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Abstract—Accurately predicting stock return can enhance the
effectiveness of portfolio optimization models. Many previous
studies typically divide machine learning algorithms and portfolio
optimization into two separate stages: the first step leverages the
powerful modeling capabilities of machine learning algorithms
to select stocks, and the second step optimizes weights using
traditional portfolio models. This separation means that the
modeling strengths of machine learning are only utilized in the
stock selection phase and not fully exploited during weight opti-
mization. Therefore, this study proposes a portfolio construction
method based on Return Prediction Weighted Scoring (RPWS).
RPWS generates a stock ranking by assigning weighted scores to
each stock, cleverly maps this ranking to weight biases, and then
optimizes actual weights using a traditional covariance matrix.
This process successfully integrates the modeling capabilities of
machine learning into the weight optimization phase, ensuring
its full utilization throughout the portfolio construction process.
Backtesting experiments are conducted using the U.S. stock
market, A-share market, and major cryptocurrencies as datasets,
with Support Vector Regression (SVR), Transformer, and other
machine learning algorithms as prediction models. Empirical
results from these three markets show that the SVR-RPWS and
Transformer-RPWS models significantly outperform mainstream
funds and traditional portfolio models in terms of annualized
returns, sharpe ratio, and drawdown control.
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I. INTRODUCTION

The optimization of a portfolio selection entails the strate-
gic distribution of assets to maximize returns and minimize
risk, two pivotal elements in this process. The endeavor to
enhance profits while mitigating risk is a primary goal for
investors. The genesis of portfolio selection as a domain of
study is attributed to the introduction of the Mean-Variance
model (Markowitz [1]), which evaluates return in terms of
mean and risk in terms of variance. Subsequently, variance
emerges as a commonly used risk measure, and studies related
to models such as the Mean-Variance model gain popularity
within the academic community, drawing significant attention
from scholars such as Björk et al. [2], Liagkouras and Metax-
iotis [3], Rosadi et al. [4] and Katsikis et al. [5].

Mean-Variance model relies on the anticipated return and
risk associated with different assets to generate optimal port-
folios corresponding to various levels of expected return and
risk (Beheshti [6]). Consequently, through the careful selection

of assets for inclusion in the optimization process, the Mean-
Variance model has the potential to enhance overall portfolio
performance (Thakur et al. [7]). In recent years, numerous
prediction-based portfolio selection models have been intro-
duced in the realm of portfolio management. When confronted
with equivalent expected returns, a portfolio selection model
boasting a more favorable efficient frontier can effectively
reduce risk exposure. Therefore, enhancing the efficacy of
prediction-based portfolio selection models remains a crucial
endeavor in maximizing portfolio performance.

In financial market, individual investors are generally inter-
ested in understanding the fluctuations in the returns of their in-
vestment assets today, the potential trends in returns for tomor-
row, and the strategies that should be implemented to optimize
their portfolio composition (Zhang et al. [8]). Consequently,
integrating forecasting theory into portfolio construction holds
significant promise for financial investment (Kolm et al. [9]).
Forecasting financial time series is consistently seen as one
of the most formidable tasks due to the dynamic, nonlinear,
unstable, and complex characteristics, coupled with the long-
term fluctuations of the financial market (Chen and Hao [10];
Paiva [11]). Nevertheless, reliable investment decisions should
be based on long-term observations and behavioral patterns
of asset data rather than short-term data (Chong et al. [12]).
Accordingly, it is imperative to examine the changes and
volatility of financial data over an extended historical period
to adequately prepare for future trend forecasts and invest-
ment decisions. Numerous broadly accepted empirical studies
suggest that financial time series exhibit memory of past
periods, indicating that financial markets are, to some extent,
predictable. The long-term behavior of an asset significantly
influences the risks and returns of a portfolio, thereby further
impacting investment decisions (Liu and Loewenstein [13]).

To date, the predominant focus of prior research has been
on the utilization of statistical methodologies and machine
learning techniques in the predictive analysis domain. Statis-
tical methodologies endeavor to anticipate forthcoming trends
by scrutinizing historical pricing attributes such as autoregres-
sive integrated moving average (ARIMA) (Anderson et al.
[14]), auto-regressive conditional heteroscedasticity (ARCH)
(Engle [15]; Shephard [16]), and generalized auto-regressive
conditional heteroscedasticity (GARCH) (Bollerslev [17]; Gar-
cia et al. [18]), whereas prevalent machine learning methodolo-
gies encompass support vector machines (Villegas et al. [19]),
random forests (Kavzoglu and Teke [20]), and neural networks
(Ma [21]). Notwithstanding the capacity of statistical methods
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to contribute to stock price forecasting, empirical investigations
have revealed that machine learning exhibits superior efficacy
in addressing challenges associated with non-stationarity and
non-linearity when compared to traditional statistical models
(Boulesteix and Schmid [22]; Zhang et al. [23]). Recently,
several studies (Freitas et al. [24], Jiang et al. [25], Kaczmarek
[26], Padhi et al. [27]) have incorporated the pre-selection of
assets into portfolio selection models utilizing machine learn-
ing techniques. For example, Deng and Min [28] implemented
a linear regression model with ten factors to select stocks from
both U.S. and international markets, subsequently constructing
a mean-variance-based portfolio that accounted for practical
risk tolerance, error monitoring, and turnover constraints.
Their results demonstrated that the risk-adjusted return of the
global equities model surpassed that of the domestic equity
universe, with portfolio returns increasing in conjunction with
systemic monitoring errors and risk tolerance. Similarly, Ma
[21] employed two machine learning models—random forest
(RF) and support vector regression—alongside three deep
learning models: convolutional neural network (CNN), long
short-term memory (LSTM) neural network, and deep multi-
layer perceptron (DMLP), to forecast returns for portfolio con-
struction. They subsequently utilized these forecasts to enhance
omega portfolio optimization and Mean-Variance model. Their
findings revealed that the return predictions for Mean-Variance
model and omega models using the RF algorithm outperformed
those produced by the other models.

The utilization of machine learning and neural networks in
the realm of stock forecasting has garnered considerable suc-
cess, as evidenced by various studies (Ballings et al. [29]; Sezer
and Ozbayoglu [31]; Tsai and Hsiao [32]). These findings
advocate for an integration of machine learning methodologies
with traditional models of portfolio optimization for the cre-
ation of investment portfolios. Numerous academics have been
delving into this field of study, primarily branching out into
three distinct avenues. Specifically, the first approach involves
certain researchers employing Machine Learning models solely
during the initial stock selection phase, subsequently utilizing
the chosen stocks to construct portfolios through traditional
portfolio optimization techniques (Paiva [11]; Vo et al. [33];
Wang et al. [34]). Evidence from these studies suggests
that the utilization of stocks selected via machine learning
algorithm can enhance the efficacy of conventional portfolio
optimization frameworks. In the second vein, several scholars
adopt machine learning algorithm for forecasting future stock
returns, thereafter incorporating these forecasts to formulate
novel objective functions. These newly developed functions
aim to refine and augment the objective functions inherent
in classical portfolio optimization models (Ma et al. [35];
Ustun and Kasimbeyli [36]; Yu et al. [37]; Yu et al.). Findings
from these inquiries indicate that objective functions, enriched
by predictive insights from machine learning algorithm, can
significantly improve upon traditional portfolio optimization
methods. Lastly, a third group of researchers leverages machine
learning algorithm to forecast stock returns, opting to utilize
the forecast errors in lieu of historical returns when construct-
ing traditional portfolio optimization models (i.e., prediction-
based portfolio optimization models). This preference stems
from the observation that the normality of forecast errors
surpasses that of historical returns (Freitas et al. [39]; Freitas
et al. [24]; Hao et al. [40]; Ma et al. [41]). Insights from

these studies reveal that forecast errors derived from machine
learning algorithm prove more adept than historical returns for
the purpose of enhancing portfolio optimization models.

Many previous studies primarily focus on using machine
learning algorithms and neural network models to predict stock
returns for stock selection, followed by optimizing weights
through traditional portfolio models (for example, Minimum
Variance Model, Mean VaR Model, Mean Absolute Deviation
Model, and others) to enhance investment decisions. This
study introduces a novel approach to portfolio construction that
combines return predictions from machine learning and neural
network models with historical covariance matrix, employing
a weighted scoring method to enhance portfolio optimization.
This method consists of two main steps, aimed at optimizing
portfolio construction and risk management. Specifically, the
first step involves using a trained machine learning model
or neural network to predict the expected future returns of
each asset in the backtest dataset. Once the expected returns
are obtained, the assets are ranked according to these re-
turn values, and different weights are assigned to each asset
through squared weighting. A higher weight corresponds to a
higher expected return. The squared weighting method helps
to increase the investment proportion in assets with higher
expected returns, while relatively reducing the weight of assets
with lower expected returns, thereby enhancing the overall
potential return of the portfolio. The second step is to calculate
the historical covariance matrix. The covariance matrix of
the portfolio reflects the correlation and volatility of returns
between different stocks. Then the covariance matrix is used
to constrain the optimal portfolio weights. This method uses
the covariance matrix optimization mechanism to improve
expected returns while reasonably controlling portfolio risk,
thereby achieving a more stable and optimized asset allocation
in a complex market environment. This proposed approach
will undergo backtesting in the constituents of the CSI 300
Index, the NASDAQ Index, and major cryptocurrencies, with
comprehensive comparisons to traditional portfolio models
based on the backtest results.

The rest of this study is organized as follows: Section
II provides an overview of the machine learning algorithms,
neural network models, and traditional portfolio models used in
this study. Section III introduces the novel portfolio construc-
tion method proposed in this study, as well as the data selection
and experimental design process. Section IV and Section V
evaluate the performance of the predictive models and analyze
the empirical results. Finally, Section VI concludes the work.

II. METHODOLOGY

This section will introduce the methods used in this study,
including prediction models and traditional portfolio models.

A. Machine Learning Methods

XGBoost, which stands for “eXtreme Gradient Boosting”
was introduced by Chen and Guestrin [42]. This algorithm
is characterized by its low computational complexity, rapid
execution speed, and high accuracy. The objective function of
XGBoost integrates the standard penalty term with the loss
function to derive the optimal solution. The inclusion of the
regularization term serves to minimize the model’s variance,
thereby mitigating the risk of overfitting.
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The k-nearest neighbors (KNN) algorithm, also known as
k-NN, is a non-parametric, supervised learning method applied
to both classification and regression tasks. In the context of
KNN regression, the algorithm functions by identifying a
subset of points in the dataset that are nearest to the “query”
point, as determined by a specified distance metric, such as
Euclidean, Minkowski, or Manhattan distance [43]. KNN also
employs a hierarchical tree-based data structure to manage the
dataset efficiently [44].

Support Vector Regression (SVR) represents a supervised
learning algorithm specifically designed for regression tasks,
as initially proposed by Cortes and Vapnik in 1995 [45]. The
underlying principle of SVR is Vapnik’s Structural Risk Mini-
mization (SRM), which is adept at tackling various regression
problems. The incorporation of kernel functions facilitates the
handling of diverse types of input data, thereby enhancing
the model’s flexibility and applicability. Given its robustness
and accuracy, SVR has emerged as a quintessential machine
learning technique, extensively utilized in the field of stock
market prediction (Emir [46]; Matı́as and Reboredo [47]; Rasel
et al. [48]).

B. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM), a variant of Recurrent
Neural Network (RNN), was first proposed by Hochreiter and
Schmidhuber [49]. The LSTM model, distinct from traditional
RNNs, possesses a memory function, enabling it to retain
data over an extended period [50]. This unique feature is
facilitated by gate structures, namely an input gate, a forget
gate, and an output gate, which filter incoming information
to enhance and sustain memory cells. LSTMs are particularly
favored in financial time-series prediction due to their ability
to effectively manage redundancy in historical data [51].

The operational formulas of LSTM are as follows:

Forget gate:

ft = σ(wf [ht−1, xt] + bf )

Input gate:

it = σ(wi[ht−1, xt] + bi)

ot = σ(wo[ht−1, xt] + bo)

c̃t = tanh(wc[ht−1, xt] + bc)

Output gate:

ct = ftct−1 + itc̃t

ht = ot tanh(ct)

In these formulas, ft, it, and ot signify the forget gate,
input gate, and output gate, respectively.

The weight of the matrix is represented by w, while bt,
bi, and bo denote the bias of the forget gate, input gate, and
output gate, respectively.

The sigmoid function is denoted by σ, and xt and ht

indicate the input and the current output at time t, respectively.
The value from the input gate at time t is represented by ct,
and the hyperbolic function is represented by tanh.

C. Transformer

The Transformer model, introduced by Vaswani et al.
[52], represents a significant advancement in natural language
processing and sequence modeling. Unlike recurrent architec-
tures such as LSTMs, the Transformer relies entirely on self-
attention mechanisms to process input sequences, enabling
parallelization and enhancing efficiency. This self-attention
mechanism allows the model to assess the importance of
different words in a sequence when encoding information,
effectively capturing long-range dependencies without the con-
straints of sequential processing.

The Transformer architecture comprises an encoder and
a decoder, each consisting of multiple layers. The encoder
processes an input sequence to generate a continuous represen-
tation, while the decoder utilizes this representation to produce
an output sequence. The core operations within the encoder can
be described by the following formulas:

First, input embeddings are augmented with positional
encodings to preserve the order of the sequence:

zi = xi + PE(i)

where, zi denotes the input embedding at position i, xi is
the original embedding, and PE(i) represents the positional
encoding for position i.

The self-attention mechanism computes attention scores for
each position in the input sequence:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

where, Q, K, and V are the query, key, and value matrices
derived from the input embeddings, and dk is the dimensional-
ity of the keys, used to scale the dot-product attention scores.

Subsequently, the output from the attention mechanism is
processed through a feed-forward neural network:

FFN(z) = ReLU(W1z + b1)W2 + b2

where, W1 and W2 are weight matrices, and b1 and b2 are
bias terms.

Each layer of the encoder includes residual connections
and layer normalization to stabilize training:

Output = LayerNorm(z + FFN(Attention(Q,K, V )))
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The decoder follows a similar structure, incorporating
masked self-attention to prevent attention to future tokens,
ensuring autoregressive output generation.

The Transformer has demonstrated exceptional perfor-
mance across various tasks, including machine translation
and text generation, owing to its efficiency in capturing
complex dependencies in data. Its flexibility and scalability
have established it as a cornerstone of modern deep learning
architectures, significantly influencing subsequent models in
the field [53].

D. Informer

Informer is a novel model designed for long sequence
time-series forecasting, as proposed by Zhou et al. [54].
Unlike traditional time-series models, Informer employs a
self-attention mechanism specifically optimized for efficient
handling of long sequences. Its key innovation is an adaptive
attention mechanism that focuses on relevant input features
while discarding less relevant information, thus alleviating
the computational burden associated with standard attention
mechanisms.

The Informer architecture consists of an encoder and a
decoder, similar to the Transformer model, but with enhance-
ments for long-sequence performance. The core components
of Informer are as follows:

The adaptive attention mechanism generates a sparse atten-
tion matrix using a probability distribution D:

Dij =
exp(score(Qi,Kj))∑

k∈N exp(score(Qi,Kk))

where, score(Qi,Kj) represents the score function com-
puted between query Qi and key Kj , and N denotes the
neighborhood of keys attended to by the query. This ensures
that each query focuses on a subset of keys, significantly
reducing computational complexity.

The encoder processes the input sequence to generate
context-aware representations through multiple layers of self-
attention and feed-forward networks:

Z(l) = LayerNorm
(
Z(l−1) + Attention(Z(l−1), Z(l−1), Z(l−1))

)
H(l) = LayerNorm

(
Z(l) + FFN(Z(l))

)
where, Z(l) is the output of layer l, and H(l) represents

the result after applying the feed-forward network FFN.

In the decoder, the predicted output is generated based on
the encoder’s output and previous outputs. The decoder em-
ploys masked self-attention to ensure autoregressive prediction:

Ŷt = LayerNorm (Yt−1 + MaskedAttention(Yt−1, Z))

where, Ŷt is the predicted output at time t, and Yt−1

denotes the previous outputs.

Informer performs well in forecasting tasks by effectively
managing long-term dependencies and reducing computational
overhead. Compared to previous methods, it shows significant
improvements in accuracy and efficiency, Lu et al. [55].

E. Mean-Variance Model

The selection of investment strategies has always been
a vital area in financial research. Amongst a wide array of
investment strategies, the Mean-Variance Model, put forth by
Harry Markowitz in 1952, has gained substantial recognition
[1].

The model’s theoretical rigor and practicality have led
to its broad utilization in the practical realm of investment
decisions. Its main idea is to find the investment proportion
that minimizes the total risk of the portfolio at a given expected
return level; or at a given risk level, find the investment
proportion that maximizes the total return of the portfolio. Let
R = (R1, R2, . . . , Rn)

T , where Ri = E(ri) represents the
expected return of the i-th asset; X = (x1, x2, . . . , xn)

T is the
weight vector of the portfolio; Σ = (σij)n×n is the covariance
matrix between n assets; E(rp) and σ2

p are the expected return
and variance of the portfolio, respectively.

The mathematical formula for the Mean-Variance Model is
as follows:

min σ2
p = XTΣX

max E(rp) = XTR

s.t.
n∑

i=1

xi = 1

Minimizing the variance (risk) of the portfolio and maxi-
mizing the expected return of the portfolio are two objectives
that usually cannot be achieved simultaneously, so a trade-
off between risk and return is needed. To compare with
the portfolio methods proposed in this study, we will solve
two special solutions of the mean-variance model through
numerical methods.

The first extended model is the Minimum Variance Port-
folio Model (MVM), which aims to find the portfolio weight
that minimizes the risk of the portfolio among all possible
portfolio weight. The formula for this model is as follows:

min σ2
p = XTΣX

s.t.
n∑

i=1

xi = 1

The second extended model is the Maximum Sharpe
Ratio Portfolio Model (MSRM), which aims to find the
weight distribution that maximizes the Sharpe ratio (the ratio
of expected return to risk) of the portfolio among all possible
weight distributions. The formula for this model is as follows:
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max
XTR− rf√

XTΣX

s.t.
n∑

i=1

xi = 1

where, rf stands for the risk-free rate, which is set to 0 in this
study.
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Fig. 1. Efficient frontier with random portfolios.

In Fig. 1, we can see a scatter plot composed of many
random investment portfolios. The picture shows a curve
called the efficient frontier. Efficient frontier points represent
portfolios offering the optimal risk-return trade-off, either
maximizing return for a given risk or minimizing risk for a
given return. Among these points, two points are specially
marked, one is the point with the minimum variance, and
the other is the point with the maximum Sharpe ratio. These
two points correspond to the solutions of the two models we
mentioned above.

F. Risk Parity Model (RPM)

The risk parity strategy, proposed by Dr. Edward Qian,
the Chief Investment Officer of Pan Agora, is renowned for
its innovative approach to investment. This model was later
applied in practice by Bridgewater Associates and achieved
significant success for a time. From the perspective of risk
budgeting, risk parity involves evenly distributing the overall
risk of the portfolio among different assets, meaning that each
asset contributes equally to the overall risk of the portfolio.
In other words, in the risk parity model, assets with higher
volatility are allocated lower weights, while those with lower
volatility receive higher weights.

The marginal risk contribution (MRC) of an asset to a
portfolio is defined as the partial derivative of the portfolio
volatility with respect to the weight of the asset:

MRCi =
∂σp

∂xi
=

∂
√
XTΣX

∂xi

The contribution of the asset to the total risk (RC) is the
product of the asset’s weight and its marginal risk contribution:

RCi = xi ·MRCi

For a risk parity portfolio, the contributions to total risk
from each asset are equal, i.e.:

RCi = RCj

Calculating the weights for a risk parity portfolio essen-
tially involves solving a quadratic optimization problem, which
can be mathematically described as:

min

n∑
i=1

n∑
j=1

(RCi −RCj)
2

s.t.
n∑

i=1

xi = 1

0 ≤ xi ≤ 1

III. NEWLY PROPOSED STRATEGY FOR PORTFOLIO
SELECTION

A. Proposed Method: Return Prediction Weighted Scoring
Strategy (RPWS)

In the field of portfolio optimization, Markowitz’s (1952)
mean-variance model stands as the most classical theoretical
framework, constructing optimal portfolios by balancing ex-
pected returns and risk (volatility) [1]. However, the model’s
reliance on historical data assumptions may fail in rapidly
changing markets. With advancements in machine learning and
neural network technologies, numerous studies have validated
the effectiveness of these techniques in stock prediction. For
instance, Chaweewanchon et al. (2022) proposed a portfolio
strategy combining the CNN-BiLSTM prediction model with
the Markowitz Mean-Variance method. Backtesting experi-
ments show that it outperforms other benchmark models in
terms of Sharpe ratio, average return, and risk control [30].

Behera et al. (2023) proposed a portfolio construction
method based on machine learning algorithms and the Mean-
Value at Risk (Mean-VaR) model. First, stock returns are
predicted using algorithms including XGBoost and AdaBoost
to select stocks with higher expected returns; then, the Mean-
VaR model is used for portfolio optimization. Based on stock
data from the Bombay Stock Exchange in India, the Tokyo
Stock Exchange in Japan, and the Shanghai Stock Exchange
in China, experimental results show that the Mean-VaR model
combined with AdaBoost prediction outperforms other combi-
nations in performance [38].

Previous studies typically divide machine learning algo-
rithms and portfolio optimization into two separate stages:
the first step leverages the powerful modeling capabilities of
machine learning algorithms to select stocks, and the second
step optimizes weights using traditional portfolio models. This
separation means that the modeling strengths of machine
learning are only utilized in the stock selection phase and
not fully exploited during weight optimization. Therefore,
this study proposes a portfolio construction method based on
Return Prediction Weighted Scoring (RPWS). RPWS generates
a stock ranking by assigning weighted scores to each stock,
maps this ranking to weight biases, and then optimizes actual
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weights using a traditional covariance matrix. This process
successfully integrates the modeling capabilities of machine
learning into the weight optimization phase, ensuring its full
utilization throughout the portfolio construction process.

The RPWS algorithm’s mathematical model achieves dy-
namic weight optimization through two core components: 1)
constructing a reference weight vector based on return predic-
tion and rank weighting, and 2) covariance-constrained weight
allocation optimization. The specific steps are as follows: Let
P = (p1, p2, p3, . . . , pn)

T , where pi represents the ranking of
the i-th stock among all stocks based on the expected return
predicted by machine learning and neural network models. Let
Σ = (σij)n×n be the covariance matrix between n assets. The
reference weight vector X0 is constructed as:

X0 =
p−2
j∑n

j=1 p
−2
j

The objective of this reference weight vector is to allocate
higher weights to higher-ranked stocks. The optimal weights
are then solved through convex optimization with risk budget
constraints:

min XTΣX + λ∥X −X0∥2

s.t.
n∑

i=1

xi = 1

where,

• λ: Regularization parameter controlling the emphasis
on the reference matrix (larger λ forces weights closer
to X0, degenerating to minimum variance model when
λ = 0)

• ∥X−X0∥2: L2 norm measuring the deviation between
optimal weights and reference weights.

This formulation integrates machine learning predictions
through X0 while maintaining risk constraints through covari-
ance matrix optimization. Considering that this is a convex
optimization problem, in order to simplify the hyperparameter
tuning, this study sets λ = 1 to solve the problem in the
experiment.

B. Experimental Process

In financial markets, investors consistently aim to optimize
their portfolios using scientific methods and strategies to
achieve the optimal balance between risk and return.

However, the uncertainty and complexity of the market
make constructing an efficient portfolio a challenging task.
This study focuses on prediction as its core research direction,
leveraging machine learning and neural network techniques
to model and assign higher weights to stocks with higher
potential returns and manageable risks, thereby constructing
investment portfolios. By adopting this method, not only can
the overall return expectations of the portfolio be improved, but
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Fig. 2. Experimental process of the study.

the reliability and guidance of the decision-making process for
investors can also be significantly enhanced. This methodology
involves two main phases:

1) Model training and performance evaluation: In this
experimental approach, various models, including XGBoost,
KNN, SVR, LSTM, Transformer, and Informer, are employed
for stock return prediction. To evaluate the accuracy and
performance of these models, three metrics are used: Mean Ab-
solute Percentage Error (MAPE), Mean Squared Error (MSE),
and Root Mean Squared Error (RMSE). The training in this
stage is conducted on a dataset separate from the backtesting
dataset. The primary goal at this stage is to determine appro-
priate model parameters and assess the models’ performance.
The hyperparameters for each model are detailed in Table I.

2) Portfolio backtesting: In this phase, portfolio back-
testing is conducted to compare the performance of dif-
ferent portfolio models. The models include the Minimum
Variance Portfolio Model (MVP), Maximum Sharpe Ratio
Portfolio Model (MSR), Risk Parity Model (RP), and the
Return Prediction Weighted Scoring Model (RPWS). For the
A-share and U.S. stock markets, portfolio allocations are
adjusted every 20 trading days. In contrast, for the cryp-
tocurrency market—which operates year-round without inter-
ruptions—allocations are adjusted every 7 days. When using
the Return Prediction Weighted Scoring Model, a rolling
training approach is applied, utilizing the 500 most recent
historical samples prior to each current date. This ensures the
model adapts to the trends and dynamics of changing market
conditions.

The overall experimental workflow is illustrated in Fig. 2.

IV. DATA AND PERFORMANCE EVALUATION

A. Datasets and Pre-processing

The selection of the dataset is crucial for model evaluation,
and this experiment will use index component stocks as the
data source. Indices are reliable financial indicators of high-
quality stocks and reflect mainstream investment trends in
the market. Index component stocks are of high quality, with
minimal occurrences of suspension or delisting, ensuring the
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TABLE I. PARAMETERS FOR PREDICTION MODELS

Model KNN XGBoost SVR LSTM Transformer Informer

Parameter n neighbors n estimators C epochs epochs epochs

(Value) (3) (150) (10) (50) (50) (50)

max depth gamma batch size batch size batch size

(10) (0.1) (64) (64) (64)

learning rate optimizer optimizer optimizer

(0.01) (adam) (adam) (adam)

gamma dropout rate dropout rate dropout rate

(2) (0.1) (0.1) (0.1)

units embed dim embed dim

(64) (8) (8)

num heads num heads

(2) (2)

ff dim ff dim

(64) (64)

TABLE II. RANDOMLY SELECTED TICKERS AND MAJOR
CRYPTOCURRENCIES

U.S. Stock Market A-share Market Crypto Market

AAPL MCHP 600028 601398 ADA

ADBE MDLZ 600031 601601 AVAX

ADP MNST 600036 601628 BNB

ALGN MSFT 600050 601633 BTC

AMD NFLX 600089 601668 DOGE

AMZN NTES 600111 601669 ETH

CHTR NXPI 600150 601857 LINK

CMCSA PAYX 600276 601899 SHIB

CSCO PEP 600309 601919 SOL

CSX QCOM 600406 601988 XRP

CTSH ROST 600436

DLTR SBUX 600438

EA SWKS 600519

EBAY TTWO 600809

GOOGL TXN 600893

IDXX VRSK 601088

INTU WDAY 601166

ISRG WDC 601288

LULU XEL 601318

MAR ZBRA 601390

continuity and completeness of the experimental data sam-
ples. This quality is advantageous for model construction, as
portfolios based on index component stocks tend to be more
robust and offer better potential returns. Due to the immaturity
and high volatility of the cryptocurrency market, only a few
selected major currencies are included in the dataset.

To validate the robustness of the model, this study will con-
duct backtesting across multiple markets, including the A-share
market, the U.S. stock market, and the cryptocurrency market.
The updated dataset includes the following components:

• CSI 300 Index Component Stocks: Daily data from
January 2017 to January 2024, with a random selec-

tion of 30 stocks.

• NASDAQ Index Component Stocks: Daily data from
January 2014 to January 2024, with a random selec-
tion of 40 stocks.

• Cryptocurrency Data: Daily data from January 2023
to October 2024, covering 10 major cryptocurrencies.

The dataset includes various factors such as opening price,
closing price, highest price, lowest price, trading volume, and
three technical indicators: the Relative Strength Index (RSI)
with a 12-period, the Moving Average Convergence Diver-
gence (MACD) with a 12-period, and the On-Balance Volume
(OBV). This comprehensive datasets aims to enhance the
reliability and stability of the experimental results, providing a
solid foundation for validating the model’s performance across
different financial markets. The specific stocks selected are
detailed in Table II.

Data normalization involves transforming data with dif-
ferent scales and units into a uniform format, allowing for
comparability across different dimensions and facilitating fea-
ture extraction during the model training process. In this
experiment, we use the Max-Min normalization method to
process each feature factor in a dimensionless manner. The
specific formula for normalization is shown below:

yi =

xi − min
1≤j≤n

{xj}

max
1≤j≤n

{xj} − min
1≤j≤n

{xj}

where, xi represents the original data, yi denotes the
normalized dimensionless data, and j is the j-th element in
the sequence.

B. Performance Evaluation

This study employs six metrics, namely MSE, RMSE and
MAE, to provide a comprehensive analysis of various models’
performance in predicting stock returns. These metrics are
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TABLE III. PERFORMANCE OF DIFFERENT MODELS ACROSS THREE MARKETS

U.S. Stock Market A-share Market Crypto Market

Model Metric MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE

KNN Mean 0.0338 0.1725 0.1421 0.0360 0.1646 0.1377 0.0916 0.2769 0.2461

Std 0.0302 0.0651 0.0595 0.0416 0.0962 0.0881 0.0714 0.1291 0.1309

Var 0.0009 0.0042 0.0035 0.0017 0.0093 0.0078 0.0051 0.0167 0.0171

SVR Mean 0.0702 0.2355 0.2014 0.0613 0.2201 0.1927 0.1041 0.2705 0.2478

Std 0.0687 0.1239 0.1268 0.0572 0.1158 0.1063 0.1202 0.1855 0.1900

Var 0.0047 0.0154 0.0161 0.0033 0.0134 0.0113 0.0144 0.0344 0.0361

XGBoost Mean 0.0377 0.1767 0.1481 0.0416 0.1712 0.1461 0.0989 0.2707 0.2443

Std 0.0374 0.0818 0.0788 0.0530 0.1131 0.1052 0.1058 0.1687 0.1738

Var 0.0014 0.0067 0.0062 0.0028 0.0128 0.0111 0.0112 0.0285 0.0302

LSTM Mean 0.0112 0.1004 0.0806 0.0167 0.1131 0.0907 0.0273 0.1485 0.1210

Std 0.0086 0.0337 0.0292 0.0195 0.0641 0.0545 0.0243 0.0767 0.0672

Var 0.0001 0.0011 0.0009 0.0004 0.0041 0.0030 0.0006 0.0059 0.0045

Transformer Mean 0.0412 0.1879 0.1588 0.0864 0.2402 0.2126 0.1339 0.3295 0.3105

Std 0.0383 0.0782 0.0699 0.1096 0.1730 0.1656 0.1037 0.1677 0.1686

Var 0.0015 0.0061 0.0049 0.0120 0.0299 0.0274 0.0107 0.0281 0.0284

Informer Mean 0.0389 0.1818 0.1529 0.1509 0.3003 0.2715 0.0951 0.2786 0.2434

Std 0.0359 0.0779 0.0713 0.2395 0.2515 0.2524 0.0773 0.1396 0.1344

Var 0.0013 0.0061 0.0051 0.0573 0.0633 0.0637 0.0060 0.0195 0.0181

commonly utilized as evaluative indicators due to their com-
prehensive portrayal of predictive capabilities (Freitas [24];
Gandhmal and Kumar [56]; Ma et al. [41]).

1) Mean Squared Error (MSE): MSE calculates the aver-
age squared differences between predicted and actual values,
emphasizing larger errors due to the squaring operation. The
formula for MSE is:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2

2) Root Mean Squared Error (RMSE): RMSE represents
the square root of the average squared differences between
predicted and actual values, providing a measure of the stan-
dard deviation of residuals. The formula for RMSE is:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2

3) Mean Absolute Error (MAE): MAE measures the aver-
age magnitude of errors between predicted and actual values,
providing a straightforward assessment of model performance.
The formula for MAE is:

MAE =
1

N

N∑
i=1

|yi − ŷi|

In this study, we evaluate the performance of six mod-
els—KNN, SVR, XGBoost, LSTM, Transformer, and In-
former—in predicting stock returns. Table III presents the
results for each model based on the performance metrics MSE,
RMSE, and MAE.

In the U.S. stock market, the LSTM model clearly out-
performs the others, exhibiting the lowest error and highest
stability. XGBoost and KNN follow closely behind, while
Transformer and Informer show similar performances, though
they lag behind XGBoost and KNN. The SVR model performs
the worst overall. In the Chinese A-share market, the perfor-
mance patterns of the models are similar to those observed
in the U.S. market. The LSTM model again stands out, with
the smallest MSE, RMSE, and MAE, and good stability.
SVR exhibits relatively large errors and instability, while
Transformer and Informer perform the worst, with significantly
higher errors. In the cryptocurrency market, the errors of all
models increase due to the immature nature and high volatility
of the market, making prediction a particularly challenging
task. However, the overall performance trends of the models
remain similar to those in the U.S. and A-share markets,
with LSTM still showing the best performance and SVR and
Transformer showing the worst.

It is important to note that the performance metrics pre-
sented here are based solely on the results from the test
dataset. The data used for the rolling backtest, which is
entirely separate from this test dataset, may not reflect the
actual predictive performance of each model throughout the
backtesting process.

V. EMPIRICAL RESULTS

After comparing the performance of different models in
stock return prediction, a backtesting simulation is conducted
to study the investment performance of various portfolios,
with an initial capital of 100,000. In the A-share and U.S.
stock markets, portfolio weights are adjusted every 20 days,
while in the cryptocurrency market, portfolio weights are
adjusted every 7 days. For simplicity, dividends and transaction
fees are disregarded, and leverage and short-selling are not
considered during the portfolio rebalancing process. In this
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TABLE IV. DIFFERENT PORTFOLIO OPTIMIZATION MODELS FOR COMPARISON

Abbreviation Description

QQQ (ETF) Invesco QQQ Trust (Nasdaq: QQQ).

CSI 300 (ETF) CSI 300 Index Securities Investment Fund.

BTC Bitcoin: A mainstream cryptocurrency.

1/N Equal Weight Strategy.

RPM Risk Parity Model.

MVM Minimum Variance Portfolio Model.

MSRM Maximum Sharpe Ratio Portfolio Model.

SVR-RPWS SVR for prediction and ranking, RPWS for portfolio construction.

KNN-RPWS KNN for prediction and ranking, RPWS for portfolio construction.

XGBoost-RPWS XGBoost for prediction and ranking, RPWS for portfolio construction.

LSTM-RPWS LSTM for prediction and ranking, RPWS for portfolio construction.

Informer-RPWS Informer for prediction and ranking, RPWS for portfolio construction.

Transformer-RPWS Transformer for prediction and ranking, RPWS for portfolio construction.

SVR-MVM(N=10) SVR for prediction and screening, MVM for portfolio construction.

Notes:
1. To more clearly highlight the performance of RPWS, the SVR-MVM model is introduced as a comparative experiment. This model
uses the best-performing SVR algorithm to select the top 10 stocks based on predicted returns. We select 10 stocks for the following
reasons: Evans and Archer (1968) have demonstrated that the traditional rule of thumb suggesting 8 to 10 stocks, established by
pioneering studies, is indeed sufficient to achieve optimal diversification effects [58]. Alexeev and Dungey (2015) assert that an equally
weighted portfolio of 10 stocks would suffice for an average investor aiming to diversify away 90% of the risk [59]. Recognizing that
individual investors may struggle to track too many assets, we have decided that the number of stocks we select will be 10. Optimizes
portfolio weights using the Minimum Variance Model (MVM).

2. Cryptocurrencies market, due to limited samples, are no longer included in the comparison.

TABLE V. METRICS FOR MEASURING PORTFOLIO PERFORMANCE

Metrics Formula

Annualized Return R =

(
N∏

i=1

(1 + ri)

) 252
N

− 1

Annualized Volatility V =

√√√√ 252

N

N∑
i=1

(ri − µ)2 µ =
1

N

N∑
i=1

ri

Sharpe Ratio Sharpe Ratio =
R − rf

V

Sortino Ratio Sortino Ratio =
R − rf

D
D =

√√√√ 252

N

N∑
i=1

min(ri − rf , 0)2

Maximum Drawdown MDD = max
1≤i≤N

(
Ppeak,i − Pi

Ppeak,i

)
VaR(95%) VaR(95%) = µ − 1.645 × σ σ =

√√√√ 1

N

N∑
i=1

(ri − µ)2

Notes:

1. ri denotes the return in the i-th day, N is the total number of days, and 252 is the number of trading days in a year.

2. rf is the risk-free rate, which is set to 0 in this study.

3. Pi represents the return on the i-th day, while Ppeak,i denotes the historical maximum return up to the i-th day.

4. 1.645 is the quantile of the standard normal distribution at the 95% confidence level.
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study, six key metrics are used to evaluate the performance of
different portfolios: annualized return, Sharpe ratio, maximum
drawdown, Sortino ratio, annualized volatility, and Value at
Risk (VaR) at the 95% confidence level. Table IV shows
different portfolio optimization models for comparison. The
details of each indicator can be found in Table V.

From 2018 to 2024, the U.S. stock market experienced
dramatic fluctuations, including a bull market recovery, a bear
market adjustment, and dramatic fluctuations caused by the
epidemic. The market was affected by multiple factors such
as interest rate hikes, inflation, and stimulus policies, and
generally showed a fluctuating upward trend. In the back-
test, the SVR-RPWS model performs best overall, followed
by the Transformer-RPWS model. The SVR-RPWS model
achieves the highest annualized return (28.11%), the highest
Sharpe ratio (1.1436) and the Sortino ratio (1.6704), and
is also excellent in drawdown control, with the maximum
drawdown (-22.74%) second only to the LSTM-RPWS model
(-21.86%). The SVR-RPWS and Transformer-RPWS models
outperform QQQ (QQQ is an exchange-traded fund that tracks
the Nasdaq 100 Index, which includes the 100 largest non-
financial companies listed on the Nasdaq stock market) in all
indicators and perform significantly better than other models
overall. In addition, all models using the RPWS algorithm
also outperform QQQ overall, especially in terms of seeking
returns. The traditional portfolio model performs well in risk
control, with annualized volatility and value at risk (VaR)
slightly better than the model using the RPWS algorithm at
the 95% confidence level, but performs poorly in terms of
annualized returns and Sharpe ratio, and failed to surpass
QQQ. The SVR-MVM model performs quite well overall, with
a Sharpe ratio second only to SVR-RPWS and Transformer-
RPWS, and it also demonstrates good risk control. Compared
to the MVM model without any stock screening, it shows
significant improvement, reflecting the effectiveness of stock
screening. However, in terms of pursuing returns, it still
lags considerably behind models using the RPWS algorithm.
The detailed backtest performance and cumulative returns are
available in Table VI and Fig. 3.

From 2021 to 2024, affected by factors such as the slow-
down in economic growth, the Sino-US trade war and the
external environment, the A-share market was dominated by a
bear market, continued to adjust, and continued to be sluggish.
Although there was a short-term rebound, the overall trend
was weak. The three-year annualized return of the CSI 300
ETF (the CSI 300 ETF tracks the CSI 300 Index, which
represents the 300 largest and most liquid stocks listed on the
Shanghai and Shenzhen Stock Exchanges) was -13.25%. In the
backtest, the SVR-RPWS and Transformer-RPWS models per-
form similarly to the US stock market, both perform well and
significantly outperform all other models. Among them, the
SVR-RPWS model has the highest annualized return (25.30%),
the highest Sharpe ratio (1.2401), and the highest Sortino ratio
(2.0532). At the same time, while maintaining high returns, the
Transformer-RPWS model performs best in risk control, with a
maximum drawdown of only -12.58%, an annualized volatility
of 15.29% and a VaR (95%) of -1.29%. It is worth noting that
although the traditional models perform well in terms of risk
control, the overall returns are disappointing. The MVM model
is the only traditional model that achieves positive returns in
the bear market, but the return is only 1.73%. In contrast,

all models using the RPWS algorithm achieve positive returns
and are better than the MVM model. The SVR-MVM model
performs similarly in the A-share market as in the U.S. stock
market. While maintaining good risk control, the annualized
return of the MVM model, after SVR stock selection, increases
from 1.73% to 3.75%, representing a 105.84% improvement in
the original annualized return metric. Although this is already
a significant improvement, it still significantly underperforms
portfolios using the RPWS model in terms of annualized
return, Sharpe ratio, and Sortino ratio. The detailed backtest
performance and cumulative returns are available in Table VII
and Fig. 4.

From January 2023 to October 2024, the cryptocurrency
market experienced significant growth, with major cryptocur-
rencies such as Bitcoin and Ethereum seeing sharp price
increases, with Bitcoin breaking through its all-time high.
The gradual acceptance of cryptocurrencies by institutional
investors and the traditional financial industry has played a
key role in driving mainstream market applications. Investor
sentiment remains optimistic, and a large amount of capital
has flowed into the market, jointly driving a strong bull market
trend. Bitcoin dominates with a market share of 67.3%, and in
this bull market, it has achieved an annualized return of 42.87%
in just over a year. However, compared with traditional stock
markets, the cryptocurrency market is relatively immature,
extremely volatile, and greatly affected by market sentiment,
making modeling and prediction particularly difficult. As a
result, most models based on the RPWS algorithm perform
poorly. Surprisingly, the Transformer-RPWS model, which
performs well in both the US and A-share markets, performs
poorly in the cryptocurrency market, with an annualized return
of only 28.85%. In contrast, the SVR-RPWS model contin-
ues to show excellent performance, achieving an ultra-high
annualized return of 75.01%, and its Sharpe ratio (1.2522)
and Sortino ratio (2.1192) are the highest among all models.
Whether in terms of returns or risk control, the performance
of traditional models is only above average at best, and fails
to outperform Bitcoin. The detailed backtest performance and
cumulative returns are available in Table VIII and Fig. 5.

While the LSTM model demonstrates excellent predictive
performance on the test set, its performance in backtesting
is relatively mediocre. In contrast, models such as SVR and
Transformer, which perform poorly on the test set, show
exceptional results when combined with the RPWS algorithm
in the backtest. I hypothesize two potential reasons for this
discrepancy. First, the time-series nature of financial market
data makes overfitting particularly pronounced. Models may
learn incidental patterns or short-term fluctuations in historical
data that do not persist in the future, thereby limiting their
generalization ability. As a result, models that perform well
on the test set may fail to produce satisfactory results in
subsequent backtests. Second, models that underperformed
on the test set may exhibit stronger robustness—such as the
SVR model, which demonstrated good stability across multiple
markets. These models may be better equipped to adapt to
varying market conditions or data volatility, leading to superior
performance in the backtest phase.

Overall, in mature markets such as the U.S. and A-share
stock markets, models incorporating the RPWS algorithm have
demonstrated strong investment performance, often outper-
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Fig. 3. Backtest cumulative return for the U.S. stock market.
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Fig. 4. Backtest cumulative return for A-share market.
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TABLE VI. BACKTEST PERFORMANCE OF THE U.S. STOCK MARKET

U.S. Stock Market Annualized Return Sharpe Ratio Maximum Drawdown Sortino Ratio Annualized Volatility VaR (95%)

SVR-RPWS 28.11% 1.1436 -22.74% 1.6704 24.58% -1.89%

Transformer-RPWS 23.97% 1.1069 -28.18% 1.5858 21.66% -2.00%

SVR-MVM(N=10) 18.76% 0.9319 -22.95% 1.3659 20.13% -1.72%

LSTM-RPWS 21.60% 0.8684 -21.86% 1.1458 24.87% -2.13%

Informer-RPWS 20.95% 0.8629 -33.60% 1.1562 24.28% -2.26%

XGBoost-RPWS 18.99% 0.8572 -31.99% 1.0688 22.16% -1.97%

KNN-RPWS 16.88% 0.7691 -43.88% 0.8381 21.95% -1.62%

QQQ (ETF) 17.82% 0.7176 -35.57% 0.9339 24.83% -2.56%

1/N 12.86% 0.7143 -26.94% 0.9386 18.01% -1.67%

RPM 16.04% 0.7013 -32.69% 0.9049 22.87% -2.19%

MVM 13.33% 0.6916 -25.95% 0.9071 19.27% -1.75%

MSRM 5.71% 0.3059 -27.09% 0.3795 18.65% -1.89%

TABLE VII. BACKTEST PERFORMANCE OF THE A-SHARE MARKET

A-share Market Annualized Return Sharpe Ratio Maximum Drawdown Sortino Ratio Annualized Volatility VaR (95%)

SVR-RPWS 25.30% 1.2401 -15.66% 2.0532 20.40% -1.87%

Transformer-RPWS 18.40% 1.2038 -12.58% 1.8676 15.29% -1.29%

XGBoost-RPWS 14.05% 0.7150 -23.44% 1.1837 19.65% -1.73%

LSTM-RPWS 15.19% 0.6591 -31.86% 0.9548 22.59% -1.91%

KNN-RPWS 9.45% 0.4556 -27.06% 0.5923 20.74% -1.87%

SVR-MVM(N=10) 3.56% 0.2727 -18.49% 0.3941 13.05% -1.26%

Informer-RPWS 2.76% 0.1551 -31.82% 0.2244 17.78% -1.57%

MVM 1.73% 0.1076 -27.92% 0.1625 16.09% -1.63%

1/N -4.01% -0.2500 -26.70% -0.3778 16.05% -1.65%

RPM -4.96% -0.3077 -30.80% -0.4523 16.13% -1.65%

CSI 300 ETF -13.25% -0.7743 -41.97% -1.1289 17.11% -1.70%

MSRM -15.26% -0.8414 -45.16% -1.1381 18.13% -1.96%

TABLE VIII. BACKTEST PERFORMANCE OF THE CRYPTOCURRENCY MARKET

Cryptocurrency Market Annualized Return Sharpe Ratio Maximum Drawdown Sortino Ratio Annualized Volatility VaR (95%)

SVR-RPWS 75.01% 1.2522 -39.61% 2.1192 59.90% -4.41%

BTC 42.87% 1.2131 -26.24% 1.7970 35.34% -3.34%

MSRM 50.13% 1.1605 -45.00% 1.4531 43.20% -4.06%

MVM 44.98% 1.1389 -40.72% 1.6393 39.49% -3.54%

1/N 52.46% 1.1196 -45.36% 1.5988 46.85% -4.39%

KNN-RPWS 53.59% 1.1018 -45.33% 1.6127 48.64% -4.37%

Informer-RPWS 34.04% 1.0674 -24.01% 1.6081 31.89% -2.72%

RPM 41.62% 0.9026 -43.60% 1.2611 46.11% -4.32%

Transformer-RPWS 28.85% 0.7420 -43.38% 0.9349 38.88% -3.50%

LSTM-RPWS 33.59% 0.6434 -34.55% 1.0374 52.21% -4.54%

XGBoost-RPWS 21.48% 0.4881 -47.38% 0.6637 44.00% -4.02%
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Fig. 5. Backtest cumulative return for cryptocurrency market.

forming traditional portfolio models and major ETFs. This
is particularly evident in terms of generating higher returns,
thereby validating the fundamental principle of high risk
leading to high reward. The experiment highlights the sub-
stantial advantages of employing machine learning and neural
network models in constructing better-performing investment
portfolios. It further reinforces the effectiveness of machine
learning and neural network models in portfolio optimization.

VI. CONCLUSION AND FUTURE WORK

Machine learning algorithms and neural network models
have become essential tools in various fields, including fi-
nancial market investment, to make more advantageous and
informed decisions. This study applies machine learning algo-
rithms and neural network models to portfolio construction,
introducing a prediction-based weighted scoring method to
build optimized investment portfolios. The research enriches
portfolio theory by offering novel insights. The key findings
are as follows:

Firstly, this study provides a detailed introduction to six
models: K-Nearest Neighbors (KNN), Support Vector Regres-
sion (SVR), XGBoost, Long Short-Term Memory (LSTM),
Transformer, and Informer. These models are evaluated based
on their stock return prediction capabilities on a test dataset.
Secondly, this paper presents a portfolio construction method
based on return prediction and weighted scoring (RPWS). The
effectiveness of this method is validated through the combi-
nation with the aforementioned predictive models. Among the
models tested, SVR-RPWS and Transformer-RPWS perform
well in terms of both maximizing returns and controlling
risk and drawdowns. Overall, their performance outperforms

mainstream funds and traditional portfolio models. Finally,
in practical backtesting, the training time of the models also
requires attention. For instance, the Transformer model takes
nearly a week to complete a backtest on the US stock market,
whereas the SVR model only requires about one hour. In
the future, further validation of the RPWS technique will
require expanding the dataset, making the SVR model’s faster
convergence speed a notable advantage for further exploration.

Previous studies typically divide machine learning algo-
rithms and portfolio optimization into two separate stages,
which means that the modeling capabilities of machine learn-
ing are only utilized in the stock screening phase and not fully
exploited during weight optimization. The method proposed in
this study, which uses RPWS to construct portfolios, provides
a new perspective for the interdisciplinary field of machine
learning and portfolio optimization. The key aspect of this
method lies in mapping the prediction results of machine
learning algorithms to weight biases, successfully integrating
the predictive capabilities of machine learning into the weight
optimization phase, ensuring its full utilization throughout the
portfolio construction process.

In the future, we will explore more weighting methods to
reasonably and effectively map the prediction results of ma-
chine learning algorithms to weight biases. We have considered
several directions to further optimize the initial weight biases,
including logarithmic weighting and enforcing log uniform
distribution. In particular, enforcing log uniform distribution
adjusts the initial weight biases of stocks based on their
rankings to conform to a log uniform distribution, and its actual
performance will be tested in future backtesting experiments.
Additionally, this study uses historical data and technical indi-
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cators as input features for predicting future returns. However,
many external factors, such as government policies, interest
rates, and public events, also impact financial markets, so
future work may consider incorporating more sentiment factors
into the dataset. We believe that by continuously optimizing
weight mapping methods and integrating more influencing
factors, the stability and practical value of portfolio strategies
will be further enhanced.
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