
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 7, 2025

Cardio-Edge: Hardware-Software Co-design
Implementation of LSTM Based ECG Classification

for Continuous Cardiac Monitoring on Wearable
Devices

Nousheen Akhtar1, Abdul Rehman Buzdar2, Jiancun Fan3, Muhammad Umair Khan4
School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an, China1,3

Department of Computer Engineering, National University of Technology, Islamabad, Pakistan2,4

Abstract—Cardiac arrhythmias should be detected at an early
stage so that clinical intervention can take place and continuous
patient monitoring can be established in a timely manner. In this
study, we present Cardio-Edge, a hardware-software co-design
implementation of an LSTM-based ECG classification system op-
timized for real-time use on wearable devices. Proposed architec-
ture comprises discrete wavelet transform (DWT) and principal
component analysis (PCA) for efficient feature extraction followed
by multiple parallel LSTM networks and a multi-layer perceptron
(MLP) for classification. Implemented on a Xilinx ZYNQ-7000
SoC, our system leverages FPGA-based hardware acceleration
alongside ARM Cortex-A9 for preprocessing tasks. Compared
to software-only implementation on the same ARM processor,
our co-design achieves a 10× improvement in execution speed
with 99% classification accuracy trained and verified on the MIT-
BIH arrhythmia dataset. The hardware-efficient implementation
employs resource-optimized architectures for LSTM, activation
functions, and fully connected layers making it appropriate for
low-power, patient-specific wearable healthcare devices. This real-
time, on-chip solution eliminates dependence in-cloud connectiv-
ity and ensures data privacy hence suitable for continuous cardiac
monitoring applications.

Keywords—ECG classification; wearable devices; discrete
wavelet transform (DWT); long short-term memory (LSTM); field-
programmable gate array (FPGA)

I. INTRODUCTION

Cardiovascular diseases, particularly arrhythmias, are a
leading cause of mortality all over the world. Identification of
abnormal heart rhythms in time is also essentially important for
pre-empting such exacerbations as a stroke or sudden cardiac
arrest. Most conventional systems for monitoring ECG are
off-line, and that means there would be a delay in diagno-
sis and treatment [1]. Even though AI particularly through
deep learning frameworks has shown capabilities regarding
the classification of signals pertaining to ECGs, an efficient
deployment of such models on hardware platforms is still
lacking. Most existing solutions are either software-based or
rely on the cloud, which makes them infeasible for use in
low-power, embedded, or portable health monitoring devices.
Besides, high-performance processors like GPUs may not
always be applicable for such an application because of their
power and space requirements. While real-time detection is
eventually what we want to achieve, the current work is
concerned more with building a hardware-accelerated version

of an LSTM model that can support real-time execution [2]–
[5].

In the past few years, there has been a spiking trend of
wearable healthcare devices given their real-time capabilities
of monitoring ECG signals and detect cardiac issues before
the patient gets too serious and needs immediate medical
assistance [6]. The currently available wearable ECG mon-
itoring devices transmit the raw signals, via smartphones or
wearable devices, over the internet to hospitals for diagnosis
of the ailment. This demands high power and reliance on the
internet which defeats the purpose of low power automation.
Researchers have made strides in machine learning models and
their implementation in embedded systems to develop wearable
devices that are designed to classify cardiac arrhythmia in real-
time on chip hardware. For real-time processing on wearable
devices, automated ECG classifier algorithms should not be
computationally heavy and give correct predictions at the
same time. A number of such classification algorithms rely
on morphological features and use techniques that are doing
traditional signal processing methods [7], [8]. The challenge
with automating the monitoring of ECG signals is that they
comprise of morphological features such as QRS complex and
P waves which are affected by daily life variables such as
exercise and they vary from patient to patient. This means that
these algorithms cannot distinguish between various types of
arrhythmia quite accurately [9], [10]. Researchers have devel-
oped machine learning models to categorize cardiac arrhythmia
such as those discussed in [11], [12]. They distinguish CA
beats from heart beats having normal rhythm by utilizing SVM,
but both of the said algorithms need to be fed with the features
manually. This lack of automation restricts the classification
domain of the classifier when it comes to various ECGs.
Another downside is that these classification methodologies is
that they are not approved by association for the Advancement
of Medical Instrumentation (AAMI) as they don’t adhere to
American National Standard. The key to automate feature
extraction and pump up the accuracy of the arrhythmia clas-
sification, is the use of deep-learning algorithms. The deep
convolutional neural networks CNNs and recurrent neural
networks RNNs have recently been extensively utilized [12]–
[17].

Thus, for the purpose of ECG classification, we have
purposed a low power VLSI architecture which is Long Short-

www.ijacsa.thesai.org 888 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 7, 2025

Term Memory (LSTM) based. The processor uses RNNs
because the ECG waveform is intrinsically compatible for
processing with RNNs which is why we use them in our
system. Fig. 1 illustrates that the backbone of our system is
composed of LSTM and classical features like wavelet are also
part of the solution. These extra features enhance the pattern
recognition capability in the ECG waveform. In addition, the
system merges the arrhythmia predictions from small LSTM
models as opposed to constructing one large model. A large
LSTM model is computationally intensive as compared to
running a number of lighter LSTM models. So, we have
executed multiple LSTM models and combined their collective
predictions, instead of running one large model [18], [19]. The
ECG classification algorithm is locally executed on patients’
personal wearable devices. Regardless of network speed or
availability, local execution enables for ongoing operation.
Furthermore, it makes it possible for data to remain on the
wearable device, avoiding the security concerns associated
with cloud-assisted processing. Remote processing on pow-
erful cloud servers or offline processing of recorded ECG
signals techniques are not adopted. Our adapted approach has
outperformed several other deep-learning methods, in terms
of classification accuracy and is still very cost-efficient. It
involves on chip execution of arrhythmia classifier, bypassing
the need for a consistent and fast internet connection. More-
over, since the patient’s data is processed on the device, we
also avoid problems related to privacy that may arise from
employing cloud computing services. Our solution is not to
store the ECG signals and process them offline, nor do we
utilize the most common cloud-computing services like AWS
or GCP for running our classifier. This is a step in making
continuous ECG classification wearable devices a common
utility for those in need.

Fig. 1. LSTM-based ECG classification algorithm.

II. RELATED WORK

The traditional approaches are based on extracting char-
acteristics from the ECG signal, which involves identifying
certain attributes of the ECG waveform, such as the P wave,
QRS complex, and T wave, and then using these attributes
as inputs to classification algorithms such as Support Vector
Machines (SVMs) or k-Nearest Neighbors (kNN) [20]. There
were some constraints with the old methods. The feature ex-
traction was manual, time-consuming, and subjective, therefore
susceptible to bias cases. It did not effectively capture the
minute variations in the ECG signals. Therefore, it has low
sensitivity for the infrequently appearing arrhythmia in par-
ticular ECG databases [21], [22]. The inter-patient variability
also posed a challenge, significant enough to impede general-
ization from models trained on one dataset to an application
in another dataset [23], [24]. Some important pre-processing
steps included noise and artifact removals, but were relatively
complicated and resource-intensive [25], [26].

Deep learning changed everything in ECG arrhythmia
classification [25], [26]. Deep learning frameworks, especially
Convolutional Neural Networks (CNNs), have displayed phe-
nomenal prowess in the automatic learning of complex features
from raw ECG signals without manual interference in feature
engineering [27]. CNNs have specialized in detecting spatial
patterns; therefore, they are greatly applicable to the analysis
of the temporal dynamics regarding ECG waveforms [28],
[29]. A superior performance by CNNs has been demonstrated
over traditional machine learning techniques in many stud-
ies [30], [31]. An important aspect of building AI-based ECG
arrhythmia detection systems is choosing an appropriate hard-
ware platform. The choice depends on several requirements
regarding performance level power usage requirement cost
limitation and the complexity of the AI model to be used. This
section points out significant hardware platforms reported in
the literature and discusses their pros and cons.

ASICs were viewed as a suitable option since they could
offer high performance with low power. Therefore, they might
be best suited for integration into wearable devices for long-
term monitoring of ECG. Since ASICs are custom-made
inherently, the hardware architecture can be optimized to better
suit the specific needs of an AI algorithm, which in turn brings
about higher efficiency and lower power consumption. The use
of ASICs for AI-based ECG arrhythmia detection has been
noted in many studies in the literature. For instance, Zhang
et al. [32] proposed a low-power ASIC realizing an Artificial
Neural Network (ANN) architecture for foreseeing five types
of cardiac arrhythmia. This low-power ASIC design includes a
novel processor in preprocessing the ECG signals to effectively
recognize R-peaks, which is the very vital step in analyzing
arrhythmia, achieving 96.69% classification accuracy with
12.88 W of power consumptions at 100 kHz clock frequency.

The authors emphasize the adoption of a hardware reuse
approach governed by a finite state machine (FSM) for rapid
computation in an ANN. In a similar vein, Tefai and colleagues
detail the ASIC implementation of a pre-trained neural net-
work for ECG feature extraction, which is an essential pre-
processing step for proper identification of arrhythmia [33].
The model developed is a recurrent neural network (RNN)
that was trained using data from the PhysioNET database; it
has been reported to give an accuracy of 96.55%. These works

www.ijacsa.thesai.org 889 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 7, 2025

indicate how all choices ASIC designers make from the type of
ANN architecture to hardware reuse techniques and the CMOS
technology chosen for manufacturing can heavily impact the
size, power dissipation, and performance of an ASIC. The
choice of CMOS technology greatly affects the dimensions,
power drain, and performance of the ASIC. Hoyer et al.
also propose a mixed-signal integrated circuit (IC) targeted
for small patch ECG devices able to detect atrial fibrillation.
Inference run-time for this implementation was 87.2% lower
than that of a floating-point based implementation [34]. Design
choices made in these ASICs regarding the specific ANN
architecture and hardware reuse strategies have a significant
influence on power efficiency and performance.

FPGAs are flexible and reconfigurable thus making a good
alternative to ASICs. Prototyping and evaluating various AI
algorithms in an FPGA before finalizing an ASIC design can
be very beneficial. Since FPGAs are programmable, one can
quickly modify and experiment with different architectures
of AI model occasionally combined with signal processing
technique. Liu et al. [35] present a fully-mapped FPGA
accelerator for AI-based ECG analysis which includes the
implementation of 1-D CNN and heart rate estimator. The
architecture exploits parallelism in both the applications, re-
sulting in considerable speedup and power savings relative
to software implementations on other platforms, like ARM-
Cortex A53 and Core i7-8700 CPUs. The authors have done a
painstaking job of analyzing and optimizing the computation
by eliminating division operations for the sake of efficiency.
The proposed design consumes only 67.74 mW of power,
thus suitable for applications that have limited resources, such
as wearable ECG monitoring devices. In another such effort,
Varadharajan and Nallasamy [36] present a Distributed Arith-
metic (DA) based Gated Recurrent Unit (GRU) to enhance
hardware efficiency for ECG diagnosis. The GRU represents a
generalized simpler version of the LSTM and is implemented
using DA operations to further reduce energy and latency in
applications. The authors carry out their implementation on
a ZYNQ-7000 SoC, where hardware and software co-design
methodologies are used. Performances under different metrics
like accuracy, precision, recall, specificity, F1-score, power,
delay, and area are compared. The inherent parallel processing
capability of FPGAs is well utilized to speed up inference
and reduce latency. However, the trade-off between resource
utilization in FPGAs and performance needs to be considered
carefully and explored further. Gon and Mukherjee [37] show
once again how FPGAs are useful in ECG signal processing
by proposing a hardware-efficient architecture for removing
noise from ECG signals based on a modified lifting DWT
algorithm. This design, free of multipliers, yielded a very
significant improvement in SNR and also exhibited lower
hardware utilization and higher operating frequency compared
to existing ECG denoising architectures.

Micro controllers, on the other hand, are low-cost and
power-efficient alternatives for wearable devices in ECG mon-
itoring when the AI model’s complexity is not very high.
Low power consumption allows for increased battery life in
wearable, thus allowing prolonged continuous monitoring. Guo
et al. use a MSP432P401R micro controller to carry out
ECG signal acquisition and arrhythmia detection through a
Convolutional Neural Network (CNN) [38]. The authors used
an ADS1292 bio-electric sensor to obtain ECG signals and

then sent the data acquired to a personal computer for analysis
through serial ports. They presented the possibility of perform-
ing real-time analysis that leads to an accurate diagnosis of
premature atrial contractions with a detection rate of 95.1%.
Scrugli et al. implement a cognitive algorithm, specifically a
convolutional neural network that has been trained to classify
ECG waveforms, on a micro controller based platform thus
reinforcing the claim on the propriety of micro controllers for
resource-constrained applications [39]. Its design features an
adaptive layer that dynamically regulates hardware and soft-
ware settings to manage power consumption, able to achieve up
to a 50% reduction in power consumption while maintaining
high accuracy (over 97%) for arrhythmia detection based on
the MIT-BIH Arrhythmia dataset. The selection of the micro
controller has a substantial influence on the complexity of the
AI model that can be implemented efficiently, as well as on the
overall power consumption of the device. A critical aspect in
prolonged monitoring applications is the equilibrium between
processing capability and energy efficiency. Deng et al. [40]
showed an automated arrhythmia detection system using a low-
power microprocessor integrated into a wearable jacket. This
system demonstrated very high sensitivity and specificity for
detecting atrial arrhythmia, thereby showcasing the progres-
sively enhanced capabilities of low-power microprocessors to
conduct real-time AI-based analysis of ECG data.

III. CARDIAC ARRHYTHMIA CLASSIFIER

Traditional SoCs for the detection of cardiac arrhythmia
consist mainly of two blocks. First comes the analogue to
digital converter ADC front that obtains the ECG signals
and digitizes it into discrete samples. The second block i.e.
the co-processor, is responsible for feature extraction and
classification. This study aims to fit a low powered ECG co-
processor in a small area appropriate for wearable devices, as
shown in Fig. 2. Firstly, the ECG signals that were converted
into digital samples are segmented into heartbeats, enabling
us to extract their wavelet and RR interval features. Then,
these extracted features and the segmented ECG signals are
processed by two slightly different RNN module. The two
outputs from the RNNs are merged and fed into a feed forward
neural network which gives the final output [18], as shown in
Fig. 1 and Algorithm 1.

Fig. 2. System architecture of ECG classification system.

A. ECG Segmentation and Feature Extraction

In CA classification, the initial step is to provide vectors
of fixed length extracted from the raw ECG signals as input to
the classification block. A sequence of heartbeats is generated
by segmenting the digitized ECG samples. This segmentation

www.ijacsa.thesai.org 890 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 7, 2025

is done around the R peaks in the heartbeat signal. Since a
single segment or a heartbeat of fixed length, the duration of
the segment can be mapped as 0.25 seconds of the ECG signal
before an R peak is detected and 0.45 seconds after it is de-
tected. The accuracy of the R peak detection algorithms, such
as Pan-Tompkin’s algorithm that we have used in our solution
is highly reliable. The time intervals between consecutive R
peaks is calculated as per the requirement of the Pan-Tompkins
algorithm. If the time interval is denoted by between peak to
peak then we can obtain the following four key features for
the heartbeat i to construct our feature vector:

1) RRi as the past RR interval.
2) RRi+1 as the next RR interval.
3) The local average of the five past and the five next

RR intervals.
4) The average duration of the RR intervals in each

person’s train data.

These RR interval features are extracted accurately with
considerably less computation. Other than that the algorithm
does not require manually feeding other morphological fea-
tures which are based on Q, S or T intervals which don’t
capture the nuanced representation of the segmented ECG
signals. Moreover, these features don’t vary from patient to
patient and aren’t influenced by environmental factors or
situational diversity, making them unsuitable for tasks like
classification of arrhythmia [10]. The approach of automating
feature extraction by utilizing wavelet and RNNs is optimal in
this scenario.

B. RNN Based Models

Recurrent neural networks (RNNs) have been a popular
choice for tasks involving sequential data. Different architec-
tures have been proposed to address the challenge of long-
term dependencies in the sequence data. The Simple RNN
cell, shown in Fig. 3(a) comprises just one recurrent layer
and keeps a hidden state over time steps. Therefore, it is not
very effective with long-term dependencies because it suffers
from the vanishing gradient problem. The LSTM cell, shown
in Fig. 3(b) in turn, consists of memory cells and a more
complex architecture of gating mechanisms that include input,
output, and forget gates; this design helps control information
flow and thus allows LSTMs to keep pertinent information
for longer sequences. A variant of the standard LSTM is
LSTM with peephole connections, shown in Fig. 3(c). This
structure provides an access path from the cell state into the
gating mechanism. Hence, it improves the capability of the
model to grasp minute temporal dependencies. In contrast, the
Gated Recurrent Unit (GRU) cell architecture, shown in Fig.
3(d) reduces the complexity of LSTM by merging input and
forget gates into a singular update gate and also merges cell
state and hidden state. Fewer parameters translate to lower
computational complexity; therefore, in hardware-constrained
environments, GRUs are more efficient while learning long-
term dependencies just as well.

Among these state-of-the-art models, the one whose mech-
anism is associated with Eq. (1) to Eq. (6) frequently stood
out. By design, this model is highly effective in terms of
computational speed and resource efficiency. Consequently, we
opted to utilize this model in our implementation.

Algorithm 1 ECG Feature Extraction and Classification

1: Initialize state to IDLE
2: while not done do
3: if state = IDLE then
4: if start signal received then
5: state ← SEGMENT
6: end if
7: else if state = SEGMENT then
8: Segment the input data
9: state ← DOWNSAMPLE

10: else if state = DOWNSAMPLE then
11: Downsample the segmented data
12: state ← DWT
13: else if state = DWT then
14: Perform DWT on the downsampled data
15: state ← PCA
16: else if state = PCA then
17: Perform PCA on the DWT output
18: state ← LSTM_ALPHA1
19: else if state = LSTM_ALPHA1 then
20: Perform LSTM Alpha1 on the PCA output
21: state ← FC_ALPHA1
22: else if state = FC_ALPHA1 then
23: Apply fully connected layer on LSTM Alpha1

output
24: state ← LSTM_ALPHA2
25: else if state = LSTM_ALPHA2 then
26: Perform LSTM Alpha2 on the PCA output
27: state ← FC_ALPHA2
28: else if state = FC_ALPHA2 then
29: Apply fully connected layer on LSTM Alpha2

output
30: state ← LSTM_BETA
31: else if state = LSTM_BETA then
32: Perform LSTM Beta on the PCA output
33: state ← FC_BETA
34: else if state = FC_BETA then
35: Apply fully connected layer on LSTM Beta output
36: state ← BLEND
37: else if state = BLEND then
38: Blend the fully connected outputs
39: state ← MLP
40: else if state = MLP then
41: Perform MLP on the blended output
42: state ← DONE
43: else if state = DONE then
44: Set done signal
45: state ← IDLE
46: end if
47: end while

Fig. 3. (a) Simple RNN cell, (b) Long short-term memory (LSTM), (c)
LSTM with peepholes, (d) Gated recurrent unit (GRU).

www.ijacsa.thesai.org 891 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 7, 2025

ft[r] = σ×

(
Mx∑
c=1

ωxf [r, c]xt[c] +

Mh∑
c=1

ωhf [r, c]ht−1[c] + bf [r]

)
(1)

it[r] = σ ×

(
Mx∑
c=1

ωxi[r, c]xt[c] +

Mh∑
c=1

ωhi[r, c]ht−1[c] + bi[r]

)
(2)

ot[r] = σ×

(
Mx∑
c=1

ωxo[r, c]xt[c] +

Mh∑
c=1

ωho[r, c]ht−1[c] + bo[r]

)
(3)

gt[r] = tanh

(
Mx∑
c=1

ωxg[r, c]xt[c] +

Mh∑
c=1

ωhg[r, c]ht−1[c] + bg[r]

)
(4)

ct[r] = ft[r]× ct−1[r] + it[r]× gt[r] (5)

ht[r] = ot[r]× tanh(ct[r]) (6)

In Eq. (1) to Eq. (6), the computational components are
responsible for several calculations. The three main gates of an
LSTM cell are the forget gate (ft), input gate (it), and output
gate (ot). Additionally, the candidate cell gate, calculated
intermittently at each time step, is referred to as gt. These gates
are all represented as vectors. The input vectors, which include
xt, ct, and ht, represent the current input, cell state, and output
vector of the LSTM at each time step. The weight matrices,
denoted as W ∗ ∗, have specific roles where the first asterisk
(∗) can be f, i, g, or o, indicating the matrices for the forget,
input, candidate cell, or output gates, respectively. The second
asterisk (∗) can be x or h, signifying that the weight matrix for
a particular gate is multiplied by either the input vector xt or
the hidden state ht−1. Finally, the bias vector is represented as
b*, where the asterisk (∗) can be f, i, g, or o, corresponding
to the forget, input, candidate cell, or output gates. In these
equations, σ and tanh (i.e., the sigmoid and hyperbolic tangent
functions) are vector-based functions. This means they operate
element-wise on the input vectors and return the function’s
value for each element of the input vectors.

Although simplistic, the implementation of Eq. (1) to
Eq. (6) is highly compute-intensive. For instance, if there are
Mh neurons in one LSTM layer and it has Mx inputs, then
considering the case of forget gates: xt, the input vector sent
to all neurons, would have dimensions Mx×1. ht−1, the vector
containing the hidden states of all neurons, and bf , the bias
vector for all gates (forget gates in this case), would have
a size of Mh×1. Wix, the weight matrix that connects the
incoming input xt to the forget gates of all the Mh neurons,
would have a size of Mh×Mx. These dimensions are because
each neuron receiving Mx inputs would need Mh weights for
each of the inputs in the current time step. Wif , the weight

matrix connecting the hidden state to the forget gate, would
have dimensions of Mh×Mh because each neuron’s forget gate
needs to take into account the hidden states of all the neurons
from the previous time step. This is done so that for each of
the Mh forget gates, there are Mh weights for every hidden
state ht−1 from the previous time step.

It is clear that Eq. (1) alone performs Mh×(Mx+Mh)
multiplications because for each of the Mh elements in
Wf*xt, there would be Mx multiplications, and in Wfht−1,
there would be Mh multiplications. Regarding additions, there
would be Mh × (Mx+Mh+1) in one time step because for
every Mh element in the weighted sum of the input and the
hidden state, there would be Mx and Mh additions respec-
tively, and one bias term each. This is quite a heavy burden
for a software platform, as storing and retrieving input vectors,
weight matrices, hidden states, and intermediate results would
require significant memory bandwidth and storage.

C. MIT-BIH Arrhythmia Database

The MIT-BIH Arrhythmia Database is a benchmark
dataset, widely used, for training and testing algorithms in
ECG signal analysis and arrhythmia classification. It con-
tains recordings of human heartbeats; carefully annotated by
medical experts. The dataset has 48 half-hour recordings
from 47 subjects collected at Beth Israel Hospital Arrhythmia
Laboratory. The ECG signals were recorded by using a 2-
channel ambulatory ECG device at a sampling frequency of
360 Hz. Annotated R-peaks and heartbeat labels are provided
for each recording to identify different kinds of arrhythmia
like normal beats, premature ventricular contractions, atrial
premature beats, and others. This dataset holds a standard
reputation in the medical AI community because of its clinical
quality, detailed annotations, and a wealthy variety of heartbeat
types. It suits perfectly for deep learning models like LSTM to
train on, learn temporal patterns of ECG signals, and classify
heartbeats based on those patterns.

IV. HARDWARE IMPLEMENTATION OF LSTM BASED CA
CLASSIFIER

This section describes the internal implementation details
of various modules of VLSI design of LSTM-based ECG clas-
sification system. The ECG signal processing module imple-
ments segmentation and DWT to extract meaningful features
from raw ECG signals. The extracted features are handled
in two methods, direct features for processing with LSTM
model α and those that need PCA for dimensionality reduction
prior to processing with LSTM model β. Each LSTM model
processes its input sequences and generates feature vectors
stored in the LSTM output memory. These stored feature
vectors then move on to the FC Layer computation stage,
where the output of LSTM model α is input to the first
FC layer and the PCA reduced output of LSTM Model β
is input to the second FC layer. The outputs from both FC
layers are passed to a Multi-Layer Perceptron (MLP) for final
classification. These steps are shown in Fig. 1 and Algorithm 1.

A. Discrete Wavelet Transform

The discrete wavelet transform (DWT) is a pre-processing
method to extract the time-frequency features of the raw ECG

www.ijacsa.thesai.org 892 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 7, 2025

signals. An architecture based on the four-level decomposition
of the Daubechies (db4) wavelet is proposed, which can access
essential frequency components of ECG signals. The DWT
module is made up of cascaded high-pass and low-pass filters
with down-sampling at every stage, as shown in Fig. 4. The
detailed coefficients D1 to D4 and an approximation coefficient
A4 represent the band-limited versions of the ECG signal for
the delta, beta, alpha, and theta bands [41]. The hardware
implementation of the DWT module is made efficient by using
lattice-form FIR filters [42], [43]. This combines high-pass
and low-pass filtering into one computational block and saves
hardware. As illustrated in Fig. 5, the DWT comprises high-
pass and low-pass filters (HPF, LPF), with transfer functions
represented by H(z) and G(z), respectively:

G(z) = h0 + h1z
−1 + h2z

−2 + h3z
−3

H(z) = h3 − h2z
−1 + h1z

−2 − h0z
−3

Here, h0 = (1 +
√
3)/4
√
2, h1 = (3 +

√
3)/4
√
2, h2 =

(3−
√
3)/4
√
2, and h3 = (1 +

√
3)/4
√
2.

To obtain the lattice filter structure and perceive HPF and
LPF in one block, H(z) and G(z) can be expressed as:

G(z) = (1 + a[0]z−1 − a[0]a[1]z−2 + a[1]z−3)s

H(z) = (−a[1]− a[0]a[1]z−1 − a[0]z−2 − z−3)s

Here, s = (1 +
√
3)/4
√
2, a[0] = (3 +

√
3)/4
√
2s, and

a[1] = (1−
√
3)/4
√
2s.

Clock gating was applied here for efficient down-sampling
of the signal. Pipelining and shift-and-add logic reduce latency
while maximizing real-time performance.

Fig. 4. Structure of the four-level DWT, where _2 means even sampling.

B. Principal Component Analysis

The PCA circuit manages to efficiently reduce the dimen-
sionality of the extracted features while keeping all relevant in-
formation for classification intact. The design includes weight
memory, multiplexers (MUX), a multiply-accumulate (MAC)
unit, control logic, and an output memory, as shown in Fig.
6. In weight memory, the PCA main component weights are
kept, precomputed from the training data, and they represent
the transformation matrix. A structured memory architecture

Fig. 5. Lattice FIR filter structure which realizes LPF and HPF in one block.

makes these weights readily accessible to facilitate processing.
The MUX units will choose the proper input features from
the output of DWT which are given sequentially to ensure
proper mapping with corresponding PCA weights. The MAC
unit does matrix-vector multiplication where feature values that
have been picked are multiplied by weights that correspond to
them. The multiplication of these values can accumulate over
many clock cycles and thus form the transformed feature set
efficiently. Control logic governs the flow of data, synchroniz-
ing input selection, weight retrieval, and MAC operations to
keep synchronization while preventing computational errors.
The feature vector PCA transformation is stored in the output
memory.

Fig. 6. Circuit design of PCA.

C. Long Short-Term Memory

The hardware realization of an LSTM unit begins with the
design of efficient digital circuits for matrix-vector multiplica-
tion, nonlinear activation functions, and memory update while
considering power and area constraints. The implementation
divides itself into three major parts: the computational core,
gate computation, and memory update. The LSTM computa-
tional unit comprises multiple processing elements that take
care of input signals, weight matrices, and recurrent states.
An architecture is presented that efficiently computes an input

www.ijacsa.thesai.org 893 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 7, 2025

vector xt and a previous hidden state ht−1 using stored weight
matrices. Matrix-vector multiplication has been identified as
the primary compute-intensive operation and requires dedi-
cated multipliers and adders. The accumulation stage sums up
the result of multiplications and applies activation functions
such as sigmoid and hyperbolic tangent (tanh) functions. The
outputs of these activation functions are used to control the op-
erations of all three gates in an LSTM, the input gate it, forget
gate ft, and output gate ot. The gate computation module is a
crucial part of the LSTM architecture, involving computation
of gating signals for control over flow of information. Input
data and previous hidden state are accessed from dedicated
memory blocks. Then they are multiplexed into matrix-vector
multiplication units. Weighted sum of inputs is computed by
units that comprise an array of multipliers and accumulators,
while terms for bias add-on are kept in a separate memory
block. Resulting outputs are subject to a configurable activation
module, implementing either sigmoid or tanh based on control
logic signals. The main hardware module that implements the
LSTM gates is shown in Fig. 7. This module adds non-linearity
and allows selective retention of information. The output from
this module will be used to drive the gating mechanisms which
form the regulation for the internal state of the LSTM. The
new cell state ct and hidden state ht are calculated by the
memory update module for keeping long-term dependencies.
The previous cell state is scaled by forgetting gate output while
new information is integrated controlled by input gate through
element-wise multiplications. The module that computes the
ct and ht from the results of the gates is shown in Fig. 8.

Fig. 7. The main hardware module that implements the LSTM gates.

The hardware implementation of the LSTM is governed by
a finite state machine that manages the sequential execution of
activities, hence leading to efficient data handling and real-
time performance. The finite state machine controls memory
read/write operations, weight fetching, matrix multiplications,
activation function computation, and state update keeping
synchronization among the different stages of computation.
The process begins in idle state. This means that the system

will remain idle until new input ECG sample data is made
available. Immediately after receiving an input ECG sample,
weight fetch state is entered wherein the control unit fetches
the necessary weight matrices from memory. When the weights
have been loaded, matrix multiplication State is entered where
matrix-vector multiplication on the input and hidden state vec-
tors with weight matrices is performed. After multiplication,
the system goes into the accumulation State. This is when
results from multipliers get accumulated and where bias terms
are added to form the pre-activation values for the gates in
LSTM. These accumulated values get passed through non-
linear activation functions in the Activation State, such as
sigmoid and hyperbolic tangent (tanh). After this, the FSM
moves to the gate update state, where the input, forget, and
output gates are calculated based on activated outputs. This
step determines how much information will be retained or
discarded from memory. The next step is the update of the
cell ct and the hidden state ht. In the write back state, ct
and ht are written back into memory with time step 2 so
that these values are available for time step 3. This FSM
guarantees the execution of all calculations in a pipelined
manner, hence facilitating the overlapping stages involved in
the LSTM process, and maximizing throughput. Optimization
of state transitions leads to low latency and power usage. The
structured control allows for a smooth flow of data, positively
impacting hardware efficiency.

Fig. 8. The module that computes the ct and ht from the results of the gates.

D. Activation Functions

The activation functions are essential to the performance
and convergence of the LSTM networks. The conventional
sigmoid and hyperbolic tangent functions introduce substantial
computational complexity due to their nonlinear and transcen-
dental nature, making direct hardware implementation expen-
sive. Therefore, hardware friendly approximations are adopted.
The hard sigmoid and hard tanh, which keep the computational
overhead low while maintaining competitive accuracy. Hard
sigmoid and hard tanh, that provide linear approximations
greatly simplify hardware implementation. These functions are
defined in Eq. (7) and Eq. (8) [44]:

www.ijacsa.thesai.org 894 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 7, 2025

hardtanh(x) =


−1, x < −1
x, −1 ≤ x ≤ 1

1, x > 1

(7)

hardsigmoid(x) =


0, x < −2.5
0.2× x+ 0.5, −2.5 ≤ x ≤ 2.5

1, x > 2.5

(8)

These approximations replace simple piecewise linear func-
tions in sigmoid and tanh that approximate exponential compu-
tations to meet the same performance while it results in huge
savings in FPGA resources utilization and latency. Whereas
the hard sigmoid has a linear scaling factor and bias, hard
tanh uses saturation-based clipping to ensure stability. In the
LSTM-based model of the ECG classification, we tried both
standard sigmoid + tanh and hard sigmoid + hard tanh. The
effect on detection accuracy over 50 training epochs is shown
in Fig. 9. Where hard approximations result in a small decrease
in accuracy, vast improvement in hardware efficiency fully
justifies this trade off.

Fig. 9. Impact of activation functions on classification accuracy.

E. Fully Connected Layer

The fully connected layer is very important in changing the
feature representations that were acquired by LSTM models
into the final classification results. The hardware implemen-
tation of the Fully Connected layer, as can be seen in Fig.
10, includes several major components. Weight memory keeps
the FC-layer weights in a form that was learned prior to the
training of this mode. These weights will be picked up by using
a multiplexer (MUX) according to control logic. LSTM output
memory saves output vectors from LSTM models, these are
used as input to the FC layer. A multiplication unit computes
the weighted sum by performing element-wise multiplication
of input features with weight values. An accumulation and
summation unit adds all the results of multiplication using an
adder tree to provide the final activation values for neurons.
A bias addition stage retrieves the bias terms from a special
bias memory and adds them before activation. The last element
is the control logic, which guarantees the proper selection of
weights, inputs, and all other parameters used in computations.

Fig. 10. The module that implements FC layer.

F. Multi-Layer Perceptron

After feature extraction and classification with LSTM and
Fully Connected (FC) layers, the output of the FC layer
will be used as input to a multi-layer perceptron (MLP) for
final classification. The size of MLP is 80x10x7 as shown
in Fig. 1. Each layer has multiple neurons, in which each
neuron performs multiply-accumulate (MAC) operation. This
is expressed as y =

∑N
i=1 Wixi + Bi. Here, Wi and Bi

denote the weight and bias of the neuron, respectively. The
computational complexity and hardware cost of MLPs depend
on their number of neurons and MAC unit efficiencies. A finite
state machine (FSM) controls the hardware implementation of
MLP, coordinating operations between layers. When the enable
signal is set high, the output of the FC layer (size 80) will be
fed into the MLP input layer. The control unit will activate the
FSM of each layer in a sequential manner, thus processing the
inputs serially. The computed outputs will propagate through
hidden layers and get to the final output layer, where the
classification decision will be made. Achieving an optimized
MLP architecture allows the designer to minimize hardware
resources for ECG classification on wearable devices.

V. HARDWARE-SOFTWARE CO-DESIGN IMPLEMENTATION

The hardware-software co-design methodology is a design
approach used in embedded system development and digital
system development where hardware and software compo-
nents are developed in parallel rather than in sequence. This
results in an optimization of performance, cost, power, and
flexibility by proper partitioning of the functionalities between
hardware, for example, FPGA, ASIC and software running
on a processor [45]–[48]. Fig. 11 shows the architecture of
the implementation of hardware-software co-design on the

www.ijacsa.thesai.org 895 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 7, 2025

ZYNQ-7000 SoC, which incorporates both the Processing
System (PS) and the Programmable Logic (PL). The ARM
Cortex-A9 processor available in PS is responsible for ECG
signal acquisition and preprocessing like segmentation and
wavelet transformation. The output of the pre-processed ECG
data is passed to PL where LSTM hardware acceleration
supports two different neural network models; Model α with
30 hidden units and Model β with 50 hidden units. These two
models extract temporal features from the ECG data. A feature
fusion of those outputs is through a Classification Blending
unit based on a Multi-Layer Perceptron (MLP). The ultimate
categorization outcomes are shown on an OLED screen using
the SSD1306 controller, while also being sent to a UART
interface for troubleshooting through the Vitis Terminal. This
setup demonstrates a mix of hardware and software co-design
that uses the advantages of both the ARM processor and
FPGA fabric for effective, real-time ECG classification. The
Processing System IP is the software interface surrounding
the Zynq-7000 Processing System. The Zynq-7000 family
includes a system-on-chip (SoC) style integrated processing
system (PS) and Programmable Logic (PL), unit it provides an
extensible and flexible SoC solution on single die for efficient,
real-time ECG classification.

Fig. 11. Hardware-software co-design on the ZYNQ-7000 SoC.

The Zynq-7000 family comprises a system-on-chip (SoC)
style integrated processing system (PS) and Programmable
Logic (PL), an extensible and flexible SoC solution. The ECG
LSTM Model IP is a custom hardware accelerator shown in
Fig. 12, for time-series analysis specifically with Long Short-
Term Memory (LSTM) networks on ECG signals. This IP core
has been synthesized using Xilinx Vivado and deployed in
the Programmable Logic (PL) region of Zynk-7000 SoC as a
dedicated co-processor for sequential data classification.

The architecture of the module comprises a control in-
terface module, data transfer module, and hardware-mapped
LSTM computation engine optimized for low-latency as well
as high-throughput inference. IP core supports AXI inter-

Fig. 12. LSTM based ECG custom IP.

faces for seamless communication with the Processing System
(PS). This one, s-axi-ontrol interface, enables it to allow the
ARM Cortex-A9 processor in the PS to configure, start, and
monitor the LSTM accelerator through control registers. The
m-axi-gmem interface streams pre-processed ECG data from
external memory. The m-axi-weights interface dynamically
loads trained LSTM model parameters (weights and biases)
supporting multiple LSTM configurations, Model α (30 hidden
units) and Model β(50 hidden units) without needing IP re-
synthesis. The interrupt signal notifies the PS data blending or
further processing steps that inference is complete.

This IP core has been designed for use in the real-time
healthcare signal classification and optimized to manage the
recurrent characteristic of LSTM calculation. It is functionally
organized to handle time-series segments in a pipelined way
that decreases the burden on the PS and allows parallel execu-
tion among different model variants. The PS takes care of ECG
signal preprocessing (for example, segmentation and wavelet
transformation) loading model weights, and post-inference
tasks such as classification fusion and output display. After
importing these IP cores, we need to automate the connections
Xilinx will automatically connect some of the IP cores and the
remaining ports should be connected manually. Fig. 13 shows
the block diagram of LSTM based ECG hardware-software
co-design system implemented using AMD Vivado.

Fig. 13. Block diagram of LSTM based ECG Hardware-Software Co-design
system.

www.ijacsa.thesai.org 896 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 7, 2025

VI. HARDWARE UTILIZATION

The algorithm is first implemented using Python and Ten-
sorFlow. To evaluate performance and comparison with previ-
ous studies, the MIT-BIH ECG arrhythmia database is used.
A pre-trained network is deployed in hardware using Verilog
HDL. Synthesis is done using Xilinx Vivado Tool. Comparison
of two FPGA-based ECG classification implementations is
summarized in Table I.

TABLE I. COMPARISON OF TWO FPGA-BASED ECG CLASSIFICATION
IMPLEMENTATIONS

Complete HW HW-SW Co-design
LUTs 2383 1600
FF 2156 1444
DSP 20 14
BRAM 22 15
Power (mW) 41 29
Frequency (MHz) 54 61
Accuracy 99% 99%

The power consumption distribution of complete hardware
implementation is shown in Fig. 14, explaining the allocation
among different components. It can be seen that power con-
sumption is led mostly by the LSTM-based models.

Fig. 14. Power consumption distribution.

In software simulation of neural networks, the weights and
biases are represented in floating-point arithmetic. Floating-
point arithmetic, however, is computationally very expensive
and consumes relatively high power compared to fixed-point
arithmetic. In order to minimize distortion, the weights and
biases are represented using an ideal word length selected from
software simulations, shown in Fig. 15. A 3.12 signed fixed-
point format is selected, consisting of 1 sign bit, 3 integer bits,
and 12 fractional bits.

The implemented method uses a patient-specific training
paradigm. Therefore, the model is trained separately for each
patient. Once the model has been trained, it can be used
for real-time ECG surveillance and heartbeat classification
for that specific patient. The method depicted in Fig. 16,
demonstrates how training occurs just once for each patient

Fig. 15. MSE of network with various fractional bits.

and does not require ongoing updates. The training dataset
for every patient is made up of twofold local ECG data and
global ECG data, as illustrated in Fig. 16. The local dataset
is provided for the patient, enhancing classification accuracy
through the exploitation of intrinsic similarities between their
heartbeats. According to AAMI standards, this dataset may last
for a maximum of five minutes. However, the global dataset
is shared among all patients and it contains representative
heartbeats for different classes of arrhythmias. Thus, it helps
the model generalize those patterns which are not present
in the local dataset. Other studies have considered training
patient-specific models [8]. An alternative approach is to train
a single model across data from multiple patients and then
use this model to classify ECG signals from new patients.
This approach is not adapted because of the large variability
between patients in ECG waveforms which may adversely
affect classification accuracy [10].

Fig. 16. Patient-specific training.

VII. CONCLUSION

We presented Cardio-Edge, a low-power real-time ECG
classification system for health monitoring wearables. Opti-
mized digital hardware for DWT, PCA, LSTM, and MLP
modules is integrated into a hardware-software co-design on
the ZYNQ-7000 platform to demonstrate a robust architecture
capable of achieving high classification accuracy with minimal
computational overhead. The HW-SW co-design offers 10×
speedup over SW-only implementations on the ARM Cortex-
A9 processor with no compromise in detection performance.
The use of fixed-point arithmetic, hardware-friendly activation

www.ijacsa.thesai.org 897 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 7, 2025

approximations, and pipelined LSTM processing ensures en-
ergy as well as area efficiency. Our patient-specific training
approach improves accuracy further by customizing the model
to individual heartbeat profiles. On-device execution ensures
secure continuous low-latency cardiac monitoring without re-
liance on remote servers and constant internet connectivity.
This work takes a major stride forward in making intelligent
biomedical systems deployed within constrained wearable plat-
forms.

REFERENCES

[1] WHO, “Cardiovascular diseases (cvds),” accessed on 19 Feb, 2025.
[Online]. Available: https://www.who.int/en/news-room/fact-sheets/de
tail/cardiovascular-diseases-(cvds)

[2] J. M. Bote, J. Recas, F. Rincón, D. Atienza, and R. Hermida, “A mod-
ular low-complexity ecg delineation algorithm for real-time embedded
systems,” IEEE Journal of Biomedical and Health Informatics, vol. 22,
no. 2, pp. 429–441, 2018.

[3] M. Janveja, R. Parmar, S. Dash, J. Pidanic, and G. Trivedi, “A low-
power co-processor to predict ventricular arrhythmia for wearable
healthcare devices,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 32, no. 9, pp. 1672–1683, 2024.

[4] L. Chen, Z. Jiang, J. Barker, H. Zhou, F. Schlindwein, W. Nicolson,
G. A. Ng, and X. Li, “Ecgvednet: A variational encoder-decoder
network for ecg delineation in morphology variant ecgs,” IEEE Transac-
tions on Biomedical Engineering, vol. 71, no. 7, pp. 2143–2153, 2024.

[5] M. Janveja, R. Parmar, and G. Trivedi, “Minsc: A vlsi architecture for
myocardial infarction stages classifier for wearable healthcare applica-
tions,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 70, no. 3, pp. 1159–1163, 2023.

[6] A. L. Bui and G. C. Fonarow, “Home monitoring for heart failure
management,” Journal of the American College of Cardiology, vol. 59,
no. 2, pp. 97–104, 2012.

[7] T. Teijeiro, P. Félix, J. Presedo, and D. Castro, “Heartbeat classification
using abstract features from the abductive interpretation of the ecg,”
IEEE Journal of Biomedical and Health Informatics, vol. 22, no. 2, pp.
409–420, 2018.

[8] T. Ince*, S. Kiranyaz, and M. Gabbouj, “A generic and robust sys-
tem for automated patient-specific classification of ecg signals,” IEEE
Transactions on Biomedical Engineering, vol. 56, no. 5, pp. 1415–1426,
2009.

[9] R. Hoekema, G. Uijen, and A. van Oosterom, “Geometrical aspects
of the inter-individual variability of multilead ecg recordings,” in
Computers in Cardiology 1999. Vol.26 (Cat. No.99CH37004), 1999,
pp. 499–502.

[10] S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-time patient-specific ecg
classification by 1-d convolutional neural networks,” IEEE Transactions
on Biomedical Engineering, vol. 63, no. 3, pp. 664–675, 2016.

[11] Z. Chen, J. Luo, K. Lin, J. Wu, T. Zhu, X. Xiang, and J. Meng, “An
energy-efficient ecg processor with weak-strong hybrid classifier for
arrhythmia detection,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 65, no. 7, pp. 948–952, 2018.

[12] M. A. Sohail, Z. Taufique, S. M. Abubakar, W. Saadeh, and M. A.
Bin Altaf, “An ecg processor for the detection of eight cardiac arrhyth-
mias with minimum false alarms,” in 2019 IEEE Biomedical Circuits
and Systems Conference (BioCAS), 2019, pp. 1–4.

[13] P. Li, Y. Wang, J. He, L. Wang, Y. Tian, T.-s. Zhou, T. Li, and J.-s.
Li, “High-performance personalized heartbeat classification model for
long-term ecg signal,” IEEE Transactions on Biomedical Engineering,
vol. 64, no. 1, pp. 78–86, 2017.

[14] M. L. Hoang, “A review of developments and metrology in machine
learning and deep learning for wearable iot devices,” IEEE Access,
vol. 13, pp. 106 035–106 054, 2025.

[15] H. Sun, D. Luo, X. Niu, X. Zeng, B. Zheng, H. Liu, and J. Pan,
“Classification algorithms in automatic diagnosis of ecg arrhythmias:
A review,” IEEE Access, vol. 12, pp. 191 921–191 935, 2024.

[16] H. Gao, L. Yan, X. Li, and Z. Zhang, “Research on the recognition
of ecg signals based on integrated lstm-gru network,” in 2024 6th
International Conference on Robotics, Intelligent Control and Artificial
Intelligence (RICAI), 2024, pp. 1088–1091.

[17] F. Quirós-Corella, R. Loaiza, R. Matarrita, and E. Meneses, “A compre-
hensive deep learning pipeline for arrhythmia multi-classification with
electrocardiography data,” in 2024 IEEE 6th International Conference
on BioInspired Processing (BIP), 2024, pp. 1–6.

[18] S. Saadatnejad, M. Oveisi, and M. Hashemi, “Lstm-based ecg classifi-
cation for continuous monitoring on personal wearable devices,” IEEE
Journal of Biomedical and Health Informatics, vol. 24, no. 2, pp. 515–
523, 2020.

[19] N. Akhtar, J. Fan, A. R. Buzdar, M. Ahmed, and A. Raza, “Vlsi design
of lstm-based ecg classification for continuous cardiac monitoring on
wearable devices,” Electronics Letters, vol. 61, no. 1, p. e70269, 2025.

[20] Arpan, M. Singh, P. Garg, S. Srivastava, and A. K. Saggu, “Revolu-
tionizing arrhythmia classification: Unleashing the power of machine
learning and data amplification for precision healthcare,” in 2024 Sixth
International Conference on Computational Intelligence and Commu-
nication Technologies (CCICT), 2024, pp. 516–522.

[21] H. T. Al-mousa A, Baniissa J, “Enhanced electrocardiogram machine
learning-based classification with emphasis on fusion and unknown
heartbeat classes,” DIGITAL HEALTH, vol. 9, 2023.

[22] A. T. Hassan SU, Mohd Zahid MS, “Classification of cardiac arrhythmia
using a convolutional neural network and bi-directional long short-term
memory,” DIGITAL HEALTH, vol. 8, 2022.

[23] J. Yang, J. Li, K. Lan, A. Wei, H. Wang, S. Huang, and S. Fong, “Multi-
label attribute selection of arrhythmia for electrocardiogram signals with
fusion learning,” Bioengineering, vol. 9, no. 7, 2022.

[24] D. H. Verspoor K, “Electrocardiogram arrhythmia detection with novel
signal processing and persistent homology-derived predictors,” Data
Science, vol. 7, no. 1, pp. 29–53, 2024.

[25] Q. Xiao, K. Lee, S. A. Mokhtar, I. Ismail, A. L. b. M. Pauzi, Q. Zhang,
and P. Y. Lim, “Deep learning-based ecg arrhythmia classification: A
systematic review,” Applied Sciences, vol. 13, no. 8, 2023.

[26] P. K. Tyagi, N. Rathore, and D. Agrawal, “A review on heartbeat classi-
fication for arrhythmia detection using ecg signal processing,” in 2023
IEEE International Students’ Conference on Electrical, Electronics and
Computer Science (SCEECS), 2023, pp. 1–6.

[27] M. Z. Chao Che, Peiliang Zhang, “Constrained transformer network for
ecg signal processing and arrhythmia classification,” BMC Med Inform
Decis Mak, vol. 21, no. 184, 2021.

[28] S. Bi, R. Lu, Q. Xu, and P. Zhang, “Accurate arrhythmia classifi-
cation with multi-branch, multi-head attention temporal convolutional
networks,” Sensors, vol. 24, no. 24, 2024.

[29] L.-H. Wang, Y.-T. Yu, W. Liu, L. Xu, C.-X. Xie, T. Yang, I.-C. Kuo, X.-
K. Wang, J. Gao, P.-C. Huang, S.-L. Chen, W.-Y. Chiang, and P. A. R.
Abu, “Three-heartbeat multilead ecg recognition method for arrhythmia
classification,” IEEE Access, vol. 10, pp. 44 046–44 061, 2022.

[30] B. K. Nugraha, Q. D. Amalia, A. S. Safitri, A. Rizal, and H. T. Fauzi,
“Comparison analysis for life-threatening arrhythmia classification from
ecg data using machine learning and deep learning methods,” in 2024
8th International Conference on Information Technology, Information
Systems and Electrical Engineering (ICITISEE), 2024, pp. 1–6.

[31] E. Essa and X. Xie, “Multi-model deep learning ensemble for ecg
heartbeat arrhythmia classification,” in 2020 28th European Signal
Processing Conference (EUSIPCO), 2021, pp. 1085–1089.

[32] C. Zhang, J. Chang, Y. Guan, Q. Li, X. Wang, and X. Zhang, “A
low-power ecg processor asic based on an artificial neural network for
arrhythmia detection,” Applied Sciences, vol. 13, no. 17, 2023.

[33] H. T. Tefai, H. Saleh, T. Tekeste, M. Alqutayri, and B. Mohammad,
“Asic implementation of a pre-trained neural network for ecg feature
extraction,” in 2020 IEEE International Symposium on Circuits and
Systems (ISCAS), 2020, pp. 1–5.

[34] I. Hoyer, A. Utz, A. Lüdecke, H. Kappert, M. Rohr, C. H. Antink, and
K. Seidl, “Design of hardware accelerators for optimized and quantized
neural networks to detect atrial fibrillation in patch ecg device with risc-
v,” Sensors, vol. 23, no. 5, 2023.

www.ijacsa.thesai.org 898 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 7, 2025

[35] W. Liu, Q. Guo, S. Chen, S. Chang, H. Wang, J. He, and Q. Huang,
“A fully-mapped and energy-efficient fpga accelerator for dual-function
ai-based analysis of ecg,” Frontiers in Physiology, vol. 14, 2023.

[36] S. K. Varadharajan and V. Nallasamy, “Implementation of field pro-
grammable gate array (fpga) based distributed arithmetic gated current
unit to achieve high ecg diagnosis rate,” Journal of Nanoelectronics and
Optoelectronics, vol. 17, no. 1, pp. 82–89, 2022.

[37] A. Gon and A. Mukherjee, “Design and fpga implementation of an
efficient architecture for noise removal in ecg signals using lifting-based
wavelet denoising,” in 2023 11th International Symposium on Electronic
Systems Devices and Computing (ESDC), vol. 1, 2023, pp. 1–6.

[38] J. Guo, W. Li, and H. Huang, “An ecg detection device based on
convolutional neural network,” in 2023 8th International Conference
on Intelligent Computing and Signal Processing (ICSP), 2023, pp. 860–
864.

[39] M. A. Scrugli, D. Loi, L. Raffo, and P. Meloni, “An adaptive cognitive
sensor node for ecg monitoring in the internet of medical things,” IEEE
Access, vol. 10, pp. 1688–1705, 2022.

[40] S. Deng, B. L. den Ouden, T. De Coster, C. I. Bart, W. H. Bax, R. H.
Poelma, A. A. de Vries, G. Q. Zhang, V. Portero, and D. A. Pijnappels,
“An untethered heart rhythm monitoring system with automated ai-
based arrhythmia detection for closed-loop experimental application,”
Advanced Sensor Research, vol. 3, no. 11, p. 2400057, 2024.

[41] Q. Xiao, K. Lee, S. A. Mokhtar, I. Ismail, A. L. b. M. Pauzi, Q. Zhang,
and P. Y. Lim, “Deep learning-based ecg arrhythmia classification: A
systematic review,” Applied Sciences, vol. 13, no. 8, 2023.

[42] P. K. Tyagi, N. Rathore, and D. Agrawal, “A review on heartbeat classi-
fication for arrhythmia detection using ecg signal processing,” in 2023

IEEE International Students’ Conference on Electrical, Electronics and
Computer Science (SCEECS), 2023, pp. 1–6.

[43] M. Z. Chao Che, Peiliang Zhang, “Constrained transformer network for
ecg signal processing and arrhythmia classification,” BMC Med Inform
Decis Mak, vol. 21, no. 184, 2021.

[44] Hasib-Al-Rashid, N. K. Manjunath, H. Paneliya, M. Hosseini, W. D.
Hairston, and T. Mohsenin, “A low-power lstm processor for multi-
channel brain eeg artifact detection,” in 2020 21st International Sym-
posium on Quality Electronic Design (ISQED), 2020, pp. 105–110.

[45] A. R. Buzdar, L. Sun, A. Latif, and A. Buzdar, “Distance and
speed measurements using fpga and asic on a high data rate
system,” International Journal of Advanced Computer Science and
Applications (IJACSA), vol. 6, no. 10, 2015. [Online]. Available:
http://dx.doi.org/10.14569/IJACSA.2015.061037

[46] A. R. Buzdar, L. Sun, M. W. Azhar, M. I. Khan, and R. Kashif,
“Area and energy efficient viterbi accelerator for embedded processor
datapaths,” International Journal of Advanced Computer Science and
Applications (IJACSA), vol. 8, no. 3, 2017. [Online]. Available:
http://dx.doi.org/10.14569/IJACSA.2017.080355

[47] A. R. Buzdar, A. Latif, L. Sun, and A. Buzdar, “Fpga prototype
implementation of digital hearing aid from software to complete
hardware design,” International Journal of Advanced Computer
Science and Applications (IJACSA), vol. 7, no. 1, 2016. [Online].
Available: http://dx.doi.org/10.14569/IJACSA.2016.070188

[48] A. R. Buzdar, L. Sun, R. Kashif, M. W. Azhar, and M. I. Khan,
“Cyclic redundancy checking (crc) accelerator for embedded processor
datapaths,” International Journal of Advanced Computer Science and
Applications (IJACSA), vol. 8, no. 2, 2017. [Online]. Available:
http://dx.doi.org/10.14569/IJACSA.2017.080242

www.ijacsa.thesai.org 899 | P a g e


