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Abstract—The COVID-19 pandemic has profoundly impacted
economic and social structures, directly affecting individuals’
lives. Deep learning models offer the potential to forecast future
long-term trends and capture the temporal dependencies present
in time series data. In this study, we propose leveraging the
autocorrelation function (ACF) and the partial autocorrelation
function (PACF) series as additional components to enhance the
forecasting accuracy of our models. Our proposed method is
applied to forecast COVID-19 time series data in twelve countries
using the deep learning techniques of Long Short-Term Memory
(LSTM) and Gated Recurrent Units (GRU). When comparing
the rankings average of mean absolute error and R-squared,
the proposed models demonstrated superior performance in time
series forecasting compared to the standard LSTM and GRU
model. Specifically, the ACF-PACF-GRU model achieved the best
median values for mean absolute percentage error (1.67 per cent
for confirmed cases and 2.17 per cent for death cases) and root
mean square error (1.92 for confirmed cases and 2.17 for death
cases). Therefore, the proposed ACF-PACF-GRU model showed
the highest performance in forecasting both confirmed and death
cases. This research introduces a novel method for constructing
effective time series models aimed at forecasting disease burdens,
thereby aiding in epidemic control and the implementation of
preventive measures.
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I. INTRODUCTION

In late 2019, a novel β-coronavirus—SARS-CoV-
2—emerged in Wuhan, China, posing significant challenges
to global health systems [1], [2], [3]. Declared a public health
emergency by the WHO in March 2020 [4], COVID-19 has
since resulted in over 776.8 million confirmed cases and more
than 7 million deaths across 234 countries as of November
10, 2024. Although mortality peaked between 2020 and 2022,
global death rates have declined with rising immunity levels
[5]. The pandemic’s impact spans healthcare, economics,
travel, and international policy, highlighting the critical need
for accurate forecasting to guide public health interventions
and resource allocation [6].

COVID-19 demonstrates dynamic, non-linear transmission
patterns influenced by seasonal variation and evolving vi-
ral behavior, necessitating adaptive modeling approaches [7].
Time series forecasting has traditionally relied on statistical
models like ARIMA and SARIMA. ARIMA has been widely
applied to model diseases such as tuberculosis [8], brucellosis
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[9], and dengue [10]. However, it struggles with capturing
seasonality and nonlinear patterns, which SARIMA partially
addresses [11], [12], [13], [14], [15]. For COVID-19, ARIMA
and SARIMA have been used in diverse contexts, such as
Morocco [16], Europe [17], and Canada [18], with varying
degrees of accuracy. Nevertheless, their linear assumptions
and need for differencing limit performance in more complex,
evolving datasets [19].

To overcome these limitations, deep learning architectures
have emerged as powerful tools for time series forecasting.
Advances in data availability and computational power have
facilitated their widespread adoption across domains, with deep
neural networks proving particularly effective for regression
tasks and temporal pattern modeling [20], [21].

The proliferation of big data, driven by advancements
in data acquisition technologies, has created a demand for
advanced forecasting models capable of processing complex,
multivariate, and high-dimensional time series data [22]. Tra-
ditional shallow learning approaches often fail to capture the
intricate temporal dependencies and noise inherent in such
datasets. In response, deep learning has emerged as a dominant
paradigm for time series forecasting due to its ability to
model non-linear relationships and long-term dependencies
effectively [23].

Among deep learning architectures, Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) networks
are particularly suited for sequential data. Deep learning mod-
els have gained significant attention in COVID-19 forecasting
due to their capacity to capture non-linear patterns and tem-
poral dependencies in time series data. Among these, LSTM
and GRU networks have emerged as leading architectures
for epidemic modeling. Both are types of recurrent neural
networks (RNNs) specifically designed to mitigate the van-
ishing gradient problem, enabling the modeling of long-range
temporal dependencies crucial for accurate disease forecasting.

Several studies have demonstrated the effectiveness of
LSTM models in predicting COVID-19 cases. Dharani and
Bojja [24] proposed an enhanced LSTM architecture with
internal gate optimizations to improve the prediction accuracy
of COVID-19 time series. Similarly, Shahid et al. [25] com-
pared multiple models—including ARIMA, SVR, LSTM, and
Bi-LSTM—for forecasting confirmed, death, and recovered
cases across ten countries, finding that Bi-LSTM significantly
outperformed other models. Luo et al. [26] further validated
the predictive strength of LSTM through a comparative study
with XGBoost, highlighting LSTM’s superior performance in
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capturing temporal dynamics.

GRU models, which simplify LSTM by using fewer param-
eters while maintaining comparable performance, have also
been applied successfully. ArunKumar et al. [27] utilized
GRU, LSTM, and other RNN variants to forecast cumulative
confirmed cases in the ten most affected countries, reporting
promising results. The comparative advantage of GRU lies in
its computational efficiency and similar accuracy, making it
suitable for real-time applications in epidemic forecasting.

Moreover, hybrid and ensemble variants such as stacked
LSTM, bidirectional GRU, and LSTM-GRU combinations
have shown improved performance by leveraging the strengths
of both architectures [28], [29], [30]. These models are par-
ticularly effective in multi-country forecasting settings where
data complexity and temporal variability are high.

Overall, the literature suggests that LSTM and GRU mod-
els are well-suited for modeling the complex, nonlinear, and
dynamic nature of COVID-19 transmission. Their adaptability,
accuracy, and scalability make them powerful tools for public
health planning and early warning systems. Given the complex,
non-linear nature of time series data, statistical tools like ACF
and PACF are often used to analyze temporal dependencies.
Their integration into deep learning models, as proposed in
this study, is a novel approach that aims to enhance prediction
accuracy without altering model architectures [31].

This study integrates ACF and PACF as supplementary
inputs to LSTM and GRU models to enhance time series
forecasting accuracy. By leveraging these statistical tools to
capture temporal dependencies, the proposed approach fore-
casts COVID-19 confirmed and death cases across twelve
countries, and compares results against standard LSTM and
GRU models reported in the previous study of Luyu Zhou et
al [32]. Unlike prior work, this method augments input features
without altering the core architectures. Model performance is
evaluated using MAE, MAPE, RMSE, and R-squared.

The study is structured as follows: Section II details LSTM
and GRU architectures; Section III outlines the data sources,
methodology, preprocessing, and evaluation metrics; Section
IV presents results and comparisons; Section V discusses the
study results with limitations. Finally, Section VI summarizes
the conclusion of the whole study.

II. METHODOLOGIES

This study illustrates the effective integration of deep
learning architectures with statistical techniques to enhance the
accuracy of COVID-19 epidemiological data forecasting. In
particular, two widely recognized deep learning approaches,
LSTM and GRU, are employed in conjunction with ACF
and PACF to capture and model the temporal dependencies
inherent within the time series data.

A. Long Short-Term Memory (LSTM)

Deep learning techniques like RNN are well-suited for se-
quence processing because they capture the temporal dynamics
of time series data [33]. However, when dealing with very
long time series, passing information from earlier time steps
to later ones becomes challenging, leading to difficulties in
training due to vanishing or exploding gradients. Hochreiter

Fig. 1. Architecture of a single LSTM cell.

and Schmidhuber introduced LSTM networks to address this
issue by facilitating the flow of previous information across
state sequences [34]. The LSTM cell architecture includes a
memory cell and three gates: the forget gate (Ft), the input
gate (It), and the output gate (Ot) shown as Fig. 1.

These gates regulate the flow of information within the cell
state: the forget gate controls what information to discard, the
input gate determines what information to input to the cell
state, and the output gate manages outgoing information [35].
The intermediate cell state (Ĉt) serves as the core memory
component, propagating information across time steps. Its
update at each step is governed by gating mechanisms that
selectively regulate the preservation, forgetting, or modification
of information. This design enables LSTMs to retain infor-
mation over long periods, a capability not fully realized in
conventional single RNNs. LSTMs excel in capturing long-
term dependencies and effectively handling time series data.
LSTM network is compute mapping between input sequence
and output sequence, i.e. X̃ = (X̃1, X̃2, ..., X̃n) and Ỹ =
(Ỹ1, Ỹ2, ..., Ỹn). Given the normalized scale of the time series
as input X̃t, as output Ỹt, and the number of hidden units as
h. The gates have the following equations [Eq. (1) to Eq. (7)]:

Input gate:

It = sigmoid(WxiX̃t +WhiHt−1 + bi) (1)

Forget gate:

Ft = sigmoid(Wxf X̃t +WhfHt−1 + bf ) (2)

Output gate:

Ot = sigmoid(WxoX̃t +WhoHt−1 + bo) (3)

Intermediate cell state:

Ĉt = tanh(WxcX̃t +WhcHt−1 + bc) (4)
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Cell state (next memory input):

Ct = Ft ⊙ Ct−1 + It ⊙ Ĉt (5)

New state:

Ht = Ot ⊙ tanh(Ct) (6)

Normalized predicted output:

Ỹt = Ht (7)

where, Wxi, Wxf , Wxo, Wxc, and Whi, Whf , Who, Whc

refer respectively to the weight parameters and bi, bf , bo, bc
denote bias parameters for three gates and a memory cell.
The symbol ⊙ indicates the element-wise multiplication. The
estimation of Ct relies on the output information from memory
cells (Ct−1) and the current time step Ĉt. The predicted output
Ỹt is obtained from the hidden state (Ht) at each time t in the
current LSTM cell.

B. Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) serves as an alternative ver-
sion of LSTM designed to enhance the LSTM performance,
reduce the number of parameters, and simplify its design [36].
GRU achieves this by amalgamating the input and forget gates
of LSTM into a single update gate (Zt), and utilizing the output
gate as a reset gate (Rt). The introduction of reset and update
gates represents novel features introduced by GRU models,
offering a fresh evaluation method for calculating hidden states
in RNN models. In the general architecture of GRU, only the
update and reset gates are employed (see Fig. 2).

Fig. 2. Architecture of a single GRU cell.

The update gate determines the extent of previously re-
tained memory, while the reset gate governs the manner
in which current inputs combine with past memory. The
GRU network compute mapping between input sequence
and the output sequence in normalized form, that is, X̃ =
(X̃1, X̃2, ..., X̃n) and Ỹ = (Ỹ1, Ỹ2, ..., Ỹn). The mathematical

relationships between the various GRU components are pre-
sented in Eq. (8) to Eq. (12):

Update gate:

Zt = sigmoid(WxzX̃t +WhzHt−1 + bz) (8)

Reset gate:

Rt = sigmoid(WxrX̃t +WhrHt−1 + br) (9)

Cell state:

Ĥt = tanh(WxhX̃t +Whh(RtHt−1) + bh) (10)

New state:

Ht = Zt ⊙Ht−1 + (1− Zt)⊙ Ĥt (11)

Normalized predicted output:

Ỹt = Ht (12)

where, Wxz , Wxr, Wxh and Whz , Whr, Whh refer respec-
tively to weight parameters and bz , br, bh denote bias parame-
ters. The symbol ⊙ indicates the element-wise multiplication.
For a given time step t, the current update gate Zt is used to
combine the previous hidden state Ht−1 and current candidate
hidden state Ĥt. The normalized predicted output Ỹt is derived
from the hidden state (Ht) at each time step t within the current
GRU cell.

C. Autocorrelation Function and Partial Autocorrelation
Function

Time series data often harbors hidden characteristics, en-
compassing both linear and non-linear components that pro-
foundly impact analysis, modeling, and forecasting. In this
context, the autocorrelation function (ACF) and partial auto-
correlation function (PACF) emerge as indispensable tools in
time series analysis, offering valuable insights into its structure
and dynamics. The ACF and PACF serve to uncover the
presence and characteristics of autocorrelation within the data.
Autocorrelation and partial autocorrelation represent statistical
measures that assess the relationship between a time series
and its preceding values, known as lag. These measures
illuminate the temporal dependencies and patterns inherent in
the time series, thereby facilitating a deeper understanding of
its behavior and informing predictive modeling endeavors.

The ACF measures the correlation between observations
in a time series and their lagged values across different
time intervals. This helps to identify patterns and temporal
dependencies within the time series data. The ACF calculates
the correlation between the series (Xt) and the same series
lagged by k time periods (Xt−k). Mathematically, the ACF at
lag-k is expressed in Eq. (13) to Eq. (14) [37]:

Corr(Xt,Xt−k) =
Cov(Xt, Xt−k)√

Var(Xt) · Var(Xt−k)
(13)
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Corr(Xt,Xt−k) =

∑n
t=k+1(Xt − X̄) · (Xt−k − X̄)∑n

t=1(Xt − X̄)2
(14)

where, Xt represents the value of a time series at time t, X̄
means the mean of the time series, and n denotes the number
of observations in the time series. The variable k represents
the time gap being examined and is termed the lag, where k
ranges from 1 to n. In essence, a lag-k autocorrelation refers
to the correlation between values that are k time periods apart.

Unlike autocorrelation, partial autocorrelation isolates the
direct correlation between an observation in a time series
and its past values, eliminating the influence of other val-
ues at intermediate time lags [31]. For instance, the partial
autocorrelation for lag-3 only considers the correlation that
lag-1 and lag-2 do not account for. In a time series, the
partial autocorrelation between Xt and Xt−k is defined as the
conditional correlation between Xt and Xt−k, conditioned on
Xt−1, ... , Xt−k+1, representing the observations between time
points t and t− k. The PACF at lag-1 is defined to equal the
ACF at lag-1. Subsequently, the partial autocorrelation at lag-k
is expressed mathematically as follows [37]:

Corr(Xt,Xt−k|Xt−1,...,Xt−k+1)

=
Cov(Xt, Xt−k|Xt−1, ..., Xt−k+1)√

Var(Xt|Xt−1, ..., Xt−k+1) · Var(Xt−k|Xt−1, ..., Xt−k+1)
(15)

In Eq. (15) Xt represents the value of a time series at time
t, and n signifies the total number of observations in the time
series. The variable k denotes the time gap under consideration
and is termed the lag, with k ranging from 1 to n. Essentially, a
lag-k autocorrelation indicates the correlation between values
that are k time periods apart.

D. Proposed Methods with ACF, PACF Series

Deep learning techniques, such as LSTM and GRU, have
been successfully applied in the context of time series forecast-
ing. The performance of these methods relies heavily on having
a sufficient amount of data to appropriately fit their parameters
[17]. However, the number of samples extracted from a short
time series may be insufficient to achieve an optimal model
[38]. To prevent overfitting, these methods should be properly
regularized. One challenge in time series forecasting is that,
even with a long series and ample data, observations from the
distant past often provide fewer cues for prediction. Recent
observations from an individual series tend to be more useful
in forecasting. This could be attributed to the evolving nature
of patterns within a series.

Fig. 3. Train-validation-test split of time series dataset.

In Fig. 3, a given time series is divided into in-sample
and out-sample segments using a certain ratio, such as 70/30.
The out-sample portion serves as testing data to evaluate the
model. The in-sample segment is further divided into training
and validation data. However, using separate validation data
means excluding recent observations from the training data,
potentially missing recent patterns. One simple solution is to
include the validation data in model training. However, this
may lead to overfitting, reducing accuracy on test data. Specif-
ically, we are determined to apply the statistical properties of
the ACF, PACF to avoid model overfitting and enhance the
learning potential of deep learning methods for time series
forecasting.

The primary concept of the proposed models in this study
is to integrate the ACF and PACF series from lag-1 to lag-7, as
another new series into deep learning models based on LSTM
and GRU for sequential predictions of COVID-19 cases, as
depicted in Fig. 4. A part of the training data, and validation
data are utilized to build the ACF and PACF series from lag-
1 to lag-7, separately in each time period. Both ACF, PACF
series uncover the temporal dependencies that exist in the
original series. Therefore, the original part of training data
and its ACF/PACF series are passed to the standard LSTM or
GRU model for generate one proposed model in the model
training process, such as ACF-LSTM, PACF-LSTM, ACF-
PACF-LSTM, ACF-GRU, PACF-GRU, and ACF-PACF-GRU,
as shown in Fig. 5. In the validation process, the original part
of training data and its ACF/PACF series are employed with
an optimization algorithm to fine-tune the hyperparameters of
each model that fit the trained model. Moreover, the testing
data from the original time series is used to generate the ACF
and PACF series, which are then employed to predict values
during the testing phase, as illustrated in Fig. 6.

Fig. 4. ACF and PACF series at lag1 to lag7.

III. MATERIALS

This section describes the source of the dataset, design
experiments for COVID-19 forecasting, data preprocessing,
and the evaluation criteria for model predictive performance.

A. Data Source of COVID-19

This study aims to compare deep learning prediction mod-
els using COVID-19 datasets from twelve countries with the
highest number of COVID-19 cases. The COVID-19 dataset
was sourced from the WHO International website, providing
daily cumulative cases of COVID-19 [39], in .csv format. The
dataset contains the daily cumulative number of confirmed,
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Fig. 5. COVID-19 data, ACF and PACF series into proposed model.

Fig. 6. Framework of the proposed scheme.

death, and recovered cases in the time series format with tem-
poral patterns. In this study, the experiments were conducted
using the time series data of confirmed and death cases for
twelve countries with the highest number of confirmed cases
from January 6, 2020, to June 6, 2022. These countries are
the USA, India, Brazil, France, Germany, the UK, Russia,

Italy, Turkey, Spain, Vietnam, and Argentina. These specific
countries were chosen based on a selection process proposed
in a prior publication [32]. This COVID-19 data set includes
the counts of confirmed cases, and deaths cases shown in
Table I. For training and validation, 70% of each time series is
allocated, with the remaining 30% reserved for case prediction
in Fig. 3. Before developing a proposed model, the data series
undergoes preprocessing.

TABLE I. OVERALL COVID-19 CASES

Countries Confirmed cases Death cases

USA 83,894,969 1,000,512

India 43,181,335 524,701

Brazil 31,153,069 666,997

France 28,647,902 149,202

Germany 26,558,190 143,131

UK 22,342,463 199,612

Russia 18,355,200 379,584

Italy 17,505,973 166,949

Turkey 15,077,320 99,004

Spain 12,520,475 108,488

Vietnam 10,726,045 43,081

Argentina 9,276,618 128,973

B. Data Preprocessing

The dataset consists of two features: confirmed and death
cases. Unscaled data can impede the convergence process. To
enhance model performance and ensure consistency in eval-
uating deep learning models, preprocessing raw data through
normalization is essential. We applied normalization to the data
using the formulation X̃t = (Xt–min)/(max–min), where
X̃t represents the normalized actual value at time point t,
ensuring it falls within a fixed range typically from zero to
one, and Xt denotes the actual value observed at time point
t. After constructing the forecasting model at each time point
t and obtaining the forecasted values on the normalized scale
Ỹt, we transformed them back to the original data scale using
the following formula: Yt = Ỹt ∗ (max−min)+min. In this
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context, Yt represents the predicted data at the time point t,
rescaled to the raw data format. In Python, the observed raw
data can be normalized using the MinMaxScaler object from
scikit-learn [40]. MinMaxScaler subtracts the smallest feature
value and then divides by the feature range, where the range
is the difference between the original maximum and original
minimum values. This scaler preserves the shape of the original
data distribution, retaining the information embedded in the
original dataset without significantly altering it or diminishing
the importance of outliers.

C. Design Experiments for COVID-19 Forecasting

This study proposes a deep-learning framework for
COVID-19 time-series forecasting, integrating the ACF, and
PACF series from lag-1 to lag-7 into LSTM and GRU models.
Six deep learning models are employed for forecasting daily
confirmed and death cases: ACF-LSTM, PACF-LSTM, ACF-
PACF-LSTM, ACF-GRU, PACF-GRU, and ACF-PACF-GRU
in Fig. 5. The proposed models offer a comprehensive explo-
ration of deep learning techniques. A visual representation of
the proposed scheme is depicted in Fig. 6.

Given the progressive spread of COVID-19, the cumulative
number of confirmed and death cases is forecasted at specific
points in time using preceding values. The COVID-19 time
series datasets in this study are segmented into training,
validation, and testing datasets, as illustrated in Fig. 6. Mon-
itoring the model’s generalization capabilities and selecting
appropriate hyperparameters is crucial. To address this, the
data is partitioned based on time for training and validation
purposes.

COVID-19 forecasting entails two main stages: training
and testing. During the initial stage, raw data is preprocessed,
standardized, and utilized to construct the deep learning model.
Parameters for the deep learning models are adjusted to min-
imize the loss function during training, employing the Adam
optimizer for this purpose. Subsequently, in the testing stage,
the previously constructed models with the selected parameters
are deployed to forecast the number of COVID-19 cases. The
hyperparameter settings for the deep learning models—ACF-
LSTM, PACF-LSTM, ACF-PACF-LSTM, ACF-GRU, PACF-
GRU, and ACF-PACF-GRU—are outlined in Table II.

Sixteen cells of LSTM or GRU algorithms are incorporated
into a single hidden layer within the proposed models illus-
trated in Fig. 7. Model accuracy is evaluated by comparing
measured data with real data using standard statistical per-
formance measures including MAE, MAPE, RMSE, and R-
squared. Simulations and experiments of the proposed models
of deep learning are implemented with Keras [41], the Python
deep learning library. The primary objective of this study is to
assess the predictive capabilities of the six proposed models
for forecasting the number of COVID-19 cases, which will be
compared with the standard LSTM and GRU models in terms
of MAE, and R-squared presented in the previous study. The
specific steps involved are as follows:

Step1. The data of COVID-19 are normalized, and the time
series is divided into training sets and testing sets;

Step2. Introduce the ACF and, or PACF series (at lag-1,
. . . , and lag-7) to LSTM, or GRU algorithm;

TABLE II. PROPOSED SCHEME WITH HYPERPARAMETERS AND THEIR
VALUES

Methods Hyperparameters Values

ACF-LSTM/ Layers 1

ACF-GRU/ Timestep 7

PACF-LSTM/ Hidden units 16

PACF-GRU Feature(s) 8

Loss MAE

Last activation tanh

Batch size 64

Epochs 10000

Optimizer Adam

ACF/PACF lag-1, lag-2, lag-3,..., lag-6, lag-7

ACF-PACF-LSTM/ Layers 1

ACF-PACF-GRU Timestep 7

Hidden units 16

Feature(s) 15

Loss MAE

Last activation tanh

Batch size 64

Epochs 10000

Optimizer Adam

ACF lag-1, lag-2, lag-3,..., lag-6, lag-7

PACF lag-1, lag-2, lag-3,..., lag-6, lag-7

Step3. Define the hyperparameters in an proposed model
in training data;

Step4. In the training step, using the training set data to
determine the optimal solution of the model to predict the
forecasted values in the training data;

Step5. In the validation step, using validation data to
evaluate the fit model from training step;

Step6. In the testing step, using testing data to test the
trained model, and evaluate the accuracy of the model by using
performance indices. Given the progressive spread of COVID-
19, the cumulative number of confirmed and death cases is
forecasted at specific points in time using preceding values.
The COVID-19 time series datasets in this study are segmented
into training, validation, and testing datasets, as illustrated in
Fig. 3. Monitoring the model’s generalization capabilities and
selecting appropriate hyperparameters is crucial. To address
this, the data is partitioned based on time for training and
validation purposes.

D. Performance Metrics

In this study, the mean absolute error (MAE), and the
coefficient of determination (R-squared or R2) are utilized as
predictive performance metrics to evaluate forecast accuracy
and compare between proposed models and the standard deep
learning models (LSTM, and GRU). Whereas comparing the
accuracy forecasting among the six proposed models is consid-
ered by the mean absolute percentage error (MAPE), and the
root mean square error (RMSE) [42], [43]. These performance
metrics are estimated from a normalized form of the actual
and predicted values at time point t presented as X̃t and Ỹt,
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Fig. 7. Architecture of 16 LSTM/GRU cells.

respectively. ¯̃X represents the mean of the normalized actual
values, and n denotes the total number of data time points. A
model demonstrates superior performance when MAE, MAPE,
and RMSE are closer to 0. Additionally, a model is considered
more efficient when R-squared approaches 1 [44], [45]. Mean
absolute error (MAE) enables the measurement of the average
magnitude of errors for a set of predictions, irrespective of
their direction. It is expressed mathematically in Eq. (16):

MAE =
1

n

n∑
t=1

∣∣∣Ỹt − X̃t

∣∣∣ (16)

MAPE quantifies the magnitude of errors as a percentage
and can be expressed mathematically in Eq. (17):

MAPE =
1

n

n∑
t=1

∣∣∣∣∣X̃t − Ỹt

X̃t

∣∣∣∣∣× 100 (17)

Root mean square error (RMSE) reveals the discrepancies
in amplitude between actual and forecasted data. RMSE is
often flavored for evaluating short-term forecasting [46], [47],
and can be calculated as Eq. (18):

RMSE =

√√√√ 1

n

n∑
t=1

(Ỹt − X̃t)2 (18)

To demonstrate the proportion of the variation between
actual value and forecasted value, R-squared is presented in
Eq. (19):

R2 = 1−
∑n

t=1(X̃t − Ỹt)
2∑n

t=1(X̃t − ¯̃X)2
(19)

IV. RESULTS

This section describes the evaluation criteria for model
predictive performance, results, and discussion about those
results. To evaluate the performance of deep learning methods
for COVID-19 time-series forecasting, this study compares six

proposed models against the standard LSTM and GRU models
used as baselines presented as the results from the previous
study of Zhou et al. (2023). Our study expands upon the
methodologies used by Zhou et al. (2023) by incorporating
ACF and PACF as additional input features to the LSTM
and GRU models, which has led to substantial improvements
in forecasting accuracy. Moreover, the results of this study
cover the forecasted trends of cumulative confirmed, and
cumulative death of the COVID-19 cases are in using all
six proposed models, including ACF-LSTM model, PACF-
LSTM model, ACF-PACF-LSTM model, ACF-GRU model,
PACF-GRU model, and ACF-PACF-GRU model. The top-
12 countries based on cumulative confirmed cases, as of
June 6, 2022, are the United States (USA), India, Brazil,
France, Germany, United Kingdom (UK), Russia, Italy, Turkey,
Spain, Vietnam, and Argentina. The dataset for each country
comprises two time series data sets: cumulative confirmed
cases, and cumulative death cases. The forecast was done
for each period of the two time series data of the individual
country and its ACF, and/or PACF with lag-1, lag-2, . . . , and
lag-7 by independently feeding those time series data into the
optimized LSTM and GRU based RNN networks. A total of
144 simulations were performed.

A. Cumulative Confirmed Cases

The study evaluates forecasting accuracy by comparing the
proposed models against the standard LSTM and GRU models
using the same time series data of COVID-19 confirmed cases.
Performance measures for eight models illustrate the actual and
predicted cases across twelve countries using deep learning
models based on LSTM and GRU. The rankings of MAE and
R-squared values for each country, comparing the six proposed
models with the standard models, are presented in Table III and
Table IV, respectively.

In Table III, the MAE ranking of the standard LSTM model
across twelve countries typically falls between 7th and 8th,
with exceptions in Argentina (2nd), Italy (3rd), and France
(4th). Zhou et al. (2023) found that LSTM models consistently
performed at a moderate level for COVID-19 case predictions.
In our study, the ACF-PACF-GRU model consistently out-
performed other models, achieving the lowest average MAE
ranking (2nd), with superior accuracy in countries like Brazil,
France, Turkey, Spain, Vietnam, and Argentina. The standard
GRU model ranks between 1st and 7th. Among the proposed
LSTM-based models, the ACF-LSTM model generally ranks
between 5th and 8th, except for the USA, UK, and Russia,
which share the 2nd position. The PACF-LSTM model ranks
between 2nd and 5th, while the ACF-PACF-LSTM model
primarily falls between 6th and 8th, except for Brazil and India,
which both rank 5th.

At the country level, the proposed GRU-based models show
varying performance. The ACF-GRU model generally ranks
between 1st and 5th, except for Brazil (7th) and Argentina (8th).
The PACF-GRU model ranks between 3rd and 7th, with India as
an exception at 1st place. The ACF-PACF-GRU model, which
demonstrates superior performance, primarily ranks between
1st and 3rd in MAE, except for Russia and Italy, which both
rank 4th. This model achieves the highest forecasting accuracy
in six countries: Brazil, France, Turkey, Spain, Vietnam, and
Argentina.
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TABLE III. ANALYSIS RESULTS OF MAE PERFORMANCE METRICS FOR COVID-19 CONFIRMED CASES ACROSS TWELVE COUNTRIES

Country LSTM* ACF-LSTM PACF-LSTM ACF-PACF-LSTM GRU* ACF-GRU PACF-GRU ACF-PACF-GRU
USA [8] 0.0211 [2] 0.002325 [4] 0.004666 [7] 0.012734 [5] 0.0073 [1] 0.001303 [6] 0.007466 [3] 0.004307
India [8] 0.0057 [6] 0.003872 [3] 0.002278 [5] 0.002675 [7] 0.0046 [4] 0.002605 [1] 0.001567 [2] 0.001741
Brazil [8] 0.0089 [6] 0.007829 [2] 0.001885 [5] 0.005264 [4] 0.0039 [7] 0.008784 [3] 0.003358 [1] 0.001028
France [4] 0.0168 [6] 0.027764 [3] 0.015254 [8] 0.028122 [2] 0.0131 [5] 0.020826 [7] 0.027992 [1] 0.008854
Germany [8] 0.0478 [7] 0.027316 [3] 0.016762 [6] 0.027117 [1] 0.0067 [4] 0.018798 [5] 0.022447 [2] 0.011984
UK [8] 0.0085 [2] 0.002272 [4] 0.003317 [8] 0.012526 [5] 0.0067 [1] 0.001142 [6] 0.007669 [3] 0.002476
Russia [7] 0.0062 [2] 0.002109 [5] 0.004959 [8] 0.013515 [3] 0.0035 [1] 0.001597 [6] 0.005153 [4] 0.004294
Italy [3] 0.0110 [8] 0.029610 [2] 0.009979 [7] 0.022999 [1] 0.0080 [5] 0.019571 [6] 0.020897 [4] 0.013893
Turkey [7] 0.0096 [6] 0.008251 [2] 0.004501 [8] 0.013838 [5] 0.0070 [3] 0.005817 [4] 0.006010 [1] 0.002264
Spain [8] 0.0153 [7] 0.012144 [2] 0.005996 [6] 0.010588 [4] 0.0081 [5] 0.009843 [3] 0.007193 [1] 0.005131
Vietnam [8] 0.0263 [5] 0.016750 [4] 0.010404 [6] 0.018506 [7] 0.0186 [2] 0.007740 [3] 0.010370 [1] 0.005800
Argentina [2] 0.0041 [7] 0.012601 [3] 0.004301 [6] 0.010753 [5] 0.0052 [8] 0.014584 [4] 0.004530 [1] 0.003561
Avg. Ranking [6.50] [5.33] [3.08] [6.67] [4.08] [3.83] [4.50] [2.00]
Median 0.0103 0.0102 0.0048 0.0131 0.0069 0.0083 0.0073 0.0043

Note: Bold numbers indicate the best results. Superscript numbers in brackets indicate ranking among six proposed models and standard
deep learning models (LSTM*, GRU*) cited from the previous study of Luyu Zhou et al.

TABLE IV. ANALYSIS RESULTS OF R-SQUARED PERFORMANCE METRICS FOR COVID-19 CONFIRMED CASES ACROSS TWELVE
COUNTRIES

Country LSTM* ACF-LSTM PACF-LSTM ACF-PACF-LSTM GRU* ACF-GRU PACF-GRU ACF-PACF-GRU

USA [8] 0.79 [2] 0.999514 [5] 0.998138 [6] 0.996355 [7] 0.82 [1] 0.999901 [4] 0.998232 [3] 0.998652

India [8] 0.69 [5] 0.998422 [3] 0.998596 [6] 0.998372 [7] 0.81 [2] 0.999254 [1] 0.999595 [4] 0.998565

Brazil [8] 0.78 [5] 0.995175 [2] 0.999668 [4] 0.997976 [7] 0.83 [6] 0.995075 [3] 0.999116 [1] 0.999820

France [7] 0.83 [6] 0.993040 [2] 0.997088 [5] 0.993198 [8] 0.72 [3] 0.995699 [4] 0.993328 [1] 0.997891

Germany [8] 0.72 [5] 0.991069 [2] 0.997044 [6] 0.990451 [7] 0.83 [3] 0.995867 [4] 0.994361 [1] 0.997991

UK [7] 0.83 [2] 0.999760 [4] 0.999546 [6] 0.998228 [8] 0.72 [1] 0.999930 [5] 0.999315 [3] 0.999711

Russia [7] 0.87 [2] 0.999738 [5] 0.998436 [6] 0.996569 [8] 0.79 [1] 0.999840 [3] 0.998838 [4] 0.998813

Italy [7] 0.82 [6] 0.991217 [1] 0.998369 [4] 0.995043 [8] 0.79 [3] 0.996498 [5] 0.994902 [2] 0.998267

Turkey [8] 0.72 [5] 0.998472 [4] 0.998901 [6] 0.996464 [7] 0.83 [2] 0.999157 [3] 0.998985 [1] 0.999708

Spain [7] 0.83 [6] 0.997367 [4] 0.997940 [3] 0.998465 [8] 0.78 [5] 0.997814 [2] 0.999352 [1] 0.999553

Vietnam [7] 0.81 [5] 0.996667 [3] 0.997697 [6] 0.996010 [8] 0.69 [2] 0.998190 [4] 0.997547 [1] 0.998866

Argentina [8] 0.79 [5] 0.993972 [3] 0.997978 [4] 0.996731 [7] 0.87 [6] 0.993932 [1] 0.999478 [2] 0.998541

Avg. Ranking [7.50] [4.50] [3.17] [5.17] [7.50] [2.92] [3.25] [2.00]

Median 0.8000 0.9970 0.9983 0.9965 0.8000 0.9980 0.9989 0.9987

Note: Bold numbers indicate the best results. Superscript numbers in brackets indicate ranking among six proposed models and standard
deep learning models (LSTM*, GRU*) cited from the previous study of Luyu Zhou et al.

TABLE V. ANALYSIS RESULTS OF MAPE PERFORMANCE METRICS FOR COVID-19 CONFIRMED CASES ACROSS
TWELVE COUNTRIES

Country ACF-LSTM PACF-LSTM ACF-PACF-LSTM ACF-GRU PACF-GRU ACF-PACF-GRU

USA [2] 0.303071% [4] 0.617389% [6] 1.496590% [1] 0.173846% [5] 0.904907% [3] 0.599810%

India [6] 0.413458% [3] 0.252859% [5] 0.295722% [4] 0.283855% [1] 0.171580% [2] 0.196526%

Brazil [5] 0.992938% [2] 0.232107% [4] 0.653093% [6] 1.017317% [3] 0.362137% [1] 0.124322%

France [5] 4.023079% [2] 2.542633% [6] 4.031528% [3] 3.163861% [4] 4.014180% [1] 1.729816%

Germany [6] 4.178394% [2] 2.757850% [5] 4.066854% [3] 3.108251% [4] 3.535206% [1] 1.733134%

UK [2] 0.345353% [4] 0.520922% [6] 1.525532% [1] 0.175605% [5] 0.972250% [3] 0.369609%

Russia [2] 0.301561% [5] 0.662813% [6] 1.546049% [1] 0.227717% [4] 0.658677% [3] 0.584758%

Italy [6] 4.174280% [1] 1.759937% [5] 3.201211% [4] 2.891370% [3] 2.628040% [2] 2.015938%

Turkey [5] 0.880689% [2] 0.578842% [6] 1.539030% [3] 0.642271% [4] 0.714556% [1] 0.297870%

Spain [6] 1.618311% [3] 0.980700% [4] 1.246353% [5] 1.397544% [2] 0.851835% [1] 0.655080%

Vietnam [6] 4.506387% [5] 3.810372% [3] 3.537982% [2] 2.466952% [4] 3.541360% [1] 1.455438%

Argentina [5] 1.621819% [3] 0.564103% [4] 1.306167% [6] 1.752075% [2] 0.482833% [1] 0.450001%

Avg. Ranking [4.67] [3.00] [5.00] [3.25] [3.42] [1.67]

Median 1.306% 0.640% 1.532% 1.207% 0.878% 0.592%

Note: Bold numbers indicate the best results. Superscript numbers in brackets indicate ranking among six proposed models.
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TABLE VI. ANALYSIS RESULTS OF RMSE PERFORMANCE METRICS FOR COVID-19 CONFIRMED CASES
ACROSS TWELVE COUNTRIES

Country ACF-LSTM PACF-LSTM ACF-PACF-LSTM ACF-GRU PACF-GRU ACF-PACF-GRU

USA [2] 0.004424 [4] 0.008354 [6] 0.015735 [1] 0.001864 [5] 0.010148 [3] 0.007133

India [6] 0.004335 [3] 0.003575 [5] 0.003894 [2] 0.002783 [1] 0.002112 [4] 0.003780

Brazil [5] 0.008499 [2] 0.002280 [4] 0.005525 [6] 0.010168 [3] 0.004581 [1] 0.001665

France [4] 0.035989 [2] 0.021375 [6] 0.036731 [3] 0.027494 [5] 0.036429 [1] 0.015350

Germany [5] 0.039105 [2] 0.023398 [6] 0.039550 [3] 0.026441 [4] 0.031702 [1] 0.017866

UK [2] 0.003656 [4] 0.005250 [6] 0.015484 [1] 0.001978 [5] 0.009525 [3] 0.004472

Russia [2] 0.003764 [5] 0.009854 [6] 0.018624 [1] 0.002953 [4] 0.008916 [3] 0.008283

Italy [6] 0.037787 [1] 0.014468 [5] 0.029706 [3] 0.024618 [4] 0.028783 [2] 0.017685

Turkey [5] 0.011119 [2] 0.007022 [6] 0.017426 [3] 0.007553 [4] 0.008216 [1] 0.003545

Spain [6] 0.016057 [3] 0.011521 [5] 0.013918 [4] 0.013410 [2] 0.009497 [1] 0.006811

Vietnam [5] 0.023661 [3] 0.018179 [6] 0.028106 [2] 0.016426 [4] 0.018929 [1] 0.013277

Argentina [5] 0.015487 [3] 0.008682 [4] 0.012727 [6] 0.017869 [1] 0.006048 [2] 0.007632

Avg. Ranking [4.42] [2.83] [5.42] [2.92] [3.50] [1.92]

Median 0.013 0.009 0.017 0.012 0.010 0.007

Note: Bold numbers indicate the best results. Superscript numbers in brackets indicate ranking among six proposed
models.

When comparing LSTM-based and GRU-based models, the
proposed GRU-based models exhibit a lower average ranking
than their LSTM counterparts. The top three models in terms
of average MAE ranking are ACF-PACF-GRU (2.00), PACF-
LSTM (3.08), and ACF-GRU (3.83). The MAE performance
results indicate that incorporating the PACF series into LSTM
models significantly enhances forecasting accuracy compared
to the standard LSTM. Similarly, integrating the ACF series
into GRU models improves predictive performance over stan-
dard GRU. According to the R-squared rankings in Table IV,
the standard LSTM and GRU models consistently rank be-
tween 7th and 8th across twelve countries. Among the proposed
LSTM-based models, the ACF-LSTM model generally ranks
between 2nd and 5th, except for Italy, which ranks 1t. The
PACF-LSTM model falls between 4th and 5th, with exceptions
in the USA, UK, and Russia, where it ranks 2nd. The ACF-
PACF-LSTM model typically ranks between 4th and 6th, except
for Spain, which is ranked 3rd.

For the GRU-based models at the country level, the ACF-
GRU model generally ranks between 1st and 3rd, except in
Spain (5th), Brazil (6th), and Argentina (6th). The PACF-GRU
model typically ranks between 3rd and 5th, with exceptions in
India (1st), Argentina (1st), and Spain (2nd). The ACF-PACF-
GRU model, demonstrating superior performance, primarily
ranks between 1st and 3rd, except in India and Russia, where it
ranks 4th. This model achieves the highest forecasting accuracy
in six countries: Brazil, France, Germany, Turkey, Spain, and
Vietnam.

Among all models, the proposed GRU-based models ex-
hibit a lower average R-squared ranking than their LSTM
counterparts. The top three models in terms of average ranking
are ACF-PACF-GRU (2.00), ACF-GRU (2.92), and PACF-
LSTM (3.17). The R-squared values indicate that incorporating
ACF and PACF series into both LSTM and GRU models
significantly enhances forecasting accuracy compared to using
only the standard LSTM or GRU models. Therefore, this
study demonstrated the MAE and R-squared rankings for ACF-
PACF-GRU consistently outperformed other models, showing

significant improvement over traditional LSTM and GRU mod-
els as used by Zhou et al. in forecasting cumulative confirmed
cases across twelve countries.

To summarize the overall performance of the eight models
across twelve countries, Fig. 8 presents the median values
and boxplots for each model based on different performance
metrics. The ACF-PACF-GRU model has the lowest median
MAE of 0.004, indicating superior accuracy. In terms of R-
squared, the PACF-GRU model achieves the highest median
value of 0.9989, followed closely by the ACF-PACF-GRU
model at 0.9987. Zhou et al. (2023) highlighted the efficacy
of deep learning models like LSTM in predicting COVID-
19 cases, though their model did not incorporate ACF/PACF
features. Our results align with their conclusion that deep
learning models are effective, but we extend their work by
showing that incorporating ACF and PACF series as input
features significantly improves forecasting accuracy. In partic-
ular, the ACF-PACF-GRU model, which combines both ACF
and PACF, demonstrated the best performance, significantly
lowering the MAE compared to the models used by Zhou et al.
(2023), which did not utilize these time-series dependencies.

The MAE and R-squared results indicate that incorporating
ACF and/or PACF as additional input series in deep learning
models enhances the forecasting accuracy of time series data.
To determine which proposed model provides the most ac-
curate COVID-19 case predictions, we analyzed the rankings
of MAPE and RMSE across six proposed models for each
country, as shown in Tables V and VI.

Overall, the top three models based on average rankings
for MAPE and RMSE are ACF-PACF-GRU (with 1.67, and
1.92, respectively), PACF-LSTM (with 3.00, and 2.83), and
ACF-GRU (with 3.25, and 2.92). As shown in Table V, the
ACF-PACF-GRU model consistently outperforms other models
in MAPE across seven countries: Brazil, France, Germany,
Turkey, Spain, Vietnam, and Argentina. Similarly, Table VI
highlights that this model achieves the lowest RMSE in six
countries: Brazil, France, Germany, Turkey, Spain, and Viet-
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Fig. 8. Analysis results of MAE and R-squared for confirmed cases, compared eight proposed models with the standard deep learning models.

Fig. 9. Analysis results of MAPE and RMSE for confirmed cases compared among six proposed models.

nam. At the country level, the ACF-GRU model ranks within
the top three positions more frequently than the PACF-GRU
model in both MAPE and RMSE.

These findings suggest that for LSTM-based models, in-
corporating only the PACF series yields better forecasting
performance than adding either the ACF series alone or both
series together. Conversely, for GRU-based models, integrating
both ACF and PACF series leads to superior forecasting accu-
racy compared to including only one of the series. Among all
models, the ACF-PACF-GRU model demonstrates the highest
potential for forecasting COVID-19 confirmed cases.

To provide a comprehensive overview of the results across
all twelve countries, Fig. 9 presents the median values and

boxplots for the six proposed models, categorized by perfor-
mance metrics. The median values of MAPE and RMSE in
Fig. 9 confirm that the ACF-PACF-GRU model demonstrates
the highest predictive accuracy, with the lowest median MAPE
at 0.592% and RMSE at 0.007. These findings highlight the
effectiveness of the ACF-PACF-GRU model, indicating that
the proposed approach significantly improves the forecasting
performance for confirmed cases.

B. Cumulative Death Cases

Using the same time-series data for COVID-19 death
cases, the forecasting accuracy of the six proposed models
is compared to the standard LSTM and GRU models. The
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TABLE VII. ANALYSIS RESULTS OF MAE PERFORMANCE METRICS FOR COVID-19 DEATH CASES ACROSS TWELVE COUNTRIES

Country LSTM* ACF-LSTM PACF-LSTM ACF-PACF-LSTM GRU* ACF-GRU PACF-GRU ACF-PACF-GRU

USA [8] 0.019620 [2] 0.000922 [5] 0.001147 [6] 0.004033 [7] 0.006790 [1] 0.000889 [4] 0.000991 [3] 0.000978

India [8] 0.005300 [6] 0.001803 [5] 0.001533 [3] 0.001247 [7] 0.004280 [4] 0.001366 [2] 0.000976 [1] 0.000791

Brazil [8] 0.008280 [6] 0.001946 [1] 0.000451 [4] 0.000625 [7] 0.003630 [5] 0.001575 [2] 0.000471 [3] 0.000509

France [8] 0.015620 [6] 0.006603 [1] 0.002567 [4] 0.004213 [7] 0.012180 [5] 0.005486 [3] 0.003727 [2] 0.002902

Germany [8] 0.044450 [5] 0.005379 [2] 0.002347 [4] 0.004396 [6] 0.006230 [7] 0.007754 [3] 0.004262 [1] 0.002249

UK [8] 0.007910 [5] 0.001435 [3] 0.000398 [4] 0.000698 [7] 0.006230 [6] 0.001858 [1] 0.000326 [2] 0.000330

Russia [8] 0.005770 [3] 0.000696 [4] 0.000714 [6] 0.002520 [7] 0.003260 [1] 0.000523 [5] 0.000791 [2] 0.000597

Italy [8] 0.010230 [6] 0.004871 [1] 0.000281 [5] 0.004385 [7] 0.007440 [4] 0.003320 [2] 0.001520 [3] 0.001878

Turkey [8] 0.008930 [5] 0.002190 [3] 0.001275 [6] 0.005586 [7] 0.006510 [4] 0.001922 [2] 0.001088 [1] 0.000755

Spain [8] 0.014230 [6] 0.004767 [1] 0.002161 [4] 0.004239 [7] 0.007530 [5] 0.004738 [3] 0.003460 [2] 0.002798

Vietnam [7] 0.024460 [3] 0.010312 [1] 0.005568 [8] 0.027172 [5] 0.017300 [2] 0.008209 [4] 0.014931 [6] 0.021237

Argentina [7] 0.003810 [6] 0.002313 [4] 0.000842 [3] 0.000650 [8] 0.004840 [5] 0.001997 [2] 0.000505 [1] 0.000457

Avg. Ranking [7.83] [4.92] [2.58] [7.45] [6.83] [4.08] [2.75] [2.25]

Median 0.0096 0.0023 0.0012 0.0041 0.0064 0.0020 0.0010 0.00009

Note: Bold numbers indicate the best results. Superscript numbers in brackets indicate ranking among six proposed models and standard deep
learning models (LSTM*,GRU*) cited from the previous study of Luyu Zhou et al.

TABLE VIII. ANALYSIS RESULTS OF R-SQUARED PERFORMANCE METRICS FOR COVID-19 DEATH CASES ACROSS TWELVE
COUNTRIES

Country LSTM* ACF-LSTM PACF-LSTM ACF-PACF-LSTM GRU* ACF-GRU PACF-GRU ACF-PACF-GRU

USA [8] 0.7347 [2] 0.999868 [5] 0.999795 [6] 0.998705 [7] 0.7626 [1] 0.999880 [4] 0.999833 [3] 0.999846

India [8] 0.6417 [6] 0.997680 [5] 0.998281 [4] 0.998810 [7] 0.7533 [3] 0.998986 [2] 0.999065 [1] 0.999315

Brazil [8] 0.7254 [6] 0.996445 [1] 0.999656 [4] 0.999443 [7] 0.7719 [5] 0.997545 [2] 0.999608 [3] 0.999560

France [7] 0.7719 [6] 0.992627 [1] 0.998876 [4] 0.997605 [8] 0.6696 [5] 0.995249 [3] 0.998167 [2] 0.998824

Germany [8] 0.6696 [3] 0.998863 [2] 0.999333 [4] 0.998483 [7] 0.7719 [6] 0.996506 [5] 0.998353 [1] 0.999481

UK [7] 0.7719 [5] 0.999244 [3] 0.999943 [4] 0.999795 [8] 0.6696 [6] 0.998779 [1] 0.999957 [2] 0.999944

Russia [7] 0.8091 [5] 0.999951 [1] 0.999978 [6] 0.999880 [8] 0.7347 [4] 0.999972 [2] 0.999970 [3] 0.999974

Italy [7] 0.7626 [6] 0.997360 [1] 0.999979 [5] 0.997804 [8] 0.7347 [4] 0.998670 [2] 0.999731 [3] 0.999559

Turkey [8] 0.6696 [3] 0.999770 [5] 0.999711 [6] 0.998569 [7] 0.7719 [4] 0.999717 [2] 0.999793 [1] 0.999895

Spain [7] 0.7719 [6] 0.995523 [2] 0.998576 [4] 0.997383 [8] 0.7254 [5] 0.996040 [3] 0.997925 [1] 0.998809

Vietnam [7] 0.7533 [5] 0.998189 [2] 0.999137 [6] 0.993226 [8] 0.6417 [1] 0.999473 [3] 0.999031 [4] 0.998211

Argentina [8] 0.7347 [6] 0.994614 [4] 0.999266 [3] 0.999416 [7] 0.8091 [5] 0.997782 [1] 0.999693 [2] 0.999584

Avg. Ranking [7.50] [4.92] [2.67] [4.67] [7.50] [4.08] [2.50] [2.17]

Median 0.7440 0.9979 0.9995 0.9986 0.7440 0.9987 0.9997 0.9996

Note: Bold numbers indicate the best results. Superscript numbers in brackets indicate ranking among six proposed models and standard
deep learning models (LSTM*,GRU*) cited from the previous study of Luyu Zhou et al.

performance measures of eight models, shown in Tables VII
and VIII, display the actual and forecasted death cases across
twelve countries using deep learning models based on LSTM
and GRU. The rankings of MAE and R-squared values for
each country are presented for the six proposed models and
the standard models (LSTM and GRU) in Tables VII and VIII,
respectively.

In Table VII, the MAE ranking for the standard LSTM
and GRU models among twelve countries generally falls
between 7th and 8th place, similar to the results observed
in Zhou et al.’s (2023) study. However, our study shows a
clear advantage of the proposed GRU-based models over their
LSTM counterparts.

For the standard GRU model, the rankings are mostly
between 7th and 8th, except for Vietnam (5th) and Germany
(6th). For the proposed LSTM-based models, the ACF-LSTM

model typically ranks between 5th and 6th, with exceptions in
the USA (2nd), Russia (3rd), and Vietnam (3rd). The PACF-
LSTM model ranks between 1st and 3rd, except for Argentina
(4th), Russia (4th), India (5th), and the USA (5th). The ACF-
PACF-LSTM model mostly ranks between 3rd and 6th, with
the exception of Vietnam (8th).

For the proposed GRU-based models at the country level,
the ACF-GRU model generally ranks between 4th and 7th,
except for Russia (1st), the USA (1st), and Vietnam (2nd).
The PACF-GRU model ranks between 2nd and 5th, with an
exception in the UK (1st). The ACF-PACF-GRU model ranks
1st to 3rd in MAE for most countries, including India, Germany,
Turkey, and Argentina. In contrast, the standard LSTM and
GRU models performed at lower rankings for these countries.
This improvement is particularly evident when considering the
MAE and R-squared values for death cases in countries like
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TABLE IX. ANALYSIS RESULTS OF MAPE PERFORMANCE METRICS FOR COVID-19 DEATH CASES ACROSS
TWELVE COUNTRIES

Country ACF-LSTM PACF-LSTM ACF-PACF-LSTM ACF-GRU PACF-GRU ACF-PACF-GRU

USA [2] 0.108838% [5] 0.137860% [6] 0.448506% [1] 0.104958% [4] 0.118071% [3] 0.116503%

India [6] 0.194973% [5] 0.167504% [3] 0.134351% [4] 0.147819% [2] 0.104303% [1] 0.084415%

Brazil [6] 0.206977% [1] 0.047485% [4] 0.066193% [5] 0.165993% [2] 0.049643% [3] 0.053557%

France [6] 0.761604% [1] 0.291291% [4] 0.454209% [5] 0.622381% [3] 0.408169% [2] 0.315537%

Germany [5] 0.628394% [2] 0.296073% [3] 0.486435% [6] 0.888655% [4] 0.512760% [1] 0.268329%

UK [5] 0.158320% [3] 0.044199% [4] 0.073488% [6] 0.211555% [1] 0.036055% [2] 0.037579%

Russia [3] 0.084860% [4] 0.092779% [6] 0.283885% [1] 0.063388% [5] 0.100405% [2] 0.074391%

Italy [6] 0.525774% [1] 0.032344% [5] 0.471992% [4] 0.366857% [2] 0.168702% [3] 0.210783%

Turkey [5] 0.232556% [3] 0.141059% [6] 0.587429% [4] 0.214168% [2] 0.118658% [1] 0.085518%

Spain [6] 0.559273% [1] 0.249926% [4] 0.460365% [5] 0.535909% [3] 0.387958% [2] 0.308229%

Vietnam [3] 1.157108% [1] 0.691349% [6] 2.957375% [2] 0.946599% [4] 1.699260% [5] 2.379124%

Argentina [6] 0.245255% [4] 0.089956% [3] 0.068889% [5] 0.207647% [2] 0.053661% [1] 0.048188%

Avg. Ranking [4.92] [2.58] [4.50] [4.00] [2.83] [2.17]

Median 0.239% 0.139% 0.451% 0.213% 0.118% 0.101%

Note: Bold numbers indicate the best results. Superscript numbers in brackets indicate ranking among six proposed models.

TABLE X. ANALYSIS RESULTS OF RMSE PERFORMANCE METRICS FOR COVID-19 DEATH CASES ACROSS
TWELVE COUNTRIES

Country ACF-LSTM PACF-LSTM ACF-PACF-LSTM ACF-GRU PACF-GRU ACF-PACF-GRU

USA [2] 0.001234 [5] 0.001526 [6] 0.004537 [1] 0.001177 [4] 0.001384 [3] 0.001328

India [6] 0.002388 [5] 0.002115 [4] 0.001708 [3] 0.001626 [2] 0.001515 [1] 0.001312

Brazil [6] 0.002159 [1] 0.000653 [4] 0.000831 [5] 0.001750 [3] 0.000743 [2] 0.000734

France [6] 0.007181 [1] 0.002826 [4] 0.005207 [5] 0.006047 [3] 0.004367 [2] 0.003495

Germany [5] 0.006297 [2] 0.002971 [4] 0.005446 [6] 0.009024 [3] 0.005061 [1] 0.002624

UK [5] 0.001620 [3] 0.000460 [4] 0.000947 [6] 0.002270 [1] 0.000385 [2] 0.000441

Russia [4] 0.000958 [3] 0.000890 [6] 0.002853 [1] 0.000733 [5] 0.001071 [2] 0.000764

Italy [6] 0.006214 [1] 0.000435 [5] 0.005660 [4] 0.003911 [2] 0.001755 [3] 0.002111

Turkey [5] 0.002708 [3] 0.002088 [6] 0.006989 [4] 0.002211 [2] 0.001767 [1] 0.001222

Spain [5] 0.005452 [1] 0.003074 [4] 0.005129 [6] 0.005542 [3] 0.004095 [2] 0.003252

Vietnam [3] 0.010946 [1] 0.006718 [6] 0.029411 [2] 0.008528 [4] 0.015452 [5] 0.022089

Argentina [6] 0.003026 [4] 0.001157 [3] 0.001002 [5] 0.002087 [1] 0.000726 [2] 0.000909

Avg. Ranking [4.92] [2.50] [4.67] [4.00] [2.75] [2.17]

Median 0.003 0.002 0.005 0.002 0.002 0.001

Note: Bold numbers indicate the best results. Superscript numbers in brackets indicate ranking among six proposed
models.

Brazil and India.

When comparing the LSTM-based and GRU-based models,
the proposed GRU models generally have a lower average
ranking than the LSTM models. Among the eight models, the
top three in terms of average MAE ranking are ACF-PACF-
GRU (2.25), PACF-LSTM (2.58), and PACF-GRU (2.75). The
MAE performance results show that incorporating the PACF
series into LSTM models enhances forecasting performance
more effectively than using the standard LSTM alone. How-
ever, integrating both ACF and PACF series into GRU models
improves forecasting accuracy compared to using the standard
GRU.

As shown in Table VIII, the R-squared ranking for the
standard LSTM and GRU models across twelve countries
generally falls between 7th and 8th. For the proposed LSTM-
based models, the ACF-LSTM model typically ranks between

5th and 6th, with exceptions in the USA (2nd), Germany (3rd),
and Turkey (3rd). The PACF-LSTM model ranks between 1st

and 3rd, except for Argentina (4th), the USA (5th), India (2nd),
and Turkey (5th). The ACF-PACF-LSTM model usually ranks
between 4th and 6th, with the exception of Argentina (3rd).

For the proposed GRU-based models at the country level,
the ACF-GRU model generally ranks between 3rd and 6th,
except for the USA and Vietnam, where it ranks 1st. The
PACF-GRU model typically ranks between 1st and 3rd, except
for the USA (4th) and Germany (5th). The ACF-PACF-GRU
model, which achieves superior results, ranks between 1st and
3rd in most countries, except for Vietnam (4th). This model
demonstrates the highest forecasting accuracy in six countries:
India, Germany, Turkey, and Spain.

Among the various models, the proposed GRU-based mod-
els tend to have a lower average R-squared ranking compared
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Fig. 10. Analysis results of MAE and R-squared for death cases, compared eight proposed models with the standard deep learning models.

Fig. 11. Analysis results of MAPE and RMSE for death cases compared among six proposed models.

to the LSTM-based models. The top three models based on
average R-squared ranking are ACF-PACF-GRU (2.17), PACF-
GRU (2.50), and PACF-LSTM (2.67). The R-squared values
indicate that incorporating both ACF and PACF series into
GRU models can significantly enhance forecasting accuracy
compared to models based solely on LSTM or GRU, similar
to the improvement observed when adding the PACF series to
either LSTM or GRU.

To provide a comprehensive overview of the results for
all twelve countries, Fig. 10 presents the median values and
boxplots for eight models, organized by performance metrics.
The median values in Fig. 10 indicate that the ACF-PACF-
GRU model for death cases has the highest predictive ability,

with the lowest MAE value of 0.0009 and the highest R-
squared value of 0.9996. However, the PACF-GRU model has
a slightly higher median R-squared value of 0.9997.

Next, we examine which proposed model demonstrates the
greatest forecasting accuracy for COVID-19 death cases. The
MAPE and RMSE values for the six proposed models were
ranked for each country, as shown in Table IX and Table X.
Overall, the top 3 models based on average rankings for MAPE
and RMSE are ACF-PACF-GRU (2.17, and 2.17, respectively),
PACF-LSTM (2.58, and 2.50), and ACF-GRU (2.83, and 2.75).
In Table IX, the ACF-PACF-GRU model, with an average
MAPE ranking of 2.17, consistently outperforms the other
models in four countries, including India, Germany, Turkey,
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and Argentina. Similarly, in Table X, the ACF-PACF-GRU
model, with an average RMSE ranking of 2.17, is the best
model in six countries, including India, Germany, and Turkey.

To provide a comprehensive performance comparison
across all twelve countries, Fig. 11 illustrates the median values
and corresponding boxplots for the six proposed models,
evaluated using key performance metrics. The ACF-PACF-
GRU model consistently outperformed other models, achieving
the lowest median MAPE of 0.101% and RMSE of 0.001.
These results highlight the superior forecasting capability of
the ACF-PACF-GRU model, demonstrating the effectiveness of
integrating autocorrelation and partial autocorrelation features
in enhancing prediction accuracy for COVID-19 death cases.

Therefore, the forecasting performance of the LSTM
model, when only the PACF series is added, is better than
when either the ACF series or both series are incorporated
into the same algorithm. On the other hand, adding only the
ACF series or both series into the GRU model leads to better
forecasting accuracy compared to adding only the PACF series.
However, the MAPE and RMSE results for death cases confirm
that the ACF-PACF-GRU model has the highest potential for
accurately forecasting COVID-19 cases.

V. DISCUSSIONS

This study introduces a novel approach to improve the
forecasting accuracy of COVID-19 confirmed and death cases
by integrating ACF and PACF series into LSTM and GRU
models. The key motivation for choosing this approach is to
address the limitations of existing models, which primarily rely
on standard LSTM and GRU networks. While LSTM and GRU
models are adept at capturing long-term dependencies in time-
series data, they fall short in modeling non-linear relationships
and temporal dependencies [20], particularly in the context
of irregular and complex epidemic data like COVID-19. The
incorporation of ACF and PACF enhances the model’s ability
to capture both short-term and long-term dependencies, pro-
viding a more accurate representation of the underlying data
dynamics, which is essential for infectious disease forecasting.

This study demonstrates that our proposed models, espe-
cially the ACF-PACF-GRU model, outperform standard LSTM
and GRU models in forecasting accuracy, as evidenced by the
improved performance across key metrics such as MAE, R-
squared, MAPE, and RMSE. The incorporation of ACF and
PACF features provides additional insights into the temporal
dependencies of the data, which were absent in previous stud-
ies, including the work by Zhou et al. (2023). This approach
not only improves the predictive accuracy for COVID-19 but
is also applicable to other epidemic forecasting tasks where
similar temporal dependencies exist.

A. Implications of Results

The findings of this study have significant implications
for the forecasting of infectious disease trends. The unique
structure of LSTM and GRU models, when combined with
ACF and PACF series, enhances the ability of the models
to effectively capture both linear and non-linear temporal
dependencies present in epidemic data. The median MAPE
values for the ACF-PACF-GRU model, which are 0.592% for
confirmed cases and 0.101% for death cases, underscore the

efficacy of the proposed method. These values highlight how
the integration of ACF and PACF into deep learning models
can significantly improve the forecasting performance over
existing models. Furthermore, the improved accuracy achieved
by our models supports previous research emphasizing the im-
portance of time-series dependencies in epidemic forecasting.
Our proposed methodology, which extends the work of Zhou
et al. (2023) by incorporating ACF and PACF features, offers
a more robust framework for predicting COVID-19 trends and
can be adapted to other infectious diseases in future research.

B. Practical Implications

The proposed deep learning models provide valuable in-
sights for forecasting the cumulative number of confirmed and
death cases of COVID-19 by incorporating ACF and PACF
series into LSTM and GRU models. By treating the forecasting
task as a time-series problem, leveraging historical data to
predict future trends, the models can provide more accurate
predictions, thereby aiding public health decision-making. The
integration of ACF and PACF into GRU models, in particular,
improves model performance, making them more suitable
for real-time epidemic prediction. The enhanced accuracy of
the ACF-PACF-GRU model, when compared to the methods
used by Zhou et al. (2023), demonstrates the potential for
further improving deep learning-based forecasting models with
additional time-series features. These forecasts are crucial for
governments and public health officials, enabling them to make
informed decisions about epidemic control measures, resource
allocation, and intervention strategies.

C. Limitations

While LSTM and GRU models excel at capturing long-
term dependencies, they do not inherently account for the
temporal dependencies critical to epidemic forecasting. The
addition of ACF and PACF significantly enhances the models’
ability to capture these temporal patterns, which are often key
to understanding disease transmission. However, this study
focused solely on time-series data of the disease, excluding
other variables such as vaccination rates and country-specific
interventions, which could also influence epidemic outcomes.
Future research could incorporate these additional features to
provide a more comprehensive forecasting model. Addition-
ally, the complex architecture of deep learning models requires
careful hyperparameter selection, which may vary depending
on the dataset and problem. Thus, the proposed models in this
study, while more accurate than existing models, still require
optimization for different contexts and datasets.

VI. CONCLUSIONS

In this study, we introduced a novel deep learning approach
that incorporates ACF and PACF to improve time-series fore-
casting models for predicting COVID-19 confirmed and death
cases. By leveraging the ACF and PACF series in conjunc-
tion with original time-series data, our models were able to
capture both short-term and long-term temporal dependencies,
leading to improved forecasting accuracy. The ACF-PACF-
GRU model, in particular, demonstrated superior performance
across a range of metrics compared to both standard LSTM
and GRU models. These findings suggest that incorporating
time-series dependencies, such as ACF and PACF, significantly
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enhances the performance of deep learning models in epidemic
forecasting. Future research should explore the application
of this methodology to other infectious diseases, such as
influenza and dengue fever, to further validate the robustness
and generalizability of the approach.
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