts to identify the correct permutation label by 
dividing a picture into patches and rearranging them into 
specified permutations. These tasks are fed into dedicated 
processing units using cross-entropy losses to maximize 
performance. Lastly, a multi-task loss function is used to guide 
the joint optimization of the encoder, which combines all three 
types of losses: contrastive, rotational, and jigsaw puzzle. The 
result is a strong, pre-trained encoder that can make sense of data 
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semantically; this encoder can be fine-tuned for subsequent 
tasks, such as clustering or classification, particularly in 
situations where labels are unavailable. 

A. Multi-View Generation and Representation Embedding 

In the first phase of C2SRL, the model processes raw, 
unlabeled input data 𝑥𝑖 ∈ 𝐷  through stochastic data 
augmentation strategies. The aim is to produce semantically 
invariant yet appearance-diverse views that simulate real-world 

variance. The two augmentations 𝑥𝑖
1  and 𝑥𝑖

2  for each image, 
random transformations 𝑇1  and 𝑇2 , which include color 
distortion, cropping, flipping, and Gaussian noise, as in Eq. (1). 

𝑥𝑖
(1)

, 𝑥𝑖
(2)

= 𝑇1(𝑥𝑖),  𝑇2(𝑥𝑖),    𝑤ℎ𝑒𝑟𝑒 𝑇1  𝑎𝑛𝑑  𝑇2 ~𝐴  (1) 

Each augmented view is then passed through a shared 

convolutional encoder network 𝑓: ℝ𝐻×𝑊×𝐶 → ℝ𝑑 , such as 
ResNet-50, to extract high-level semantic features, as in Eq. (2): 

ℎ𝑖
(1)

= 𝑓(𝑥𝑖
(1)

),     ℎ𝑖
(2)

= 𝑓(𝑥𝑖
(2)

)               (2) 

To reduce overfitting and enforce contrastive separation in 
the latent space, this research further maps these embeddings 

through a projection head 𝑔 ∶  ℝ𝑑 → ℝ𝑑′
, often implemented as 

a 2-layer MLP with ReLU and BatchNorm, as in Eq. (3): 

𝑧𝑖
(1)

= 𝑔(ℎ𝑖
(1)

),     𝑧𝑖
(2)

= 𝑔(ℎ𝑖
(2)

)                (3) 

Algorithm 1: ResNet Encoder for Self-Supervised Representation 
Learning 

Input:  

    Augmented image view 𝑣 ∈  ℝ{H×W×3} 
    ResNet depth: ResNet-18, ResNet-50. 
 
Output: 
    Representation vector ℎ ∈  ℝ𝑑 
 
1:  function ResNet_Encoder(v): 
 

2:      # Initial convolution and max pooling 
3:      𝑥 ←  𝐶𝑜𝑛𝑣2𝐷(𝑣, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 7 × 7, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = 3) 
4:      𝑥 ←  𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑥) 
5:      𝑥 ←  𝑅𝑒𝐿𝑈(𝑥) 
6:      𝑥 ←  𝑀𝑎𝑥𝑃𝑜𝑜𝑙2𝐷(𝑥, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 3 × 3, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 =
1) 
 
7:      # Residual blocks (based on depth) 
8:      𝑥 ←  𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘_𝐿𝑎𝑦𝑒𝑟1(𝑥)  # e.g., 64 filters 
9:      𝑥 ←  𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘_𝐿𝑎𝑦𝑒𝑟2(𝑥)  # e.g., 128 filters 
10:     𝑥 ←  𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘_𝐿𝑎𝑦𝑒𝑟3(𝑥)  # e.g., 256 filters 
11:     𝑥 ←  𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘_𝐿𝑎𝑦𝑒𝑟4(𝑥)  # e.g., 512 filters 
 
12:     # Global average pooling 
13:     𝑥 ←  𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑔𝑃𝑜𝑜𝑙2𝐷(𝑥) 
 
14:     # Flatten and normalize 
15:     ℎ ←  𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑥) 
16:     ℎ ←  𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(ℎ) 
 
17:     return ℎ 

Algorithm 1 shows the ResNet Encoder for Self-Supervised 
Representation Learning. After applying domain-specific 
augmentations, the ResNet encoder processes each input picture 
to create a high-dimensional representation. Max pooling, batch 
normalization, ReLU activation, and a 7×7 convolutional layer 
are the first steps in the process, which help reduce spatial 
dimensions while preserving important characteristics. The next 
block set is the residual one; they use skip connections to 
facilitate deep feature extraction and efficient gradient flow. The 
network can learn hierarchical features by stacking these blocks 
with increasing channel depth (e.g., 64, 128, 256, 512 filters). 
After a global average pooling layer combines the spatial 
information, the feature vector is flattened and normalized. This 
transformed result forms the basis for subsequent self-
supervised learning tasks and is fed into the contrastive 
projection head in SimCLR or MoCo. 

 

Fig. 1. Proposed C2SRL model. 
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Fig. 2. SimCLR versus MoCo pipeline comparison. 

Fig. 2 illustrates the comparison between the SimCLR and 
MoCo pipelines. To implement SimCLR (left), two augmented 
representations of the same picture are fed into a common 
encoder and projection head. Then, a contrastive loss function, 
NT-Xent (Normalized Temperature-scaled Cross Entropy loss), 
is utilized to group positive pairings and separate negative ones 
from the same batch. On the other hand, MoCo (on the right) 
utilizes a dynamic dictionary queue and a momentum encoder 
to maintain a large and stable collection of negative samples. An 
ordinary encoder encodes the query picture, and a momentum-
updated encoder processes the key image. The InfoNCE loss 
(Information Noise-Contrastive Estimation) provides more 
robust and scalable contrastive training. The parallel 
arrangement highlights how MoCo relies on memory bank 
dynamics, whereas SimCLR relies on large batch sizes to learn 
representations effectively. 

B. Contrastive and Contextual Objective Functions 

In C2SRL, two major contrastive branches — instance-wise 
and context-aware contrast — are jointly optimized. The 
instance-level contrast loss is computed using the NT-Xent 
formulation, as in Eq. (4): 

ℒ𝑖
𝑆𝑖𝑚𝐶𝐿𝑅 = − log

exp(
𝑠𝑖𝑚(𝑧

𝑖
(1)

,𝑧
𝑖
(2)

)

𝜏
)

∑ 1[𝑗≠𝑖]
2𝑁
𝑗=1 exp(

𝑠𝑖𝑚(𝑧
𝑖
(1)

,𝑧𝑗)

𝜏
)

             (4) 

Here, 𝑆𝑖𝑚(. )  denotes cosine similarity, and 𝜏  indicates 
temperature parameters encouraging hardness-aware negative 
mining. 

C2SRL introduces contextual learning via a dedicated 
context encoder module 𝑐 ( ⋅ ) that extracts spatial or semantic 

relationships from local regions within 𝑥𝑖. Let 𝑐𝑖 = 𝑐(𝑥𝑖) ∈ ℝ𝑑′
 

represent the contextual descriptor. The contextual alignment 
loss then penalizes the mismatch between this context vector and 
its surrounding neighborhood’s representation, as in Eq. (5): 

ℒ𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =
1

𝑁
∑ ‖𝑐𝑖 −

1

𝒫𝑖
∑ 𝑧𝑗𝑗∈𝒫𝑖

‖
2

2
𝑁
𝑖=1           (5) 

Furthermore, the context-weighted contrastive loss is 
defined to enhance informative sample relationships: 

ℒ𝑖
𝐶2𝑆𝑅𝐿 = − log

exp(
𝑠𝑖𝑚(𝑧

𝑖
(1)

,𝑧
𝑖
(2)

)∙𝛼𝑖

𝜏
)

∑ exp(
𝑠𝑖𝑚(𝑧

𝑖
(1)

,𝑧𝑗)∙𝛼𝑖

𝜏
)2𝑁

𝑗=1

           (6) 

As shown in Eq. (6), where 𝛼𝑖 = 𝑠𝑖𝑚 (𝑐𝑖 , 𝑧𝑖) ∈ [0,1] 
captures the contextual alignment between embedding and 
context. 

This research introduces a uniformity loss and an alignment 
loss to stabilize learning and preserve diversity in the latent 
space. The uniformity loss ensures dispersion over the 
hypersphere, as in Eq. (7): 

ℒ𝑢𝑛𝑖𝑓𝑜𝑟𝑚 = log (
1

𝑁2
∑ exp (−2‖𝑧𝑖 − 𝑧𝑗‖

2

2
)𝑁

𝑖,𝑗=1 )     (7) 

The alignment loss enforces consistent embeddings between 
views, as in Eq. (8): 

ℒ𝑎𝑙𝑖𝑔𝑛 =
1

𝑁
∑ ‖𝑧𝑖

(1)
− 𝑧𝑖

(2)
‖

2

2
𝑁
𝑖=1                (8) 
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Fig. 3. Self-supervised learning workflow. 

Fig. 3 shows the SSL workflow. The internet's full potential 
can be realized by finding methods to tap into the vast amounts 
of unlabeled data available worldwide. SSL can be trained 
without human input because it is a subfield of ML rather than 
supervised learning. To solve the target interest task, it first 
learns the representation from an upstream pre-text problem and 
then transfers its representation-parsing skill downstream. Since 
labels are no longer required for model training in the pretest 
task, any unlabeled data source can be utilized, regardless of its 
relevance to the target task. The network is pre-trained upstream 
of SSL, and its weights are fine-tuned using particular data 
downstream. For reasons analogous to transfer learning, the 
domains of the pre-text and the objective task are not always the 
same. Though SSL works best when pre-trained with the same 
data. Prior networks trained using natural imagery often perform 
worse than upstream networks trained directly with medical 
resources, regardless of the amount of fine-tuning applied. This 
might be because medical pictures differ from their natural 
counterparts in appearance and meaning. 

Algorithm 2: Contrastive and Contextual SSL 

Input: 
  - Unlabeled dataset 𝐷 =  {𝑥₁, 𝑥₂, . . . , 𝑥ₙ} 
  - Augmentations 𝑇 =  {𝑡₁, 𝑡₂} 
  - Encoder 𝑓(·), 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 ℎ𝑒𝑎𝑑 𝑔(·) 
  - Epochs 𝐸, batch size 𝐵, temperature 𝜏 
Output:  
  - Trained encoder 𝑓(·) 
 
1: for epoch = 1 𝑡𝑜 𝐸 do 
2:   for batch {𝑥ᵢ}  ∈  𝐷 do 
3:     Generate views: 𝑣ᵢ₁ ←  𝑡₁(𝑥ᵢ), 𝑣ᵢ₂ ←  𝑡₂(𝑥ᵢ) 
4:     Representations: 𝑧ᵢ₁ ←  𝑔(𝑓(𝑣ᵢ₁)), 𝑧ᵢ₂ ←  𝑔(𝑓(𝑣ᵢ₂)) 
5:     𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 ← 𝑁𝑇 − 𝑋𝑒𝑛𝑡(𝑧ᵢ₁, 𝑧ᵢ₂, 𝜏) 
6:      
7:     𝑟ᵢ ←  𝑅𝑜𝑡𝑎𝑡𝑒(𝑥ᵢ), 𝐿_𝑟𝑜𝑡 ←
 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑓(𝑟ᵢ))) 
8:     𝑗ᵢ ←  𝐽𝑖𝑔𝑠𝑎𝑤(𝑥ᵢ), 𝐿_𝑗𝑖𝑔 ←
 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐽𝑖𝑔𝑠𝑎𝑤𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑓(𝑗ᵢ))) 
9:      
10:    𝐿𝑡𝑜𝑡𝑎𝑙← 𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡  +  𝜆₁ · 𝐿_𝑟𝑜𝑡 +  𝜆₂ · 𝐿𝑗𝑖𝑔 

11:    Update the model using 𝐿𝑡𝑜𝑡𝑎𝑙 
12:  end for 
13: end for 
Return: 𝑓(·) 

Algorithm 2 shows the C2SRL pseudocode. The procedure 
starts by applying two separate augmentation functions to each 
input picture to create contrastive embeddings. This creates two 
separate views, which are then transmitted via a common 
encoder and a projection head. Afterwards, these embeddings 
are used in an NT-Xent function, which pulls positive pairings 
(augmented views of the same picture) closer together in the 
embedding space and pushes negative pairs (views of distinct 
images) further away. Two supplementary tasks are provided to 
provide contextual meaning to the learnt features. As a means of 
implementing orientation-aware representations, the rotation 
prediction challenge involves fixing an angle (such as 0°, 90°, 
180°, or 270°) and training a classifier to anticipate the accurate 
rotation angle using the encoder output. A similar experiment 
that promotes spatial awareness and structural consistency in 
feature learning is the jigsaw puzzle task, which involves 
shuffling picture patches into a permutation and having a 
classifier try to predict the permutation index. Combining the 
weights of the contrastive, rotation prediction, and jigsaw 
classification losses yields the overall loss function. The encoder 
and all linked heads are updated during training using this joint 
loss. The encoder can be used for downstream tasks, such as 
classification or clustering, immediately after training, even 
without labeled training data. It can be fine-tuned. This 
technique aims to achieve a harmonious blend of global feature 
discrimination and local contextual awareness. 

C. Joint Optimization and Model Update 

The total loss objective of C2SRL unifies all components 
into a weighted sum optimized via stochastic gradient descent: 

ℒ𝑡𝑜𝑡𝑎𝑙 = 𝜆1 ∙ ℒ𝐶2𝑆𝑅𝐿 + 𝜆2 ∙ ℒ𝑐𝑜𝑛𝑡𝑒𝑥𝑡 + 𝜆3 ∙ ℒ𝑢𝑛𝑖𝑓𝑜𝑟𝑚 + 𝜆4 ∙ ℒ𝑎𝑙𝑖𝑔𝑛 (9) 

As inferred from Eq. (9), where 𝜆1, … 𝜆4  are 
hyperparameters that control the impact of each objective. 

The backpropagation-based parameter update rule is, as in 
Eq. (10): 

𝜃 ← 𝜃 − 𝜂 ∙ ∇𝜃ℒ𝑡𝑜𝑡𝑎𝑙 , 𝑤ℎ𝑒𝑟𝑒 𝜃 = {𝑓, 𝑔, 𝑐}     (10) 

To integrate momentum encoding (as in MoCo), this 
research includes a momentum encoder 𝑓𝑚   updated via 
exponential moving average, as in Eq. (11): 

𝜃𝑓𝑚
← 𝑚 ∙ 𝜃𝑓𝑚

+ (1 − 𝑚) ∙ 𝜃𝑓 ,   𝑤ℎ𝑒𝑟𝑒 𝑚 ∈ [0.99,1]  (11) 
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Fig. 4. Constrative representation learning. 

Fig. 4 shows the constructive representation learning. The 
representation ℎ  is projected using a network denoted by the 
function 𝑔(. ) and the embedding function 𝑓(. ). The projection 
head used a non-linear hidden layer, usually composed of the 
representations 𝑧, to help map them to a vector space. This is 
where the NT-Xent loss function comes into play, given the 
similarity between the two. The learnt representations may be 
transferred using the pretrained network that is produced. In this 
instance, the transfer learning process utilized encoder 
representations. When learning discriminative representations, 
the triplet loss function is seen as useful for training an encoder 
to distinguish between positive and negative samples. The 
C2SRL architecture incorporates contextual learning 
techniques, such as local patch alignment and spatial co-
occurrence modeling, alongside traditional contrastive learning. 
This paves the way for the network to encode semantic links 
across various parts of the same picture and learn representations 
driven by global appearance. Using these methods, this research 
can ensure that features are unique and sensitive to their 
surroundings. For a more refined learning dynamics, this 
research employs distributional regularization approaches, such 
as variance control and embedding uniformity, to promote 
balanced feature space utilization and prevent representational 
collapse. MoCo's momentum encoder method is optional to 
maintain stable and consistent training between epochs. 

IV. RESULTS  

The STL-10 Image Recognition Dataset is to be thanked for 
supplying the data [24]. The STL-10 image recognition dataset 
is an upgrade over CIFAR-10. This dataset is ideal for deep 
learning, unsupervised feature learning, and self-taught learning 
algorithms due to its 100,000 unlabeled pictures and 500 
training shots. Due to the dataset's higher resolution than 
CIFAR-10, it is challenging to construct scalable unsupervised 
learning systems using it. Included in the data summary are the 
following files: images.zip, which contains training images, and 
images. Zips for unlabeled use. Ten categories: airplanes, birds, 
cars, deer, cats, horses, dogs, ships, monkeys, and trucks; 96x96 
pixels full color; 500 training shots (10 pre-defined folds) and 
800 test images per class. To use in unsupervised learning, using 
a dataset of 100,000 photos. This curated collection is derived 
from a larger, related set of photographs. Included in the 
extensive list of species and vehicles are bunnies, bears, trains, 
and buses, among many more. For picture retrieval, the labels in 
ImageNet were used. Reporting results by this standardized 
testing procedure and the original data source is required: Train 
with unlabeled data using unsupervised methods. When training 
with labeled data, ten (pre-defined) folds of 100 samples were 
used.  Table I shows the experimental setup. 

TABLE I EXPERIMENTAL SETUP 

Component Configuration 

Dataset 
STL-10 (100,000 unlabeled images for SSL pre-training, 5,000 labeled for 

fine-tuning) 

Image Size 96 × 96 pixels 

SSL Methods 
MoCo (Momentum Contrast v2), SimCLR (Simple Framework for 
Contrastive Learning) 

Pre-text Tasks Contrastive learning, Rotation prediction, Jigsaw puzzle solving 

Backbone Network ResNet-18 (Lightweight for STL-10), pre-trained via SSL methods 

Batch Size 256 (for contrastive learning) 

Learning Rate 0.03 (SimCLR) / 0.06 (MoCo), with a cosine annealing schedule 

Optimizer Stochastic Gradient Descent (SGD) with momentum = 0.9 

Epochs (Pre-training) 200 

Epochs (Fine-tuning) 100 (on labeled subset for classification task) 

Hardware 32 GB RAM, NVIDIA Tesla V100 GPU 

Software Libraries PyTorch 2.x, Torchvision, NumPy, sci-kit-learn 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 7, 2025 

805 | P a g e  

www.ijacsa.thesai.org 

1) Mean Average Precision (mAP): The Mean Average 

Precision (mAP) is a well-established and reliable metric for 

evaluating the effectiveness of ranking and classification 

algorithms in scenarios with numerous classes and limited 

labels. For jobs further down the pipeline, mAP can verify 

whether the learned representations remain valid within the 

C2SRL framework, which does not utilize human-annotated 

labels during pre-training. Every target category is averaged by 

mAP after calculating the area under the precision-recall curve 

for each class. Here is the formulation: 

𝑚𝐴𝑃 =
1

𝑄
∑ (

1

|𝑃𝑞|
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑘) ∙ 𝑟𝑒𝑐𝑎𝑙𝑙(𝑘)

|𝑃𝑞|

𝑘=1 )𝑄
𝑞=1   (12) 

As shown in Eq. (12), where 𝑄  denotes the number of 
queries and 𝑟𝑒𝑐𝑎𝑙𝑙(𝑘) is a binary indicator showing whether the 
𝑘𝑡ℎ  prediction is relevant. C2SRL outperformed fully 
supervised baselines in comparable low-label settings, achieving 
a mean Average Precision (mAP) of 89.6% on the STL-10 
dataset with just 10% labeled data for fine-tuning. Fig. 5 
demonstrates the mean average precision. 

 

Fig. 5. Mean average precision. 

 

Fig. 6. Inference time. 

 

Fig. 7. Embedding uniformity score. 

 

Fig. 8. t-SNE visualization. 

 

Fig. 9. Normalized mutual information. 
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2) Inference time: For real-time systems that depend on fast 

decision-making, inference time is a crucial operational 

measure. The time it takes for the trained model to process and 

predict labels for one instance is quantified. This study used 

GPU acceleration to assess C2SRL's inference latency on 

several datasets. Here is the expression for the computation: 

𝑇𝑎𝑣𝑔 =
1

𝑁
∑ (𝑡𝑖

𝑒𝑛𝑑 − 𝑡𝑖
𝑠𝑡𝑎𝑟𝑡)𝑁

𝑖=1                 (13) 

As inferred from Eq. (13), where 𝑁  is the number of 

samples, and 𝑡𝑖
𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑖

𝑒𝑛𝑑    are timestamps before and after 
inference for the 𝑖𝑡ℎ  image. Deploying the C2SRL model in 
resource-constrained or edge-computing scenarios, such as 
autonomous drones or mobile vision systems, is feasible, since 
the model showed an average inference time of 13.2 minutes per 
image on CIFAR-10. Fig. 6 shows the inference time. 

3) Embedding uniformity score: Contrastive SSL should 

have a uniform representation space because it prevents mode 

collapse and ensures that embeddings are distributed evenly 

throughout the space. The embedding uniformity score will be 

high if the representation vectors consistently cover the unit 

hypersphere. Lower scores show redundancy and tight 

grouping, whereas intermediate values show effective 

dispersion. A metric is calculated by: 

𝑈 = log 𝐸(𝑥𝑖,𝑥𝑗)~𝐷 [𝑒−2‖𝑧𝑖−𝑧𝑗‖
2

]             (14) 

As discussed in Eq. (14), 𝑧𝑖  and 𝑧𝑗  are normalized 

representation vectors of images 𝑥𝑖  and 𝑥𝑗. The C2SRL model 

achieved a uniformity score of -1.14, indicating that it can 
maintain a balanced spatial distribution and preserve semantic 
cohesiveness due to the proposed combined contrastive and 
contextual pre-text tasks. Fig. 7 shows the embedding 
uniformity score. 

4) t-SNE visualization: Using t-distributed Stochastic 

Neighbor Embedding (t-SNE) for a 2D projection of the high-

dimensional representation space, this study aimed to provide 

qualitative insight into the usefulness of the learned feature 

embeddings. Clustering behavior can be demonstrated using 

this non-linear method while preserving local structure. To 

reduce the Kullback-Leibler divergence between the 

distributions of the probabilities of paired similarities, the t-

SNE method is used. 

𝐾𝐿(𝑃‖𝑄) = ∑ 𝑝𝑖𝑗 log (
𝑝𝑖𝑗

𝑞𝑖𝑗
)𝑖≠𝑗            (15) 

As discussed in Eq. (15), where 𝑝𝑖𝑗  denotes the joint 

probability in high dimensions and 𝑞𝑖𝑗  in the low-dimensional 

space. Even without labels during training, visualizations of 
C2SRL embeddings on the CIFAR-10 dataset showed tight, 
well-separated clusters per semantic category. This proves that 
the model accounts for consistency within classes and 
separability between them. Fig. 8 shows the t-SNE visualization. 

5) Normalized mutual information (NMI): Clusters 

generated by unsupervised learning and the agreement between 

the ground truth labels can be measured using Normalized 

Mutual Information (NMI). When testing with label 

information alone, it is particularly helpful for assessing the 

performance of clustering. This research defines the NMI as: 

𝑁𝑀𝐼(𝐶, 𝑌) =
2∙𝐼(𝐶,𝑌)

𝐻(𝐶)+𝐻(𝑌)
                  (16) 

As deliberated in Eq. (16), where 𝐼(𝐶, 𝑌)  is the mutual 
information between the predicted cluster assignment 𝐶 and the 
true labels 𝑌, and 𝐻 ( ⋅ ) is the entropy. Despite being trained 
without explicit supervision, C2SRL achieved an NMI of 0.81 
on the STL-10 dataset, demonstrating its ability to capture and 
closely match structural patterns with semantic categories. Fig. 
9 shows the normalized mutual information. List the ways the 
C2SRL architecture is better than previous self-supervised 
learning approaches to understand its uniqueness and utility. 
Traditional case discrimination systems, such as MoCo and 
SimCLR, employ contrastive learning. C2SRL combines 
contextual semantic thinking with contrastive goals, utilizing 
jigsaw puzzles and rotation prediction. Due to this integration, 
the model recognizes both global and local visual patterns, 
thereby improving feature representation. The fact that C2SRL 
achieves higher classification accuracy (92.4% on CIFAR-10 
and 84.7% on STL-10) with just 10% of the labeled data 
supports these increases. It has greater normalized mutual 
information (NMI 0.81). The framework's low-label 
effectiveness, as indicated by these improvements over simple 
SSL models, supports its usage in computer vision. 

V. DISCUSSION 

Representation learning and generalizability testing on 
diverse datasets will not affect the intended C2SRL architecture. 
In restricted resource contexts, high batch sizes for contrastive 
learning are computationally intensive. Real-time systems and 
edge devices may cause scalability concerns. The quantity and 
quality of data augmentation affect model performance. 
Domain-specific tuning is necessary to maintain performance 
across various visual domains. Complexities from auxiliary 
tasks, such as puzzle solving and rotation prediction, increase 
training time and model overhead. In complex visual structures 
or when overlapping semantic qualities are present, external 
information may confuse or distract rather than accurately 
represent the subject. There is a need for further validation when 
applying the learned representations to tasks outside of picture 
clustering and classification, such as object identification or 
semantic segmentation. Future research may investigate 
lightweight designs or adaptive augmentation approaches to 
overcome these limitations and develop a more useful and 
flexible system. 

VI. CONCLUSION 

This study proposes the C2SRL framework, which addresses 
key limitations in existing self-supervised learning (SSL) 
approaches by effectively combining global feature 
discrimination and local semantic understanding. By integrating 
contrastive learning with context-aware tasks such as jigsaw 
puzzle solving and rotation prediction, C2SRL enhances the 
generalizability and robustness of learned visual representations. 
Experimental evaluations on benchmark datasets, including 
STL-10 and CIFAR-10, confirm the framework’s ability to 
achieve high classification accuracy, strong feature alignment, 
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and efficient label usage, even in low-supervision settings. The 
use of embedding regularization techniques, such as entropy 
maximization and uniformity loss, further contributes to 
maintaining a diverse and well-structured latent space. Despite 
its strong performance, the model has certain limitations, 
including high computational demands and sensitivity to 
augmentation strategies. These factors may present challenges 
for deployment in real-time or resource-constrained 
environments. Nonetheless, the study sets a foundation for 
future exploration into lightweight, transformer-based variants 
and cross-modal learning frameworks. Overall, the C2SRL 
framework represents a significant advancement in SSL, 
offering rich and transferable feature learning from unlabeled 
data with practical relevance in domains where labeled data is 
scarce. 
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