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Abstract—Class imbalance is a common challenge in real-
world datasets, leading standard classifiers to perform poorly on
underrepresented classes. Traditional oversampling techniques,
such as SMOTE and its variants, often generate synthetic samples
without fully considering the local data structure, resulting in
increased noise and class overlap.This study introduces CeC-
SMOTE, an adaptive oversampling method that integrates clus-
tering and centroid-based strategies to enhance the quality
of synthetic minority samples. By first partitioning minority
instances using K-means clustering, CeC-SMOTE identifies safe
and boundary regions, selectively generating new samples where
they are most needed while filtering out noise. This targeted
approach preserves the underlying distribution of the minority
class and minimizes the risk of overfitting. Extensive experiments
on artificial and benchmark UCI datasets demonstrate that CeC-
SMOTE consistently delivers competitive or superior results
compared to established oversampling techniques, particularly
in cases with complex or ambiguous class boundaries. Sensitivity
analysis confirms that the method is robust to parameter settings,
enabling strong performance with minimal tuning.

Keywords—Imbalanced data classification; synthetic oversam-
pling; k-means clustering; centroid-based neighbor

I. INTRODUCTION

Imbalanced data, where some classes are significantly
underrepresented compared to others, is a widespread issue in
real-world applications. This imbalance often causes models
to favor majority classes while neglecting minority categories
[1][2]. For example, in healthcare, class imbalance can hinder
the early detection of rare diseases, leading to missed diag-
noses and delayed treatment. Similarly, in financial systems,
fraudulent transactions are often overshadowed by legitimate
ones, making it difficult for conventional models to identify
and prevent fraud [3].

Traditional classification algorithms, which typically as-
sume a balanced class distribution or seek to minimize overall
error, tend to underperform on imbalanced datasets. These
models frequently exhibit a bias toward the majority class,
resulting in high accuracy for common categories but poor
performance for the minority class—often the primary focus
in critical applications [4]. This bias leads to minority instances
being overlooked or misclassified, sometimes even treated as
noise, which compromises both the reliability and generaliz-
ability of predictive models. To address these limitations, data-
level solutions such as oversampling have been developed to
enhance the representation of minority classes by generating
synthetic samples.

*Corresponding authors.

The introduction of the SMOTE algorithm marked a signifi-
cant advancement in oversampling by creating synthetic minor-
ity samples through interpolation between existing neighbors.
This approach has inspired many variants, each aiming to over-
come specific limitations. For example, Borderline-SMOTE [5]
generates synthetic samples near decision boundaries, while
Safe-Level-SMOTE [6] focuses on safer regions to reduce
noise amplification. Other methods, such as SVM combine
SMOTE [7] and cluster-based approaches, refine the placement
of synthetic samples using support vectors or cluster centroids
[8]. Further advancements, like LD-SMOTE [9] and Simplicial
SMOTE [10], leverage local density, information entropy, and
topological structures to ensure that synthetic samples align
more closely with the actual data distribution.

Despite these advances, imbalanced learning continues to
evolve as researchers seek new methods that improve sample
quality, minimize noise, and enhance classifier robustness,
particularly in complex data environments. In this context,
we propose CeC-SMOTE—an adaptive oversampling tech-
nique that combines clustering and centroid-based analysis.
CeC-SMOTE systematically categorizes minority instances by
utilizing both global and local cluster characteristics, applies
a Nearest Centroid Neighbour strategy for more effective
neighbor selection, and adaptively limits synthetic data gen-
eration to safe and boundary regions to reduce noise and
overfitting. This approach addresses important gaps in existing
oversampling methods. The primary contributions of this study
are as follows:

• We introduce an adaptive oversampling algorithm that
integrates centroid-based clustering with safety-aware
sample selection.

• We propose a systematic method for filtering noisy
samples and directing oversampling to the most infor-
mative minority regions.

• We present extensive experiments on multiple bench-
mark datasets, demonstrating that CeC-SMOTE out-
performs established oversampling techniques.

Accordingly, the research question guiding this study is:
How can synthetic minority sample generation be improved
to better preserve the structure of imbalanced data, minimize
noise, and enhance classification accuracy, especially in chal-
lenging datasets with complex class boundaries?

The remainder of this study is organized as follows: Section
II reviews related work on imbalanced data learning and over-
sampling. Section III details the methodology of the proposed
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CeC-SMOTE algorithm. Section IV describes the experimental
setup and presents the results. Section V discusses the findings
and their implications, and Section VI concludes the study with
directions for future research.

II. RELATED WORKS

Imbalanced data remains a significant challenge in clas-
sification problems, often resulting in poor performance for
minority classes. To address this issue, researchers have
developed various techniques to improve the detection and
representation of these underrepresented groups. This section
reviews the most relevant methods, highlighting advances
in oversampling and clustering-based strategies designed to
enhance minority class representation.

A. SMOTE and Variants

Oversampling techniques are widely used to address class
imbalance by generating additional synthetic instances of the
minority class [11]. This strategy is generally preferred over
undersampling, which reduces the number of majority class
samples and may result in the loss of valuable information cru-
cial for accurate learning [12] [13]. Among these approaches,
the Synthetic Minority Over-sampling Technique (SMOTE)
[14] is particularly well-known. SMOTE creates synthetic
samples by linearly interpolating between existing minority
instances and their nearest minority neighbors [15][16]. Its
main goals are to expand the decision region of the minority
class and reduce the risk of overfitting that often arises from
simply duplicating existing minority data [17].

Despite its popularity, SMOTE’s linear interpolation mech-
anism introduces several notable limitations, especially when
applied to complex datasets. First, SMOTE often generates
synthetic samples without considering the distribution of the
majority class [18]. This can lead to overgeneralization, where
new samples encroach into majority class regions or in-
advertently bridge distinct minority sub-clusters, increasing
class overlap and complicating subsequent classification tasks
[19]. Second, SMOTE is susceptible to noise and outliers in
the minority class. When outliers or borderline samples are
present, the algorithm may create synthetic instances around
them, unintentionally amplifying noise and reducing class
separability [20]. Third, SMOTE assumes linear relationships
among minority samples, which is not always appropriate
for datasets with non-linear structures or multiple, distinct
minority clusters. In such cases, synthetic samples may not ac-
curately capture the true distribution of the minority class [21].
Additionally, SMOTE faces challenges in high-dimensional
data [22]. The nearest neighbor concept, central to its function,
becomes less meaningful and more computationally intensive
in higher dimensions, which can result in less diverse or even
misleading synthetic samples [23]. Finally, SMOTE can strug-
gle with small, isolated minority regions [24]. The algorithm
may fail to adequately represent these unique data pockets,
leading to their persistent underrepresentation or mischarac-
terization [25].

B. Enhancing Oversampling through Clustering

To overcome the limitations of traditional oversampling,
researchers have incorporated clustering as a preparatory step.

In clustering-based SMOTE variants, the minority class is first
clustered, and then SMOTE is applied within each cluster [26].
This approach preserves local data structures and addresses
imbalances within the minority class itself [27].

Combining clustering with oversampling offers several
advantages. First, it reveals underlying subgroups within the
minority class, enabling more targeted and nuanced oversam-
pling. By recognizing these sub-clusters, oversampling can
be focused on sparser or more critical regions rather than
treating all minority samples equally, as standard SMOTE
does. Second, clustering helps to identify and manage noise
or outliers. Instances that do not fit well into any cluster can
be excluded from synthetic sample generation or handled sepa-
rately, reducing the risk of amplifying noise. Finally, clustering
allows for differentiated oversampling strategies which more
synthetic data can be generated in sparse but well-defined
clusters, or efforts can be focused on safe regions to minimize
overlap with the majority class.

Various clustering methods guide the oversampling pro-
cess. K-means clustering [28]is a commonly used technique
that partitions the data into distinct groups based on their cen-
troids. K-Means SMOTE integrates this method by generating
synthetic samples within each minority cluster, ensuring that
new instances reflect the local distribution and preventing the
artificial connection of unrelated groups [29][30] [31]. Other
approaches, like LD-SMOTE, adjust the number of synthetic
samples based on cluster density, focusing efforts on under-
represented regions and improving sample representativeness
[9].

Density-based clustering algorithms, such as DBSCAN, are
also employed for their ability to handle irregularly shaped
clusters and detect noise [32]. For instance, DBSMOTE uses
DBSCAN to cluster minority samples and place new synthetic
points towards the center of each cluster, strengthening their
core representation [33]. Similarly, adaptive clustering SMOT
within clusters formed by DBSCAN [34], and clustering and
optimization-based G-mean iteratively applies SMOTE in K-
means clusters while optimizing performance metrics such as
G-mean [35]. Some methods also use information entropy to
monitor and control ambiguity in overlapping regions created
by synthetic samples [36].

Despite significant advances in oversampling techniques,
several common shortcomings remain across the reviewed
methods. Many approaches, such as SMOTE and its variants,
tend to generate synthetic samples without fully accounting
for the underlying data distribution, leading to increased noise
and class overlap. Methods that rely on linear interpolation
may struggle with datasets exhibiting complex or nonlinear
minority class structures. Additionally, many approaches are
also sensitive to clustering quality and may perform poorly
on high-dimensional or highly imbalanced datasets. These
limitations underscore the need for more adaptive solutions.

III. CEC-SMOTE METHODOLOGY

This section delineates the technological process of CeC-
SMOTE in greater detail. The flowchart illustrating imbalanced
learning using CeC-SMOTE is presented in Fig. 1. The CeC-
SMOTE algorithm is principally concerned with the following
processes: the capture of the local structure of the minority
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Fig. 1. Block diagram of CeC-SMOTE.

class; the identification of “safe” minority points, with outliers
that are too close to majority territory being discarded; and the
expansion of the minority class, followed by the rebuilding of
the full training set.

The process begins by applying K-means clustering to
group the minority class samples, and each cluster’s centroid
is determined. The algorithm then calculates the global av-
erage distance within each cluster to categorize samples as
“safe”, “boundary”, or “noise”. Outliers and samples near
the majority class are discarded to reduce potential overlap
and noise. Next, SMOTE is selectively applied to the safe
and boundary regions within each cluster, generating synthetic
minority samples where they are most needed. Finally, the
new synthetic samples are combined with the filtered original
data, resulting in a more balanced dataset that is ready for
training the classifier. While LD-SMOTE [9] and Simplicial
SMOTE [10] have introduced local density estimation and
topological techniques, CeC-SMOTE further advances the field
by integrating centroid-based clustering with safety-aware fil-
tering, ensuring that synthetic samples are generated primarily
in well-defined, safe or boundary minority regions, as opposed
to uniform interpolation.

A. Construct Minority Clusters

To capture the local structure of the minority class, this step
involves initialising centroids and iteratively assigning samples
to the nearest cluster based on their features. According to
the step of the K-means clustering algorithm, until the change
in the cluster centre is very small or the preset number of
iterations is reached, kcluster centres are created to ensure that
all samples are stable.

STEP 1: Randomly assign the initial point as the initial
cluster centre point;

STEP 2: Calculate the Euclidean distance between all
individuals in the sample set and the cluster centre, then assign
the samples to the nearest cluster. The Euclidean distance
between a point x and a centroid xci in cluster ci is given
by Eq. (1):

d(x, xci) = ∥x− xci∥2
=

√
(x1 − xc1)2 + (x2 − xc2)2 + · · ·+ (xn − xcn)2

(1)

STEP 3: Recalculate the cluster centre according to the
samples in the class;

STEP 4: Iterate Steps 2 and 3 until the centroids no longer
change significantly or the iteration limit is reached.

Step 2 is critical as it groups similar points together based
on their proximity to the centroids. After all points have been
assigned to clusters, the centroids are updated to reflect the
means of their respective clusters.

B. Safety Assessment and Noise Cleaning

In order to improve class balance and accuracy while
limiting noise and overfitting, After clusters the minority class
and then identify “safe” minority points and discard outliers
that sit too close to majority territory.

STEP 1: Apply the ensemble Nearest centroid neighbor-
hood (NCN) strategy [37]for minority classes. For each data
point, the algorithm identifies the nearest cluster centroid xci.
This involves calculating the distance from the point to each
centroid and selecting the smallest one. This NCN helps to
assess each data point’s proximity to its cluster centre, which
is pivotal for classifying the data points in later steps.

The idea of NCN is to find the nearest neighbor by the
centroid. For a set of points Xi = {x1, x2, · · · , xn}, the
centroid is calculated as Eq. (2):

X =
1

n
(x1 + x2 + · · ·+ xn) (2)

Neighbors should be distributed in geographical areas, and
the idea of NCN requires that proximity be fully considered.
First, NCN believes that the centroid neighbors are as close
as possible to the test sample in terms of distance and are
distributed as evenly as possible around the test sample. The
NCN of sample p in X should be obtained by querying the
following steps and the pseudocode in Algorithm 1.

STEP 2: Calculate the global average distance. Determine
the global average distance by calculating the average distance
of all samples to their respective centroids, which will serve
as a benchmark for defining safe areas and boundary areas, as
in Eq. (3):

Mdist =
1

m

m∑
j=1

∥∥xj − xlj

∥∥
2

(3)
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where, m is the total number of points in the dataset, xlj
is the centroid of the cluster to which point xj belongs, and lj
is the index pointing to the cluster to which point xj belongs.

STEP 3: Classify regions within each cluster;

1) Define the thresholds for safe areas θs and boundary
areas θb [see Eq. (4) and Eq. (5)];

θs = α×Mdist, (α < 1) (4)
θb = β ×Mdist, (β > α) (5)

2) Mark each sample as belonging to the safe zone,
boundary area, or noise zone based on the comparison
of the distance from the sample to the centroid
d(x, xci) and the global average distance Mdist:

• If d(x, xci) ≤ θs, x is considered ‘safe’;

• if θs < d(x, xci) ≤ θb, x is considered ‘boundary’;

• and if d(x, xci) > θb, x is considered ‘noise’.

By following these steps, the algorithm ensures that only
points in well-defined, safe, or boundary regions are considered
for oversampling, reducing the impact of noise and outliers.

Algorithm 1 Nearest Centroid Neighborhood (NCN)

Input: Xi = {x1, x2, · · · , xn}: input dataset; k: number of
neighbors to search; p: query point

Output: Q = {q1, q2, · · · , qk}: set of k nearest centroid
neighbours

1: Initialize Q = ∅
2: Find the first NCN of p as its nearest neighbour, q1
3: Q← Q ∪ {q1}
4: for i = 2 to k do
5: Select the ith neighbor qi such that the centroid of qi

and all previously selected neighbours (q1, q2, · · · , qi−1)
is the closest to p

6: Q← Q ∪ {qi}
7: end forreturn Q

C. Cluster-Aware Oversampling and Merge

After each sample is marked as belonging to the safe
area, boundary area, or noise area. Within each cluster, apply
SMOTE only to the safe points to create synthetic samples
that stay inside the minority manifold.

STEP 1: First, for each sample xi in the positive sample
set, Euclidean distance is calculated between it and each other
sample in the positive sample set, and k nearest neighbor
samples are found, marked as x′

i, i ∈ {1, 2, 3, . . . , k};

STEP 2: For each randomly selected neighbor sample x′
i,

a new sample is constructed according to Eq. (4) with xi,
respectively [see Eq. (6)].

xnew = xi + rand(0, 1)× (x′
i − xi) (6)

STEP 3: Combine the generated samples to form the final
dataset.

The CeC-SMOTE achieves a more balanced dataset
through targeted oversampling of minority classes and removal
of noisy, outlier samples. The pseudocode of the oversampling
process of CeC-SMOTE is illustrated in Algorithm 2.

Algorithm 2 CeC-SMOTE

Input: minority imbalanced dataset XP , K: maximum num-
ber of clusters

Output: D: the dataset with augmented minority class sam-
ples

1: Initialize;
2: Apply the K-means algorithm to the minority class;
3: Identify the centroid of each cluster: C =
{c1, c2, . . . , cK};

4: Nearest centroid neighbour: xci = [];
5: for each xi in XP do
6: Initialize min distance; Initialize xci = [];
7: for each cj in C do
8: Calculate the Euclidean distance from xi to each

centroid cj ;
9: d(xi, cj) = ∥xi − cj∥2;

10: Keep track of the centroid cj that has the minimum
distance to xi, storing the index of this nearest centroid
cj ;

11: if d(xi, cj) < min distance then
12: min distance = d(xi, cj); update the index of

the nearest centroid;
13: end if
14: end for
15: Append the index of the nearest centroid to xci;
16: end forreturn xci

17: Calculate the global average distance between all samples
in XP and their respective nearest centroids.

18:

Mdist =
1

m

m∑
j=1

∥xj − xcj∥2

19: Classify regions within each cluster:
20: if d(x, xci) ≤ θs, mark xi as “Safe”
21: if θs < d(x, xci) ≤ θb, mark xi as “Boundary”
22: else mark xi as “Noise”
23: Apply SMOTE to samples classified as “Safe” and

“Boundary” to generate synthetic samples XP
G ;

24: Merge the original minority class samples XP with the
newly generated synthetic samples XP

G ;

IV. EXPERIMENTAL ANALYSIS

In this section, CeC-SMOTE is compared with four com-
monly used re-sampling methods on four metrics across seven
UCI datasets and two artificial datasets under three quality
evaluation measures, the G-mean, F1 score, AUC. We per-
formed 5-fold cross-validation on all datasets to ensure the
reliability of the results, averaging metrics across independent
runs to reduce variance.

A. Dataset

To showcase the efficacy of CeC-SMOTE, the experimental
data in this section are divided into three parts. The first are
the two artificially generated two-dimensional (2D) datasets as
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shown in Table I. According to the definition of the imbalanced
degree, dataset A is highly imbalanced, while dataset B is
almost extremely imbalanced. Table II provides a detailed
overview of 7 benchmark binary datasets. The IR of binary
datasets selected from the UCI data repository varies from a
minimum of 1.9 to a maximum of 129.5, with an average
of 23.13. According to the imbalance ratio, Pima, ecoli3,
Cleveland, vehicle, page-blocks, and Breast datasets are lowly
imbalanced. The alone is extremely imbalanced.

TABLE I. ARTIFICIAL DATASETS

Dataset Imbalance
Ratio

Number
of
Datasets

Number
of
Minority
Classes

Number
of
Majority
Classes

Dimension

A 48.47 1484 30 1454 2

B 94.46 2673 28 2645 2

B. Experimental Metrics

In this study, the performance of CeC-SMOTE was val-
idated using several metrics commonly used in imbalanced
data learning: F1-score, geometric mean(G-Mean), and the
area under the receiver operating characteristic curve (AUC)
to systematically compare and analyze the efficacy of vari-
ous methodologies. These metrics were selected due to their
ability to balance the precision-recall trade-off and capture
the model’s discriminative power across both classes. The G-
Mean is calculated to assess the balance between classification
accuracies of the positive and negative classes. It is given by
the following Eq. (7):

G-Mean =
√
Specificity ×Recall (7)

where, recall (True Positive Rate), specificity (True Nega-
tive Rate) and precision (successfully identified positives out
of all positives predicted) are respectively defined as Eq. (8)
to Eq. (10):

Specificity =
TN

TN + FP
(8)

Recall =
TP

TP + FN
(9)

Precision =
TP

TP + FP
(10)

TABLE II. DETAILS OF UCI IMBALANCED DATASET

Dataset Instances Positive IR Attributes

Pima 758 258 1.9 8

ecoli3 336 35 8.6 7

Cleveland 297 35 7.49 13

vehicle 846 199 3.25 19

page-blocks 5472 28 8.79 10

Breast 286 85 2.36 9

Abalone 4176 32 129.5 8

Here, TP denotes the true positives, TN denotes the true
negatives, FP denotes the false positives, and FN denotes the
false negatives. The G-mean evaluates how well the model
performs across both positive and negative classes by consid-
ering their accuracies. Furthermore, F1-score is determined as
the harmonic mean of the method’s precision and recall [see
Eq. (11)].

F1score =
2 ∗ Precision ∗ Recall

Precision + Recall
(11)

AUC quantifies the overall ability of the model to discrim-
inate between negative and positive classes, and is defined
as the area under the receiver operating characteristic curve
(ROC), which plots the True Positive Rate (TPR) against the
False Positive Rate (FPR). AUC is used to evaluate the model
performance. A higher AUC indicates a model with better
discriminatory ability.

C. Comparison Methodology

In all experiments, CeC-SMOTE is compared with SMOTE
and three variants of SMOTE, Borderline-SMOTE, ADASYN
and K-Means SMOTE. The comparative methods involved in
the experiments are all run with default parameters. The MLP
is chosen as the classifier to evaluate the effectiveness of rebal-
ancing on the balanced datasets that have been adjusted using
the different comparison methods. The MLP implementation
is available in the SciKit-Learn package is provided by the
Python implementation, and configured with various layers and
neurons using the ReLU activation function. The number of
nearest neighbours K involved in all the compared algorithms
is five in all experiments.

D. Experimental Results

1) The results on artificial datasets: To demonstrate the
efficacy of CeC-SMOTE, we conduct a visualization exper-
iment on artifical datasets. Fig. 2 and Fig. 3 presents the
visualization outcomes of samples after being respectively
rebalanced by Cec-SMOTE and other comparative methods,
followed by dimensionality reduction using t-SNE. The blue,
red, and purple points correspond to the negative, positive, and
synthetic samples, respectively.

The figures show that the SMOTE algorithm treats all
sample points equally. This results in new sample points being
generated that overlap with the majority class. CeC-SMOTE
first clusters the minority class samples, and then generates
new samples near the cluster centroids. This results in the
generation of concentrated, pink synthetic samples that adhere
closely to the existing cluster structures of the minority class.
The sampled data is more consistent with the original data
distribution than data sampled using the SMOTE algorithm.
Fig. 2(f) shows more minority class data points closer to
the boundary than Fig. 2(e). This is because CeC-SMOTE
oversample each cluster and the data at the boundary are more
likely to be assigned to one cluster after clustering. Thus, the
synthesised data are concentrated near the boundary, creating
a clear distinction between the minority and majority classes.
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(a) Original dataset (b) SMOTE (c) Borderline-SMOTE

(d) ADASYN (e) K-means SMOTE (f) CeC-SMOTE

Fig. 2. Sampling effects of different methods on dataset A.

(a) Original dataset (b) SMOTE (c) Borderline-SMOTE

(d) ADASYN (e) K-means SMOTE (f) CeC-SMOTE

Fig. 3. Sampling effects of different methods on dataset B.
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2) The results on UCl datasets: To evaluate the classifica-
tion performance of the CeC-SMOTE algorithm, the experi-
mental setup consists of seven datasets that present different
imbalance ratios, which can be found in the UCI Machine
Learning repository. The UCI datasets are used to conduct
experiments on the MLP classifier and compared with the other
four algorithms.

Table III shows the classification performance of vari-
ous synthetic oversampling algorithms across multiple UCI
datasets. The effectiveness of each method varies by dataset.
For instance, in the vehicle dataset, all methods show high
G-Mean and AUC, indicating robust performance. However,
in datasets like Cleveland and Abalone, the variations in
performance metrics are more pronounced, suggesting chal-
lenges related to specific characteristics of these datasets, such
as feature distributions or class separability. In most cases,
AUC scores are high, indicating good discriminative ability
of the models post-oversampling. However, the F1-score and
G-Mean sometimes show significant variation, highlighting
the impact of these methods on precision-recall balance and
class-specific accuracy. The performance of the CeC-SMOTE
algorithm demonstrates a substantial enhancement in metric
values compared to K-means SMOTE. Across the datasets,
CeC-SMOTE often shows competitive or superior performance
in terms of F1-score and AUC, suggesting its effectiveness in
handling border cases and dataset specificities.

Fig. 4 presents a radar chart that compares the experimental
results of CeC-SMOTE with those of the other four meth-
ods, providing more intuitive experimental results. The CeC-
SMOTE line in the chart extends further in most datasets for
the G-Mean and AUC metrics, suggesting that this technique
might be more effective in distinguishing between classes.

E. Sensitivity Analysis of Critical Parameters

CeC-SMOTE involves several key parameters, including
the number of clusters (k) in K-means, and the threshold
coefficients α and β used to define “safe”, “boundary”, and
“noise” regions within clusters. The number of clusters k
influences the granularity of the minority class partitioning; too
few clusters may overlook local data structure, while too many
can result in overfitting or fragmented synthetic sampling. The
parameters α and β directly affect which samples are classified
as safe or boundary points, thereby controlling where new
synthetic samples are generated.

Fig. 5 presents the effects of varying the parameters α
and β on the F1 and G-mean scores across four datasets:
Pima, ecoli3, vehicle, and page-blocks. Each plot illustrates
how different (α, β) pairs influence classification performance,
with F1 and G-mean used as evaluation metrics.

Across all datasets, the results show that the choice of α
and β significantly impacts both F1 and G-mean. The most
favorable performance is consistently observed when α is set
between 0.65 and 0.80, and β is chosen to be 0.20 to 0.30
higher than α. In this range, both F1 and G-mean reach their
peak or maintain stable, high values. This trend suggests that
these parameter settings provide an optimal balance between
generating a sufficient number of synthetic samples and main-
taining the quality of those samples by targeting “safe” and
“boundary” regions in the data.

When α is set too low, the algorithm becomes overly
permissive, allowing many borderline points to be treated as
“safe”. This results in more synthetic data but can reduce
overall precision due to the inclusion of ambiguous samples.
Conversely, when α approaches 0.90, especially in datasets
with small minority classes, recall tends to drop. This is likely
because the “safe” region becomes too restrictive, limiting the
creation of synthetic minority samples and, therefore, failing
to sufficiently balance the dataset.

Notably, the (α, β) pair of (0.80, 1.20) performs among
the best across all tested datasets, making it a reliable default
setting when dataset-specific tuning is not practical. This com-
bination provides a robust trade-off, consistently supporting
both strong recall and precision.

For situations involving very scarce minorities or a high
number of borderline samples, lowering α to 0.65 and in-
creasing β by 0.10 to 0.20 further improves recall with only a
minor reduction in precision. In contrast, for large and highly
imbalanced datasets where high precision is more important
than recall, setting α near 0.90 and β above 1.30 can be more
advantageous, even if recall drops slightly.

In summary, Fig. 5 demonstrates that CeC-SMOTE is
robust across a range of α and β values, with optimal perfor-
mance achieved in moderate settings. The method’s flexibility
allows practitioners to tailor the balance between recall and
precision according to the needs of specific datasets, while
also providing a strong default setting for general use.

V. DISCUSSION

The comparative results vary across datasets due to differ-
ences in characteristics such as imbalance ratio, feature count,
class overlap, and minority class distribution. For example,
datasets with well-separated classes and moderate imbalance,
like “vehicle” or “page-blocks”, typically show strong, consis-
tent performance across most oversampling methods, including
CeC-SMOTE. However, CeC-SMOTE excels in datasets with
smaller minority classes or unclear class boundaries, such as
“Cleveland” and “Abalone”. Its clustering and noise filtering
strategies help preserve meaningful minority samples while
reducing the impact of outliers and class overlap.

CeC-SMOTE is particularly effective for datasets, where
the minority class is well-clustered or where class boundaries
are ambiguous. This observation is consistent with previous
findings in the literature, where advanced oversampling tech-
niques that incorporate clustering or density estimation have
shown improved performance in handling complex imbalanced
datasets. Recent works such as LD-SMOTE [9] and Cluster-
Based Reduced Noise SMOTE [15] demonstrate that con-
sidering local density or clustering information can enhance
the representativeness of synthetic samples and minimize
noise. CeC-SMOTE builds upon these principles by combining
centroid-guided clustering with adaptive sampling, resulting in
synthetic data that better preserves local data structure and
reduces class overlap. As shown in Table III and Fig. 4, CeC-
SMOTE consistently achieves competitive or superior F1 and
AUC scores, particularly in datasets with higher complexity,
demonstrating its robustness and adaptability in real-world
applications.
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TABLE III. METRIC VALUES FOR DIFFERENT IMBALANCE RATIOS

Dataset Metric SMOTE BLSMOTE ADASYN K-means SMOTE CeC-SMOTE

Pima

F1 0.6994 0.7088 0.6922 0.6881 0.6959

G-Mean 0.7015 0.7133 0.6972 0.6891 0.6962

AUC 0.7014 0.7133 0.6971 0.6891 0.6961

ecoli3

F1 0.6316 0.6316 0.6316 0.6300 0.6316

G-Mean 0.8094 0.8094 0.8094 0.8084 0.8094

AUC 0.8245 0.8245 0.8245 0.8234 0.8245

Cleveland

F1 0.2410 0.2529 0.2295 0.2975 0.3158

G-Mean 0.4557 0.4670 0.4457 0.5085 0.5522

AUC 0.5570 0.5609 0.5489 0.5841 0.5976

vehicle

F1 0.8340 0.8298 0.8252 0.8225 0.8352

G-Mean 0.8859 0.8832 0.8806 0.8778 0.8836

AUC 0.8876 0.8850 0.8825 0.8798 0.8855

page-blocks

F1 0.7833 0.7776 0.7827 0.8314 0.8556

G-Mean 0.9043 0.8931 0.9105 0.8828 0.8848

AUC 0.9068 0.8961 0.9125 0.8864 0.8881

Breast

F1 0.5685 0.5955 0.5865 0.5872 0.6319

G-Mean 0.5699 0.5974 0.5865 0.5840 0.6333

AUC 0.5698 0.5974 0.5865 0.5839 0.6333

abalone

F1 0.1672 0.1456 0.1672 0.1460 0.1672

G-Mean 0.3940 0.3844 0.3940 0.3721 0.3940

AUC 0.5612 0.5567 0.5612 0.5578 0.5613

(a) F1-score (b) G-Mean (c) AUC

Fig. 4. Radar chart of experimental results of various algorithms.

CeC-SMOTE’s robust performance can be attributed to
its combination of centroid-guided clustering and adaptive
sampling within safe and boundary regions. By focusing on
generating synthetic data near cluster centroids, the method
preserves local data structures and avoids excessive overlap
with the majority class, which is a common pitfall in stan-
dard SMOTE. The visualizations on artificial datasets further
demonstrate that CeC-SMOTE produces synthetic samples that
align well with the minority class distribution, resulting in
clearer class separations.

Parameter sensitivity analysis shows that CeC-SMOTE
remains stable across a wide range of (α, β) values. The
method performs best when α is between 0.65 and 0.80,
with β exceeding α by 0.20 to 0.30. These results suggest
that CeC-SMOTE can be deployed with minimal parameter
tuning and still deliver reliable improvements in both recall
and precision. Moreover, the recommended default setting
(α = 0.80, β = 1.20) consistently ranked among the top
configurations for most datasets. For datasets with extremely
rare minorities, lowering α and widening β further enhances
recall, while highly imbalanced datasets with abundant data

www.ijacsa.thesai.org 848 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 7, 2025

(0.
50
,0.
70
)

(0.
50
,0.
90
)

(0.
65
,0.
85
)

(0.
65
,1.
05
)

(0.
80
,1.
00
)

(0.
80
,1.
20
)

(0.
90
,1.
10
)

(0.
90
,1.
30
)

(0.
90
,1.
50
)

(α, β) pair

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70
Sc

or
e

Pima
F1
G-mean

(a) Pima (0.
50
,0.
70
)

(0.
50
,0.
90
)

(0.
65
,0.
85
)

(0.
65
,1.
05
)

(0.
80
,1.
00
)

(0.
80
,1.
20
)

(0.
90
,1.
10
)

(0.
90
,1.
30
)

(0.
90
,1.
50
)

(α, β) pair

0.60

0.65

0.70

0.75

0.80

Sc
or
e

ecoli3

F1
G-mean

(b) ecoli3

(0.
50
,0.
70
)

(0.
50
,0.
90
)

(0.
65
,0.
85
)

(0.
65
,1.
05
)

(0.
80
,1.
00
)

(0.
80
,1.
20
)

(0.
90
,1.
10
)

(0.
90
,1.
30
)

(0.
90
,1.
50
)

(α, β) pair

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

Sc
or
e

vehicle
F1
G-mean

(c) vehicle (0.
50
,0.
70
)

(0.
50
,0.
90
)

(0.
65
,0.
85
)

(0.
65
,1.
05
)

(0.
80
,1.
00
)

(0.
80
,1.
20
)

(0.
90
,1.
10
)

(0.
90
,1.
30
)

(0.
90
,1.
50
)

(α, β) pair

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

Sc
or
e

page-blocks
F1
G-mean

(d) page-blocks

Fig. 5. Effects of different α and β on performance.

benefit from higher α and β, favoring precision.

VI. CONCLUSION

In summary, CeC-SMOTE introduces a robust approach
to class-imbalance learning by integrating K-means clustering,
centroid-based neighbor selection, and safety-aware sampling.
This combination enhances the representativeness of synthetic
minority samples, preserves the geometric structure of the
data, and reduces the risk of amplifying noise. Across multiple
real-world and synthetic datasets, CeC-SMOTE demonstrates
competitive or superior performance relative to established
oversampling techniques, particularly in challenging scenarios
with complex class boundaries. The method’s stability across
different parameter settings makes it practical for real-world
deployment, requiring minimal fine-tuning for strong results.

While CeC-SMOTE demonstrates robust performance
across multiple real-world and synthetic datasets, several lim-
itations should be acknowledged to provide a more compre-
hensive review. First, the algorithm’s effectiveness relies on
the quality of clustering, which may be sensitive to the choice
of cluster number and initial centroid selection. Inappropriate
clustering could lead to suboptimal synthetic sample genera-
tion or noise amplification. Second, this study is limited to
binary classification tasks. The adaptation of CeC-SMOTE
to multi-class imbalanced datasets and its performance in
high-dimensional feature spaces require further investigation.
Finally, the current experiments utilize a limited set of bench-
mark datasets. Future research could extend CeC-SMOTE to
multi-class and high-dimensional datasets, and explore auto-
mated parameter selection based on data characteristics to fully
establish the generalizability of the approach. Overall, CeC-
SMOTE offers a valuable and reliable solution for improving

classifier performance on imbalanced data.
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