
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 7, 2025

Towards Robust IoT Security: The Impact of Data
Quality and Imbalanced Data on AI-Based IDS

Hiba El Balbali, Anas Abou El Kalam
Cadi Ayyad University, National School of Applied Sciences, LaRTID Laboratory, Marrakech, Morocco

Abstract—The increased number of connected devices and
the rise of Big Data have revolutionized industries and trig-
gered a surge in cyberattacks, making security a top priority.
Machine learning and Deep Learning algorithms are crucial
in intrusion detection and classification, enabling systems to
identify and respond to threats with precision. However, the
success of these algorithms is directly related to the quality of
the data they process, underscoring the critical importance of
robust and well-prepared datasets. Furthermore, despite their
potential in detecting and classifying attacks, some algorithms
are susceptible to imbalanced datasets, struggling to accurately
classify minority classes, while others demonstrate resilience to
such challenges. Hence, this study presents a comprehensive
analysis of the impact of data quality and imbalanced data on
different classification problems, particularly binary, 8-class, and
34-class classification in an intrusion detection context. Our work
extensively evaluates six ML and DL algorithms using a novel IoT
dataset. Unlike existing research, we use a diverse set of metrics,
including accuracy, precision, recall, F1-score, AUC-ROC, and
other visual tools, to provide a robust and reliable algorithm
performance assessment. This unique analysis underscores the
critical importance of addressing data quality and the impact of
different balancing techniques on the type of algorithms and type
of classification.
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I. INTRODUCTION

The proliferation of interconnected devices, often called the
Internet of Things (IoT), has led to an unprecedented increase
in the volume of data generated and exchanged daily, and has
revolutionized how we live and work. These devices, from
smart homes to industrial control systems and autonomous
vehicles, are increasingly integrated into our daily lives, cre-
ating a vast digital ecosystem. While the IoT has brought
numerous benefits, it has also introduced new vulnerabilities
that cybercriminals are eager to exploit; the surge in connected
devices has created a complex attack surface, making it in-
creasingly difficult to identify and mitigate cyber threats. In
fact, according to the mid-year update to the 2023 SonicWall
Cyber Threat Report, IoT malware globally increased by 37%
in the first six months of 2023, resulting in 77.9 million attacks,
up from 57 million in the first six months of 2022 [1].

As the number of devices and the complexity of networks
grow, so does the sophistication of cyberattacks. These attacks
can range from relatively simple exploits, like unauthorized
access to personal devices, to large-scale data breaches that
compromise sensitive information. More concerning are the
cyberattacks that target critical infrastructure, such as power
grids, transportation networks, and healthcare systems, where
IoT devices play a pivotal role. These attacks, often leveraging

vulnerabilities in IoT ecosystems, can lead to severe conse-
quences, including disruptions in critical services, financial
losses, and threats to public safety.

Among these, intrusion detection has become a crucial area
of research due to the increasing complexity and frequency
of cyberattacks. These systems form a critical line of defense
against cyber threats by identifying unauthorized access or ma-
licious activities. However, the accuracy of intrusion detection
algorithms is highly sensitive to the quality of the data they
rely on [2], [3]. Low-quality or imbalanced datasets can lead
to misleading results, poor model performance, and a higher
risk of false positives or false negatives, which can undermine
the detection system’s effectiveness.

With the rise of Big Data, the challenge of handling vast
and complex datasets has become even more prominent. In
the context of intrusion detection, Big Data presents both an
opportunity and a challenge. The enormous volume, velocity,
and variety of data generated from various sources—such as
network traffic logs, user behavior, and IoT device interac-
tions—offer a wealth of information for developing sophis-
ticated and accurate detection mechanisms. This abundance
of data enables Machine Learning models to identify subtle
patterns and anomalies that could indicate malicious activity,
thereby improving the precision and adaptability of intrusion
detection systems.

However, leveraging Big Data effectively requires over-
coming several challenges. The quality and structure of data
are crucial, as cybersecurity datasets are often plagued with
challenges such as noise, missing values, and, most notably,
class imbalance. Class imbalance is often significant in the
field of intrusion detection, where normal network behavior
vastly outnumbers instances of malicious activity. In a typical
dataset, attacks may represent only a tiny fraction of the total
data, leading to a highly skewed distribution that complicates
the training of machine learning models. If not addressed
properly, this imbalance can cause the models to be skewed
toward the majority class, effectively ignoring minority classes
that represent actual threats.

Interestingly, not all algorithms are equally affected by data
imbalance. As we will discover in this study, some algorithms,
like tree-based models, are inherently more robust to class
imbalance and can perform well without extensive preprocess-
ing. On the other hand, other algorithms may struggle with
imbalanced data unless additional steps are taken to balance
the dataset or adjust decision thresholds.

In this study, we present a comprehensive analysis of the
impact of class imbalance and data quality on intrusion detec-
tion, utilizing a variety of Machine Learning and Deep Learn-
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ing algorithms, namely Random Forest, XGBoost, Logistic
Regression, Deep Neural Networks, K-Nearest Neighbors, and
LSTM. Our research aims to explore the critical importance of
addressing class imbalance, which is a common challenge in
cybersecurity datasets, and to evaluate how different techniques
influence the performance of various algorithms. We inves-
tigate both binary and multiclass classification scenarios to
provide a broader understanding of how algorithm sensitivity
to imbalance classes varies depending on the nature of the
classification task.

To rigorously assess the impact of class imbalance, we em-
ploy a range of rebalancing techniques, such as the Synthetic
Minority Over-sampling Technique (SMOTE), SMOTE-Tomek
Links, SMOTE with Random Undersampling, and SMOTE-
Tomek Links with Random Undersampling. These techniques
allow us to examine how oversampling and hybrid methods
affect different classifiers. In addition, we utilize a diverse
set of evaluation metrics, including precision, recall, F1-score,
AUC-ROC, and others, to provide a detailed and nuanced
assessment of model performance. By combining these metrics
with visualization tools, such as confusion matrices, ROC
curves, and PR curves, we aim to deliver a robust compar-
ison and analysis of the effectiveness of each algorithm and
technique.

Our study presents several key contributions that distin-
guish it from previous research in the field:

• The use of a novel dataset with several classes, en-
abling a more comprehensive evaluation of intrusion
detection in complex scenarios where the number of
attack types is varied and extensive.

• Hybrid feature selection, combining Chi-squared test
and random Forest.

• The evaluation of the impact of class imbalance
and data quality on intrusion detection using various
Machine Learning algorithms; Random Forest, XG-
Boost, Logistic Regression, Deep Neural Networks,
K-Nearest Neighbors, and LSTM. Our approach pro-
vides a broader understanding of how different algo-
rithms are affected by data challenges.

• The creation of several sub-datasets adapted for differ-
ent classification and balancing scenarios, providing a
useful resource for researchers.

• The comparison of multiple balancing methods, in-
cluding SMOTE, SMOTE-Tomek Links, and com-
binations with Random Undersampling, to explore
their impact across different classifiers in an intrusion
detection context.

• The use of a diverse set of evaluation metrics and
visual tools, such as precision, recall, F1-score, AUC-
ROC, and confusion matrices, ROC curve. . . , to de-
liver a detailed analysis of the model’s performance.
This multidimensional evaluation provides a more
complete view compared to traditional existing stud-
ies.

Subsequently, this study is organized as follows: Section
II will be devoted to discuss some of the related works. In
Section III, we will discuss class imbalance and the importance

of data quality especially in an Intrusion Detection context.
Next, we will present the dataset we used to perform our
analysis in Section IV. Section V will be dedicated to present
our comprehensive study and workflow. Section VI presents
the results, analysis, and findings. Finally, Section VII will
conclude our study.

II. RELATED WORK

The authors of [4] conducted a study on the impact
of data balancing techniques for SCADA-based intrusion
detection systems, utilizing the Morris Power dataset and
the CICIDS2017 dataset. They evaluated several balancing
methods: Random Sampling, One-Side Selection, Near-Miss,
SMOTE, and ADASYN. The authors employed a combination
of Convolutional Neural Networks (CNN) and Long Short-
Term Memory (LSTM) networks in a binary classification
problem. The performance of these techniques was assessed
using accuracy, precision, recall, and F1-score metrics. Their
findings revealed that the unbalanced data yielded better results
for the Morris Power dataset than the balanced versions.
Conversely, for the CICIDS2017 dataset, the SMOTE over-
sampling technique demonstrated better performance. The best
accuracy achieved by the model is 99.47% using the SMOTE
technique with the CICIDS2017 dataset and 73.63% using the
unbalanced Morris Power dataset.

The authors of [5] conducted a comparative analysis of sev-
eral Deep Learning algorithms, including Convolutional Neural
Networks (CNNs) and Long Short-Term Memory (LSTM)
networks, for binary classification of network intrusion detec-
tion tasks. The UNSW-NB15, KDDCup’99, and NSL-KDD
datasets were employed to evaluate the performance of these
algorithms under both balanced and imbalanced data condi-
tions. The models were assessed using standard metrics such as
accuracy, precision, recall, and F1-score. The results indicate
that, in general, balanced datasets yield superior performance
compared to imbalanced datasets. Notably, the LSTM model
achieved the highest accuracy of 95.4% on the balanced
KDDCup’99 dataset.

In [6], the authors presented a study on the influence
of resampling techniques on the performance of the ANN
model. They compared different methods, namely, random
undersampling (RU), random oversampling (RO), random un-
dersampling and random oversampling (RURO), random un-
dersampling with Synthetic Minority Oversampling Technique
(RU-SMOTE), and random undersampling with Adaptive Syn-
thetic Sampling Method (RU-ADASYN) using four datasets;
KDD99, UNSW-NB15, UNSW-NB17 and UNSW-NB18, and
they used macro precision, macro recall and macro F1-score to
evaluate the results. From this study, we note that the training
time increases with oversampling methods and decreases with
undersampling, however, the precision scores were almost
unchanged.

In IoT intrusion detection contexts, there is a notable
gap in the literature regarding the comparative evaluation
of different methods for addressing class imbalance using
different classifiers to assess the impact of these techniques
on each Machine Learning or Deep Learning algorithm.

So in another context, the authors of [7] compared sev-
eral sampling techniques, namely, Random Under Sampling,
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Random Oversampling, and the combination of the SMOTE-
NC and RUS as a hybrid resampling technique. They used
the Random Forest algorithm for binary classification and the
accuracy, precision, recall, F1-score, and ROC-AUC metrics
to evaluate each resampling technique. This study showed that
sampling techniques improve the model’s performance, espe-
cially the hybrid method. However, the Random Oversampling
method presented an overfitting problem.

The authors [8] performed a comparative study on imbal-
anced learning techniques for both classification and regression
tasks. In the classification part, they employed Random Forest,
SVM, and K-NN algorithms to address binary classification.
Their analysis compared the performance of models trained
on the original dataset and models enhanced with Over-
sampling, Under-sampling, SMOTE, and a combination of
Over-sampling and Under-sampling techniques. Accuracy was
used to evaluate the performance of the algorithms used. The
results highlighted that the over-sampling approach, particu-
larly with the Random Forest algorithm, produced the best
performance, achieving an accuracy of 98.29%.

The analysis of existing studies that examine the impact
of imbalanced data on the performance of machine learning
and deep learning algorithms reveals a significant gap in the
literature. Very few studies have conducted a comprehensive
comparative analysis of various resampling techniques in the
context of intrusion detection. Existing works are primarily
limited to binary classification, employ a narrow range of algo-
rithms, and rely on a limited set of evaluation metrics, which,
while useful, are often insufficient to assess performance fully.
Furthermore, the absence of multiclass classification in these
studies leaves a critical gap in understanding how resampling
techniques perform in more complex scenarios.

Our study aims to address these limitations by comparing
multiple resampling techniques for intrusion detection in bi-
nary and multiclass classification tasks. This approach will en-
able us to explore the impact of different resampling methods
on each algorithm and classification type. Additionally, we will
evaluate a broad range of machine learning and deep learning
algorithms using diverse metrics and graphical analysis to
provide a more comprehensive performance assessment.

III. DATA QUALITY AND IMBALANCED DATA
CHALLENGES

A. Data Quality Concept

Data quality is a critical aspect of any data-driven process,
including the degree to which data meets the needs of its
intended use. High-quality data drives accurate and reliable
insights, fosters trust in analytical outcomes, and supports
decision-making processes across various domains. In tradi-
tional data systems, ensuring data quality primarily involved
managing structured datasets and addressing issues such as
missing values, redundancy, and inconsistencies.

The main part of data quality management is data qual-
ity assessment, and data quality is generally assessed using
several dimensions. A dimension is a set of attributes that
indicate a specific element of data quality [9]. The authors
[10] described dimension as a quantitative feature of data
quality that describes an aspect of data, such as accuracy,

precision, consistency, and so on. Dimensions are assessed
using metrics, and a metric is a quantifiable instrument that
specifies how a dimension is measured. Regarding the number
of existing dimensions of data quality, there is no exact agreed-
upon count. The authors [9] conducted a comprehensive study
that identified 179 distinct dimensions of data quality. In a
subsequent analysis focused on the significance of these di-
mensions, they refined the list to 20 key dimensions, including
Completeness, Accuracy, and Consistency, among others.

Over the years, a wide variety of dimensions have been
proposed, and the most used data quality dimensions in liter-
ature are:

• Completeness: Ensures that all relevant data points
are present. Missing values in critical fields, such as
timestamps or identifiers, can hinder analyses and lead
to misinterpretations. No data should be missing in the
dataset.

• Accuracy: Ensures that the data is free from errors
and reflects the real-world entities or processes it
represents.

• Uniqueness: It guarantees that no duplicates are
present in the data.

• Consistency: Emphasizes uniformity within and across
datasets, ensuring that data from all systems within an
institution is synced and reflects the same information.

• Timeliness: Ensures that data is up-to-date, relevant to
the current context, and accessible when it is needed.

• Validity: Ensures that the data aligns with the specific
requirements.

The advent of Big Data—characterized by its volume,
velocity, variety, veracity, and value—has introduced new
complexities to data quality management. Challenges such
as handling heterogeneous data sources (structured, semi-
structured, and unstructured) like logs, social media, and IoT
sensors . . . , ensuring real-time processing, and managing data
veracity are amplified [11]. Additionally, the rapidly growing
nature of big data makes it difficult to ensure timeliness
and relevance, as outdated data can quickly lose its value.
Furthermore, the presence of noise, biases, and anomalies
across massive datasets necessitates advanced techniques for
data cleaning, integration, and preprocessing. Big data quality
management, therefore, requires scalable approaches that com-
bine traditional quality metrics with modern techniques such
as anomaly detection and automated validation mechanisms to
ensure that large-scale data remains reliable and useful.

B. Importance of Data Quality in Intrusion Detection Systems

As we have seen in our previous studies [2], [3], the
effectiveness of numerous security mechanisms, tools, and
modern machine learning (ML) and deep learning (DL) models
is heavily reliant on the quality of the data they process.
These systems leverage data at various stages to make critical
decisions aimed at ensuring system integrity and protection
against cyber threats. For instance, authentication systems ana-
lyze user credentials and behavior to decide whether to grant or
deny access, while intrusion detection and prevention systems
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(IDS/IPS) generate alerts based on patterns and anomalies
within network traffic. Similarly, Security Information and
Event Management (SIEM) systems aggregate and correlate
logs from multiple sources to detect potential threats or unusual
activities. Hence, poor data quality can severely undermine
their performance, leading to inaccurate threat detection and
increased false alarms [12]; the rule “Garbage in garbage out”
relates here.

Additionally, ML and DL techniques have further revo-
lutionized security mechanisms by enabling the development
of predictive models that can dynamically adapt to evolving
threats. High-quality data ensures that both traditional and
ML/DL-based security mechanisms can differentiate between
normal and malicious activities with greater precision, thereby
reducing false positives and negatives. Conversely, poor data
quality can lead to weak models, decreased detection accuracy,
and unreliable predictions.

Thus, maintaining robust data quality through preprocess-
ing techniques such as cleaning, normalization, and feature
extraction is crucial. These measures not only enhance the
performance of traditional security tools but also ensure the
reliability and adaptability of ML and DL models in com-
plex cyber environments. Ensuring data quality is therefore a
cornerstone of building resilient, data-driven security systems
capable of addressing the ever-evolving landscape of cyber
threats.

C. Imbalanced Data

In many real-world applications, including intrusion detec-
tion, data is often imbalanced, meaning that certain classes
are significantly underrepresented compared to others. The
initial research on imbalanced data originated from binary
classification issues; which involves the presence of both
majority and minority classes, with a certain imbalance ratio
[13]. This imbalance poses a significant challenge for some
ML and DL models, as it can lead to biased predictions
favoring the majority class while neglecting the minority class.
Balancing a dataset simplifies model training by preventing
the model from becoming biased toward one class. In other
words, the model will no longer favor the majority class simply
because it has more data [14]. Consequently, accurate detection
of rare but critical events, such as intrusions, becomes difficult.

In intrusion detection systems, imbalanced data is a per-
sistent challenge, as malicious activities, which generally rep-
resent the minority class, are significantly less frequent than
normal activities. In some cases, this class imbalance can have
severe implications for the performance of IDS, as it can
lead to models being biased towards the majority class, thus
failing to detect rare but critical intrusions. Moreover, it can
result in an increased number of false alarms, where benign
activities are incorrectly classified as intrusions. However, the
imbalanced data issue is still very context-dependent, deter-
mined by the type of ML and DL algorithms, dataset features,
and the classification task. Some models are significantly
affected by this imbalance, leading to biased predictions and
poor generalization performance. In contrast, other models can
adapt more readily as they exhibit a certain level of robustness
to class imbalance.

Several techniques have been developed to address the
imbalanced data issue, including SMOTE, SMOTE combined
with random undersampling (SMOTE RUS), and SMOTE-
Tomek Links combined with random undersampling (SMOTE-
TL RUS). Each of these techniques operates with unique mech-
anisms to balance datasets, enabling a better representation of
the minority class during model training.

1) SMOTE (Synthetic Minority Over-sampling Technique)
[15]: This method generates synthetic samples for the mi-
nority class. For each instance in the minority class, SMOTE
selects one or more nearest neighbors and creates new ex-
amples by interpolating between these points. The process of
generating synthetic samples involves selecting random data
from the minority class, calculating the Euclidean distance to
its k nearest neighbors, multiplying the difference by a random
number between 0 and 1, and then adding the result to the
minority class as a synthetic sample [16]. This procedure is
repeated until the desired proportion of the minority class is
achieved.

For a given minority sample x, a synthetic sample xnew is
created using the formula:

xnew = x+ λ(xnearest − x) (1)

where, xnearest is one of the k-nearest neighbors of x and
λ is a random number in the range [0, 1].

Fifteen years after its introduction, the SMOTE method has
become a foundation for the research community in addressing
imbalanced classification challenges. Its innovative approach
to generating synthetic samples for the minority class has
inspired numerous extensions and adaptations, each building
upon its foundation to tackle specific limitations or enhance
its applicability [17].

2) SMOTE-TL (Synthetic Minority Over-sampling Tech-
nique – Tomek Links): It is a hybrid technique that combines
the SMOTE technique with Tomek Links to address class
imbalance in datasets.

Tomek Links is a variant of the Condensed Nearest Neigh-
bors undersampling approach invented by [18]. Unlike the
CNN method, which randomly selects samples along with their
k-nearest neighbors from the majority class to be removed, the
Tomek Links method employs a rule to identify and eliminate
specific pairs of observations. A pair of observations (a, b)
is classified as a Tomek Link if it satisfies the following
conditions [16]:

*Observation a’s nearest neighbor is b.

*Observation b’s nearest neighbor is a.

*Observations a and b belong to different classes, with
one observation from the minority class and the other from
the majority class.

Mathematically, for two instances xa from the majority
class and xb from the minority class, a Tomek Link exists if
they are the nearest neighbors of each other, and the distance
d(xa, xb) is minimal.

SMOTE-TL combines the SMOTE capability to generate
synthetic data for the minority class and the Tomek Links
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ability to remove data recognized as Tomek links from the
majority class.

The overall process of SMOTE-TL can be stated as follows:

*Apply SMOTE to create synthetic samples for the minor-
ity class.

*Identify Tomek Links by checking the nearest neighbor
relationships.

*Remove the majority class instances that form Tomek
Links with the minority class instances.

3) SMOTE with random under sampling: It is a hybrid
resampling technique that combines the SMOTE technique
with undersampling. While SMOTE effectively increases the
number of minority class samples by generating synthetic
examples, it can also increase the risk of overfitting, especially
if the majority class is significantly larger. To counter this,
undersampling is employed simultaneously, which involves
randomly removing instances from the majority class to
achieve a more balanced dataset and potentially improve the
model’s performance.

4) SMOTE-TL with random under sampling: This tech-
nique consists in applying SMOTE-TL followed by an addi-
tional Random Undersampling step. It is an advanced resam-
pling technique that addresses class imbalance while further
refining the dataset. This approach leverages the strengths of
both methods to ensure balanced class distributions, remove
noisy samples, and reduce the dataset’s size, making it com-
putationally efficient for subsequent model training, especially
for large datasets.

In this study, we will explore several resampling tech-
niques, namely SMOTE, SMOTE with random undersampling,
and SMOTE-TL with random undersampling, and their im-
pacts on the performance of different ML and DL models.
Furthermore, we will evaluate how these techniques affect
binary and multiclass classification tasks and compare these
resampling methods with models trained on imbalanced data
to highlight their impact.

IV. USE CASE: THE CICIOT 2023 DATASET

To conduct our study, we used the CICIoT2023 dataset
[19], a recent and extensive IoT attacks dataset. It was created
at the Canadian Institute for Cybersecurity, University of New
Brunswick. This dataset includes 33 attacks that are classified
into seven types of attacks. Table I represents the types of
attacks and their description.

The authors extracted over 68 million records and 47
features using an IoT topology regrouping 105 devices.

To optimize computing time, we randomly selected 20%
of the original dataset, constituting a subset of 13,584,750
records. Fig. 1 represents the class distribution of our selected
data.

This selection was made to facilitate efficient analysis and
ensure the feasibility of processing the data within the available
computational resources.

V. WORKFLOW AND EXECUTION

Our comprehensive study focuses on a multifaceted ap-
proach to intrusion detection. It begins with data selection and
extraction, followed by a rigorous data cleaning process to
prepare the dataset for further analysis. The study then involves
creating three distinct datasets: a binary dataset, an 8-class
dataset, and a 34-class dataset.

For each dataset, feature engineering is used to identify rel-
evant features and scale the data appropriately. Subsequently,
we apply multiple Machine Learning and Deep Learning
algorithms to classify attacks under various scenarios of imbal-
anced data treatment, including using SMOTE, SMOTE-RUS,
SMOTE-TL RUS, and unbalanced data. This holistic approach
ensures a robust benchmarking and evaluation of the proposed
classification techniques across different data representations
and balancing strategies.

A. Data Preprocessing

The first phase of our work focused on data preparation,
which is a critical step in ensuring the quality and relevance
of our analysis.

In this initial phase of our research, we chose the CICIOT
2023 dataset, a novel Internet of Things dataset that aligns
well with our study’s objectives. The original dataset com-
prises approximately 68 million records; however, to optimize
our computational resources, we randomly extracted a subset
of around 13 million records. The extracted data contained
approximately 2% benign traffic, compared to the original
dataset’s 1.6%, ensuring consistency in data representation.

Following, we performed a comprehensive data cleaning
process, as illustrated in Fig. 2.

This step was crucial due to the presence of duplicate
entries, which we identified and removed. We also standardized
the formatting of our columns to ensure uniformity in value
representation and corrected data types where necessary; for
instance, some columns initially labeled as Float were in-
correctly designated as String. Additionally, we conducted a
thorough check for missing values to maintain data integrity.
To facilitate further analysis, we encoded categorical features
using the label encoder technique.

By the end of this phase, we successfully obtained a
clean dataset from which we derived three distinct datasets:
a binary dataset, an 8-class dataset, and a 34-class dataset, to
evaluate our classification models under varying scenarios and
complexities.

Following the data preparation phase, we conducted feature
engineering, a crucial step in improving the performance
of machine learning models by selecting the most relevant
features and transforming the data into a more informative
format.

As shown in Fig. 3, for each dataset created (binary, 8-
class, 34-class), this phase began with feature selection, where
we employed a hybrid method that integrates the Chi-Squared
test and Random Forest techniques. The Chi-Squared test is
a statistical method used to evaluate the independence of
categorical variables, helping us identify features that have a
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TABLE I. TYPES OF ATTACKS

Type of attack Attacks Description

DoS TCP flood, HTTP flood, SYN flood, UDP flood An attempt to overload a machine or network, with the aim of weakening its
performance or making it completely inaccessible.

DDoS ACK fragmentation, UDP flood, SlowLoris, ICMP
flood, RSTFIN flood, PSHACK flood, HTTP flood,
UDP fragmentation, TCP flood, SYN flood, Synony-
mousIP flood

A DoS attack where multiple machines flood the target.

Brute Force Dictionary brute force A hacking method that cracks passwords, encryption keys. . . using trial-and-
error.

Reconnaissance Ping sweep, OS scan, Vulnerability scan, Port scan,
Host discovery

An attack where the actor gathers all the information of his target for exploit.

Spoofing ARP spoofing, DNS spoofing An attempt to gain access to a system by hiding the real identity or location.

Mirai GRE IP flood, GRE Ethernet flood, UDP plain flood A botnet designed to take over IoT devices and turn them into controlled bots.

Web Based SQL injection, Command injection, Backdoor malware,
Uploading attack, Cross-Site Scripting (XSS), Browser
hijacking

A method used by cybercriminals to compromise computer systems, steal data, or
cause damage by exploiting vulnerabilities in applications or services accessible
via the Internet.

Fig. 1. Class distribution of our selected data.

significant relationship with the target variable. A high Chi-
Square score indicates that the independence hypothesis is
incorrect, which means the greater the Chi-Square value, the
more reliant the feature is on the response and hence suitable
for model training [20].

This initial filtering process efficiently narrows the feature
set by highlighting the most relevant features based on their
statistical significance. Subsequently, we applied the Random
Forest algorithm, an ensemble learning method that assesses

the importance of features based on their contribution to
the model’s predictive accuracy. By combining these two
techniques, we benefit from the strengths of both: the Chi-
Squared test provides a quick and interpretable means of initial
selection, while Random Forest offers a robust evaluation
of feature importance. This hybrid approach enhances the
efficiency of our feature selection process and ensures that
we retain the most informative features, ultimately leading to
improved model performance.
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Fig. 2. Our data preparation process.

Fig. 3. Our feature engineering process.

Next, we implemented feature scaling using standardiza-
tion, a crucial process that transforms our features to have a
mean of zero and a standard deviation of one. This technique
is particularly beneficial in machine learning, as it ensures that
all features contribute equally to the distance calculations and
optimization algorithms used in various models, regardless of
their original scale.

B. Machine Learning and Deep Learning Modeling Under
Different Balancing Scenarios

In this phase of our research, we focused on modeling
various Machine Learning and Deep Learning algorithms to
classify attacks under multiple scenarios: imbalanced data,
balanced data using SMOTE, balanced data using SMOTE-
RUS, and balanced data using SMOTE-TL RUS, for each

dataset (binary, 8-class, and 34-class); which results in 12
scenarios for each algorithm.

As shown in Fig. 4, we chose different algorithms, namely
XGBoost, Random Forest, Logistic Regression, Deep Neural
Networks, Long Short-Term Memory (LSTM), and K-Nearest
Neighbors (K-NN). These algorithms were trained on the
respective training datasets, and hyperparameter optimization
was conducted using the GridSearch technique.

GridSearch systematically evaluates a given set of hyper-
parameter combinations to identify the optimal configuration
for each algorithm. This approach ensures that the models are
fine-tuned to their best possible performance, reducing the risk
of underfitting or overfitting. GridSearch offers the advantage
of exhaustive search across the hyperparameter space, ensuring
no potential configuration is missed.
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Fig. 4. Our ML and DL modeling workflow.

Once the optimal hyperparameters were identified through
validation, the final models were evaluated on the test set.
This evaluation step aimed to provide a robust and unbiased
assessment of the model’s performance.

To ensure a comprehensive and reliable evaluation of our
models, we used various performance metrics, namely accu-
racy, precision, recall, F1-score, AUC-ROC, confusion matrix,
PR curve, and ROC curve. These metrics were chosen to
capture different aspects of model performance, such as overall
accuracy, ability to minimize false positives, sensitivity to
detecting true positives, and the balance between precision and
recall. Furthermore, the AUC-ROC, PR curve, and confusion
matrix provide thorough insights into the model’s behavior,
offering a deeper understanding of each classifier’s strengths
and weaknesses.

By leveraging diverse balancing techniques, a wide range
of classification algorithms, and multiple datasets, our study
provides a detailed and thorough evaluation of the models,
ensuring that the results are reliable and generalizable across
different attack classification scenarios. This comprehensive
approach represents a significant improvement over existing

studies that rely on fewer metrics or scenarios.

VI. RESULTS AND DISCUSSION

As we mentioned before, we present and analyze the
performance of several Machine Learning and Deep Learning
algorithms for intrusion detection using a binary dataset, an 8-
class dataset, and a 34-class dataset under different balancing
scenarios, namely imbalanced data, balanced with SMOTE,
and balanced with SMOTE-RUS and SMOTE-TL RUS.

Our experiment was conducted on a Windows 10 Operating
System with 16 GB RAM and an Intel(R) Core(TM) i7-7600U
CPU @ 2.80 GHz, 2904 MHz processor.

As shown in Table II, for the binary dataset, the results
reveal notable differences across balancing strategies.

XGBoost achieved consistent results across all metrics,
particularly with the original imbalanced dataset, where it
performs slightly better in accuracy, precision, recall, and
F1-score. This suggests that XGBoost handles imbalanced
data effectively. On the other hand, K-NN demonstrates an
excellent performance, especially with the SMOTE-TL RUS
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TABLE II. PERFORMANCE METRICS OF OUR MODELS FOR BINARY CLASSIFICATION ACROSS DIFFERENT BALANCING SCENARIOS

Binary classification

SMOTE-TL RUS SMOTE RUS SMOTE Imbalanced data

XGBoost

accuracy 98.78 98.20 98.68 99.28

precision 98.85 99.07 98.96 99.57

recall 98.71 97.33 98.38 99.69

f1-score 98.78 98.19 98.67 99.63

AUC ROC 98.78 98.20 98.67 90.99

KNN

accuracy 99.35 99.07 99.27 99.32

precision 99.78 99.77 99.86 99.75

recall 98.92 98.36 98.68 99.55

f1-score 99.35 99.06 99.27 99.65

AUC ROC 99.64 99.3 99.61 99.44

Logistic Regression

accuracy 95.75 95.44 95.54 98.54

precision 93.61 93.48 93.60 99.26

recall 98.21 97.71 97.78 99.25

f1-score 95.86 95.54 95.64 99.25

AUC ROC 98.61 98.48 98.59 97.26

Random Forest

accuracy 95.16 95.60 98.45 99

precision 91.77 92.94 99.66 99.26

recall 99.23 98.72 97.24 99.70

f1-score 95.35 95.74 98.43 99.49

AUC ROC 99.71 99.45 99.68 99.77

LSTM

accuracy 98.78 97.75 98.66 97.66

precision 99.01 95.55 99.26 97.66

recall 98.55 97.96 98.04 100

f1-score 98.78 97.76 98.65 98.82

AUC ROC 93.83 97.91 98.76 79.74

DNN

accuracy 98.75 98.76 99.24 99.22

precision 98.66 98.75 99.70 99.65

recall 98.84 98.76 98.78 99.55

f1-score 98.75 98.75 99.24 99.60

AUC ROC 99.81 99.82 99.90 99.79

and SMOTE scenarios, highlighting high precision and recall
values. It also maintains strong performance on the imbalanced
dataset, indicating that K-NN can benefit from both balanced
and imbalanced cases.

In addition, Logistic Regression shows moderate perfor-
mance compared to other models, with significant improve-
ments in the imbalanced dataset. Random Forest shows consid-
erable strength in precision and recall, particularly on the im-
balanced dataset and SMOTE scenarios. Its ability to achieve
high AUC-ROC scores across all scenarios demonstrates its
robustness and reliability for binary classification tasks.

Regarding Deep Learning models, LSTM demonstrates
robust performance across most metrics, with high accuracy,
precision, recall, and F1-score in all balancing scenarios.
However, the AUC-ROC value varies significantly, being lower
with imbalanced data, indicating that the model’s ability to
distinguish between classes is less effective without balancing
techniques. SMOTE-TL RUS and SMOTE show relatively
consistent and strong results, suggesting these techniques
enhance the model’s discrimination ability while maintain-
ing other performance metrics. Furthermore, for DNN, the

performance is consistently strong across all scenarios, with
minimal differences in metrics. The DNN model achieves
its highest AUC-ROC with SMOTE, reflecting its remarkable
ability to differentiate between classes with imbalanced data.
Additionally, its precision and F1-score are notably high,
indicating effective handling of class imbalance.

Table III shows the performance of our models across
different balancing techniques on an 8-class dataset.

As we can see, XGBoost performs best with imbalanced
data, achieving the highest accuracy and AUC ROC. However,
its recall and F1-score are low, indicating poor performance
with minority classes. Furthermore, K-NN exhibits strong per-
formance across all techniques, with particularly high accuracy
and AUC ROC on imbalanced data. Recall and F1-score
are low however, SMOTE improves its recall and F1-score,
highlighting its suitability for balanced datasets.

In addition, Logistic Regression’s performance is relatively
stable, with moderate accuracy and AUC ROC. Balancing
techniques improve recall and F1-score slightly, but it is clear
that the model struggles to capture complex relationships in
the data. Random Forest performs poorly on imbalanced data,
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TABLE III. PERFORMANCE METRICS OF OUR MODELS FOR 8-CLASS CLASSIFICATION ACROSS DIFFERENT BALANCING SCENARIOS

8-class classification

SMOTE RUS SMOTE-TL RUS SMOTE Imbalanced data

XGBoost

accuracy 51.46 59.59 44.18 81.22

precision 56.25 61.42 69.52 76.59

recall 50.46 58.75 44.15 54.87

f1-score 49.16 55.05 38.37 52.52

AUC ROC 88.43 92.3 91.93 96.64

KNN

accuracy 64.51 70.59 78.92 88.07

precision 65.62 70.48 79.66 64.82

recall 64.53 69.10 78.93 57.13

f1-score 64.55 69.06 78.32 58.56

AUC ROC 92.20 92.47 96.93 92.54

Logistic Regression

accuracy 55.20 60.50 59.12 80.55

precision 57.27 61.22 61.41 63.03

recall 55.58 58.23 59.11 41.15

f1-score 53.15 57.32 58.06 42.81

AUC ROC 88.73 89.68 90.56 94

Random Forest

accuracy 49.1 63.11 58.04 73.30

precision 55.08 68.53 76.70 77.16

recall 48.45 61.82 58.06 56.78

f1-score 46.55 61.62 57.25 57.57

AUC ROC 89.39 92.42 95.32 92.69

LSTM

accuracy 51.46 58.18 59.61 78.47

precision 69.72 67.29 79.83 27.30

recall 52.42 57.12 59.59 32.35

f1-score 47.35 56 59.21 27.72

AUC ROC 88.04 89.76 89.29 86.02

DNN

accuracy 55.83 61.18 73.22 88.13

precision 60.55 65.55 75.96 72.96

recall 56.30 58.88 73.22 57.3

f1-score 54.22 58.08 73.03 59.73

AUC ROC 89.54 90.06 96.15 97.52

with accuracy and F1-score trailing other models. Smote-TL
RUS significantly boosts RF’s recall and F1-score, indicating
its reliance on balanced datasets to handle minority classes
effectively.

Concerning Deep Learning models, LSTM shows incon-
sistent performance, with high precision on SMOTE but very
low recall on imbalanced data. Balancing techniques like
SMOTE-TL RUS and SMOTE enhance its recall and F1-
score. Moreover, DNN performs well overall, with the best
accuracy and F1-score on imbalanced data. Its AUC ROC
is also the highest among all models. SMOTE significantly
enhances its recall and F1-score, highlighting its ability to
leverage balanced data effectively.

Table IV shows the performances of our models across
different balancing techniques on a 34-class dataset.

As observed, XGBoost performs quite well with imbal-
anced data, achieving moderate accuracy and a high AUC
ROC, indicating its ability to separate classes probabilistically.
However, its low recall and F1-score reveal poor performance
on minority classes. Balancing techniques such as SMOTE
and SMOTE RUS provide slight improvements in recall and

F1-score but result in lower overall accuracy. Furthermore, K-
NN demonstrates robust performance, particularly with Sample
SMOTE, achieving high accuracy and AUC ROC. While its
recall and F1-score are relatively low on imbalanced data,
balancing techniques like Sample SMOTE significantly boost
these metrics, showing its adaptability to rebalanced datasets.

Moreover, Logistic Regression maintains moderate per-
formance across all scenarios, with high AUC ROC values.
However, its accuracy and F1-score are low, reflecting its
inability to model complex relationships. SMOTE slightly
improves recall and F1-score, but the model struggles to
achieve competitive performance compared to others. Random
Forest shows high accuracy and precision on imbalanced data
but low recall and F1-score, indicating challenges in handling
minority classes. SMOTE noticeably improves RF’s recall and
F1-score, demonstrating its reliance on balanced datasets to
perform effectively.

Among Deep Learning models, LSTM shows inconsistent
performance. It achieves a high AUC ROC on imbalanced
data but has low recall and F1-score. SMOTE enhances its
recall and F1-score, indicating its potential with balanced
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TABLE IV. PERFORMANCE METRICS OF OUR MODELS FOR 34-CLASS CLASSIFICATION ACROSS DIFFERENT BALANCING ACENARIOS

34-class classification

Imbalanced data SMOTE-TL RUS SMOTE RUS SMOTE

XGBoost

accuracy 76.28 39.08 40.18 40.44

precision 56.55 35.65 41.06 44.55

recall 53.63 35.86 40.82 40.46

f1-score 49.64 30.83 35.80 38.46

AUC ROC 95.01 90.73 92.38 69.83

KNN

accuracy 79,03 50.76 46.72 74,6

precision 58,78 46.43 47.51 74,72

recall 48,89 44.50 47.15 74,62

f1-score 48,78 39.65 45.12 73,48

AUC ROC 88,14 85.06 84.31 97,77

Logistic Regression

accuracy 76.03 46.27 42.81 51.86

precision 44.94 43.04 43.10 51.40

recall 36.50 44.17 45.86 51.82

f1-score 35.37 38.19 39.76 48.97

AUC ROC 97.83 92.91 92.64 94.67

Random Forest

accuracy 79.93 30.35 30.46 66.54

precision 64.34 23.72 26.35 72.97

recall 51.74 29.90 31.95 66.54

f1-score 52.18 22.06 24.12 64.52

AUC ROC 95.55 86.83 90.99 98.39

LSTM

accuracy 80.63 42.04 35.94 55.75

precision 38.07 31.12 31.88 59.62

recall 35.33 38.24 40.57 55.69

f1-score 33.77 30.16 30.34 51.67

AUC ROC 98.07 92.51 92.40 96.11

DNN

accuracy 83.14 36.81 34.68 63.55

precision 50.35 24.52 28.29 67.12

recall 45.99 31.55 37.93 63.49

f1-score 45.46 22.82 29.02 61.49

AUC ROC 98.98 89.47 90.31 97.48

datasets. Similarly, DNN achieves the best overall performance
on imbalanced data, with the highest accuracy and AUC ROC.
While its recall and F1-score are initially low, SMOTE and
Smote-TL RUS significantly enhance these metrics.

Due to space limitations, we only show ROC curves, PR
curves, and confusion matrices of the best models across all
balancing scenarios on each dataset.

Fig. 5, Fig. 6, and Fig. 7 show the ROC curve of the best
model in each dataset.

Fig. 8, Fig. 9, and Fig. 10 show the PR curve of the best
model in each dataset.

Fig. 11, Fig. 12, and Fig. 13 show the confusion matrices
of the best model in each dataset.

As we can deduce, our curves and matrices further confirm
and support the reported scores and the accompanying dis-
cussion. They visually illustrate the variations in performance
across models and balancing techniques.

Fig. 5. ROC Curve of the DNN model using imbalanced data and the binary
dataset.
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Fig. 6. ROC Curve of the DNN model using imbalanced data and the
8-class dataset.

Fig. 7. ROC Curve of the DNN model using imbalanced data and the
34-class dataset.

Fig. 8. PR Curve of the DNN model using imbalanced data and the binary
dataset.

Fig. 9. PR Curve of the DNN model using imbalanced data and the 8-class
dataset.

VII. CONCLUSION

In this study, we conducted a comprehensive analysis of
the impact of data quality and class imbalance on classification
problems, focusing on binary, 8-class, and 34-class classifica-
tion in the context of intrusion detection. Using a novel IoT
dataset, we thoroughly evaluated the performance of various
Machine Learning and Deep Learning algorithms in different
balancing scenarios and with different datasets. Our work goes
beyond traditional evaluations by incorporating a diverse set
of performance metrics; accuracy, precision, recall, F1-score,
AUC-ROC, and visual tools such as confusion matrices, PR
curves, and ROC curves. This approach ensures a robust and
reliable assessment of algorithmic performance.

Additionally, our study demonstrates how results vary
depending on each balancing technique and classification type,
with certain models excelling in binary tasks but showing
limitations in multiclass settings, while others are susceptible
to imbalanced data and handle it differently. Another key
outcome of this research is the creation of multiple sub-datasets
tailored for different classification and balancing scenarios,
offering a valuable resource for researchers seeking to extend
this analysis or apply these datasets for their research.

In our future work, we intend to investigate the strategic
role of data quality in reinforcing the resilience of Intrusion
Detection Systems against sophisticated adversarial threats.
Moreover, our findings also emphasize the trade-off between
the performance of our models and computational cost, as
these robust models often require significantly greater com-
putational resources. Finally, extending this approach to other
critical domains such as automotive or healthcare systems
could provide further insights into the generalization of our
findings.
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