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Abstract—With the advancement of industrialization, air
pollution has emerged as a critical global health and environmental
concern. This study presents an air quality prediction model
based on variational mode decomposition, a convolutional neural
network, bidirectional long short-term memory, and an attention
mechanism. The variational mode decomposition method is
employed to decompose the Air Quality Index sequence, capturing
different local characteristics of the original data. A hybrid model
is constructed by integrating the convolutional neural network
for feature extraction, the bidirectional long short-term memory
for temporal pattern recognition, and the attention mechanism
for focusing on significant data features. The model is optimized
using the Grey Wolf Optimizer for hyperparameter tuning, thereby
enhancing prediction accuracy. The proposed model is evaluated
using air quality data from Changsha, China, covering the years
2015 to 2023. The results demonstrate that our model outperforms
several other models in terms of mean absolute error, mean
squared error, root mean squared error, and R-squared. This
study provides a robust approach to air quality prediction, offering
valuable insights for residents and policymakers.
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I. INTRODUCTION

With the development of global industrialization, material
living standards have continued to improve; however, air
pollution has become increasingly severe [1], [2]. Since the mid-
19th century, when London experienced severe smog pollution,
people have gradually become aware of the dangers posed by
air pollution. In the 20th century, smog events in cities such
as Los Angeles and London further heightened public concern
and prompted more extensive investigation into air pollution
issues.

Current research on air pollution primarily focuses on out-
door atmospheric pollution, which includes major components
such as ozone, suspended particulate matter, and nitrogen
oxides. These pollutants originate from various complex sources,
including industrial emissions, vehicle exhaust, and coal-fired
power generation.

The Air Quality Index (AQI) is a crucial metric used to
assess air quality. It consolidates the concentrations of several
routinely monitored pollutants—including PM2.5, PM10, ni-
trogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide
(CO), and ozone (03), into a single, conceptual index value.

*Corresponding authors.

This index categorizes air pollution levels and air quality
conditions, allowing the extent of pollution to be reflected
in a scientific and intuitive manner.

According to data from the World Health Organization
(WHO), air pollution accounted for 7.6% of total global deaths
in 2015 [3], [4], [5]. Modern epidemiological studies have
shown that air pollution can severely damage the human
immune system and may cause irreversible long-term harm to
future generations. In addition, air pollution results in significant
social and economic losses. Experts estimate that, based on the
value of life, 3.25% of deaths in China in 2017 were attributable
to air pollution, resulting in an economic loss equivalent to
approximately 1.53% of the country’s GDP that year [6], [7].

Most countries now have air quality monitoring systems
in place; however, these systems often experience delays in
providing air quality data and cannot offer reliable early
warnings for governments or the public. Additionally, due
to the non-constant and non-linear nature of air pollution
concentrations, predicting air quality remains a significant
challenge.

In recent years, many researchers have proposed various
air quality prediction models. Existing methods can generally
be divided into two categories: classic dispersion models [8],
[9] and data-driven models [10], [11], [12]. Classic dispersion
models are based on physical principles, taking into account
factors such as wind speed, wind direction, atmospheric stability,
and emission source characteristics to simulate and estimate
the dispersion and concentration distribution of pollutants in
the atmosphere.

In contrast, data-driven models represent a modern approach
to air quality prediction. These models rely primarily on large
volumes of historical data and statistical learning techniques
to forecast future air quality. Unlike traditional physics-based
models, data-driven models emphasize learning and extracting
patterns from past data. Common types include statistical
methods, machine learning algorithms, and deep learning
models.

Applying statistics to air quality prediction research mainly
includes autoregressive (AR) models, autoregressive integrated
moving average (ARIMA) models, grey models, and multiple
kinear regression(MLR) models. In 2006, Pagowski et al.
used a dynamic linear regression model to predict ozone
concentrations within 24 hours, achieving reduced bias under
conditions with fewer monitor measurements [13]. Pai et al.
used the Grey prediction model GM(1,1) to predict ozone
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concentrations, and the results showed that GM(1,1) had a
mean absolute percentage error (MAPE) of 19% based on a
small sample size, indicating average prediction accuracy. The
advantage of linear regression models is their fast modeling
speed and good interpretability, but they handle non-linear
issues in air quality datasets poorly and cannot fit non-linear
data well [14]. Donnelly et al. combined a non-parametric
kernel regression description of NO2 concentrations varying
with wind speed and direction to obtain seasonal and daily
variation factors, achieving good prediction results on the basis
of the multiple linear regression model. Niu et al. established an
autoregressive moving average (ARMA) model for air quality
prediction in Chengdu [15], and in the same year, Zhang
et al. used wavelet decomposition methods to improve the
ARMA prediction model, decomposing and reconstructing air
pollutant concentrations. The results proved that wavelet multi-
scale decomposition could significantly improve the prediction
accuracy of the ARMA model [16].

Machine learning models may learn patterns from historical
data and use these patterns to predict future air quality. It
also optimize prediction performance by adjusting model
parameters and structures. Liang et al. used an 11 years dataset
collected by Taiwan’s Environmental Protection Administration
(EPA) and then employed machine learning methods including
adaptive boosting (AdaBoost), artificial neural networks(ANN),
random forest (RF), stacking ensemble, and support vector
machines(SVM) for individual predictions. The experimental
results indicated that the stacking ensemble performed the
best in terms of prediction accuracy [17]. Castelli et al.
used support vector regression(SVR) to predict pollutant and
particulate matter levels for the prediction of the AQI, and in
their experimental scheme, SVR with a radial basis function
(RBF) achieved the best prediction results [18]. Liu et al.
constructed regression models using SVR and random forest
regression (RFR) to predict the AQI in Beijing and the nitrogen
oxides(NOXx) concentration in an Italian city. The experimental
results showed that the SVR-based model performed better in
AQI prediction, while the RFR-based model performed better
in NOx concentration prediction [19].

Deep learning models, in contrast to machine learning
models that typically require less data for training, rely on large
amounts of data and complex model structures for training.
However, deep learning models can better capture the complex
nonlinear relationships in the learning data and can integrate
multiple data sources to improve the accuracy and comprehen-
siveness of predictions [20], [21]. Baniasadi et al. proposed
a novel binary chimp optimization algorithm(BChOA) and
combined it with long short-term memory(LSTM) networks.The
BChOA algorithm fine-tunes the optimization parameters of
the LSTM model to achieve more accurate and reliable air pol-
lution forecasting. Experimental results demonstrated that the
BChOA-LSTM model achieved the highest accuracy of 96.41%
[22]. Bun Theang Ong et al. proposed deep recurrent neural
networks(DRNN), which use an autoencoder enhancement pre-
training method specifically designed for time series prediction
to achieve PM2.5 concentration prediction. The experimental
results showed that the DRNN model could handle air quality
prediction problems well [23]. Wang et al. noticed that existing
prediction models did not accurately capture the regularities
between haze concentration and real-world influencing factors
and proposed a two-layer model prediction algorithm based
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on long short-term memory neural networks and threshold
regression units (LSTM and GRU). It is an improvement and
enhancement of the existing forecast method of LSTM [24].
Wu et al., a novel air quality forecasting model based on
the improved sparrow search algorithm (ISSA) and LSTM
networks has been proposed,integrating the mRMR-RF feature
selection method to enhance the model’s predictive accuracy.
By combining mRMR and RFthe model effectively selects
variables that impact the AQI. The ISSA algorithm is utilized
for the hyperparameter optimization of the LSTM. Experimental
results indicate that this approach significantly improves the
accuracy and efficiency of the forecasts [25].

A. Our Contribution

In this study, the VMD method is used to decompose the
input AQI sequence. The resulting IMF components represent
different local characteristics of the original data. Predicting
each decomposed IMF component in parallel reduces the time
required to identify signal features, thereby improving both the
training efficiency of the algorithm and the accuracy of the
predictions.

For the construction of the prediction model, we develop
a hybrid model for air quality forecasting. Recognizing that
LSTM networks do not fully resolve the vanishing gradient
problem, we introduce CNN into the model to more effectively
extract features from the air quality data. However, we also
acknowledge that this integration increases the model’s depen-
dence on large volumes of training data and raises the risk of
convergence to local optima. To address these challenges, we
explore improvements to the internal structure of the neural
network and consider incorporating additional, more effective
neural architectures for feature extraction.

This study combines the CNN’s capability to extract multi-
scale temporal features with the strengths of BiLSTM, which
processes sequences through both forward and backward layers
of improved LSTM units. After feature extraction by the CNN,
the BILSTM computes the temporal dependencies, and the
Attention mechanism is employed to calculate the attention
weights of data features at different time steps with respect to
the predicted value. This reveals the correlation between the
time series data and the prediction target. By integrating these
specialized neural networks, we construct an enhanced CNN-
BiLSTM-Attention model capable of forecasting air quality for
future periods with high accuracy.

Furthermore, to avoid arbitrary hyperparameter selection
in the CNN-BiLSTM-Attention model, we apply the Grey
Wolf Optimizer (GWO) to systematically search for optimal
hyperparameters. This contribution demonstrates how modern
machine learning techniques can be effectively combined and
how model performance can be significantly improved by
optimizing the training process through algorithmic tuning.

Experimental results confirm that, compared to other models
with similar structures used for air quality prediction, the
proposed model achieves higher accuracy.

II. MODEL INTRODUCTION
A. Variational Mode Decomposition (VMD)

Variational Mode Decomposition (VMD) is an adaptive sig-
nal processing method proposed by Konstantin Dragomiretskiy
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and Zoubin Ghahramani in 2014. This method has the advantage

of being able to determine the number of modal decompositions.

Its adaptability is reflected in the ability to determine the number
of modal decompositions for a given sequence based on actual
conditions. In the subsequent search and solution process, it can
adaptively match the best central frequency and finite bandwidth
for each mode, and can effectively separate the Intrinsic mode
functions (IMF) and divide the signal into frequency domains,
thereby obtaining the effective decomposition components of
the given signal and ultimately obtaining the optimal solution
to the variational problem. It can avoid aliasing by controlling
the bandwidth and can effectively address the mode mixing
defect present in the Empirical Mode Decomposition (EMD)
method [26], [27]. The basic principle includes the following
steps:

The original signal is assumed to be decomposed into
K components, ensuring that the decomposed sequences are
modal components with finite bandwidth centered at specific
frequencies. The variational problem can be described as finding
K modal functions ug(t)(k = 1,2, ..., K), such that the sum of
the estimated bandwidths of each mode is minimized, subject
to the constraint that the sum of all modes equals the original

signal. The modal functions are defined by the following Eq.

(1):

ug(t) = Ag(t)cos(x(t)) (1)

Use the Hilbert transform to calculate the analytic signal
corresponding to each modal function u(t), and obtain the
one-sided spectrum, as shown in Eq. (2):

(56) + 3 () @

where, §(t) is the Dirac function, based on the estimated
central frequency e 7+’ of the mixed analytic signals of
each mode, modulate the frequency of each mode to the
corresponding base frequency band, see Eq. (3):

[(a(t) + %) * up(t)] ek 3)

Calculates the square norm L? of the gradient of the
aforementioned signals, estimate the sum of the bandwidths of
the modal signals, and the constrained variational problem is
represented as Eq. (4):

{Jngl {L119:[(8(8) + L) * up(t)]e7xt |13}
s.t. Zszl up = f

In Eq. 4), ur = wu1,us,...,ur represents the modal
functions with finite bandwidth, wy = wy,ws, ...,w denotes
the central frequencies of each mode, * is the convolution
operator, 0; signifies taking partial derivatives, and e ~7Wr!
indicates shifting the spectrum to the base frequency band.

“4)

Solving the variational problem by introducing the Lagrange
penalty operator and the penalty coefficient, transforming the
constrained variational problem described in Eq. (4) into an
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unconstrained variational problem, resulting in the augmented
Lagrange expression, as shown in Eq. (5).

Lug, ) = 0 S 115(0) + 2) s w03+
k

1F() =D un(@)lI + (M), f(t) =D un(t)) (5
k k

To solve the unconstrained problem, it is necessary to find
the saddle point of Eq. (5). The alternating direction method of
multipliers (ADMM) is used to iteratively update @}, wi™,

and S\ZH. The iterative update process is shown in Eq. (6).

~n+1 f(w)*zl ﬂi(w)+5\(w)/2
uk+ (w) = 1+;;(w—wk)2

wlu(w)?dw|
w[?-i—l =40 __ 50 (6)
[(w)? dw]

A (W) = An(w) + () — S ()

In this context, f(w) and ;(w) represent the Fourier
transforms of the original signal and the modal components,
respectively, n is the number of iterations, and 7 is the fidelity
coefficient.

The frequency center and bandwidth of each IMF compo-
nent are continuously updated during the separation from the
original signal, until the iterative stopping conditions, as shown
in Eq. (7) are met.

K

S 47 (w) — a7 (w)13

2 i ()3

) <e 7

€ is the discrimination precision; if the convergence con-
dition is met, then the iteration is stopped and K IMFs are
obtained.

From the above reasoning, we may deduce that the VMD
algorithm transforms the modal decomposition problem into
a search for the optimal solution of a variational equation.
It then obtains the corresponding modal components through
continuous iterative updates. Compared to the EMD algorithm,
the VMD algorithm can effectively suppress the endpoint
effect and modal component aliasing. Additionally, the VMD
algorithm reduces the non-stationarity of time series with high
complexity and strong non-linearity, resulting in decomposed
subsequences that contain multiple different frequency scales
and are relatively stationary. Therefore, it is more suitable for
non-stationary time series such as air quality.

B. Convolutional Neural Networks (CNN)

Convolutional neural networks(CNNs) are a special type
of deep feedforward neural network that have been widely
used in image processing, machine vision, and other fields.
The most basic structure of a CNN is shown in Fig. 1, which
includes convolutional layers, pooling layers, fully connected
layers, and an output layer. The CNN analyzes the features of
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the input image or one-dimensional data through convolution
operations. The pooling layers are used to merge and extract
features obtained from each convolutional layer, and finally,
the fully connected layers perform dimensionality reduction
and output results. This network has characteristics such as
local connections and weight sharing in its structure [28], [29].

Fully Connected

Layer

—~

Convolution
Tnput layer 1
layer

Convolution  Pooling
layer 2 layer

~ -

Fig. 1. CNN Network.

The fundamental principle of CNN is to utilize convolutional
operations to extract features from the input, where the convo-
lutional kernels are automatically learned by the network, thus
endowing CNNs with excellent feature extraction capabilities.
Each neuron in the convolutional layer only computes a small
region of the input and shares weights, which can significantly
reduce the number of parameters that need to be learned. The
mathematical definition of the convolution operation is: the
input matrix X and the convolutional kernel IV, the convolution
operation is represented as:Y = X % W. In the convolution
operation, the convolutional kernel slides over the input matrix
and performs convolution operations at each position to generate
the output matrix Y. This process is a sliding window operation
of the convolutional kernel over the input matrix, where the
values in each sliding window are multiplied by the values in the
convolutional kernel and summed to obtain the corresponding
value in the output matrix. Pooling layers, on the other hand,
perform dimensionality reduction on the feature maps output
by the convolutional layers, typically using max pooling or
average pooling. Max pooling selects the largest value in each
pooling window as the output, while average pooling calculates
the average value of the values in the pooling window as the
output. Pooling operations may reduce the size of the feature
maps and also enhance the robustness and generalization ability
of the model [30], [31].

This study aims to improve the prediction accuracy of long-
term meteorological data by utilizing a one-dimensional CNN
neural network to extract meteorological influencing factor
data x = (x1, 2, ..., x,). It employs convolutional layers and
pooling layers to obtain effective representations, then flattens
the acquired data and introduces it into a fully connected layer.
The model analyzes the extracted feature data and realizes the
output of feature results ¢ = (¢, ca, ..., Cp).

C. Bidirectional Long Short-Term Memory Networks-BiLSTM

Recurrent Neural Networks(RNNs) often encounter the
vanishing or exploding gradient problem when dealing with
relationships between nodes that are far apart, while LSTMs
can better retain information provided by nodes that are distant
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from each other, enhancing performance on longer sequences
of temporal data. Each LSTM unit is composed of three gating
mechanisms: the forget gate, the input gate, and the output
gate. The functional relationships between these gating units
are as shown in Eq. 8 [32], [33]:

ft = 6(Wy.[hi—1, 3] + by)
iy = 6(Wilhu1, ] + by)
Cy = tanh(W.[hs—1, z¢] + be)
Ci = fy * Cr_1 + iy x C
0t = §(Wo.[hi—1, ] + bo)
ht = o¢ x tanh(C}) (8)

Specifically, x; represents the input time-series data; fy,
i¢, 0y represent the outputs of the forget gate, input gate, and
output gate, respectively; Wy, W;, W, are the weight matrices
for the three gates, and by, b;, b, are the corresponding bias
units; ¢ is the sigmoid function; tanh is the hyperbolic tangent
function; * denotes the inner product operation; C; represents
the candidate vector created by passing through the tanh layer;
W, b, are the weight matrix and bias unit, respectively, of the
candidate layer; C} represents the cell state; and h; represents
the hidden state.

During the data training process, LSTM can only use
information from the forward sequence as the network’s
prediction result and cannot perceive backward data during
model training. The advent of the bidirectional LSTM(BiLSTM)
completely solves the problem of the model being unable
to utilize future data. The term “bidirectional” refers to the
existence of two LSTM networks within BiLSTM : one LSTM
processes the forward sequence values, and the other processes
the backward sequence values. These two networks operate
independently, and the final output is achieved by vector
concatenation to produce the final predicted features. Extensive
research has shown that BILSTM performs significantly better
than LSTM in time series forecasting. Fig. 2 illustrates the
structure of the BiLSTM network.

h/-l h: h:*l

Fig. 2. BiLSTM network structure.

D. Attention

The attention mechanism is commonly used in tasks such
as image classification and semantic understanding, where
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it has achieved good results. Attention was first proposed
in the context of image classification, primarily to enhance
image understanding by omitting secondary information and
emphasizing important information. Many computer vision
algorithms still use Attention and its improvements to enhance
their performance. However, since Bahdanau et al. applied
Attention to neural translation and achieved good results, an
increasing number of researchers have started to use it in natural
language processing. For instance, Google’s neural translation
machine uses self-attention mechanisms exclusively to complete
the entire model. Simply put, the attention mechanism is
related to attention. Taking humans as an example, when
receiving different messages simultaneously, different levels of
response are given to different messages, and this difference
is a manifestation of attention. Translating this to machine
learning, different data require different processing methods,
which means we pay different levels of attention to different
aspects of the data based on its characteristics [34], [35].

In the process of meteorological data prediction training
and learning, especially with multiple input variables, although
effective correlation information is retained, it can lead to
a complex network topology, resulting in slower learning
speeds and difficulties in algorithm convergence. Therefore,
this study incorporates an attention mechanism into the model,
which adaptively and dynamically weights the factors affecting
temperature, precipitation, and wind speed predictions. By
reducing the weights of factors with weaker correlations to
actual observed values, it allocates higher weights to the main
influencing factors, achieving high-precision meteorological
information forecasting. As shown in Fig. 3, the structure of the
BiLSTM network after incorporating the attention mechanism
is depicted.

=

ttention

BiLSTM BiLSTM

®  ®

Fig. 3. BiLSTM-Attention network structure.

BiLSTM

()

In the implementation process of introducing an attention
mechanism into the BiLSTM model, a series of historical
data x = (z1, 2, ..., ) that affect meteorological predictions
(temperature) are treated as the stored content of Key and Value
during the addressing operation. Here, Key represents the data
address, and Value represents the attention value. The attention
calculation formula is as shown in Eq. (9):

Ai = i a;V; (9)
i=1
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The formula for calculating is given in Eq. (10):

eSim;

ZZ:] €Simk

Specifically, v; represents the value of ¢ the data in the
attention mechanism, and a; represents the weight coefficient
of v;. We obtain the final attention by weighted averaging.
Furthermore, Sim; represents the cosine similarity of the 4
data, and the calculation formula is as shown in Eq. (11):

a; = softmax(Sim;) (10)

X.Keyi
im(X, Key;) = —— Yt
Sim(X, Keys) = 12 e an

III. MATERIALS AND METHODS
A. Case Measurement

To verify the effectiveness of the VMD-CNN-BiLSTM-
Attention model proposed in this study for air quality forecast-
ing, a total of 9 years of air quality data from January 2015
to December 2023 in Changsha, China, were selected as the
training set to predict the air quality for a future period. The
sequence model established based on air quality is shown in
the Fig. 4.

300

[ 500 1000 1500 2000 2500 3000
Day

Fig. 4. The structure of the AQI data.

B. Data Processing

Due to the presence of seven different data indicators
in the air quality forecasting model, namely AQI, PM2.5,
PM10, SO2, NO2, O3, and CO, each indicator may have
different characteristics, dimensions, orders of magnitude,
and availability, making it impossible to directly analyze the
characteristics and patterns of the research subjects. When there
is a significant difference in the levels of various indicators, if
we directly use the original values of the indicators for analysis,
the role of indicators with higher values will be amplified
in the comprehensive analysis, relatively weakening the role
of indicators with lower values. Therefore, before using the
data for prediction, we perform standardization processing on
the data to ensure that different feature variables have the
same scale. This allows the target variable to be controlled by
multiple feature variables of the same size, and when using
gradient descent to learn parameters, the impact of different
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features on the parameters is consistent. This study uses min-
max normalization for data standardization. The calculation
formula is as shown in Eq. (12).

X — Xoni
X = min 12
Xmaw - Xmin ( )

In which, X,,,, represents the maximum value in the
sequence data sample; X,,;, represents the minimum value in
the sequence data sample. VMD processing:this study employs
the VMD algorithm to denoise and decompose air quality data,
thereby enhancing the accuracy of the data. The sampling
frequency is set to 2000, and after fine-tuning, the optimal
penalty coefficient « is determined to be 1200, with the number
of decomposition layers K set to 10. From the Fig. 5, it is
evident that the decomposition of the air quality sequence using
VMD yields 9 components with strong regularity. IMF1 is the
dominant component, with a smooth curve that characterizes the
overall trend of air quality changes. The remaining components,
though of different frequencies, also exhibit regularity and can
reflect the local characteristics of air quality data to a certain
extent.

C. Model Frame

A combined forecasting model based on CNN-BiLSTM-
Attention is used, with the model structure shown in Fig. 6.
The model mainly consists of an input layer, a one-dimensional
CNN layer, a dropout layer, a BILSTM layer, an attention layer,
a flatten layer, and a fully connected layer.

During the backpropagation process of the CNN-BiLSTM-
Attention combined model, an appropriate algorithm is needed
for parameter learning to guide the parameters of the objective
function in the correct direction for updating the appropriate
size, so that the updated parameters continuously approach
the global optimum of the objective function value. Gradient
descent principle is commonly used, following the negative
gradient of the objective function to locate the minimum
value of the function. This study uses the Adaptive Moment
Estimation algorithm(Adam algorithm), with the purpose of
accelerating the optimization process. At the same time, the
Adam algorithm adjusts the throughput of the search process
automatically for each variable encountered gradient(partial
derivative) at each step length.

For the prediction of air quality data, the proposed model
is implemented through the following processes:

e  For the preprocessed time series x = (21, X2, ..., Tn),
where, ¥; € R**/ i € (0,n) and s represents the
length of each data’s time window, and [ is the
dimension of the data feature vector. First, a one-
dimensional CNN is used for feature extraction, and
data padding is employed to ensure that the input time
series dimensions remain unchanged.

e  Further, for the extracted data © = (x1,x2, ..., ),
where, z; € R** i € (0,n), d denotes the size of
the convolutional kernel in the convolutional neural
network, adding a Dropout layer allows the model to
adaptively block some hidden layer neurons without
affecting the output dimension size, thereby enhancing
the model’s generalization ability.
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e  Secondly, the BiLSTM, which includes two LSTM
units, receives forward and backward information,
specifically calculated using Eq. (8). BiLSTM pro-
cesses the output from the Dropout layer, achieving the
exploration of periodicity and nonlinear relationships
between time series.

e  Then, the output of BiLSTM is taken as the input
for the attention mechanism, which adaptively assigns
weight coefficients to each input variable feature,
further enhancing the model’s perception of key infor-
mation, with related calculation formulas shown in Eq.
9) to Eq. (11).

e  Finally, after processing by the attention mechanism,
the feature information is connected to the fully
connected layer for prediction processing through
the Flatten layer, and the final prediction results are
outputted.

D. Experimental Design and Simulation

All programs in this study are completed using Python,
with the training of the neural network part carried out using
the PyTorch software library. PyTorch is an open-source
neural network framework developed by the Torch7 team
at Facebook AI Research. Its underlying implementation is
based on Torch, but it is entirely implemented and utilized
in Python. This framework is primarily used for scientific
research and application development in the field of artificial
intelligence. Torch is a classic tensor library for operating on
multi-dimensional matrix data and is widely used in machine
learning and other mathematically intensive applications. This
study utilizes the GPU version of PyTorch, leveraging the
excellent performance of GPU data processing to reduce
model learning time. The entire experiment was conducted
in a Windows environment, with the specific experimental
environment as shown in Table I.

TABLE I. EXPERIMENTAL ENVIRONMENT CONFIGURATION

Name Versions

CPU Intel(R) Core(TM) i7-10700 CPU
@ 2.90GHz (8CPUs)

Memory DDR4 32GBytes

Operating system | Windows 10 Pro

GPU NVIDIA Ge Force RTX 3090

Python Python 3. 9. 13

PyTorch-GPU PyTorch 1. 13. 0

The sample data is divided in a 9:1 ratio, where the 90%
of the data is used as the training set and the remaining 10%
as the test set.

In the experimental design of this study, we used batch
processing. The batch processing refers to the batch size, which
is the number of training samples used in each iteration. A larger
batch size can better utilize the parallel computing capabilities
of GPUs/CPUs but requires more memory. A smaller batch size
occupies less memory but may lead to unstable convergence.
Therefore, the batch size needs to be chosen based on actual
memory conditions and model complexity. In this research, the
batch size is set to 256.
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Fig. 5. The IMFs obtained after VMD.

The learning rate determines the update amplitude of
weights in each training batch. A larger learning rate can speed
up convergence but may miss the optimal solution. A smaller
learning rate can increase accuracy but converges more slowly.
In this research, the learning rate is set to 0.001.

The number of iterations is the number of times the entire
training dataset is traversed. More epochs mean more thorough
training but may also lead to overfitting. The number of
iterations is set to 100 in this design.

Dropout is a regularization technique to prevent overfitting.
It works by randomly “dropping” some neurons in the hidden
layers during training, reducing the interdependence among
neurons. This makes the network less sensitive to minor changes
in input data and improves the model’s generalization ability.
A higher dropout rate can better prevent overfitting but may
also lead to underfitting. In this research, the dropout rate is
set to 0.1.

Time steps are mainly used for processing sequential data,
such as natural language or time series data. It represents the
number of steps when LSTM or RNN is unfolded. Longer time

steps help capture long-term dependencies but also increase
computational complexity and memory usage. Therefore, the
time step should be chosen based on the nature of the task and
hardware resources. In this experiment, the time step is set to
15, meaning that the model’s training value at each moment is
related to its previous 15 values.

The result measurement in these research, we use Mean
Absolute Error (MAE), Mean Squared Error (MSE), Root
Mean Square Error (RMSE), and R Squared (R2) as metrics
for evaluating the performance of the models. Lastly, the
effectiveness of the hybrid model in air quality prediction
is verified by comparing the VMD-CNN-BiLSTM-Attention
hybrid model with RNN, LSTM, BiLSTM, CNN-LSTM, CNN-
BiLSTM and CNN-LSTM-Attention models.

E. Result and Discussion

Table II and Fig. 7 are the result of air quality prediction
performance of each model. The models are RNN, LSTM,
BiLSTM, CNN-LSTM, CNN-BiLSTM, CNN-LSTM-Attention
and CNN-BiLSTM-Attention. The results shows that, for
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Fig. 6. Combined forecasting model based on CNN-BiLSTM-Attention.

individual models, BiLSTM and LSTM have better predictive
performance compared to RNN, with BiLSTM outperforming
LSTM. This indicates that RNN does not effectively utilize
historical data of the air quality dataset, resulting in the
poorest predictive performance. Incorporating bidirectional
LSTM units can enhance the model’s predictive performance,
as BiLSTM offers higher efficiency and performance in data
feature extraction compared to LSTM.

TABLE II. EVALUATION INDEX TABLE OF AIR QUALITY PREDICTION
PERFORMANCE OF EACH MODEL

Model MAE | MSE RMSE | R2

RNN [36] 12.83 301.77 17.37 0.4226
LSTM [37] 12.81 276.47 16.63 0.2641
BiLSTM [38] 11.82 244.69 15.64 0.6288
CNN-LSTM [39] 8.28 133.71 11.56 0.7503
CNN-BiLSTM 7.34 100.71 10.04 0.8128
CNN-LSTM-Attention [40] | 4.08 30.74 5.54 0.9588
CNN-BiLSTM-Attention 3.16 22.53 4.75 0.9685

However, when RNN, BiLSTM and LSTM models are
combined with the neural network CNN, the predictive accuracy
of the models significantly improved. CNN-LSTM, compared
to LSTM, saw a 35% and 51% reduction in MAE and
MSE, respectively, with R2 increasing to 75%. CNN-BiLSTM,
compared to BiLSTM, experienced a 38% and 59% decrease
in MAE and MSE, respectively, with R2 reaching 81%. This
suggests that the addition of convolutional neural network CNN
extracts effective features from the data, thereby enhancing the
accuracy of predictions.

Upon integrating the Attention model, the predictive accu-
racy of the combined models further improved. CNN-LSTM-
Attention, compared to CNN-LSTM, saw a 51% and 77%
reduction in MAE and MSE, respectively, with R2 increasing
by 28%. CNN-BiLSTM-Attention, compared to CNN-BiLSTM,
experienced a 57% and 78% decrease in MAE and MSE, respec-
tively, with R2 increasing by 19%. The attention mechanism
can mimic the human brain’s operational mechanism, focusing
more on more important information when faced with varying
external input data, thus avoiding the interference of irrelevant
information. It can assign higher weights to key data features in
air quality data, enabling the model to achieve higher predictive
accuracy.

In summary, the ranking of predictive performance of
different models is as follows:CNN-BiLSTM-Attention > CNN-
LSTM-Attention > CNN-BiLSTM > CNN-LSTM > BiLSTM
> LSTM > RNN. The predictive model CNN-BILSTM-
Attention used in this study can effectively enhance the accuracy
of predictions and obtain more precise outcomes. Compared
to the initial RNN, CNN-BILSTM-Attention has reduced the
MAPE.

IV. CONCLUSION

In recent years, as living standards have improved due
to technological progress, the exploitation and use of fossil
fuels by humans have also increased rapidly. This surge in
fossil fuel consumption has led to serious air quality issues,
posing a significant threat to both the environment and human
health. In response to these challenges, this study focuses on
predictive research related to air quality, aiming to achieve
accurate forecasts through the development of an effective air
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quality prediction model. Such a model can assist residents
in planning their activities and provide scientific guidance to
governments in formulating environmental protection policies.

Our research reveals that air quality time series data typically
exhibit spatiotemporal diversity, meaning they display varying
patterns across different times and locations. In addition, due to
the nonlinear nature of meteorological and physical processes,
as well as the influence of external factors, air quality data
often show seasonal trends, daily cyclical variations, long-term
patterns, and random fluctuations. These complexities make air
quality prediction particularly challenging.

To address these issues, this study proposes a combined
VMD-CNN-BiLSTM-Attention model designed to capture
the spatiotemporal diversity and seasonality inherent in air
quality time series. The model begins by applying the VMD
algorithm to decompose and denoise the air quality data.
Following decomposition, the dataset is standardized through
normalization, improving data accuracy and facilitating more
effective neural network predictions.

Within the proposed architecture, the CNN is responsible
for extracting spatial features from the air quality data, while
the BILSTM network captures the temporal dependencies. The
Attention mechanism then assigns varying weights to different
elements of the data sequence, emphasizing the most influential
features. This integrated model structure enhances the ability
to capture complex spatiotemporal patterns, thereby improving
prediction accuracy and reliability.

During model training, we evaluated the performance of
seven different neural network models: RNN, LSTM, BiLSTM,
CNN-LSTM, CNN-BiLSTM, CNN-LSTM-Attention, and CNN-
BiLSTM-Attention. Model performance was assessed using
four evaluation metrics, there are MAE, MSE, RMSE, and
R2. The results demonstrate that the CNN-BiLSTM-Attention
model outperforms the others across all indicators, achieving
the highest accuracy in air quality prediction.
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