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Abstract—Wood anatomical features are crucial in forestry
science, traditionally relying on manual inspection of wood cross-
sections. This conventional method is time-consuming, subjec-
tive, and dependent on expert experience. Recent advancements
in deep learning offer high accuracy but often operate as
black-box models, lacking interpretability and struggling with
out-of-distribution challenges under real-world variations. To
address these limitations, we propose a two-stage framework
combining deep-learning-based image classification and explicit
anatomical feature analysis, directly extracting expert-recognized
morphological attributes such as pore size, frequency, and
spatial arrangement from macroscopic images. By quantifying
these anatomical descriptors, our framework yields transparent,
OOD-robust features that can be directly fed into downstream
species-identification models, thereby enhancing future classifica-
tion accuracy while preserving interpretability. An end-to-end
implementation integrates data acquisition, automated feature
extraction, and interactive visualization, making the methodology
practically applicable in both laboratory and field settings.
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I. INTRODUCTION

Wood anatomical analysis is fundamental to forestry man-
agement, biodiversity conservation, and accurate identifica-
tion of timber species. In routine practice, specialists inspect
anatomical features on the transverse surface—such as vessel
(pore) arrangement, ray structure, and axial parenchyma—to
determine the taxon. Especially in many developing coun-
tries, samples for wood-species identification are shipped to
a central laboratory, where trained analysts view the cross-
sections under optical magnifiers or microscopes and match
their observations to standardized references (e.g., the IAWA
list [1]). This manual workflow is time-consuming, labour-
intensive, and inherently subjective because accuracy depends
on the expert’s experience.

In recent years, numerous research efforts have explored
automated or semi-automated machine learning approaches
for wood species analysis, often reporting high accuracy on
benchmark datasets [2], [3], [4]. For example, Pratondo et
al. [4] studied and compared various machine learning tech-
niques for classifying three similar wood types—jeungjing,
puspa, and suren—using k-nearest neighbors, support vector
machines, decision trees, random forests, and Inception-v3.
Their experiments showed that the random forest classifier
achieved the highest accuracy at 90.67%.

Bello et al. [2] proposed combining Mask R-CNN with a
modified residual network, attaining a notable 92% accuracy
in wood species identification. Such advancements may be
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surprising to lay readers, as they adapt state-of-the-art deep
learning methods—commonly seen in broader computer vi-
sion tasks—to the specialized context of wood identification.
Nguyen-Trong [3] further introduced an approach based on
convolutional neural networks to analyze wood images at
multiple magnification levels, providing a comprehensive dis-
cussion of the research framework, methodology, and findings
for deeper insight into its effectiveness.

Despite these promising results, many of these solutions
operate as black-box image classifiers with limited inter-
pretability regarding which anatomical features underlie the
final decision. To address these limitations, our work proposes
a strategy to analyze and extract important anatomical features
commonly used by experts, such as pore size, pore arrange-
ment, and pore frequency, directly from macroscopic images.
Traditional wood anatomy is grounded in systematically cat-
egorizing xylem anatomical features, which often facilitates
identification at the genus level. However, fully capturing every
detail in the xylem structure using only visual judgment and ac-
cumulated expertise can be challenging. Consequently, several
approaches now focus on quantifying anatomical markers such
as cell wall thickness and cell count, in contrast to conventional
inspection methods that remain somewhat subjective [5].

Therefore, this approach not only aids in identification
by leveraging anatomically meaningful descriptors but also
enhances explainability, as the model outputs explicit morpho-
logical attributes that correlate with standard wood anatomy
references.

The main contributions of this study are as follows:

e  We propose a two-stage methodology that first classi-
fies macroscopic images into wood versus non-wood
categories, and then segments Vessel-Centric Regions
(VCRs), defined as pore lumina along with immedi-
ately adjacent perivascular parenchyma, if present.

e  We employ DenseNetl121-based feature extraction for
robust wood image classification and utilize Mask R-
CNN for precise segmentation of anatomical features,
enabling detailed quantitative analysis.

e  We provide an end-to-end implementation integrating
mobile-based image classification, remote anatomical
segmentation, and visualization, demonstrating practi-
cal utility for both laboratory and field applications.

The remainder of this study is organized as follows:
Section II reviews recent literature on automated wood identi-
fication. Section III details our proposed two-stage framework,
including data preprocessing and anatomical feature extraction.
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Section IV presents experimental setups and quantitative evalu-
ations. In Section V, we demonstrate an end-to-end application
that integrates the proposed method into a real-world workflow.
Finally, Section VI concludes the study and discusses future
research directions.

II. RELATED WORKS

Recent research in wood species analysis has explored var-
ious approaches using machine learning and computer vision.
Regarding methodologies, two main categories can be distin-
guished: 1) traditional machine learning, including k-NN [6],
SVM [7], and ANN [8], which often require handcrafted
features, and ii) deep learning methods, such as CNN-based
architectures [3] (VGG [9], ResNet [10], SqueezeNet [11],
DenseNet [12], etc.), which automatically extract features
from image data. Studies have utilized both microscopic and
macroscopic images, with a trend towards more accessible
macroscopic imaging techniques [3], [13].

Many recent works favor deep learning because of its
higher performance when sufficient data is available. Silva et
al. [14] demonstrated high success rates (88 to 90%) in clas-
sifying 77 Central-African timber species using microscopic
images and texture-based features. Advancements in deep
learning have shown promise, with He et al. [15] achieving
100% accuracy on a dataset of 8§ wood species using an
ensemble of convolutional neural networks. Herrera-Poyatos
et al. [13] proposed a patch-based classification method for
high-resolution macroscopic images, addressing challenges in
capturing fine-grained patterns. Nguyen-Trong [3] evaluated
various CNN architectures across different magnification lev-
els, finding DenseNet121 to perform best on 20x magnified
images.

Despite these advances, most studies primarily focus on
classification tasks (i.e., assigning a species label to an image).
The anatomical analysis of wood, particularly the segmentation
and measurement of pores (e.g., solitary pores, pore multiples,
pore clusters), parenchyma arrangements, or other micro-
features, remains relatively under, explored at the macroscopic
scale. However, these features are crucial for a detailed under-
standing of wood anatomy and can bolster both automated
classification accuracy and the broader morphological char-
acterization of new wood samples. For example, identifying
whether pores are solitary or clustered (and quantifying pore
size, frequency, and distribution) directly contributes to more
accurate species identification and deeper insight into the
wood’s anatomical structure.

In literature, anatomical analysis has been widely applied
across medical imaging to enhance classification accuracy
and provide deeper insights into structural characteristics.
This approach is crucial for various applications, including
surgical planning, disease progression tracking, and treatment
planning [16]. Recent advancements in image segmentation
techniques have been employed to define anatomical structures
in CT images, particularly for COVID-19 diagnosis [17].
Image analysis techniques are essential for improving the
quality of medical images and extracting features that lead
to better classification results and more accurate diagnoses
[18]. Deep learning methods, such as CNNs, have shown
remarkable performance in anatomy-specific classification of
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medical images. By training on large datasets of CT scans and
employing data augmentation techniques, CNNs can achieve
high accuracy in classifying anatomical structures, with error
rates as low as 5.9% [19].

Techniques like CNNs have demonstrated remarkable suc-
cess in automatically delineating complex anatomical features
from medical images, thereby improving both the efficiency
and accuracy of medical assessments [20].

Despite the proven efficacy of anatomical analysis in fields
like medical imaging, its application within the domain of
wood identification remains relatively underexplored, partic-
ularly at the macroscopic level. Traditional wood identifica-
tion methods often rely on manual examination of features
such as pore arrangement, parenchyma patterns, and other
microstructures. However, these manual approaches are time-
consuming and subject to human error. While some studies
have employed computer vision techniques for wood species
classification, they predominantly focus on assigning species
labels without delving into the segmentation and quantitative
analysis of anatomical features [21].

Integrating anatomical analysis into wood identification
holds significant potential. By employing advanced image
segmentation techniques to automatically identify and measure
key features, such as distinguishing between solitary pores
and pore clusters, and quantifying their size, frequency, and
distribution, researchers can achieve more accurate species
identification and gain deeper insights into wood anatomy. This
approach mirrors the successes seen in medical imaging and
suggests a promising avenue for enhancing wood identification
processes through the application of sophisticated computer
vision methodologies.

Building upon this research context, our work aims to
develop a two-stage approach for automated anatomical anal-
ysis of wood cross-sections using macroscopic images. First, a
classifier (trained with a DenseNet121 feature extractor and an
GMM) determines whether an input image indeed represents
a magnified wood cross-section. Next, images confirmed to be
wood cross-sections proceed to a detection and segmentation
model to identify and segment pores, followed by computing
various anatomical descriptors (i.e., average pore size, pore dis-
tribution, solitary versus multiple pore frequency). The overall
objective is to integrate these methods into a system deployable
on resource-constrained devices, such as smartphones, thereby
facilitating affordable, efficient, and accurate wood anatomical
analysis in both laboratory and field settings.

III. MATERIALS AND METHODS

In this section, we present the materials and methods
underlying our automated wood anatomical analysis. First,
we describe our approach for classifying macroscopic images
into wood versus non-wood categories. Next, we outline the
segmentation of Vessel-Centric Regions (VCRs) using Mask
R-CNN. Finally, we detail the extraction of anatomical descrip-
tors, including VCR size, frequency, and spatial arrangement,
essential for characterizing different wood species.

A. Wood Macroscopic Image Classification

Binary classification is arguably the most widely docu-
mented branch of supervised machine learning, especially in
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domains where both positive and negative classes are naturally
bounded by the same medium (e.g., “ham versus spam” in
email). However, complications emerge when applying this
framework to image classification tasks.

Consider the challenge of building a model to determine
whether an image shows a magnified wood cross-section. We
may have a substantial collection of wood cross-section images
for the “wood” class, but “not wood” examples can be drawn
from virtually any image category—making it nearly infinite
in scope. This is unlike email filtering, where even “spam”
emails are still emails, sharing a common format and feature
space with “ham”.

There are multiple ways to tackle this. One approach is
one-class classification, in which a model is trained primarily
(or exclusively) on positive-class data—in this case, images of
wood cross-sections. When such a model encounters a novel
input, it determines whether the input sufficiently resembles the
positive class (“wood”) or should be flagged as an outlier (“not
wood”). Techniques such as autoencoders, One-Class SVM, or
Isolation Forest can be used in this context.

However, if we do have access to certain negative ex-
amples—i.e., images known to contain no wood cross-
sections—then more traditional binary classification methods
can be applied. A common strategy is to perform feature
extraction via a pretrained CNN (e.g., DenseNetl21), re-
duce the dimensionality (e.g., with PCA), and then train a
conventional machine learning model (e.g., SVM, Gaussian
Mixture with Isotonic Regression) on these features. This
latter approach benefits from explicitly learning to discriminate
between “wood” and “not wood”, but requires a representative
set of negative examples.

In our work, we adopt transfer learning for feature extrac-
tion, followed by testing multiple classification schemes. This
allows us to balance performance needs with the availability of
negative data. By leveraging proven CNN architectures trained
on vast image datasets (e.g., ImageNet), we can efficiently
generate high-level embeddings that are then used by simpler
classifiers. This technique proves especially practical in real-
world scenarios, where the negative class (all images that are
“not wood”) is both diverse and difficult to comprehensively
represent.

1) Feature extraction with DenseNet: To handle this classi-
fication task, we adopt a transfer learning approach that relies
on DenseNetl121, a well-known convolutional neural network
pretrained on large-scale image datasets (e.g., ImageNet).
Specifically, we remove the original classification layer (i.e.,
the fully connected top) and leverage the network’s final
feature maps (global average pooled) as a 512-dimensional
feature vector for each input image.

All images are first resized to 224x224 and standardized
(e.g., pixel values divided by 255) to match the input layer
requirements of DenseNet121. Next, the pretrained model
processes each image to produce the condensed feature rep-
resentation. This step provides a robust and discriminative
embedding of the original imagery without the need to train a
full CNN from scratch.

2) Dimensionality reduction and scaling: Following fea-
ture extraction, we scale and apply Principal Component
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Analysis to reduce dimensionality. Dimensionality reduction
serves two main purposes:

e It helps mitigate noise or redundant information in the
extracted feature space.

e It substantially decreases training time for subsequent
classification models, as high-dimensional feature vec-
tors are compressed into a more manageable number
of principal components.

3) Classification approaches: Once the feature vectors are
extracted and reduced via PCA, we evaluate several classifi-
cation methods, including Gaussian Mixture Models (GMM)
with Isotonic Regression, One-Class SVM, and Isolation For-
est.

GMM with Isotonic Regression can leverage a small vali-
dation set containing both positive (wood) and negative (non-
wood) examples. By modeling the distributions of each class,
the GMM can estimate the likelihood that a new image belongs
to the learned “wood” distribution, and Isotonic Regression
refines the decision threshold for improved calibration.

In scenarios with little or no labeled negative data, one-
class classifiers such as One-Class SVM and Isolation Forest
are valuable. Trained primarily (or exclusively) on images
known to be wood, these models learn a boundary around
the “wood” manifold in the feature space. At inference time,
any sample that falls outside this boundary is considered “not
wood”.

One-Class SVM constructs a decision function tailored
to capture the dense region of positive samples in the high-
dimensional space. Isolation Forest isolates anomalies by ran-
domly selecting a feature and splitting values between them,
effectively “isolating” outliers—i.e., images that do not resem-
ble wood. These one-class methods excel when assembling a
truly representative negative dataset is impractical. However,
whenever domain knowledge or partial negative examples are
available, combining them with positive samples for a more
traditional binary classification (e.g., SVM, Random Forest,
or GMM with a mixed training set) can boost performance
and interpretability.

B. Wood-Pore (Vessel-Centric Region) Segmentation

In diffuse- and ring-porous hardwoods the most conspic-
uous anatomical element is the vessel (the pore lumen).
Depending on species, the lumen may be surrounded by a
narrow or wide sheath of perivascular parenchyma; in other
cases the lumen is embedded directly in fibre tissue with
little or no parenchyma contact. Because both situations occur
within the same slide, a consistent segmentation target is
essential. Throughout this study, instead of segmenting pore
lumina alone—which is challenging due to the close adja-
cency of lumina and perivascular tissues in many species—we
predict vessel-centric regions (VCRs), defined as a pore
lumen together with any immediately adjacent perivascular
parenchyma, if present.

If two lumina are in contact or share a common PP
envelope the region is labelled as a double-VCR; otherwise it is
considered a single-VCR. This strategy—which we abbreviate
P+PP—allows one annotation protocol to cover solitary pores,
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Fig. 1. Mask R-CNN architecture.

radial multiples, and pores embedded in aliform or confluent
parenchyma without having to redraw masks when the sur-
rounding tissue changes.

To segment these VCRs in 50x macroscopic images we
employ Mask R-CNN [22], which couples a region-proposal
network with a fully convolutional mask head and thus yields,
in a single forward pass, bounding boxes, class labels (single
vs. double) and pixel-accurate masks for every VCR detected.

Fig. 1 presents the architecture of the Mask R-CNN using
in this study. The model employs a ResNet-50 backbone,
which extract hierarchical features from an input RGB image
at multiple scales. These features are processed by a Feature
Pyramid Network, which generates multi-scale feature maps.
This multi-scale representation captures anatomical details of
varying sizes, such as small and large pores, by combining
high-resolution features from early stages (e.g., P2 with H/4 x
W/4) with semantically rich features from deeper stages (e.g.,
P6 with H/64 x W/64).

The Region Proposal Network leverages these FPN feature
maps to generate candidate regions (box proposals) that may
contain pores. Using an anchor-based approach, the RPN
applies convolutional operations to propose regions of interest
(Rols). These proposals are then aligned with the feature maps
using the Rol Pooler, which employs Rol Align—a precise
pooling mechanism that preserves spatial accuracy by avoiding
quantization errors.

The aligned features are fed into the Rol Heads, which
consist of two components:

e  Box head: Performs object classification (e.g., identi-
fying a region as a pore) and bounding box regression

to refine the coordinates of each detected object.

e  Mask head: Generates binary instance masks for each
pore, delineating their exact boundaries through con-
volutional layers.

This dual-head approach enables the model to detect,
classify, and segment individual pores in a single pass. The
final output is a segmented image where each pore is identified
with a bounding box and a corresponding mask, facilitating
detailed analysis.

Table I provides a detailed summary of the Mask R-CNN
architecture employed in this study.

TABLE I. SUMMARY OF MASK R-CNN ARCHITECTURE

Component Description

Backbone ResNet-50 with stages res1 to res4, extracting hierarchical
features at multiple scales

Feature Pyramid Network (FPN) generating multi-scale
feature maps P2 to P6

Generates candidate regions (box proposals) from FPN
feature maps using anchor-based method

Precise pooling with Rol Align, aligning region proposals
to feature maps

Box Head with fully connected layers for object classifi-
cation and bounding box regression

Convolutional layers generating binary instance masks for
each detected pore

Feature Aggregation
Region Proposal Network
Rol Align

Classification Head

Mask Head

C. Wood Anatomical Feature Analysis

After segmenting VCRs from macroscopic wood cross-
section images, we compute a series of anatomical descriptors
to characterize and differentiate wood species. These descrip-
tors—such as size, frequency, and spatial arrangement—are
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well-established in wood anatomy and provide key diagnostic
information. Because our VCR masks may include either the
pore lumen alone or the lumen together with immediately
adjacent perivascular parenchyma (when visually inseparable).
All subsequent analysis is performed over these vessel-centric
regions rather than the pore lumen alone.

1) VCR classification and counting: Each segmented VCR
is categorized based on proximity and grouping patterns to re-
flect anatomical arrangements: solitary, multiple, or clustered.
This classification follows adjacency checks, where two or
more VCRs are considered grouped if they share a boundary
or are positioned in close radial or tangential proximity.

a) Solitary VCR: A vessel-centric region that is spa-
tially isolated.

b) Multiple/Clustered VCRs: Two or more VCRs ap-
pearing together, either in radial multiples or compact clusters.

Counting each category provides a basic anatomical fin-
gerprint. For example, the predominance of solitary vessels
versus radial multiples can suggest different taxonomic char-
acteristics.

2) VCR Size measurement: As images are acquired at
a fixed magnification (50x), we apply a known pixel-to-
micrometer conversion factor to translate geometric measure-
ments into physical units.

From each segmented VCR mask, we compute:

e  Area: Total pixels within the VCR mask, converted
into square micrometers.

e  Equivalent Circular Diameter (ECD):

a= /24 (1)
™

where, A is the area of the VCR mask.

e  Optional Shape Descriptors: Including elliptical fits
(major or minor axis lengths) when more detailed
morphology is needed.

These measurements provide a robust morphological
overview of the segmented regions. By using
VCRs—especially in  diffuse-porous  species  where
parenchyma halos often co-occur with vessels—we ensure
more consistent and anatomically meaningful descriptors,
even when vessel and parenchyma are difficult to distinguish
in 50x imagery.

IV. EXPERIMENTS
A. Datasets

We employed two separate datasets for wood versus non-
wood classification and segmentation tasks. For the wood/non-
wood classification task, as illustrated in Fig. 2, we created two
distinct subsets:
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Fig. 2. Example images used in the classification task. The first row shows
wood cross-section images at various magnifications. The second row
contains non-wood images collected from general sources such as magnified
surfaces of flowers, fruits.

1) Wood dataset: This dataset aggregates macroscopic
wood images collected from five distinct sources detailed
in [3], including: i) VN_26, our self-collected dataset, ii)
WRD_21, a Southeast Asian wood dataset published by
Sun [23], iii) BFS_46, the Brazilian flora species dataset [24],
iv) BD_11, a Brazilian dataset from 2021 [25], and v) PCA_11,
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featuring wood species from the Pacific and Colombian Ama-
zon regions [26]. In total, this dataset contains 20,000 images
captured at magnifications ranging from 10x to 50x.

2) Non-Wood dataset: Approximately 9,000 images were
gathered from online sources, depicting various subjects such
as vehicles, landscapes, humans, and magnified images of non-
wood objects.

The combined dataset was split into three subsets: 50%
images for training, 20% for validation, and 30% for testing.
Notably, we allocated a larger portion of the data to the test
set to allow for more stable and representative performance
evaluation, particularly given the diversity of both wood and
non-wood images. This strategy was chosen to minimize
variance in evaluation results and to better reflect real-world
deployment conditions, where unseen data is common.

For the segmentation task, we utilized our self-collected
subset (VN_26) exclusively at 50x magnification. Due to the
extensive annotation required for segmentation, where the
Labelme tool was employed to draw polygons around each
pore, the labeling process was notably labor-intensive.

As presented, we clarify that every polygon corresponds to
a VCR:

e Pore-only VCR: the lumen and its wall when no
perivascular parenchyma collar is visible at the chosen
magnification.

e Pore + PP (P+PP) VCR: the pore lumen together
with the contiguous PP sheath if such a sheath clearly
encircles the vessel(s).!

Hence, our masks deliberately “over-segment” to include
PP whenever it is morphologically inseparable from the vessel
on 50 x imagery, thereby preserving the original mask geom-
etry without the need to re-annotate.

In total, 1,012 images were annotated, comprising ap-
proximately 34,500 single-VCR annotations and about 11,000
double-VCR annotations. Typically, each macroscopic wood
image contained around 40 to 60 VCRs, highlighting the
complexity and meticulous nature of the annotation work.

Given the substantial annotation effort involved, we
adopted an iterative labeling strategy, progressively annotating
smaller subsets of images while continuously evaluating the
segmentation model’s performance. Annotation was halted
when model accuracy stabilized, ensuring efficient use of anno-
tation resources without sacrificing model effectiveness. Addi-
tionally, the emphasis on single and double VCR facilitated
focused improvements in segmentation accuracy, ultimately
enhancing the robustness and practical usability of the resulting
segmentation model.

B. Wood Macroscopic Image Classification

Because our objective is to detect if an image represents
a magnified wood cross-section, we split data into train-
ing/validation/test sets at the feature level. In many real-world

'In diffuse-porous and ring-porous taxa where parenchyma halos are
diagnostic, this choice is anatomically meaningful because the pore + PP
structure functions as a single macro-texture cue.
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scenarios, it can be beneficial to have a small, curated set
of “likely negatives” (e.g., images of plant bark or random
textures) to help tune decision thresholds.

For each candidate model, hyperparameters (e.g., the num-
ber of PCA components, kernel parameters for SVM, and the
number of estimators in Isolation Forest) are tuned based on
performance metrics. In this study, we evaluate classification
performance by standard metrics, accuracy, precision, recall,
and Fl-score, when negative examples are available. For one-
class approaches, we track metrics such as the false-positive
rate on non-wood samples to gauge how well the model
excludes irrelevant data.

By combining DenseNet121, based feature extraction with
robust classification techniques, be the binary or one-class, we
ensure a flexible pipeline capable of handling the open-ended
nature of “wood versus non-wood” classification. High-quality
embeddings, coupled with dimensionality reduction and tai-
lored classification algorithms, allow us to accurately filter
and flag images for subsequent segmentation and anatomical
feature analysis.

Fig. 3, Fig. 4, and Fig. 5 show the confusion matrices
obtained from these models. In each matrix, the rows (actual
labels) and columns (predicted labels) correspond to two
classes: “0” (non-wood image) and “1” (wood cross-section
image).

o 1

Fig. 3. Confusion matrix - OneSVM.

1) OneSVM: Although OneSVM achieves an impressive
outcome of zero false positives (i.e., no non-wood images were
misclassified as wood), it still has 270 false negatives. In other
words, it fails to correctly identify 270 wood images as wood.
This indicates a tendency toward under-classification of wood
samples, which can be problematic in scenarios where missing
a true wood specimen is undesirable.

2) Isolation forest: Isolation Forest exhibits a similar pat-
tern to OneSVM, with zero false positives and a slightly higher
number of false negatives (279). This small increase in false
negatives yields a slight reduction in overall accuracy, but
the difference between Model OneSVM and Isolation Forest
performance is minimal in most practical contexts.

3) GMM: GMM stands out in that it achieves a signifi-
cantly lower number of false negatives (only 2), thus correctly
identifying nearly all true wood images. However, it does
have a small number of false positives (1). From an overall
performance standpoint, GMM demonstrates a much stronger
capability to detect wood images without sacrificing non-wood
accuracy by any large margin.
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Fig. 4. Confusion matrix - IsolationForest.
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Fig. 5. Confusion matrix - GMM.

TABLE II. COMPARISON OF CLASSIFICATION METRICS FOR THE THREE
MODELS ON THE TESTSET

Model Accuracy  Precision  Recall F'y-score
Isolation Forest 97% 98% 95.5% 96.5%
OneSVM 97% 98% 95.5% 97%
GMM 99% 99% 99% 99%

Table II compares the performance of three models. Isola-
tion Forest and OneSVM have similar accuracy but struggle
with higher false negatives, which drags down their recall.
GMM, on the other hand, has almost no false negatives,
boosting its recall and giving it a better Fj-score. In wood
identification, missing a true wood sample (a false negative)
is a bigger deal than accidentally labeling a non-wood image
as wood (a false positive). So, keeping false negatives low is
critical. With only 2 false negatives out of 3141 true positives,
GMM stands out as the best option.

The results prove that combining transfer learning with
solid classification can nail the task of separating wood from
non-wood images. Isolation Forest and OneSVM play it safe
(no false positives, but they miss more wood samples), while
GMM strikes a great balance between recall and precision.
In a two-step system, where classification feeds into pore
segmentation, GMM makes sure most true wood images
move forward. Looking ahead, tweaking feature extraction or
anomaly detection could cut down errors even more and boost
generalization.
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C. Wood VCR Segmentation

Accurately segmenting individual wood pores from macro-
scopic images is inherently challenging due to the close
adjacency of pore lumina and surrounding perivascular
parenchyma. As discussed previously, we therefore adopted
the concept of Vessel-Centric Regions, defined as a pore lumen
together with any immediately adjacent PP tissue if present.
Annotating each VCR required meticulously drawing polygons
around each region using the Labelme tool, making this a
particularly labor-intensive process. Each macroscopic wood
image typically contained around 40 to 60 VCRs, leading to
an estimated total of approximately 32,500 annotated VCRs
across our 1,012-image dataset. These annotations comprised
about 23,500 single-VCR and 9,000 double-VCR instances.

Given the substantial annotation effort involved, we
adopted an iterative annotation strategy, incrementally anno-
tating subsets of images and evaluating model performance
continuously. Annotation was halted when the model’s per-
formance stabilized, thus efficiently balancing annotation cost
and model accuracy.

Additionally, we augmented the dataset by cropping each
annotated image into two smaller segments, effectively en-
hancing training-data diversity without additional annotation
work. The numbers of annotated images and corresponding
experimental results are summarized in Table III.

Two experimental scenarios were conducted to evaluate
the performance of our segmentation model under different
conditions, detailed as follows.

1) Scenario 1 Effect of training set size: In Scenario 1, we
assessed accuracy improvements resulting from incremental
increases in annotated training data. We employed the iter-
ative annotation strategy outlined above, progressively adding
labeled subsets until segmentation performance stabilized.

Six dataset sizes were evaluated, summarized in Table III,
with each set split into training, validation, and testing subsets
at a 70:15:15 ratio. Models were trained for 10,000 epochs,
with a batch size of 512 and a learning rate of 10~

Table III presents the accuracy achieved at various stages of
this iterative process. Fig. 6 shows training progress, including
accuracy and loss trends for classification and segmentation on
both training and validation sets. Key observations include:

TABLE III. SCENARIO 1: SEGMENTATION ACCURACY WITH INCREASING
TRAINING SET SIZES

No. Train Images Val Images  Test Images  Accuracy (%)
1 78 16 16 69.55
2 388 84 84 93.378
3 500 108 108 93.923
4 528 114 114 91.193
5 682 146 146 84.629
6 708 152 152 91.393

e Incremental Annotation versus Accuracy: Initially, the
accuracy was low (69.55%) with only 78 annotated
training images. Accuracy increased significantly to
93.378% and 93.923% as annotations reached 388 and
500 images, respectively, indicating the effectiveness
of additional labeled data in early stages.
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Fig. 6. Experiment 1 — Training loss and accuracy progresses with 500 training images.

e Incremental Annotation and Accuracy: Initially, ac-
curacy was relatively low (69.55%) with just 78
annotated images. However, significant improvements
were observed when annotations increased to 388
(93.378%) and 500 images (93.923%), demonstrating
clear early-stage benefits of additional labeled data.

e  Performance Saturation and Overfitting: Accuracy
peaked at 500 annotated images. Beyond this point,
accuracy fluctuated, declining to 84.629% at 682 im-
ages before improving slightly again at 708 images
(91.393%). This indicates potential saturation and
overfitting when adding excessively diverse annota-
tions beyond an optimal point.

e Data Augmentation Effectiveness: The augmentation
strategy of cropping annotated images successfully
enhanced data diversity, mitigating accuracy declines
observed at larger dataset sizes.

These results emphasize the practical effectiveness of iter-
ative annotation and augmentation strategies for maximizing
segmentation accuracy while minimizing annotation overhead.
Future work may investigate adaptive annotation and augmen-
tation strategies to further enhance model performance.

2) Scenario 2 Effect of number of epochs: In the sec-
ond scenario, we investigated the impact of training duration
on segmentation accuracy by varying the number of epochs
(5,000; 10,000; and 15,000). This experiment employed 500
training images, 108 validation images, and 108 test images.
Other training parameters remained constant (image size:
480 x 640, batch size: 512, learning rate: 10~%). Table IV
summarizes the accuracy results.

The results highlight several key insights:

e  Optimal performance at 10,000 epochs: Peak accuracy

TABLE IV. SCENARIO 2: TEST ACCURACY BY NUMBER OF TRAINING

EPOCHS
Epochs Accuracy (%)
5,000 93.677
10,000 93.923
15,000 91.877

(93.923%) occurred at 10,000 epochs, slightly outper-
forming 5,000 epochs (93.677%). Further training to
15,000 epochs led to decreased accuracy (91.877%),
indicating potential overfitting.

e Loss curve behavior: Analyzing loss curves (Fig. 7)
revealed a consistent downward trend in loss, with
diminishing accuracy returns beyond 10,000 epochs.
Continued training beyond this point tended to-
ward overfitting noise rather than learning meaningful
anatomical patterns.

e  Practical training recommendations: Balancing com-
putational efficiency and accuracy, training around
10,000 epochs offers optimal segmentation perfor-
mance without unnecessary resource expenditure.

Combining the findings of Scenarios 1 and 2, we observe
the following:

e Optimal annotation size: A moderate dataset size
(e.g., 500 images) yields optimal performance. Larger
datasets may introduce complexity, potentially reduc-
ing accuracy without careful management.

e Balanced epoch selection: Training duration of ap-
proximately 10,000 epochs best balances accuracy
gains against risks of overfitting.
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e  Model robustness and generalization: Despite varying
training conditions, accuracy consistently ranged be-
tween 84% and 94%, demonstrating robustness. Future
improvements may involve advanced augmentation,
regularization techniques, or specialized segmentation
architectures.

These results confirm that strategic adjustments of annota-
tion quantity and training epochs significantly affect segmen-
tation performance, offering practical guidance for efficient
annotation and training protocols.

V. DEMONSTRATION OF END-TO-END WOOD
ANATOMICAL ANALYSIS

To illustrate the practical value and usability of our mod-
els, we have implemented an end-to-end system for wood
anatomical analysis. This system combines a lightweight An-
droid mobile application with a remote server for advanced
segmentation tasks, thereby demonstrating how classification
and segmentation can be integrated into a real-world workflow.

A. System Overview

1) Mobile application - Frontend: The user-facing com-
ponent is an Android application that performs on-device
image classification to determine whether an input image
depicts a magnified wood cross-section. Users can capture new
images via the device camera or select existing images from
the phone’s gallery. For smartphones lacking sufficient native
magnification, an external macro lens attachment can be used
to acquire clear macroscopic wood images.

Upon pressing the “Analyze” button, the app uses a
lightweight classifier trained as described in Section IV-B to
check locally if the input represents a magnified wood cross-
section. If the classification result is positive, the app forwards
the image to the remote server for detailed segmentation and
vessel-centric anatomical analysis.

2) Server segmentation - Backend: On the server side, our
Mask R-CNN model (described in Section IV-C) receives the
uploaded image and segments VCRs —each defined as a pore
lumen plus its adjacent perivascular parenchyma, when PP is
present. Specifically, the model segments and categorizes each
identified region into:

e Single VCRs (solitary pore lumen £ PP),

e Double VCRs (two adjacent pore lumina sharing a
common PP sheath or directly contacting each other).

From these segmented regions, the server computes a set
of meaningful anatomical descriptors, including:

e  Total number of single and double VCRs,

e Average VCR size in micrometers (derived from
known magnification levels),

e Minimum and maximum sizes of VCRs,

e Inter-VCR distance metrics (minimum, maximum, and
average distances),

e Summary statistics, such as spatial distribution and
frequency patterns of VCRs.

B. Illustrative Results

To validate the end-to-end pipeline under realistic condi-
tions, we tested the application using various wood species
commonly encountered in Vietnam. Images were captured
at magnifications of 10x and 50X under variable lighting
conditions. The system consistently demonstrated:

e Reliable on-device classification, efficiently filtering
out non-wood images,

e Robust server-based segmentation, clearly delineating
VCRs even in complex anatomical arrangements,

e  Rapid retrieval of detailed anatomical metrics, allow-
ing users immediate insight into wood anatomy and
supporting species identification.

Fig. 8 provides sample screenshots showing segmented
VCR results and anatomical summaries for species such as
Go Pachy, Cam Hong, and Ebiara at different magnifications.
Users can view segmentation overlays directly in the app
interface and access detailed textual descriptions of segmented
regions.

The demonstrated architecture highlights a practical divi-
sion of tasks:
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Fig. 8. Android app for end-to-end wood anatomical analysis.

e A compact classifier deployed on Android devices
quickly verifies the suitability of images for further
analysis,

e A computationally intensive segmentation model
hosted on a remote server performs detailed VCR
segmentation and returns comprehensive anatomical
insights.

Overall, our end-to-end system provides a convenient, low-
cost solution enabling wood analysts, researchers, and industry
professionals to rapidly quantify critical anatomical features
from macroscopic images. Future enhancements may include
offline segmentation capabilities for fieldwork environments
with limited connectivity or more advanced user interfaces
for annotating and verifying newly encountered wood species.
Additionally, this pipeline can be extended towards fully auto-
mated wood species identification by leveraging large language
models to reason over extracted anatomical descriptors and
incorporate established taxonomic knowledge.

VI. CONCLUSION

This study presented a two-stage automated framework
for anatomical analysis of macroscopic wood cross-sectional
images. Our approach combined image classification using
DenseNet121-based features and a Gaussian Mixture Model
classifier with segmentation of Vessel-Centric Regions (VCRs)
via Mask R-CNN. Defining each VCR as a pore lumen plus
any adjacent perivascular parenchyma (PP) allowed effective
segmentation despite closely adjacent anatomical structures.

Experimental results confirmed that iterative annotation and
data augmentation efficiently balanced annotation effort and
segmentation accuracy, achieving optimal results (93.923%)
with approximately 500 annotated images trained over 10,000
epochs. An end-to-end demonstration highlighted the practical
usability of our system, combining mobile-based classification

and remote segmentation. Future directions include offline
segmentation for field use and automated species identification
leveraging large language models.
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