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Abstract—Cloud environments (CE), wireless networks (WN),
cyber-physical systems (CPS), industrial control systems (ICS),
smart grids (SG), internet of things (IoT), internet of vehicles
(IOV), and unmanned aerial vehicles (UAV), are currently pop-
ular targets for cyberattacks due to their inherent limitations
and vulnerabilities. Each domain has its own attack surfaces,
weaknesses, and areas for implementing defense strategies ap-
propriate to its specific conditions. Among the various defense
mechanisms discussed in previous years, cyber deception has
appeared as a very promising method. This approach allows the
defenders to steer the attackers in the wrong direction, get threat
intelligence, and at the same time, increase security by engaging
with adversaries in deception environments in a proactive manner.
Cyber deception has been a topic of investigation in several stud-
ies, where specific frameworks and techniques were proposed to
identify, delay, or disrupt adversarial behavior. Nevertheless, the
contributions of earlier works are frequently limited or missing a
unified framework that makes a thorough and comparative study
necessary. This survey investigates the cyber deception techniques
used in various domains. The first part is about the cores of
deception and its background. Next, it presents a summary of the
available deception techniques with their modeling by different
frameworks like MITRE ATT&CK, D3FEND, and Engage, and
intelligent orchestration using reinforcement learning (RL) and
game theory (GT). Then, it serves as a thorough systematic
review of each selected paper, going over the system design,
used deception techniques, evaluation metrics, and limitations
on each scheme. The achieved results are compiled into a unified
summary table to enable a quick and effective comparison across
the domains. It concludes, therefore, by discussing the main
challenges, open issues, and areas of research that have not
yet been explored, thus making it a valuable source for future
research on cyber deception.
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I. INTRODUCTION

The growth of cyber-attacks in terms of frequency and
sophistication has outstripped the ability of conventional se-
curity measures to be the sole protector of the complex and
dynamic digital infrastructures. The adversaries are continually
adapting their tactics, techniques, and procedures (TTPs) to
evade traditional defense mechanisms like firewalls, intrusion
detection/ prevention systems, and antivirus software. The
reactive schemes act typically after the initiation of an attack,
makes the need for different, proactive, and intelligent defense
strategies even more urgent.

One promising strategy is cyber deception, which is cur-
rently widely known in both research and industry. Cyber
deception is putting uncertainty and misdirection in the en-
vironment by intentionally misguiding adversaries; thus, their
progression becomes slower or they get fictitious information.
The method is based on failure or turning away the attacker,
providing first warning through the engagement of the attacker,
and collecting information about their capabilities. Deception
methods, from honeypots and honeynets to honeytokens [1],
are successful complementary tools that shift the advantage
back to defenders.

At the same time, the wide digital landscape has extended
to encompass a wide variety of interconnected and heteroge-
neous systems, including CE, WN, CPS, ICS, SG, IOT, IOV,
and UAV. Apart from the fact that the aforementioned domains
have achieved a previously unattainable level of scalability
and interconnection, they are also the main sources of new
vulnerabilities. Each domain, besides the attacks, also comes
with its unique features such as different architectural struc-
tures, operational constraints, communication protocols, and
security requirements that determine the nature and intensity
of the cyber threats that it has to deal with.

Although the individual fields such as WN, CPS, or IOT
are seeing a significant increase in the use of cyber deception
techniques, the current literature is still fragmented. At present,
there is no unified study that examines how deception has been
adapted and applied across such diverse technological envi-
ronments. In particular, research on honeypots and honeynets
tends to remain siloed, without much cross-domain analysis
and integration.

Previously conducted surveys on cyber deception [2] [3] [4]
[5] [6] [7] have introduced foundational taxonomies, described
deception techniques, and outlined conceptual models. How-
ever, those are mainly dedicated to technique-level analysis
(e.g., GT, RL, or Honey-X strategies) and they are not system-
atic comparing across different operational domains. Although
some works [4] [6] did provide specific domains (e.g., in IoT,
ICS, CPS, and CE), the exploration is still fragmented, and it
has not been focused enough on how architectural constraints,
attacker models, and environmental characteristics influence
the design and deployment of deception strategies.

Based on those limitations, we have prepared a thorough
and comparative review of the cyber deception methods in
several critical domains. In contrast to previous studies that
either dwell upon particular techniques or theoretical models,
our survey stresses the domain-aware analysis of deception
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strategies, elaborating on customization to different system
architectures and operational contexts. Here are our main
contributions:

• We present the fundamental concepts, models, and
strategies of cyber deception to provide a clear back-
ground for the survey.

• We meticulously extract and synthesize the deception
technique, architecture, evaluation metrics, and limi-
tations from each selected paper.

• We categorize the findings by domain and summarize
them in standardized tables for cross-domain compar-
ison.

• We identify common challenges, open issues, and
trends, which could serve as a guide for further
research in deception-based cyber defense in various
contexts.

The remainder of this survey is structured as follows. Sec-
tion II presents the adopted methodology. Section III addresses
a comparison with existing surveys. Section IV provides the
background and key concepts of cyber deception. Section
V describes the intelligent orchestration of cyber deception.
Sections VI to XIII present the exploration of cyber deception
in CE, WN, CPS, ICS, SG, IoT, IoV, and UAV, respectively.
Section XIV discusses open research issues and key insights.
Finally, Section XV concludes the study.

II. ADOPTED METHODOLOGY

A systematic literature review was performed to investigate
the use of cyber deception techniques in various domains.
The review process was structured in a multi-step manner to
achieve comprehensiveness, relevance, and quality.

1) Database search and initial collection: We queried
high-impact databases like IEEE Xplore, DBLP, and
Google Scholar using various combinations of both
general and domain-specific keywords such as “cyber
deception”, “honeypot”, “honeytoken”, “fake data”,
and other domain-specific terms like “IoT”, “ICS”,
“UAV”, “Smart Grid”, and “Cloud”.

2) Inclusion and exclusion criteria: Only the articles that
described defensive deception techniques were kept.
Articles that were about offensive deception tech-
niques were removed from the list. Besides that, we
also filtered out duplicates and inaccessible entries.

3) Reference expansion and survey integration: To make
sure all important works were included, we exam-
ined and integrated the previous surveys along with
their key referenced papers. Each past survey was
examined to find the gaps, list the most important
works, and to make sure there were no overlaps. The
articles that were already included in the previous
surveys were also taken into account in order to
ensure continuity and progression.

4) Screening and filtering: We did the screening of titles
and abstracts first and made the full-text reviews to
confirm the relevance of the articles to cyber decep-
tion. During this process, the studies were indicated
according to the techniques used for deception, the

target domain, the architectural framework adopted,
evaluation metrics, and the limitations identified.
Thus, ∼140 papers were selected.

5) Domain relevance-based filtering: We pursued a filter-
ing strategy based on the articles’ dates of publication
that would be on a period extending approximately
six years (2019 to 2024), alongside a selective inser-
tion of emerging contributions from 2025. Then, from
the set of ∼140 papers, 46 papers were selected as
relevant to cyber deception exploration by domain, as
illustrated in Fig. 1. The others were used to properly
define the cyber deception concepts, techniques, and
models.

Fig. 1. Distribution of selected papers by domain.

III. COMPARISON WITH EXISTING SURVEYS

In [2], the authors explored the classification of cyber de-
ception, which cuts across four dimensions: the deceit unit, ap-
plication layer, defense goal, and deployment mode. They pre-
sented techniques like honeypots, honeyfiles, and fake topolo-
gies across the network, system, application, and data layers.
They further outlined the deployment models as process-based,
probabilistic, graph-based, and game-theoretical approaches.
The major challenges that were mentioned are the evaluation
of deception effectiveness and the automation of dynamic
deployment in complicated environments.

In [3], the authors explored 24 studies regarding the
application of game theory in the representation of cyber
deception and created a taxonomy that contains six types
of deception: perturbation, moving target defense (MTD),
obfuscation, mixing, honey-x, and attacker engagement. The
taxonomy is based on game-theoretic components, including
agents, actions, and information structure. Specific deception
types were related to the appropriate models, such as stack-
elberg, Nash, and signaling games. Furthermore, the research
gaps were identified by the authors as mimetic deception and
practical implementation.

In [4], the authors put forth a completely different clas-
sification framework to use for cyber deception based on the
following features: conceptual categories, physical and virtual
artifacts, intended effects, goals (protection or detection), and
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deception activeness. They used game theory (GT) and ma-
chine learning (ML) for the discussion of deception techniques,
as they pointed out GT’s strategic modeling and ML’s feature
of generating realistic decoys. Their review was complemented
by applications in different settings such as CPS, cloud, IoT,
and software-defined networking (SDN), and they performed
an analysis of evaluation metrics and testbeds. They ended
their work by pointing out the existing limitations and urging
further exploration of the combination of GT and ML for more
adaptive deception strategies.

In [5], the authors made a review of different frameworks
of cyber deception in terms of network security, assessing
their strengths and weaknesses. They declared that the most
effective deception requires network topologies that can adapt,
which include scalability, dynamic reconfiguration, and fast
responses. They pointed out SDN is the principal facilitator to
the deployment of various techniques of deception such as hon-
eypots, honeynets, and Moving Target Defense. Moreover, they
assigned the challenges of real-time agility, DDoS resilience,
and user impact minimization, and offered directions for the
future, such as ML-driven adaptive deception and enhanced
network virtualization for APT defense.

In [6], the authors were engaged in scrutinizing Honey-
X-techniques such as honeypots, honeynets, honeytokens, and
honeywebs. Besides, they also got acquainted with the mech-
anisms of defense like MTD, ML, and GT, and their works
in synergy with them. They studied Honey-X- based strategies
in different sectors such as ICS, IoT, critical infrastructure,
and web applications, stressing the fact that they can be
used in different environments. The effectiveness of these
strategies was calculated through metrics such as Mean Time
to Compromise (MTTC) and Mean Time to System Failure
(MTTSF). The final point they made was the presentation of
key research challenges, such as improving honeypot realism
and scalability, deception placement optimization through GT,
and combining MTD with ML for enhanced threat detection
and response.

In [7], the authors investigated deception techniques con-
ceived to boost honeypots and honeynets. These techniques
include advanced mimicking, manipulative cooperation, fake
databases, honeytokens, and traffic redirection. For this pur-
pose, authors have proposed a categorization system for honey-
pots based on the following criteria: purpose, interaction level,
implementation type, and activity level. They also shared a
mathematical model that is supposed to aid in the optimization
of both the configuration and the deployment. The evaluation
of their approach was realized by comparison with other ap-
proaches in terms of deception metrics like discrepancy, wasted
time, and adversaries that were returned. The shortcomings
they uncovered were in areas such as dynamic, 5G, and SDN-
based honeypots, and they suggested future research on ML-
driven honeypot optimization and also on more advanced
deception strategies.

IV. BACKGROUND ON CYBER DECEPTION

A. Key Concepts of Cyber Deception

Deception originated in military contexts, where it is used
to mislead adversaries regarding one’s strengths, weaknesses,

intentions, and tactics [8]. This tactic includes forms of battle-
field deception like camouflage, feints (pretend attacks), ruses
( tricks), demonstrations (fake force deployment), and displays
(like showing fake military equipment, for example, inflatable
tanks). This concept has extended into the cyber domains as
cyber deception, refined by Almeshekah and Spafford [9] as
“planned actions taken to mislead and/or confuse attackers and
to thereby cause them to take (or not take) specific actions that
aid computer security defense”, and categorized by Whaley
[10] into two taxonomies: dissimulation and simulation.

Dissimulation or hiding is a trick of information or system
states to prevent hackers from understanding or discovering
the true nature of the system. And the purpose of this idea is
to mislead hackers or unauthorized users by showing incorrect
information, thus making it difficult for them to guess what
they should decide. This method is opposite to the traditional
protection mechanisms like firewalls, access control, and en-
cryption that mainly resist by prohibiting access or conceal-
ing data rather than by misleading the attacker. Simulation
or showing is concerned with the making of environments,
systems, services, and data that look authentic and operational
and thus deceive the attacker into thinking he is dealing
with real assets. Such defensive environments are meant to
deceive threats, involve enemies, and watch their actions and
designs, all without paving the way for real systems or data
to be exposed. Simulated components are off the grid yet
unbelievably convincing. For instance, after being locked out
of the system several times, the system could keep showing the
login prompts without ever giving the user permission to log
in. The hacker would then think that they still have a chance
to enter the system.

Dissimulation and simulation can be used either separately
or cooperatively, in accordance with the objectives of the
strategy. Dissimulation is the primary means of reducing one
system’s visibility and appeal, particularly in environments
focused on confidentiality and stealth. On the other hand,
simulation is the best solution for threat detection by inducing
adversaries into a false environment. Simultaneously acting,
these two methods create total deception of the mechanism
that both distracts and engages adversaries to be able to protect
from and gather credible information on the threat.

One of the instances of using deception techniques for
cybersecurity can be found in Cliff Stoll’s book “The Cuckoo’s
Egg” [11], where he created a fake system environment with
a user account containing fake documents to deceive and
stall attackers in order to track their activities and reveal
their identities. In the 2000s, honeypots became an adopted
method for observing, analyzing, understanding, and modeling
attackers’ actions [12] [13]. Subsequently, various honey-
related approaches, called honeytokens [1] have emerged.
These deception techniques fall under six principal tactics [14].
Three of them fall under dissimulation: masking (conceals
real systems, data, or network attributes to prevent detection
or mislead attackers about their true nature), repackaging
(alters the appearance or structure of data or code, such as
changing formats or using wrappers, to evade detection and
analysis), and dazzling (generates excessive noise such as
fake traffic, logs, or alerts to obscure valuable information
and confuse attackers). The other three tactics fall under
simulation: mimicking ( imitates the behavior of real systems,
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users, or data to make deceptive assets appear authentic and
lure attackers), inventing (creates entirely fictitious systems,
data, or user identities that have no real counterpart, designed
to mislead and trap attackers), and decoying (deploys simulated
assets such as honeypots, honeynets to attract, engage, and
analyze attackers while protecting real systems).

Moreover, deception techniques can be leveraged to
achieve four principal cybersecurity goals [9]: detection (help
identify malicious activity where any interaction is inherently
suspicious, by spamming fake assets), prevention (attackers
can be deterred or slowed down using creating uncertainty
and increasing the perceived risk of being detected), response
(deceptive systems can be securely detached and examined
post-attack, thus, making the process of incident response and
forensic analysis efficient), and research (provide regulated
settings to examine the behavior of attackers, create threat
intelligence, and study newly developed malware).

B. Layer-Based Cyber Deception Techniques

For the sake of generality and consistency across domains,
we adopt the classification proposed by the authors in [2]
and further detailed by the authors in [15], which categorizes
deception techniques into a four-layer deception stack:

• Network-based deception techniques: are made to
deceive attackers in the reconnaissance and exploita-
tion phases that involve manipulation of the network-
level information. Examples include altering network
topology [16] [17] [18], randomizing IP addresses [19]
[20] [21], tarpits [22] [23], deploying network honey-
pots [24] [25] [26] [27], and using honeyports [28]
[29]. Such strategies delay or misguide attackers by
presenting a false view of the network infrastructure,
thereby increasing their time, cost, and reducing the
effectiveness of their probing activities.

• System-based deception techniques: focus on deceiv-
ing adversaries within the host or operating system
environment. Techniques include honeypatches [30]
[31], Ghost Patches [32] [33], deceptive OS finger-
printing [34] [35], deceptive system calls [36][37],
and honey RAM / memory injection [38], which
allow defenders to monitor attacker behavior without
exposing real systems.

• Application-based deception techniques: operate at the
software or application interface layer, where user or
attacker interaction takes place. They include hon-
eypermissions [39], honeyaccounts [28], honeyprofile
(OSN) [40] [41], honeyemail [42], decoy web forms/
fields [43], delayed response (fake feedback) [44] [45],
fake API endpoints [46], and decoy hyperlinks [47]
[48]. Such methods are effective at detecting and
delaying attackers during application-level attacks like
SQL injection, credential theft, or web exploitation.

• Data-based deception techniques: target the attacker’s
goal, access to sensitive data, by injecting deceptive
or false data into the system. Examples include decoy
document [49], honey URL [50] [51], honeyentries
[52] [53] [54], honeyfiles [55] [56] [57] [58], hon-
eywords [59] [60] [61] [62], honey encryption [63],

honey database/ metadata [64] [65], and decoy source
code [66], all designed to mislead, trace, or waste the
resources of attackers attempting to exfiltrate valuable
information.

The placement of these deception techniques within a target
domain can either be a part of the existing security solution or
can be isolated and used as a standalone mechanism. In our
classification, we adopt the logic explored in [2], which defines
four main deployment modes based on security objectives,
system architecture, and operational constraints:

• Built-in deception/ part of: embedded directly into the
system during the design phase, such as deceptive
logic in source code or modified system responses.

• Add-on deception/ part of: incorporated into an op-
erational system at runtime, through the insertion of
honeytokens, fake files, or configuration traps.

• In-front deception/ part of/ intermediary: positioned
as a proxy or gateway in front of the real system
to intercept and manipulate incoming interactions,
allowing early engagement with potential threats.

• Isolated deception/ standalone: deployed in separate,
decoupled environments such as honeynets, decoy
servers, that mimic real systems to lure attackers and
analyze their behavior without impacting production
assets.

In Table I, we provide a consolidated overview of rep-
resentative cyber deception techniques, highlighting their core
characteristics in terms of taxonomy, tactics, goals, application
layers, and deployment modes as extracted from the surveyed
literature. The majority of the cyber deception techniques
outlined are designed for dual purposes, simulation and dissim-
ulation, because building false artifacts while concealing true
ones at the same time is the precondition of effective deception
in most cases. The dual effectiveness increases both the cred-
ibility and overall impact of that deception. Also, a lot of the
techniques can be utilized on different layers, such as network,
system, and application, as they are designed to be adaptable
and provide flexibility in their implementation. Therefore, the
same technique may cover different security objectives, such
as prevention, detection, response, and research, based on how
and where it is implemented.

A multi-layer deception system is depicted in Fig. 2. It
is a combination of some of the techniques that have been
previously discussed. The multi-layer architecture, comprising
the network, system, application, and data layers, encompasses
both real and honey elements. Each of the honey compo-
nents (e.g., honeyserver, honeyfile, honeydatabase) imitates a
corresponding real counterpart (e.g., server, file, database) to
mislead and monitor the attacker’s behavior. The analyst server
functions as a pivotal element by collecting alerts and logs
from all honey elements, which provide a basis for detection,
analysis, and response to malicious activities triggered by
interactions with the deceptive assets.

C. Key Evaluation Metrics for Cyber Deception

To evaluate the efficiency of cyber deception strategies,
researchers have suggested a variety of quantifiable metrics
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TABLE I. OVERVIEW OF CYBER DECEPTION TECHNIQUES

Deception technique Ref Taxonomy Tactic Goal Layer Deployment mode

Altering Network Topology [16] Simulation + Dissimulation Inventing, Dazzling Prevention, Detection Network In-front
Reconnaissance Deception System
(RDS) using Virtual Network Views

[17] Simulation + Dissimulation Inventing, Dazzling, Decoying Detection, Prevention Network In-front, Add-on, Isolated

Virtual Network Topology Deception
Defense (VNTDD)

[18] Simulation + Dissimulation Inventing, Dazzling, Decoying Detection, Prevention Network In-front, Add-on, Isolated

Randomizing IP Addresses [19] Simulation + Dissimulation Dazzling, Mimicking, Decoying Detection, Prevention Network In-front, Add-on, Isolated
[20] Simulation + Dissimulation Dazzling, Mimicking Detection, Prevention Network Add-on, In-front

Path Randomization [20] Simulation Dazzling Prevention Network Add-on, Isolated
Flexible Random Virtual IP Multi-
plexing (FRVM)

[21] Simulation + Dissimulation Dazzling, Mimicking Prevention, Detection Network Add-on, In-front

Tarpits [22] Simulation + Dissimulation Dazzling, Decoying Detection, Prevention Network Add-on, Isolated
[23] Simulation + Dissimulation Dazzling, Decoying, Mimicking Detection, Prevention,

Research
Network Add-on, Isolated, In-front

Honeypot [24] Simulation + Dissimulation Decoying, Inventing Detection, Prevention,
Response

Network Add-on, In-front, Isolated

[25] Simulation + Dissimulation Decoying, Mimicking Detection, Prevention,
Research

Network,
Application

Add-on, In-front, Isolated

Network Honeypots [26] Simulation + Dissimulation Inventing, Decoying, Dazzling Detection, Prevention Network,
Application

Add-on, Isolated

Modular High-Interactivity Honey-
pot System

[27] Simulation + Dissimulation Inventing, Decoying, Dazzling,
Mimicking

Detection, Prevention,
Response, Research

Network, System,
Application

Add-on, Isolated, In-front

Honeytoken-based deception frame-
work

[28] Simulation + Dissimulation Inventing, Decoying, Masking,
Repackaging

Detection, Response System, Application,
Data

Add-on, Isolated

HoneyPort (meta-honeypot system) [29] Simulation + Dissimulation Inventing, Decoying, Mimicking,
Dazzling

Detection, Prevention,
Research

Network, System Add-on, Isolated, In-front

Honeypatches [30] Simulation + Dissimulation Mimicking, Decoying, Dazzling Detection, Prevention,
Response, Research

Application, System Add-on, In-front, Isolated

[31] Simulation + Dissimulation Mimicking, Decoying, Dazzling Detection, Prevention,
Response, Research

System, Application Add-on, Isolated, In-front

Ghost Patches [32] Simulation + Dissimulation Mimicking, Decoying, Dazzling Detection, Prevention,
Research

System, Application Add-on, Isolated, In-front

Deceptive Patch Model (Faux, Ob-
fuscated, Active Response Patches)

[33] Simulation + Dissimulation Mimicking, Inventing, Decoying,
Dazzling, Repackaging

Detection, Prevention,
Response, Research

System, Application Add-on, In-front, Isolated

Deceptive OS Fingerprinting [34] Simulation + Dissimulation Mimicking, Dazzling, Repackag-
ing

Detection, Prevention,
Research

Network, System,
Application

Add-on, In-front, Isolated

[35] Simulation + Dissimulation Dazzling, Mimicking, Repackag-
ing

Detection, Prevention,
Research

Network, System Add-on, In-front, Isolated

Deceptive System Calls [36] Simulation + Dissimulation Mimicking, Masking, Dazzling Detection, Prevention System Add-on, Isolated
Honey RAM / Memory Injection [37] Simulation + Dissimulation Inventing, Mimicking, Masking Detection, Prevention System Add-on, Isolated

[38] Simulation + Dissimulation Inventing, Mimicking, Masking Detection, Prevention System Add-on, Isolated
Honeypermissions [39] Simulation + Dissimulation Inventing, Masking Detection, Prevention Application Add-on, Isolated
HoneyID [28] Simulation + Dissimulation Inventing, Mimicking, Masking Detection, Prevention Application Add-on, Isolated
Honeyprofile (OSN) [40] Simulation + Dissimulation Inventing, Mimicking, Masking Detection, Prevention Application Add-on, Isolated

[41] Simulation + Dissimulation Inventing, Mimicking, Masking Detection, Prevention Application Add-on, Isolated
Honeyemail [42] Simulation + Dissimulation Inventing, Mimicking, Masking Detection, Prevention Application Add-on, Isolated
Decoy Web Forms/Fields [43] Simulation + Dissimulation Inventing, Mimicking, Decoying Detection, Prevention Application Add-on, Isolated
Delayed Response (Fake Feedback) [44] Simulation + Dissimulation Mimicking, Decoying, Inventing Detection, Prevention Application Add-on

[45] Simulation + Dissimulation Dazzling, Masking Detection, Prevention Application Add-on, In-front
Fake API Endpoints [46] Simulation Inventing, Decoying, Masking Detection Application Add-on
Decoy Hyperlinks [47] Simulation + Dissimulation Inventing, Decoying, Masking Detection Application Add-on, In-front

[48] Simulation + Dissimulation Inventing, Decoying, Masking Detection Application Add-on, In-front
Decoy Documents [49] Simulation + Dissimulation Inventing, Mimicking, Masking Detection, Prevention Data Add-on, Isolated
Honey URL [50] Simulation + Dissimulation Inventing, Masking Detection, Response Data Add-on, Isolated

[51] Simulation + Dissimulation Inventing, Masking Detection, Response Data Add-on, Isolated
Honeyentries [52] Simulation + Dissimulation Inventing, Masking, Repackaging Detection, Response Data Add-on, Isolated

[53] Simulation + Dissimulation Inventing, Masking, Repackaging Detection, Response Data Add-on, Isolated
[54] Simulation + Dissimulation Inventing, Masking, Repackaging Detection, Response Data Add-on, Isolated

Honeyfiles [55] Simulation + Dissimulation Inventing, Masking, Repackaging Detection, Response Data Add-on, Isolated
[56] Simulation + Dissimulation Inventing, Masking, Repackaging Detection, Response Data Add-on, Isolated
[57] Simulation + Dissimulation Inventing, Masking, Repackaging Detection, Response Data Add-on, Isolated
[58] Simulation + Dissimulation Inventing, Masking, Repackaging Detection, Research Data Add-on, Isolated

Honeywords [59] Simulation Inventing Detection, Prevention Data Add-on
[60] Simulation + Dissimulation Inventing, Masking, Repackaging Detection, Prevention Data Add-on, Isolated
[61] Simulation + Dissimulation Inventing, Masking, Repackaging Detection, Prevention Data Add-on, Isolated
[62] Simulation + Dissimulation Inventing, Masking, Repackaging Detection, Prevention Data Add-on, Isolated

Honey Encryption [63] Simulation + Dissimulation Inventing, Repackaging, Masking Detection, Prevention,
Research

Data Add-on, Isolated

Honey Database/Metadata [64] Simulation + Dissimulation Inventing, Repackaging, Masking Detection, Prevention Data Add-on, Isolated
Fake Document Infilling (FDI) [65] Simulation + Dissimulation Masking, Repackaging, Mimick-

ing
Detection, Prevention,
Research

Data Add-on, Isolated

Decoy Source Code [66] Simulation + Dissimulation Inventing, Repackaging, Masking Detection, Prevention,
Research

Data Add-on, Isolated
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Fig. 2. An example of a multi-layered cyber deception architecture.

that can represent different components of system resilience,
attacker behavior, and defense performance. The performance
of the system and the progress of the attacker are evaluated
with the help of temporal metrics like the Mean Time to
Security Failure (MTTSF) [67] which symbolizes the period
during which the system remains secure before it reaches
a predefined security failure threshold due to a successful
compromise, and the Mean Time to Compromise (MTTC) [67]
where it represents the time required by the attacker to add a
successful compromise to the network. Moreover, the metric
of Vulnerability Analysis Time [68] assists in quantifying the
amount of time the attacker has to spend identifying and then
exploiting weaknesses present in the system, that is, from the
complexity and skill level of each attacker. On the contrary, the
Decision and Deployment Time (DDT) [69] is meant to show
the period of time that passes between making a defensive
decision and implementing it, such as deploying a honeypot.

Defense effectiveness is best evaluated through the use of
probability-based indicators like the Defense Success Probabil-
ity (DSP) [70] and the Success Rate of Attacks [71], which act
as the basic tools to measure the quantitative success or failure
of attaching defense devices under controlled experimental
conditions. The measurement of detection metrics also focuses
on Detection Accuracy [72], which is typically expressed in
terms of the AUC of the ROC curve to judge the correct value
of identifying malicious behavior. The other metric is the Mean
Time to Detect Attacks [73], which is used for the evaluation
of the efficiency of the deception-based detection system. In
game-theoretic models of deception, the concept of Utility (or
Payoff) is used most often to express the cost-benefit balance
for both attacker and defender [74]. Moreover, the Attack Cost
[75] evaluates the effort or risk that the attacker gets, including
the chance of getting caught or wasted resources.

Resilience and operational continuity are represented by
metrics such as Survival Rate [69], which refers to the ratio
of the legitimate system components that have remained intact
during attacks, and Round-Trip Time [69], which is the time
taken by deception mechanisms (for example, code obfuscation

or network slowdowns) to delay the attackers’ progress.

D. Cyber Kill Chain for Phase-aware Deception Planning

The effectiveness of cyber deception strategies lies in the
appropriate selection and positioning of the described decep-
tion techniques, which are customized to the particular-domain
environment (e.g., UAV, IoT, ICS, Cloud) and the threat actors’
behavior. Instead of randomly inserting deceptive assets, a
threat-driven modeling approach is a must to prove that both
deception strategies are useful and impactful. Two pertinent
frameworks uphold this goal: the Cyber Kill Chain (CKC) and
the MITRE ATT&CK framework. By using them together, they
provide adversary tactics and lifecycle progression, and thus,
an integrated view that helps in planning the optimization of
deception for when, where, and how to deploy it.

The Cyber Kill Chain (CKC), originally introduced by
Lockheed Martin, divides cyber-attacks into sequential phases:
reconnaissance, weaponization, delivery, exploitation, installa-
tion, command and control (C2), and actions on objectives.
This phase-based structure aids deception planning by helping
defenders: i) determine the optimal timing for deploying de-
ception (e.g., before delivery versus after exploiting), ii) align
techniques to specific stages, for instance, deceptive network
banners during delivery or honeyfiles during exfiltration, and
iii) layer deception strategically across the kill chain, like
using honeypots for exploitation, MTD for delivery, and fake
data for exfiltration. Following these lines, the authors in
[1] suggested an enhanced CKC model, meant to be used
for deception and formed of three sub-kill chains: external,
internal, and target manipulation. This refined model not only
identifies the multi-stage progression of modern intrusions but
also serves as a tool for mapping deception techniques (e.g.,
honeypots, honeytokens, MTDs) to both the attack phase and
the affected system layer (network, system, software, data). By
incorporating MITRE ATT&CK tactics into this structure, the
model acts as an extensive framework for the orchestration of
deception throughout the whole attack lifecycle.
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E. MITRE ATT&CK for Tactic-technique Driven Deception

The MITRE ATT&CK [76] framework is based on the
tactic-technique-procedure (TTP) representation of the be-
havior of adversaries, that is firmly based on the real-life
observations on a wide range of platforms, namely, Enterprise,
ICS, Mobile, and Cloud. ATT&CK plays a significant role in
providing defenders with the following benefits: i) modeling
attacker behavior by domain: for example, the ATT&CK for
ICS stressed techniques such as “Inhibit Response Function”
and “Manipulation of Control” which can also be found in the
cyber-physical systems (CPS) and smart grid paradigms, ii)
identifying deception targets: techniques like “Remote System
Discovery”, “Command and Scripting Interpreter”, and “Cre-
dential Dumping” can be countered with honey APIs, honey
credentials, or deceptive command environment, iii) building
attack graphs: authors of [77] illustrated how techniques can
be linked by logical preconditions and thus form attack paths.
The graphs assist the defenders to optimize the positioning of
decoys by focusing on the nodes that are most likely to be
compromised with the least amount of resources.

In [78], the authors suggested a multi-layer graph-based
way to model cyber-attacks and strategically allocate deception
resources in alignment with threat modeling principles inspired
by MITRE ATT&CK. The integration of network, service, and
attack layers makes possible the detailed mapping of adversar-
ial paths and their dependencies across system components.
The model is capable of risk-based prioritization and pre-
emptive allocation of deception assets such as honeypots and
honeytokens at critical nodes. These strategies will contribute
to the re-routing of attack chains and misleading of adversaries.
This type of planning also drives the threat-informed decep-
tion by making the placement of the deception close to the
attacker’s behavior and technique paths that are illustrated in
frameworks like MITRE ATT&CK. Authors in [79] presented
a system that automatically chooses cyber deception strategies
based on the information it obtains from unstructured CTI
reports through NLP. It first maps the extracted Indicators of
Compromise (IoCs) to the relevant MITRE ATT&CK tactics
and techniques, which then allows for the prediction of the
attacker’s actions. The deception actions proposed by this
framework are in line with the MITRE D3FEND [80] and
MITRE Engage [81] frameworks, which are based on the
aforementioned profiling.

By aligning deception strategies with specific ATT&CK
techniques, defenders can deploy assets that disrupt adversary
decision-making, enhance situational awareness, and collect
high-fidelity threat intelligence. Fig. 3 presents an example
of the Enterprise ATT&CK matrix techniques, annotated with
corresponding deception technique, as illustrated by MITRE
D3FEND, and also mapped to the corresponding engagement
techniques, as described by MITRE ENGAGE.

V. INTELLIGENT ORCHESTRATION OF CYBER DECEPTION
THROUGH REINFORCEMENT LEARNING AND GAME

THEORY

The Cyber Kill Chain and MITRE ATT&CK frameworks
serve as a guide for the mapping of adversary behaviors
to suitable deception techniques, but the actual deception
deployment in dynamic environments would need continuous

adaptation and decision-making under uncertainty. In this way,
reinforcement learning (RL) and game theory (GT) become
central for the intelligent orchestration of cyber deception.
Their embedding into the threat modeling process not only
helps in contextualizing but also promotes the continuous
improvement of deception strategies, thus providing smart and
proactive defense across a wide range of areas.

Game-theoretic models capture the strategic interactions
between attackers and defenders, allowing defenders to find
the optimal countermeasures by taking the adversarial pay-
offs, costs, and bounded rationality into account. Authors in
[82] introduced a game-theoretic framework to optimize the
deployment of honeypots and software diversity in a network
under resource constraints. It presents two-layer deception
tactics: the first layer determines the position of honeypots on
network edges using a zero-sum game based on attack graph
analysis and node importance, while the second layer employs
a non-zero-sum game to manage software diversity across
honeypots, thereby preventing the attackers from recognizing
the uniform deception. The model takes into consideration the
attacker-defender interactions and provides the mixed-strategy
Nash equilibria to attain the maximum defender payoff. The
experimental results indicate that the strategic allocation of
honeypots with deception diversity significantly enhances the
defense effectiveness against adaptive adversaries.

In [24], the authors proposed a novel game-theoretic frame-
work for honeypot allocation in dynamic tactical networks.
It makes use of the fact that node mobility changes network
topology and attack paths. The interaction modeled herein is
between the defender and the attacker in a two-player zero-sum
Markov game on changing attack graphs. The defender is the
one who wants to place honeypots in a way that the attacker’s
deception is maximized and the costs for reconfiguration in
the network states are minimized, while the attacker is the
one who picks the right attack paths. A predictive model
has been incorporated and a solution has been provided for
stationary Nash equilibria through the application of a Q-
minimax algorithm. The results of the investigators show that
projecting the future mobility of the system would be the most
effective defense measure, while it also reduces the rewards of
the attacker’s efforts. Thus, it becomes a method that is both
scalable and adaptive for the plan of deception in a mobile and
resource-constrained environment.

In [83], the authors provided a foundational game-theoretic
framework for applying cyber deception through evidence-
based signaling games. They provide mathematical models
that capture the dynamics of strategy between a deceiver
and a deceived under uncertainty, including the probabilistic
evidence of intrusion detection outputs. Also, they analyze:
a binary state deception, a continuous state deception with
a detection cost, and a multi-level deceptive modeling of
APTs. Perfect Bayesian Nash Equilibrium (PBNE) is used
to illustrate the optimal deception strategies. This research
introduces the term of deceivability in a formal way, and states
certain conditions for the deception to be not only sustainable
but also effective. It supports the design of adaptive, long-
term deception policies by considering how attackers learn and
update beliefs over time, making it a theoretical cornerstone
for strategic deception planning in adversarial settings.

In [84], the authors proposed a game-theoretic framework
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Fig. 3. Mapping of an enterprise MITRE ATT&CK technique to corresponding deception and engagement techniques.

that has multiple levels as well as learning and control theories.
The main application is to counter deceptive information
attacks in Intelligent Transportation Systems (ITS). The in-
troduction of the PRADA (Proactive Risk Assessment and
Mitigation of Misinformed Demand Attack) framework, which
regards the attacker-defender dynamics as a stackelberg game,
and quantifies both local and network-wide effects of demand
manipulation, is the most important contribution. Besides, the
paper also proposes trust-constrained recommendations as a
tool to ensure system reliability in case of attack. The approach
integrates strategic modeling, user equilibrium routing, and
predictive resilience mechanisms, where game theory emerges
as the core instrument in facilitating adaptive deception in the
ITS environments.

On the other hand, reinforcement learning facilitates data-
oriented, self-adaptive decision-making by obtaining deception
policies over time through trial-and-error interaction with
simulated environments. The techniques, such as Deep RL
and Q-learning provide defenders with the opportunity to
dynamically modify the placement of the deception, the in-
teraction fidelity, and the signaling strategies according to the
new threats. Authors in [85] proposed an adaptive Q-learning-
based framework for orchestrating cyber denial and deception
strategies in enterprise networks, by using a detailed attacker-
aware attack graph. The model integrates MITRE ATT&CK
tactics and CVSS-derived metrics to evaluate vulnerabilities in
terms of importance, exploitability, and damage. Two different
attacker profiles: opportunistic and strategic, are used to model
different behaviors, and the defender learns optimal responses
(none, denial, deception) via Q-learning. The approach enables
a dynamic and tailored honeypatch placement that is built to
the attacker’s strategy and system context. Besides, to enhance

decision making, some works combine reinforcement learning
with game theory that enables defenders to learn from gained
experience and think strategically about the attacker’s behavior.

In [86], the authors suggested a reinforcement learning
approach to dynamically select and orchestrate deception and
Moving Target Defense (MTD) strategies. They developed a
confrontation model, which is a prototype to simulate the
interaction between an attacker and a defender, taking into
account perception asymmetry and phase progression via a
simplified Cyber Kill Chain (CKC). They employ Deep Q-
Learning to train a defensive agent capable of adapting its
strategy based on observed attacker actions and system states.
The major contribution is showing how deep reinforcement
learning can enable adaptive, perception-aware, and cost-
sensitive orchestrations of deception and MTD in complex
environments, which are better than static or naive strategies
in all tested scenarios.

In [87], the authors developed a deep reinforcement learn-
ing framework, a novel solution for the deployment of honey-
pot strategies in complex networks represented using Bayesian
attack graphs. They model a stackelberg game that involves
a defender (the one who deploys a honeypot) and a hacker,
where the defender takes the lead by deploying high- or low-
interaction honeypots to manipulate the hacker. The setting
is represented as a Markov Decision Process (MDP), and
the search for the strategy space is carried out using Actor-
Critic and Proximal Policy Optimization (PPO) algorithms.
Their method contributes to the dynamic, state-aware decision
making and is reported to outperform random and value-
weighted baseline strategies significantly in experiments. The
study presents the effectiveness of RL in learning robust and
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cost-efficient deception strategies under uncertainty.

In [88], the authors proposed a hybrid game-theoretic and
reinforcement learning method to enable quantum superdense
coding security against advanced attacks, including scrambling
and bijection. The model introduced decoy qubits as deception
elements so that eavesdropping attempts can be detected,
and the interaction between the sender/receiver (Alice and
Bob) and the attacker (Eve) is framed as a non-cooperative
game. The authors used custom utility functions: Return on
Protection and Return on Attack, analyzed both pure and mixed
strategy Nash equilibrium, and used a Q-learning approach
to optimize decoy insertion strategies under uncertainty. The
simulation results confirm the model’s capability to converge to
equilibrium and minimize the false negatives, which illustrates
the efficiency of game-theoretic reasoning coupled with RL-
driven strategy adaptation in quantum security.

VI. CYBER DECEPTION IN CLOUD ENVIRONMENTS

Cloud computing has brought a drastic change in how
organizations can deploy and scale IT infrastructure, providing
elasticity, multi-tenancy, and on-demand resource provisioning.
However, many of these are the same design features that
create unique security problems, such as co-residency attacks,
lateral movement, insecure APIs, and dynamic reconnaissance.
The dynamic, decentralized, and virtualized characteristics
of the cloud infrastructure make it an attractive target for
attackers, while legacy-based perimeter security approaches
frequently do not secure the evolving threats adequately [89].
Deception has been the proactive cyber defense technique to
address these threats with the help of misleading artifacts,
such as honeypots, decoy virtual machines, fake credentials,
and deceptive storage buckets. Novel methodologies are be-
ing employed nowadays, such as IP and VM shuffling, AI-
driven decoy placement, and adaptive honeynet orchestration
for the purpose of confusing respective attackers, postponing
their advancement, while collecting useful threat information.
Installation of the deception in cloud environments is not only
through this promise but also through the involved challenges,
such as ensuring the scalability and realism of deceptive
elements, avoiding interference with legitimate operations,
and integrating virtualized orchestration layers in a seamless
manner. This section covers cyber deception in the cloud
setting, particularly focusing on deception-aware architectures,
the corresponding cloud (IaaS, PaaS, SaaS) threat coverage,
and the limitations and deployment trade-offs that current
methods come with.

In [90], the authors proposed an integrated cloud se-
curity framework based on a mixture of signature-based
NIDS (SNORT) with distributed honeypot networks (Glastopf,
Cowrie, Dionaea) in an OpenStack environment. The architec-
ture can be seen in Fig. 4, where authors have strategically
placed SNORT at network controller nodes (to deal with
external traffic) and compute nodes with OpenV Switches
(for internal/local traffic), while honeypots emulate services
in order to capture interactions of the attacker. The data
obtained is then analyzed in a sandbox environment (Cuckoo
Sandbox) to dynamically extract behaviors of the malware,
which then triggers an automated use case to add new and
update the current SNORT rules. The system shows an increase
of unknown attacks detected (for example, XSS, malware

variants) as well as causing redundant alerts, among which, we
should mention the overhead of distributed NIDS instances and
that the research is focused mainly on network-layer attacks,
but the added value of integrating host-based defenses also like
VM introspection is still valid.

Fig. 4. The overall architecture showing the different modules and types of
traffic in [90].

In [91], the authors provided a game-theoretic Moving Tar-
get Defense (MTD) framework that tactically combines both
real and deceptive virtual machine (VM) migrations to ensure
security of the cloud environments against side-channel and co-
residency attacks. They proposed a new model that represents
the security interaction as a signaling game, in which defenders
can either perform live/non-live migrations or simulate them
by carefully crafted traffic patterns, creating uncertainty for
the attackers while minimizing costly real migrations. The
analysis shows that Nash equilibria are the only beyond which
deceptive signaling offers the same security level as physical
migrations, the network controller operating on detection alerts
and cost parameters that dynamically set best strategies. This
study of the symbolic trade-off of migration overhead and
security gains, thus admitting both a theoretical model for the
deceptive MTD in clouds and a practicable decision algorithm
for the implementation, clearly underlines its contribution,
whereas questions regarding performance in realistic situations
and adversarial learning remain unaddressed.

In [71], the authors suggested the Automated Honeynet
Deployment Strategy (AHDS), which is a dynamic security
framework for container-based clouds that adaptively deploys
honeypots to prevent emerging threats. AHDS uses an Attack
Graph (AG) to chart hypothetical routes of attacks, and it
also comes up with a Deceptive Exploring Surface (DES),
a network of strategically placed source honeypots to divert
potential enemies from critical assets. The algorithm gives
priority to high-value nodes based on the degree of centrality
and optimizes the layout with the help of a set cover-based
algorithm, which has the effect of not wasting resources and
having the maximum possible coverage. The system is built
upon three main building blocks, which are: 1) a Monitor
Engine for recording the infrastructure changes and costs, 2) a
Decision Engine that adapts the strategies of the honeynet in
real time based on the AG assessment, and 3) a Deployment
Handler for automatic changes of configurations. Evaluations
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reveal that AHDS is 83% more efficient at decreasing the
possible attack emergence while outgunning the traditional
strategies (e.g., “Max” and “Most”) both in effectiveness and
in no resource waste, and is seamlessly adopted by datacenter
sizes. Nonetheless, its effectiveness hinges on precise AG
modeling and it relies on assumptions that intruders follow
predictable propagation patterns, potentially limiting robust-
ness against novel or adaptive threats.

In [92], the authors suggested a cloud-based deception
framework that can disrupt DDoS reconnaissance by using
SDN/NFV technology to generate virtual reflection networks
in the cloud, which send back to the attackers false topology
data but still keep correct details for the legitimate users.
The system is using GRE tunnels for the rerouting of the
reconnaissance traffic (traceroute/ping) to the virtual SDN
switches, which are programs that implement IP hopping and
path mutation, with the physical and cloud networks being
synchronized by dual SDN controllers and NFV orchestrator.
The solution was tested on the GENI platform and only added
a 25-35ms delay, decreased packet loss to below 1%, and
reflected network alterations in 75ms, while it was >99%
cheaper than a physical infrastructure, but it is reliant on the
accuracy of the synchronization that is required to connect
between the physical and the virtual networks and also it can be
difficult in the situation of very frequent or large-scale topology
changes.

In [93], the authors proposed a deception-based defense
framework for private cloud infrastructures that is based on
using honeypots in an enterprise IT environment to identify and
contain internal threats by deploying decoy virtual machines
(VMs) with emulated services (e.g., routers, databases) that run
parallel to the production VMs. The setup, as illustrated in Fig.
5, includes Snort for intrusion detection and Sebek for activity
logging, which together log attacker interactions and pass the
data to a Multiclass Support Vector Machine (MSVM) classi-
fier that applies feature selection (Gini index) and dimensional-
ity reduction (PCA) methods to traffic analysis. With the help
of KDDCup99, NSL-KDD, and Gure-KDD datasets, the clas-
sifier achieves a remarkable 95% accuracy in distinguishing
between different types of attack (DoS, U2R, R2L, probing)
and normal behavior by thus effectively isolating production
systems and profiling intruder activity during the process.
The application, while functional against most network-layer
threats, is limited by the framework’s signature-based detection
approach that is inadequate for dealing with advanced attacks,
which suggests improvement through infrastructure integration
with anomaly detection and threat intelligence feeds for a more
comprehensive security coverage.

In [94], the authors introduced a novel AI-based defensive
deception framework to secure multi-tenant cloud environ-
ments from reconnaissance attacks. The strategy overcomes
the issues brought about by static, uniform configurations in
cloud networks, which add simplicity to reconnaissance for the
adversaries. To this end, the framework exploits deep reinforce-
ment learning (DRL) to formulate the optimal deployment of
decoys. A utility function models common OS vulnerabilities
as a threat, while a DRL agent who has been trained with Prox-
imal Policy Optimization (PPO) is the one to produce strategies
for configuring and distributing decoy virtual machines in a
fine-grained manner. These strategies aim to hide actual assets

Fig. 5. The private cloud infrastructure with enterprise honeypot in [93].

and thereby increase the attacker’s resource consumption. Con-
ducted simulations proved the framework’s skill in improving
asset concealment by 20.58% and raising attack costs by 40.4%
as compared to the traditional approach. This work challenges
the idea that DRL constitutes the only probability of deception
being dynamic and scalable in the clouds, thus allowing for
accurate protection against reconnaissance.

In [95], the authors proposed the use of IRDS4C, a
multilayer deception framework for the aim of detecting zero-
day ransomware and also intrusions across cloud environments
such as IaaS, PaaS, and SaaS. Through deploying of strate-
gically positioned decoys, including high-interaction honey
files/tokens (to mislead the attackers) and low-interaction ca-
nary resources (for early detection), the system can use the
ASCII-based naming scheme to make the ransomware interact
with the decoys first. The behavioral monitoring that it uses
to track unauthorized access, does not however, disturb the
legitimate operations. The testing was performed on Google
Cloud with seven ransomware families (e.g., REvil, Wan-
naCry) and IRDS4C was found to achieve 100% detection
accuracy, while faster than traditional methods like file hash-
ing. Besides that, the framework also successfully recognized
the human intruders in simulations of different breaches carried
out, being a lightweight, scalable solution designed for cloud-
native deployment, with future extensions planned for Linux
and macOS, compatibility.

In [96], the authors introduced a novel containerized
honeypot-based deception system which is capable of real-
time tracking and profiling of cyber adversaries in the cloud
setting. Docker containers are the framework’s key feature that
are used to establish a variety of honeypots (e.g., Cowrie,
Dionaea, DDoSPot, RedisHoneypot) in different Microsoft
Azure regions, under the support of ELK stack (Elasticsearch,
Logstash, Kibana), which will be used for data aggregation and
visualization. The system looks like a typical cloud service
and to create open ports for the attackers to connect to
it uses a Suricata, a tool for p0f, and FATT, along with
some interesting extras whose CVEs, operating systems, and
behavioral patterns are being analyzed. The deployment of
the work was successful for the reason that it caught a large
number of attacks, such as the exploitation of the old CVEs,
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the botnet-based DDoS traffic, and the suspected URL usage,
which provided intelligence on the adversary techniques and
the infrastructures. The experiment setup has shown compet-
itiveness in processing data acquisition, forensics, and attack
identification, with plans for the next stage to include the early-
warning system upgrade and the threat coverage expansion to
the zero-day detection. This work is a representative example
showing how scalable and cloud-native honeypot deployments
can act as a strategic deception tool for proactive cyber defense.

In [97], the authors suggested a resource-aware cyber
deception framework for microservice-based cloud-native ap-
plications. This is another option in the case of traditional pre-
built decoys that are not effective in dynamic service environ-
ments because of their inability to blend. Their design, using
the distribution of a non-linear mixed integer programming
problem, employs the production microservices cloned as high-
fidelity decoys to catch lateral movements of the attacker that
are being made along the attack path, at the same time maxi-
mizing the intercepted attack paths with respect to CPU/RAM
restrictions and also considering the attack graph topology. To
solve the problems related to computational complexity, they
have offered an approach that enables the prioritization of the
most critical microservices based on the betweenness centrality
measure. The algorithm provided is highly scalable, and the
realistic placement of the decoys is achieved. Their results
clearly show that, even with fewer resources, the coverage
gained from deceptive means was more than with the basic
approach; thus, the framework can be confidently implemented
in modern cloud spaces where contextual and resource-efficient
deception are a must.

Table II summarizes all the discussed works in cloud envi-
ronments, providing a comparative overview of their defense
goals, targeted attack types, deception methods, architectural
components, evaluation metrics, and identified limitations.

VII. CYBER DECEPTION IN WIRELESS NETWORKS

Wireless networks are largely under threat due to the
inherent challenges posed by their broadcast nature, limited
resources, and dynamic topologies, which make them sus-
ceptible to a range of cyber-attacks including reconnaissance,
eavesdropping, jamming, spoofing, and lateral movement at-
tacks. Security mechanisms that are based on encryption,
authentication, and intrusion detection are the most commonly
used traditional safety measures. They are not enough, in
decentralized networks, as open networks are, with their limi-
tations in computational power and energy efficiency of many
wireless devices [98]. In response, this has been countered by
the emergence of cyber deception, where this countermeasure
aims to create trouble for attackers, ensure the communication
of critical information, and collect data on potential threats. For
instance, the defenders do not just deploy decoy nodes, fake
access points, adaptive honeypots, but also the communication
protocols that mislead the attacker. Such practices take the
place of the real nodes and thus prevent the attacker from
gaining the proper situational awareness. Recent works focused
on the recent developments, especially in software-defined
and virtualized wireless networks, where the use of AI and
machine learning has been instrumental in supporting the
dynamic traffic redirection, strategic decoy deployment, and
behavior modeling of the attacker. Despite its large potential,

the operationalization of deception in wireless networks also
encounters issues like keeping the decoys realistic, reducing
the interference with the real communication, and ensuring
rapid adaptation to network change. This section reviews the
most important works in the field that utilize deception as an
adaptation mechanism to the constraints and shifting hostile
environment in wireless communication systems.

A trilogy of deception-driven architectures is introduced
to secure the virtualized wireless networks against both RF-
based and infrastructure-layer threats. In the first work [99], the
authors introduced a cyber deception framework for virtualized
wireless networks that counters unauthorized access and DoS
attacks through SDN-controlled dynamic redirection. An SDN
controller observes the network traffic and redirects adver-
sarial flows to a Deception mobile virtual network operators
(DMVNO), which acts as a decoy through the emulation of
legitimate services, while the availability for benign users is
preserved. The defense mechanism characterizes the attack dy-
namics as a birth-death process and assesses them using Monte
Carlo simulations with metrics such as attack redirection rate,
deployment timeliness, and the probability of legitimate users
being blocked. Primary limitations are noted, including the
failure to inject real-time adaptability for unidentified attack
patterns and the issue related to the delays in the detection-to-
deployment pipelines not being mentioned. These limitations
are suggested as future work. To address this, the second
paper [100] introduced Deceptor-in-the-Middle (DitM), as
illustrated in Fig. 6, which is a cyber-deception architecture
that can be found in virtualized wireless networks and provides
concurrent real-time attacker detection and dynamic adversar-
ial redirection. At the beginning of the process, the system
detects adversaries by utilizing RF energy sensing and Wald’s
Sequential Probability Ratio Test (SPRT), then, it transparently
routes them to a Deception VNO (D-VNO) through ARP cache
poisoning, by mimicking a Man-in-the-Middle (MitM) attack
in the opposite way. The framework is built using an SDN
controller and network aggregator that operate in a “sense-
observe-manipulate” mode, with the added benefit of ensuring
that genuine users do not experience any service disruption.
The distribution reflects a comparison between the detec-
tion rates (false alarm and miss-detection rates) at different
thresholds, with the only limitation being that it lacks formal
guidelines for the optimal resource utilization and leaves
scalability, as well as, adaptive adversary management to future
work. The third paper [101] addressed the virtualized wireless
networks cyber deception optimization using a Stackelberg
game-theoretic model, in which an SDN controller, under
budget constraints, strategically maps actual RF configurations
to deceptive observable configurations while interacting with
either naive or rational attackers. The work demonstrates the
NP-hardness of the optimal strategy selection and presents a
polynomial-time algorithm for naive attackers as well as a
scalable greedy heuristic (GMS) for rational ones, proving
successful attacker utility minimization and computationally
efficient deception deployment through simulations. While the
steps are made from static to adaptive and after that, to game-
theoretically optimized deception, the method is still limited by
its assumptions about rational attacker behavior and also faces
challenges with optimal Mixed Integer Linear Programming
(MILP) solutions on large networks that have scalability issues,
thereby leaving dynamic configuration adaptation and real-
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TABLE II. SUMMARY OF CYBER DECEPTION TECHNIQUES IN CLOUD ENVIRONMENTS

Reference Defense Goal Attack Type Deception Method Architecture
Components

Evaluation
Metrics

Uncovered Limitations

[90] Mitigate known and un-
known attacks in cloud
environments

SQL Injection, XSS,
SSH attacks, Malware
injection

High/low interaction
honeypots

NIDS Module (SNORT),
honeypot network mod-
ule (Glastopf, Dionaea,
Cowrie), analysis mod-
ule (Cuckoo Sandbox),
signature module (Rule
Generator and Updater)

Reduction in gen-
erated alerts, detec-
tion of unknown at-
tacks via custom
rules, dynamic mal-
ware analysis re-
sults

Overhead due to
multiple NIDS instances
not studied, focus
limited to network-
based attacks, no
integration with HIDS,
ACLs, or firewalls,
performance-security
trade-off not quantified

[91] Mitigate cloud-side at-
tacks (e.g., side-channel)
while minimizing migra-
tion costs

Side-channel attacks
(intra/inter-host), VM
co-residency threats

Signaling game-based
deceptive VM migration
(live/non-live or fake
signals)

Network Controller
(alerts and migration
decisions), VMs
(defenders in the game),
attacker (monitors
VM signals), signaling
Module ( generates
live/non-live migration
or deceptive signals)

Cost savings, secu-
rity gain, equilib-
rium stability

Focuses on VM-
level attacks, ignores
host/network-layer
threats, no real-world
validation (simulation
only), unquantified
impact of deception on
performance, requires
attacker belief modeling
(p,q), which may not
hold in practice

[71] Mitigate dynamic
threats in container-
based clouds

Multi-stage lateral
movement

Automated honeypot
placement using Attack
Graph and Deceptive
Exploring Surface

Monitor engine (tracks
system changes),
decision engine
(optimizes honeypot
placement), deployment
handler (configures/
deploys honeypots),
honeypot nodes

Attack success rate
reduction, resource
efficiency, scalabil-
ity, flexibility

Depends on attack graph
accuracy, static assump-
tions on attacker model

[92] Disrupt reconnaissance
for DDoS attacks (e.g.,
Crossfire, Coremelt)
without affecting users

Reconnaissance phase of
DDoS

Cloud-based reflection
network: GRE tunnels
forward probes to virtual
topology, SDN-enabled
IP hopping for fake
paths, “Reflected”
virtual topology mimics
physical network

Physical SDN switches,
cloud virtual switches,
local/Cloud SDN con-
trollers, NFV manage-
ment host

response time,
packet loss, update
latency, cost

Requires tight sync be-
tween physical and vir-
tual topologies

[93] Divert and detect in-
ternal threats in private
clouds

Internal reconnaissance,
probe, DoS, User to
Root (U2R), Remote to
Local (R2L)

Enterprise honeypot
with VM-level
emulation

Honeypot VMs, Snort,
Sebek, MSVM classifier

Classification accu-
racy, alert genera-
tion

Limited to internal
threats, dependence on
known attack patterns

[94] Proactively counter re-
connaissance attacks in
cloud environments

Network scanning, prob-
ing, OS fingerprinting,
exploitation of common
OS vulnerabilities

DRL-based decoy VM
placement

DRL agent (PPO), OS
vulnerability model,
simulated tenants

Deception entropy,
attack cost, Joint-
Defense Goal

Limited to OS-layer vul-
nerabilities, scalability

[95] Detect zero-day
ransomware attacks
and intruders in cloud
environments (IaaS,
PaaS, SaaS)

Ransomware (e.g.,
REvil, WannaCry,
NotPetya) and
intrusion attempts
(e.g., unauthorized
access to cloud storage/
servers)

High-interaction decoys
(fake files/tokens),
low-interaction decoys
(canary files/tokens),
ANSI/ASCII-named
decoy files

Decoy resources (files,
tokens, partitions, fold-
ers, servers), event han-
dler watcher (monitors
interactions with decoys
via cloud API hypervi-
sor)

Detection rate, de-
tection time, speed
vs. hashing/entropy
methods

Lacks compatibility with
Linux/MacOS, focus on
Windows-based cloud,
file system reliance
(requires NTFS for
positioning technique)

[96] Monitor and attribute
cloud attacks in real
time

Botnets, CVE exploits,
DDoS

Containerized
honeypots, high-
interaction (e.g.,
Cowrie SSH/ Telnet),
low-interaction (e.g.,
Dionaea, ADBHoney)
decoys

Azure cloud, ELK stack,
Suricata, P0f, FATT,
honeypots

Real-time logging,
CVE capture, at-
tacker attribution

Manual signature exten-
sion, needs zero-day at-
tack adaptation

[97] Strengthen security
in cloud-native
microservice
architectures by
intercepting and
mitigating malicious
lateral movements of
attackers

Lateral movement, con-
tainer compromise

High-fidelity decoys
(clones of legitimate
microservices)

Microservice
architecture, decoy
containers

Computation time,
decoy interaction
probability, average
decoys per attack
path

Assumes attack
graph availability,
computational
complexity, node
constraints

world adversarial creativity as open challenges for future work.
This illustrates a transition from simple redirection to strategic
deception in wireless virtualization security.

In [102], the authors suggested counteracting the jamming
(which means that an adversary injects noise to decrease of
signal-to-noise ratio (SNR) and disrupt communication) at-
tacks on wireless networks using game theory. Their approach

concerns a dual channel system, which has a real and a
fake transmitter, and a receiver pair, where fake transmissions
mislead the jammer into splitting its power of jamming to both
channels. The interaction is formulated by a Stackelberg game,
in which the system (the leader) performs the optimization of
power allocation first, and the jammer (the follower) afterwards
senses and reacts to the channel activity. There are two cases
discussed: 1) a non-strategic jammer with fixed behavior,

www.ijacsa.thesai.org 966 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 7, 2025

Fig. 6. An example scenario for cyber deception in wireless virtualization in
[100]: logical redirection of adversary from VNO N to deception VNO via

subleased base station.

and 2) a strategic jammer, for which they can establish a
Subgame Perfect Nash Equilibrium (SPNE) for optimal power
allocation. The simulations validate that the technique reduces
the jammed signal and boosts the legitimate channel’s trans-
mission rate. However, the work presuming the total efficacy in
jammer sensing is limited to just two orthogonal channels and
also does not deal with involving scalability in multi-node or
dynamic environments. Despite these shortcomings, the paper
underscores the fact that power-based deception is a way of
significantly increasing resistance to reactive jamming even in
simple wireless systems.

In [103], the authors presented two deception-based tech-
niques, depicted in Fig. 7 and Fig. 8 that are used to withstand
wireless privacy threats such as the Channel State Informa-
tion (CSI) that are used by the attacker. HoneyBreath is a
method that gives the wrong breathing rate by first hiding
the sensitive subcarriers and then sending forged sinusoidal
CSI patterns, while Ghost controls all the subcarriers by using
previously recorded CSI to fool crowd counting classifiers.
These strategies have been applied on USRP X310 platforms
and they have given good evaluation results. HoneyBreath
has reached the state at which the errors of breathing rate
estimation go below 1.2 bpm; on the contrary, Ghost has had
complete occupancy detection success. However, they require
attackers’ location beforehand and pre-collected CSI profiles,
which might hinder their use in some dynamic cases. The
study illustrates that strategic CSI manipulation could be a
viable method for achieving privacy against wireless inference
attacks while being largely unnoticed and practical.

A two-part contribution to deception-based defense strate-
gies in wireless sensor networks (WSNs), specifically targeting
energy depletion and battery drain denial-of-service (DoS)
attacks is presented. The first study [104] presented a deception
framework designed to assist cluster heads (CHs) in wireless
sensor networks (WSNs) against energy depletion attacks
using a game-theoretic approach. The strategy involves both
high- and low-interaction honeypots, which are placed in a
secure zone, governed by an intrusion detection system (IDS),
that counts attackers (sophisticated/ non-sophisticated) and
directs them to suitable honeypots. An incomplete information

Fig. 7. The flow chart of the proposed HoneyBreath defense in [103].

Fig. 8. The flow chart of the proposed Ghost defense in [103].

Bayesian game model derives Nash equilibrium strategies for
CH energy preservation and attack mitigation. In MATLAB,
simulations were carried out, and the approach was validated,
which showed a decrease in attack success rates through
the reallocating of honeypots dynamically. Major constraints
include a static attacker assumption and a sole reliance on
predefined honeypot configurations, thus demonstrating the
scalability and real-time adaptability issues for the next work.
The second study [105] builds on this framework by proposing
a lightweight defense mechanism to battery-draining DoS at-
tacks in wireless sensor networks (WSNs) through a signaling
game framework where sensor nodes smartly release deceptive
energy-level signals in order to misdirect attackers. The authors
depicted the relationship among nodes and attackers as a two-
player Bayesian game to derive the optimal defense strategies
through Perfect Bayesian Nash Equilibrium analysis, showing
that the nodes can effectively save energy by trying to conceal
the true state when the costs of lying are low. The simulations
show that by using the deceptive signaling, the attacker’s utility
is reduced while the nodes are being protected. However, the
approach only considers single-round interactions and does not
include coordinated attacks or network failures that could be
implemented in future work on dynamic game models and
real-world implementation in platforms such as NS3 or Cooja.

Table III summarizes all the discussed works in wireless
networks, providing a comparative overview of their defense
goals, targeted attack types, deception methods, architectural
components, evaluation metrics, and identified limitations.

VIII. CYBER DECEPTION IN CYBER-PHYSICAL SYSTEM

Cyber-Physical Systems (CPS) are systems that consist of
computational (cyber) elements and physical processes and
are done almost as one, which enables real-time monitor-
ing, control, and interaction with the physical world. These
systems are virtually the key to numerous essential fields
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TABLE III. SUMMARY OF CYBER DECEPTION TECHNIQUES IN WIRELESS NETWORKS

Reference Defense Goal Attack Type Deception Method Architecture Compo-
nents

Evaluation Metrics Uncovered
Limitations

[99] Isolate adversarial
users in virtualized
wireless networks

Unauthorized access,
DoS, dynamic attacks

Deception MVNO
(DMVNO): a decoy
virtual network
operator

SDN controller,
Wireless Infrastructure
Providers (WIPs),
legitimate MVNOs,
deception MVNO

Blocking probability,
attacker arrival rate,
deception deployment
time

Detection delay (time
gap between attack de-
tection and DMVNO
deployment)

[100] Protect virtualized
wireless networks from
adversarial attacks
while maintaining QoS
for legitimate users

Impersonation attacks,
location falsification
attacks

Deceptor-in-the-
Middle (DitM): SDN-
controlled redirection
(legitimate VNOs act
as “middle-men” to
reroute adversaries to
deception VNOs)

SDN controller,
wireless infrastructure
providers (WIPs),
legitimate VNOs,
deception VNOs

Detection range, false
alarm rate, throughput

Lacks optimal strategy
selection mechanism

[101] Secure virtualized
wireless networks by
deceiving attackers
into interacting with
decoy systems

Jamming/DoS attacks,
reconnaissance attacks

Stackelberg game-
based mapping of true
to fake RF bands

SDN controller,
wireless infrastructure
providers (WIPs),
VNO, deceptor VNO

Attacker utility, decep-
tion cost, feasibility
constraints

Scalability,
computational
complexity

[102] Mitigate jamming
attacks to protect the
transmission of real
information between
a transmitter-receiver
pair

Jamming attacks Fake signal
transmission on
orthogonal channel

Twotransmitter-
receiver pairs,
orthogonal channels,
jammer

Transmission rate, op-
timal power allocation,
utility equilibrium

Assumes perfect sens-
ing, static two-channel
setup

[103] Protect user privacy by
preventing accurate in-
ference of breathing
rates and crowd counts
via wireless signals

Channel state informa-
tion (CSI) wireless in-
ference attacks

HoneyBreath
(transmits fake CSI to
deceive eavesdroppers
into inferring incorrect
breathing rates), Ghost
(manipulates CSI to
fabricate false crowd
counts in empty
rooms)

Software-defined
radio (USRP X310)
platforms, CSI profile
library, multiple
antennas

Breathing rate error,
crowd counting

Static or predictable at-
tacker positions, pre-
collected CSI profiles

[104] Protect cluster heads
(CHs) in Wireless Sen-
sor Networks (WSNs)
from energy depletion
attacks

Energy depletion at-
tacks

High- and low-
interaction honeypots
mimic CHs to lure
attackers

Cluster-based WSN
with CHs and member
nodes (CMs), secure
zone with IDS,
honeypots

Nash equilibrium
analysis, probability
of attack strategies,
probability of defender
strategies

Static attacker
beliefs, single-round
interaction

[105] Mitigate battery-
draining DoS attacks
in WSNs

Battery drain DoS at-
tacks

Bayesian signaling
game with deceptive
energy state
broadcasting

Regular node (sender),
attacker (receiver), sig-
naling framework

Attack probability,
PBNE types (pooling/
separating)

Does not address coop-
erative attackers or net-
work failures

from self-driving vehicles to energy and health care, factory
robots, and industrial automation. A typical CPS is structured
in the following form: sensors and actuators interface the
system with the physical environment, embedded controllers
are responsible for executing control algorithms, networked
communication is in charge of data exchange; cloud or edge
infrastructure are resources for computation and analytics.
More CPS, in general, are more vulnerable to attacks as they
are focusing on wireless communications, open protocols, and
internet connectivity. This entails the introduction of such
vulnerabilities as time-line constraints, limited computational
resources, insecure firmware, and insufficient authentication.
Threats specific to CPS can be the origin of physical damage,
privacy issues, or huge business interruption. Some of the
most notorious cases, like remote hijacking of vehicles or
manipulation of smart grid components, are a lesson on how
traditional security practices can’t protect CPS satisfactorily
by themselves [106]. Cyber deception finds a place here as a
likely solution by putting the attacker off track with signal,
data, node misdirection, or wrong behavior models that divert
the attacker’s perception and planning. This Disinformation
can slow down enemies, divulge intelligence operations, and
aid in adjustments to threats. However, the usage of untruth
in CPS is complicated as the systems’ timely response and
safety-criticality requirements make it hard, and they need to
be taken into account during the design phase. Moreover, the

fact that adversaries are sophisticated enough to detect badly
implemented disinformation is an additional inconvenience.
This section presents cyber deception methods contextualized
to CPS environments with an emphasis on deception-aware
system design, attacker engagement strategies, and domain-
specific constraints.

In [107], the authors suggested the use of a deception-as-
defense framework for CPS, in which strategic misinformation
is utilized to change the perception of rational adversaries who
are trying to estimate the states of the system. The interaction is
modeled as a stackelberg game, in which the defender (leader)
first of all commits to a signaling policy while the adversary
(follower) reacts optimally. The paper shows the results under
Gaussian-distributed system states and quadratic cost functions
that linear signaling rules (which include optional noise) are
the ideal means to indirect adversarial behavior without di-
rect enforcement. The solution, obtained through semi-definite
programming (SDP), is also valid for dynamic situations,
partial observations, and unknown attacker goals, and it is
robust under both Bayesian and non-Bayesian uncertainties.
The study provides a foundational game-theoretic approach
in protecting CPS roads against adversaries, focusing on the
indirect channel perceptual control, which is a key for resilient
systems that require both stealth and accuracy.

In [108], the authors introduced a honeypot-based decep-
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tion framework for CPS that optimizes the defensive strategies
model under limited human analysis resources by modeling
attacker-defender interactions, which are represented as a
Bayesian game with missing knowledge. The proposed method
involves the use of both low- and high-interaction honeypots
integrated into the CPS cyber layer, and using the derived
optimal configurations for defense and resource allocation to
ensure the highest defensive payoff, proving the inclusion
of several Bayesian-Nash equilibria under different analysis
budgets. Through the game-theoretic approach, they clarify
the distinction between the types of attackers (weak vs. strong
offensive access) and defense mechanisms (service provision
vs. non-provision), thanks to the simulations they carried out,
which revealed that turning attention to the honeypots that
provide a greater unit analysis utility increases the efficiency of
the capturing process. Up to now, the framework has improved
the performance of practical deception in CPS, though it is
believed that the strategies of attackers should remain static and
interactions are to be single-stage, it has put off the adaptation
to dynamic and multi-stage attacks for the upcoming tasks.

In [109], the authors presented a honeypot-based intrusion
detection system, specifically for CPS, which addresses threats
such as spoofing, code injection, malware, and DoS that can
disrupt the ordinary physical operations. The architecture they
used diverts all the traffic into a virtual or hybrid honeypot
that is placed in a strategic location and exploits the high
availability of real-time attack detection, logging, and block-
ing, thus achieving a cost-effective and scalable deployment
(e.g., Cisco, Conpot). The work makes a comparison of the
interaction level, scalability, and resource requirements of the
various honeypot types, which is a good point to present them
as the main instruments for the early threat detection of CPS
systems, given the fact that conventional methods often fail
in real-time conditions. Nevertheless, the present version is
applied to single systems only, and there is a need for multi-
device testbed with dynamic traffic patterns, which would be
the practical deception-based approach for the security of CPS.

In [110], the authors presented a resilient and smart tech-
nique to identify the honeypots in softwarized industrial CPS
that largely depend on virtualization and network function
slicing. Its main architecture combines a secure fuzzy testing
approach with a deep learning-based classification model to
address the problem of recognizing real devices from hon-
eypots in heavily virtualized network environments. The first
module of the architecture, as illustrated in Fig. 9, creates
probe packets using multi-object mutation strategies based on
security rules, which guarantee that probe queries are safe but
rich in features that are not handled correctly between real
devices and honeypots. These are the optimized packets that
will be used to scan online devices. The additional responses
that are returned are then analyzed for features that are found
only in the honeypots and are classified by a CNN model
that has been trained before. The overall design provides the
packet creation and identification phases separately in order
to enhance the scalability and minimize risks. Tests carried
out demonstrate that, in addition to being fast and safe, the
method has outshone the usual identification techniques by
achieving both higher precision and lower false positives. The
fuzzy testing module conveniently generates discriminative
features while the CNN model provides trustworthy classifi-
cation. This paper proposes a flexible and safe method to the

disturbing problem of deception-aware adversaries detecting
the honeypots in industrial CPS, but it has the assumption
of pre-labeled data availability and the knowledge of error-
handling signatures that can limit adaptability in dynamic or
heterogeneous environments.

Fig. 9. The architecture of industrial CPS honeypot identification in [110].

In [111], the authors introduced a two-layer deception
strategy for CPS. By depicting defender-attacker interactions
as a signaling game with incomplete information, the model
allows coordinated deception to be implemented both at the
application layer (e.g., fake user interfaces) and at the net-
work layer (e.g., falsified messages), which secures detection
avoidance through consistency. The defender’s strategies, com-
municating either honest or misleading signals, are improved
using Perfect Bayesian Nash Equilibrium (PBNE), while the
attacker checks the system type (normal/ honeypot) to de-
termine whether to attack. Experiments carried out in an
automotive CPS setting proved that two-layer deception not
only increased the uncertainty of the attacker but also brought
down the payoffs, and made the cost-deterrence more effective
in comparison to single-layer techniques. This work, which
is based on the Purdue Enterprise Reference Architecture, is
the first to scientifically model multi-layer deception in CPS
through game theory, thus presenting a solid framework against
such attacks.

Table IV summarizes all the discussed works in cyber-
physical systems, providing a comparative overview of their
defense goals, targeted attack types, deception methods, archi-
tectural components, evaluation metrics, and identified limita-
tions.

IX. CYBER DECEPTION IN INDUSTRIAL CONTROL
SYSTEMS

Industrial Control Systems (ICS), which are specialized
cyber-physical systems, are designed to monitor and control
the operations of industries such as manufacturing, energy,
water, and transportation. The components of ICS include
SCADA systems, Distributed Control Systems (DCS), and Pro-
grammable Logic Controllers (PLCs). An ICS architecture typ-
ically consists of field-level devices, controllers (PLCs/RTUs),
supervisory systems (SCADA), HMIs, and communication
networks that use industrial protocols such as Modbus and
DNP3. As ICS were originally designed for isolated, determin-
istic environments, they have gradually become interconnected
with IT networks, which has led to the problems of legacy
components, weak authentication, and insecure communication
protocols. They are exposed to sophisticated cyberattacks
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TABLE IV. SUMMARY OF CYBER DECEPTION TECHNIQUES IN CYBER-PHYSICAL SYSTEMS

Reference Defense Goal Attack Type Deception Method Architecture Compo-
nents

Evaluation Metrics Uncovered
Limitations

[107] Control adversarial ac-
tions to align with sys-
tem objectives by craft-
ing information strate-
gically

Advanced adversaries
seeking system-related
information

Strategic signaling
(linear or “linear
plus noise” rules) to
manipulate adversary
perception

Sender and receiver
agents, Gaussian infor-
mation, Quadratic cost
functions

Covariance of posterior
estimate, semi-
definite programming
(SDP) equivalence,
stackelberg
equilibrium outcomes

Limited to Gaussian
information, non-
classical information
schemes in control
settings, adversaries
are rational

[108] Optimize defensive
strategies against
network attacks in
CPS by balancing
honeypot deployment
and human analysis
costs

Network attacks (e.g.,
probing, exploitation
of vulnerabilities)

Low- and high-
interaction honeypots

Cyber layer
(control systems,
communication
networks), physical
layer (sensors,
actuators, plants),
honeypots (low/high-
interaction), firewall,
router, servers

Bayesian-Nash
equilibria, defense
payoff maximization,
escape probabilities
of attacks, human
analysis cost allocation
efficiency

Static attackers,
static deployment,
dynamic adaptation
not addressed

[109] Detect and block CPS-
targeted cyberattacks
using honeypots

DoS, spoofing, control
hijacking, malware,
code injection

Low- and high-
interaction honeypot-
based intrusion
detection

Cyber layer (sensors,
network), physical
layer (actuators,
processes), honeypot
(virtual/physical),
security rules engine,
traffic monitoring
system

Attack capture rate,
scalability, interaction
level

Single-system use,
Static security rules
may not adapt to
evolving threats

[110] Detect honeypots to
protect deception in-
frastructure integrity

Honeypot fingerprint-
ing in softwarized CPS

Fuzzy probe genera-
tion + CNN-based hon-
eypot classification

Secure Fuzzy testing
module, scanner,
response analyzer,
deep learning model,
dynamic packet set

Accuracy/ precision/
recall, effectiveness,
diversity of response
packets

Labeled training data,
focused on Modbus
protocol

[111] Strengthen CPS
resilience by
implementing a
dual-layer deception
strategy

CPS attacks across ap-
plication/ network lay-
ers

Coordinated multi-
layer deceptive
signaling

Coordinated signal
senders (application/
network), belief update
model

Defender’s payoff, de-
terrence effectiveness

Increased deployment
complexity and cost,
fixed attacker beliefs

like unauthorized command injection, manipulation of con-
trol logic, stealthy data tampering, and firmware exploitation.
Stuxnet, Triton, and BlackEnergy incidents are examples of
severe physical disruption and operational downtime through
intentionally attacking ICS. Conventional security mechanisms
generally do not have the contextual awareness, adaptability, or
low-latency operation required in real-time ICS settings, and in
addition, frequent patching as a remediation is often impracti-
cal due to availability and safety constraints [112]. In response,
cyber deception is a good choice not only because it is a proac-
tive and stealthy approach but also it is a strategic alternative
such as inserting misleading elements, decoy sensors, fake
field devices, deceptive control logic and protocol-emulating
honeypots, in the ICS environment to mislead adversaries,
trigger early alerts, delays attacker progress, and aid forensic
investigations. Design of deception in ICS is a difficult case
due to the necessity of preserving protocol fidelity, safety, and
the need for realism under the threat of expert attackers. This
section explores deception strategies specifically tailored to
ICS, emphasizing their architectural integration, effectiveness
against known threat models, and deployment limitations.

In [113], the authors suggested the implementation of
Honeyd+, an applicable, scalable, and cost-effective imple-
mentation of high-interaction ICS honeypots through only one
PLC and a proxy-based engine. For example, by changing
the network/device identifiers (IP/MAC addresses, hostnames,
serial numbers) dynamically and manipulating protocol pay-
loads, Honeyd+ can simulate multiple physical PLC devices
while preserving the culture of identity and realism. Tests
on Raspberry Pi and high-end laptops certainly indicated its
capacity to register more than 75 virtual networks, while, under

other moderate traffic, it maintained low error rates, making it
effective for reconnaissance deception. Though weaknesses in-
clude no support for formatted encrypted protocols, scalability
constraints due to PLC features, and poor performance under
extremely high traffic. The work shows possible improvements
such as protocol-specific adjustments and the integration of
diverse ICS components, to extend it to the production envi-
ronment.

In [114], the authors presented HoneyPLC, a high-
interaction honeypot that closely simulates programmable
logic controllers (PLCs) in ICS. In contrast to conventional
ICS honeypots such as being low interaction fidelity, limited
protocol support, and poor malware capture, HoneyPLC, as
illustrated in Fig. 10, is equipped with a modular framework
that consists of a PLC profile repository, a personality engine
(for protocol spoofing and fingerprinting), network services
(HTTP, SNMP, S7comm), and an interaction data module to
log attacks and capture malicious ladder logic injections. The
key innovation is a PLC profiling toolkit that dynamically, for
example, configures the Nmap fingerprints and SNMP MIBs to
imitate real devices such as Siemens S7-1200 or Allen-Bradley
MicroLogix 1100. Beyond that, HoneyPLC’s S7comm server
and TCP/IP stack operate realistically to trick tools such as
Nmap, PLCScan, and Siemens Step7 Manager, whereas its
ladder logic capture module records the injected malware for
future analysis. The tests demonstrate that there is a high
fidelity (>90% Nmap Confidence, Shodan scores matching
real PLCs) and scalability (75+ simulated hosts per PLC). It
is worth mentioning that the main shortcomings are the lack
of physical process simulation and the fact that there is no
support for encrypted protocols (e.g., Modbus Secure).
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Fig. 10. The architecture of HoneyPLC in [114].

In [115], the authors introduced two deception methods for
the identification of stealthy malware in the ICS, which avoid
the traditional sensors through the exploitation of internal host
discovery mechanisms such as NetBIOS browse lists and ARP
tables. The methodology is based on the addition of sensor
information to these lists in a way that causes malware to be
attracted to self-disclosure. Proposal 1 is aimed at malware
such as Conficker through the broadcasting of fake NetBIOS
advertisements that are continuously emitted, which makes
sure that the sensor’s hostname is listed in the network browse
lists, a tactic that is most advantageous under Windows-
based systems, particularly in old versions of the program.
In contrast, Proposal 2 incorporates the scheme which ensures
that the sensor’s IP-MAC pairing is embedded in the ARP
caches of all hosts by sending cyclical ICMP or ARP requests,
which, in turn, counteract malware that uses ARP tables for
lateral movement. The techniques are designed for simple
and non-intrusive application in the vulnerable ICS networks.
The evaluations validate that Proposal 1 was successful in
identifying Conficker in a laboratory setting, whereas the
practicality of Proposal 2 is denoted in a theoretical proposal,
which remains to be verified with real ARP-based malware.
Despite their efficacy, the techniques, on the other hand, are
based on assumptions relating to the behavior of the attacker,
and involve a need for trial-scale deployment, decreasing the
number of false positives, and integration with further detection
frameworks.

In [116], the authors introduced a deception defense frame-
work for ICS leveraging adaptive Hidden Markov Models
(HMM) for the detection and mitigation of cyber threats,
which include DDoS attacks, malicious program injection,
and false data injection. The framework models typical ICS
behavior using multidimensional data and detects anomalies
by comparing observed behaviors with expected HMM state
sequences. It adapts to evolving threats through incremental
updates of HMM parameters. While primarily focused on
anomaly detection, the framework, as depicted in Fig. 11,
integrates a passive form of deception by analyzing attacker
interactions within virtual environments, enabling misdirection

without exposing the real system. Detected attacks (e.g., TCP
SYN floods, ladder logic injections) trigger appropriate re-
sponses such as node isolation or administrator alerts. Through
experiments conducted on an OpenPLC-based testbed, the
solution was found to have very high rates of detection
(98% for DDoS, 95% for malware injection, and 90% for
false data attacks), very low percentages of false alarms (1-
3%), and quick response times (1-2.7 seconds). Whereas the
outcome of these tests was successful, it is mentioned that
scalability and denial of multi-stage attack coverage are the
shortcomings, which place emphasis on broadening the scope
of the framework’s deployment in larger platforms and its
interfacing with other security orchestration platforms.

Fig. 11. The adaptive HMM-based ICS deception framework in [116].

Table V summarizes all the discussed works in indus-
trial control systems, providing a comparative overview of
their defense goals, targeted attack types, deception methods,
architectural components, evaluation metrics, and identified
limitations.

X. CYBER DECEPTION IN SMART GRIDS

Smart grids are the modernization of traditional electrical
networks by integrating advanced information and communi-
cation technologies to make power systems more efficient,
reliable, and sustainable. The systems comprise components
like smart meters, sensors, automated control systems, and
communication networks that together deliver the real-time
monitoring and control of energy flow innovation. However,
the high degree of networking and the dependence on digital
technologies have made the trouble spots more and more
numerous, and that is the reason the smart grids have become
vulnerable to a strong variety of cyber threats including
for example, false data injection attacks, denial-of-service
attacks, and embedded malware attacks. The cyber-attacks on
Ukraine’s power grid, which were particularly prominent cases,
showed the high impact of such vulnerabilities, bringing about
the consequences of significant grid disruptions as a result of
that so demonstrating the potential for major disturbances. The
traditional measures of cybersecurity are often inefficient in
the face of the ever-changing, elusive characteristics of these
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TABLE V. SUMMARY OF CYBER DECEPTION TECHNIQUES IN INDUSTRIAL CONTROL SYSTEMS

Reference Defense Goal Attack Type Deception Method Architecture Compo-
nents

Evaluation Metrics Uncovered
Limitations

[113] Create low-cost, au-
thentic, and targetable
honeypots for Indus-
trial Control Systems
(ICS) to detect and an-
alyze attacker TTPs

Reconnaissance,
enumeration, initial
access, and persistent
attacks (e.g., via
TCP/UDP port
scanning, protocol
exploitation)

Proxy-based high-
interaction honeypots
with Honeyd+

Physical PLC, Hon-
eyd+ host, search/ re-
place Engine, evalua-
tion platforms

Cost-effectiveness, er-
ror rate, scalability

Limited support for
encrypted protocols,
high load handling,
PLC bottlenecks

[114] Understand attack
methods targeting
Programmable Logic
Controllers (PLCs),
by deceiving attackers
into interacting with a
honeypot

Malware injection
(e.g., Stuxnet,
Crashoverride),
reconnaissance, and
disruption of physical
processes

High-interaction hon-
eypot simulating real
PLCs with advanced
protocol simulations

PLC profile repository,
personality engine, net-
work services module,
interaction data mod-
ule, PLC profiler tool

Stealthiness, compati-
bility with proprietary
tools, ladder logic cap-
ture

Limited protocol cov-
erage, lack of physical
interaction modeling

[115] Detect malware infec-
tions in Industrial Con-
trol Systems (ICS)

Malware infections
(e.g., WannaCry,
Conficker)

Embeds sensor host
names in browse lists,
embeds sensor IP ad-
dresses in ARP tables

Sensor, host
announcement module,
ARP/ICMP module,
alert system

Detection capability,
false positives,
coverage vs. traffic

Deployment impact
(Proposal 2’s
continuous ARP
requests may affect
network performance),
evasion by advanced
malware, protocol
support

[116] Protect ICS from
cyber-attacks by
detecting and
responding to
anomalous behavior in
real-time

DDoS attacks, mali-
cious program injec-
tion, false data injec-
tion

Adaptive Hidden
Markov Model (HMM)
for modeling normal
behavior and detecting
anomalies

Data acquisition, adap-
tive HMM, honeypot-
based response, Open-
PLC testbed

Detection rate, false
positive rate, response
time

Dependence on HMM
training data, multi-
stage attacker handling

threats [117]. For that reason, a new type of defense was in-
troduced, which involves cyber deception. By using deceptive
elements like honeypots, decoy systems, and wrong data, cyber
deception aims at disorienting attackers, slowing them fast, and
earlier recognizing malicious activities. The implementation
of cyber deception technology in smart grids, however, gives
rise to difficulties, such as the assurance of component decep-
tiveness, maintenance of system performance, and seamless
integration of deception strategies into the already existing
infrastructures. In this section, the subject of cyber deception
in smart grids is studied by considering methods, advantages,
and limitations that the implementation brings.

In [118], the authors discussed the application of honeypot-
based defense scheme to deal with the Distributed Denial
of Service (DDoS) attacks aimed at the Advanced Metering
Infrastructure (AMI) in the smart grids using a game-theoretic
approach. The model suggested by the authors envisions
the AMI as a tree like network consisting of smart meters,
aggregators, and a central headend system. It is shown in
Fig. 12 that the honeypots are to be embedded inside the
firewalls of the WAN segment to make the traffic divert and to
secure the headend and the back office servers. This strategy is
framed formally as a Bayesian honeypot game, considering the
presence of the users, the attackers, and the service providers,
which include the strategies of the attackers, the effectiveness
of the honeypots, and the anti-honeypot mechanisms that
can be utilized. The model gives the specification of the
payoff function and the resolution of the problem, finding
multiple Bayesian Nash Equilibria (BNEs), which typically
imply the optimization of the placement of honeypots so as
to reduce energy consumption and improve detection rates. In
the process of verification by experimental setups employing
an OPNET-based AMI testbed, it has been established that the
model surpasses the others in terms of higher detection rates
(up to 85%) and more stable energy efficiency. The model

operation deals with what is typically assumed as a rational
and static attacker and simply presumes a deployment scenario.

Fig. 12. The AMI network infrastructure with honeypot deployment in [118].

In [119], the authors thoroughly discussed and analyzed
the honeypot and honeynet technologies that are utilized in
the smart grid for security purposes. They have done an
analysis of the factors such as the interaction levels (low versus
high), purposes (production versus research), and deployment
models (virtual versus physical) while evaluating the protocol
supported by the industrial standards such as Modbus, IEC-
104, and IEC-61850. The investigation has listed Conpot as
the most versatile because of its modular design and multi-
protocol capabilities as compared to twelve honey-x solutions.
Even though Conpot is lacking in native support for advanced
protocols like GOOSE/MMS, DNP3, it is the most versatile
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choice. The EU SPEAR project has set up a smart home
testbed, which implemented a practical example of Conpot.
Conpot has been proven to be effective by applying modified
iptables rules and JSON-based logging in the process, while
also outlining its limitations in high-interaction fidelity, IPv6
adoption, and dynamic threat adaptation.

A two-phase investigation into enhancing threat intelli-
gence collection for smart grid systems using honeypots was
conducted. In the first study [120], low-interaction honeypots
were implemented across five AWS regions (Singapore, US,
Canada, Germany, Brazil) to simulate ICS protocols IEC
61850, IEC 60870-5-104, DNP3, Modbus TCP, and BACnet.
They succeeded in remaining undetected by fingerprinting
tools like Shodan’s Honeyscore while collecting a total of 6GB
of network traffic over six months. Their analysis shows indica-
tors of probing behavior specific to the protocol, geographical
correlations on scanning (with 0.97 cross-correlation between
Germany and Brazil instances), and the presence of persistent
threat actors such as 54 IPs that were detected monthly and
executed SYN-flood attacks in a coordinated manner, all of
which provided a valuable reference for IDS and firewall
tuning. On the other hand, the study has some limitations, such
as the fact that the honeypots are of low interaction, which
leads to a lack of realistic behavior, and that post-compromise
attacker activities are unable to be captured, which is a strong
reason to think about the use of more complex, high-fidelity
honeypots in other smart grid security studies. To address these
limitations, their second study [121] demonstrated a realistic
smart grid honeypot system by creating a full-scale infrastruc-
ture that includes SCADA HMIs, historians, IEDs, protocol
gateways, and firewalls. It employs a decoupled architecture
that is integrated with various tools such as Honeyd for anti-
fingerprinting, Cowrie for SSH deception, SoftGrid for power-
flow simulation, and Mininet for virtual IEDs. The system
achieves practical protocol spoofing (e.g., IEC 61850 MMS)
and cyber-physical consistency through these tools. Security
testing has proven the system’s capability to fingerprint devices
strongly, log multi-phase attacks by using transparent proxies,
and be resistant to probing by adversaries. Yet, difficulties
persist in lateral movement modeling, automating dynamic
deception, as well as adapting to the strategies of the attacker.

In [122], the authors proposed DecIED, a scalable de-
ception framework for smart grid substations that is based
on the idea of k-anonymity to conceal the identity of actual
Intelligent Electronic Devices (IEDs) by introducing several
indistinguishable decoy IEDs. Tailored for the IEC 61850-
compatible environments, DecIED mimics the actions and
communication patterns of the genuine devices by implement-
ing the protocols, such as MMS, GOOSE, and SV. The outline,
as shown in Fig. 13, involves a virtual IED program which
consists of an IED server and logic, GOOSE/SV subscribers
and publishers that are all integrated with Honeyd to spoof OS
fingerprints and port behaviors. Each decoy IED is provided a
unique IP/MAC address, and by following the same timing
and content of the messages, it can replicate real devices.
The system is designed to be resource-efficient, being able
to commit over 200 deception instances on a single industrial
PC; thus, scalability is achieved without compromising fidelity.
Evaluations prove that deception was achieved without the
capacity of real devices in passive and active reconnaissance.
Indeed, DecIED out of the box maintained realistic control

logic responses and nevertheless succeeded in the deception
of scanning tools. Though issues prevail in the process of
really exacting OS-level functionality and diverse logic types
problems not addressed, yet DecIED is a solid ground for
deception in today’s substations and, it can be a stepping stone
for further tactics like moving target defense.

Fig. 13. The module architecture of DecIED in [122].

In [123], the authors proposed a defense strategy frame-
work for smart grids with the help of the honeypot model.
This is made with an incomplete information stochastic game
that is used for describing the dynamic interactions between
the attacker and the defender. The system consists of low-
interaction and high inside honeypots in the networks like
smart grid servers (web, FTP, OPC, and application servers),
where it is isolated through firewall rules. A six-tuple game
model that describes the defense mechanism is set up partly by
attack/ defense actions, privilege escalation states, transition
probabilities, and host-specific metrics (e.g., importance and
risk level ). The model of Nash equilibrium is obtained by solv-
ing it through Gambit software, and as a result, the framework
comes up with state-optimal defense strategies that enable
adaptation to the attacker through privileges or honeypots. The
evaluations show that they achieved good deception rates and
resource allocation, yet the model was derived assuming the
topology is static and the state transitions are known perfectly,
which in turn limits its scalability in a dynamic environment.

Table VI summarizes all the discussed works in smart
grids, providing a comparative overview of their defense
goals, targeted attack types, deception methods, architectural
components, evaluation metrics, and identified limitations.

XI. CYBER DECEPTION IN INTERNET OF THINGS

The Internet of Things (IoT) is one of the numerous
interconnections that link up physical objects, devices such as
sensors, actuators, gateways, and cloud-based analytics plat-
forms, which will work together to monitor, control, and auto-
mate different domains like healthcare, smart homes, industrial
systems, and smart cities in real time. Rendering a typical IoT
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TABLE VI. SUMMARY OF CYBER DECEPTION TECHNIQUES IN SMART GRIDS

Reference Defense Goal Attack Type Deception Method Architecture Compo-
nents

Evaluation Metrics Uncovered
Limitations

[118] DDoS mitigation in
AMI networks

Distributed Denial of
Service (DDoS)

Honeypot-based game-
theoretic decoy place-
ment

Smart meters, data ag-
gregators, central head-
end, honeypots behind
firewalls

Detection rate, energy
efficiency, BNE solu-
tion space

Rational attackers,
limited to small-scale
testbeds

[119] Secure smart grids by
diverting attackers, col-
lecting threat intelli-
gence, and preserving
forensic evidence

Broad coverage, in-
cluding SCADA ex-
ploits, DDoS, and mal-
ware targeting ICS pro-
tocols (Modbus, IEC-
104)

honeypots, honeynets Emulated ICS
devices (PLCs,
RTUs), protocol
servers (Modbus,
SNMP), virtual/
physical honeypot
nodes, tools (Conpot,
GridLAB-D (power
flow simulation),
Mininet (SDN))

Detection Rate, realism
scalability

Protocol gaps, resource
intensity, dynamic
threats

[120] Collect threat intelli-
gence on smart grid at-
tackers

Scanning/probing,
SYN-flood DoS,
protocol specific
exploits (IEC 60870-5-
104, DNP3, Modbus)

Low-interaction
honeypots emulating
ICS protocols

AWS instances, TCP
listeners, wireshark,
ELK stack

Packet counts
(TCP/ICMP),
geographic correlation
of attacks, source IP
persistence

Lacks high-fidelity
engagement, low-
interaction design
limits realism of
emulated devices,
limited protocol
coverage

[121] Collect threat intelli-
gence, delay attacks,
and deceive attackers
into engaging with the
honeypot

Attacks via
VPN/SSH/RDP,
malicious IEC 60870-
5-104/IEC 61850
commands, lateral
movement

High-fidelity
honeypots with OS
fingerprint spoofing
and decoupled logging

Control center
(SCADA HMI,
Historian DB, VPN
Server), substation
gateway, Virtual IEDs,
external (Jumpbox,
transparent proxies)

Realism (Nmap/P0f
fingerprint similarity to
real devices, detection
of virtualization),
logging (captured
attack phases)

Passive devices: IEDs
(passive servers) easier
to mimic than active
devices (PLCs/ gate-
ways)

[122] Detect reconnaissance
activities, prevent at-
tackers from identify-
ing real IEDs

Passive monitoring,
active probing, lateral
movement

*k*-anonymous
smokescreen (decoy
IEDs)

Honeyd (anti-
fingerprinting), virtual
IED module, Nginx
web server, transparent
proxies

Indistinguishability ra-
tio, device similarity,
scalability

Imperfect OS finger-
printing, requires ac-
cess to real IED logic
for full imitation

[123] Optimize defense
strategies against
smart grid attacks

Multi-stage attacks
with privilege
escalation

Honeypot deployment
guided by stochastic
game model

Web/ FTP/ OPC/ ap-
plication servers, hon-
eypots, firewall rules,
attack/ defense action
sets

Game-theoretic Nash
equilibrium, host
significance, security
risk level, state
transition probabilities,
fefense success rate

Convergence time, re-
quires predefined vul-
nerability data

architecture model, one can think of it as a layered framework,
for example, comprising the perception layer (sensors and
actuators), the network layer (Wi-Fi, Zigbee, 5G), and the
application layer (cloud or edge services). Be that as it may,
IoT systems are attacked with major security problems such
as device heterogeneity, resource limitations, root defaults, and
lack of standardization. Such weaknesses permit IoT networks
to come under attack from an array of cyber threats, such
as device hijacking, eavesdropping, man-in-the-middle attacks,
and DDoS amplification through botnet devices like Mirai.
In such constrained and distributed environments, traditional
defense mechanisms, like encryption and authentication, often
seem to be inefficient [124]. Therefore, the cyber-deception
approach has been chosen as the effective way. Now defenders
deploy honeypots, fake sensors, deceptive APIs, or synthetic
data flows to mislead the adversaries, gather threat intelligence,
and delay attacks. Among the recent frameworks that have
emerged are AIIPot and IoTFlowGenerator that exploit ma-
chine learning to synthesize realistic decoy behavior and traffic
patterns; thus, they increase IoT deception fidelity. However,
IoT is full of particular challenges in the deployment of
effective solutions for example the need for major realism at
scale, load overhead maintenance on the constrained devices,
and the need for seamless integration of deception into the
edge/cloud management platform. This section is focused on
the deception techniques that are designed specifically for IoT
environments, mainly dealing with component-level placement

and adaptive threat engagement.

In [125], the authors introduced HoneyCloud, which is
a scalable honeypot framework that is meant for analyzing
fileless attacks on Linux-based IoT devices. The setup employs
four hardware honeypots (like Raspberry Pi, BeagleBone) and
108 software honeypots distributed over eight public clouds.
Compared to other hardware honeypots, they are superior
in terms of high-fidelity interactions. However, the cost and
maintenance overhead issues drove the authors to use QEMU-
based software honeypots running OpenWrt, which were en-
hanced with realism-preserving techniques (like CPU masking,
bus emulation). Over 12 months, HoneyCloud amassed 26
million attacks, including 1.5 million fileless attacks, which
made it possible to create the first taxonomy of IoT fileless
threats such as credential theft, configuration tampering, and
SSH tunneling. The major findings illustrate that 65.7% of
fileless attacks utilize default shell commands (like rm, kill,
passwd) and demonstrate a trade-off: read-only filesystems are
resistant to malware persistence, but they also inhibit shell-
history auditing for fileless detection. The paper advances
IoTCheck, a workflow for defense that entails the hardening
of devices, though shortcomings are the inability to decrypt
SSH tunnels and absence of support for newer IoT interfaces
(like ZigBee). HoneyCloud broadens the perception of stealthy,
non-malware threats, as these are the kinds of threats that can
evade traditional defenses.

In [126], the authors analyzed empirically the IoT botnet
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behavior by using three medium-interaction Cowrie honeypots
programmed to emulate SSH/Telnet services and IoT file sys-
tems. The honeypots (which were scaled with Apache/Postfix
services and ELK stack logging) observed for more than 40
days and recorded malware downloads during login sessions,
which were later clustered by the Levenshtein edit distance
on command sequences. According to this study, the majority
of sessions that were related to malware were from Mirai
variants at 97% with the loader patterns being two dominant
ones (74.3% and 23.4% prevalence). The authors can confirm
that these specific IP addresses operate within a small group
of loaders distributing various strains of Mirai, which are
often just slightly modified (e.g., by using UPX packing,
filler commands, or compiler flags). Furthermore, the system
registered some threats that were scarce (e.g., IRC botnets),
although the limitations included Cowrie’s static emulation
(which was lacking high-interaction behaviors), being biased
towards x86/64 architecture, and not being able to analyze
non-file-downloading sessions.

In [127], the authors presented a scalable and hybrid
architecture for IoT honeynet, which consists of three types
of honeypots to enhance attack capture and deception fidelity:
a medium-high interaction honeypot emulating the CVE-2017-
17215 vulnerability, a high-interaction honeypot using real IoT
firmware to handle unprocessable requests, and a multiport
honeypot simulating SOAP services across exposed ports (e.g.,
37215, 52869) with dynamic banner generation based on real
device fingerprints. As shown in Fig. 14, the system is dis-
tributed over several physical nodes, each one being managed
by a local master program and coordinated through a central
control node. The architecture takes advantage of Docker both
for fast deployment and isolation, being complemented with
self-check mechanisms that ensure honeypot stability. Traffic
is first routed to medium-interaction honeypots and deployed
to high-interaction nodes if a deeper emulation is required.
Deployed in the US and Canada, the honeynet remained
stable for six months, capturing 332 unique attacker IPs and
malware samples that went undetected by VirusTotal (e.g.,
“Ixa”, “gyv”). Geographical analysis disclosed that scanning
behaviors stemmed mainly from Japan and injections from
the US. Although they are effective, the authors still mark
the limitations in the automation issue and post-compromise
behavior modeling and propose future work in these areas.

Fig. 14. The composite honeynet system architecture in [127].

In [69], the authors introduced a proactive defense frame-
work, which is a software-defined networking (SDN) en-
abling technology specifically developed to combat Distributed
Denial-of-Service (DDoS) attacks in IoT networks by using
the integration of Moving Target Defense (MTD) and cyber
deception techniques within a programmable architecture. The
framework, as illustrated in Fig. 15, consists of three main
parts: the first one is the monitoring agent who is responsible
for the detection of attack behaviors, and the second one is the
decision module which utilizes a multistage signaling game
for modeling the attacker-defender interactions and predicting
the adversarial strategies, and the last one is the deployment
module that carries out such deception tactics such as random
traffic delays, rerouting, and IP randomization. The system can
deceive attackers through the use of a switching mechanism
that dynamically changes the network properties and thereby
alters the perception of the attacker. The manipulation includes
operating under true services or honeypots depending on the
behavior and confidence of the attacker. The signaling game
analysis generates Perfect Bayesian Nash Equilibria (PBNE),
with the Optimal Strategy Algorithm (OSA) on top of that,
which is used to optimize defense actions that are under
the condition of uncertainty. Performance evaluations on both
Mininet and a real SDN testbed also show that the improved
method, besides survival rates, has controlled CPU usage in
the range of 65%, and reduced latency and packet loss when
compared to baseline measures. Although it is a very efficient
framework, the improvement should be the deployment of
security mechanisms and assets that are adaptable and proac-
tive to combat insider threats, which are usually tough to
differentiate from legitimate users.

Fig. 15. The proposed framework in [69].

In [128], the authors introduced a cyber deception frame-
work especially designed to fight epidemic botnet propagation
in IoT networks using game-theoretic approach. They rep-
resented the interaction between attackers and defenders as
a zero-sum, one-sided Partially Observable Stochastic Game
(OS-POSG). In the proposed model, the defender places some
honeypots strategically to monitor and disrupt botnet commu-
nication, and the attackers, in turn, know everything about the
network structure except the actions of the defender, and their
primary goal is to maximize the number of infections. The
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defender’s partial observability comes from being notified of
the reactions of IoT users only (e.g., patching or password
changes). Two deception strategies are examined, which are: a
randomized deception strategy (RDS) and a k-smart deception
strategy (k-SDS), where honeypots are positioned based on the
infected devices. The attacker uses straightforward strategies
(unicast, half, or broadcast) instead of Q-learning. Simulations
on synthetic IoT topologies measure the maximum proportion
of infected devices and Time to Extinction (TTE). The results
show that k-SDS is significantly better than RDS, especially
in high degree connectivity networks. The framework is ba-
sically an affirmation of the power of the dynamic deception
that is applicable under partial observability. Further actions
include the derivation of Nash Equilibrium strategies and the
exploration of state-dependent deception techniques.

In [129], the authors presented HoneyComb, a cyber de-
ception framework that has a proactive character and combines
a /8 darknet network (16.7 million IPs) with mitigating IoT
malware forensic artifacts at scalability. The main distinguish-
ing feature of HoneyComb from the traditional honeypots,
which passively wait for attacks, is that it actively detects
malware-infected IoT devices by inspecting unsolicited darknet
scans and sends then crafted TCP SYN-ACK packets to
exploit stateless scanning flaws in IoT malware (e.g., Mirai’s
dst.IP == TCP.seq signature). The structure, as illustrated
in Fig. 16, contains: 1) a darknet traffic analyzer (CAIDA
data), 2) a cloud-based honeypot interface, and 3) a pool
of virtualized ARM-based IoT devices (OpenWrt) emulating
Telnet/SSH services. Once the connected infected devices are
tricked, HoneyComb logs malware binaries (1,398 unique
URLs), HexString dump commands, C&C communications,
busybox commands, and credentials. Throughout a 48-hour
evaluation period, HoneyComb reported a total of 1.4 million
interactions, which were successfully carried out by 37,323
infected devices, attributing them to 40+ malware variants
(e.g., Hajime, Mozi, ZHTRAP). Noteworthy statistics show
a 22.07% response rate (37K/169K scanned IPs) and 90% of
responses in 750ms or less. Some of the limitations are: 1)
ARM-only virtualization (excluding MIPS/x86), 2) low SSH
engagement (5.55% vs. Telnet’s 25.88%), and 3) proxy/NAT
evasion, and improvements will support a broader range of
CPUs, simulate other services, and improve proxy penetration,
ultimately achieving a real-time IoT malware knowledge graph
for collaborative defense.

In [130], the authors introduced IoTFlowGenerator, which
is a cyber deception framework based on deep learning that
synthesizes realistic IoT traffic flows to increase honeypot
believability against adversaries who monitor network activ-
ity. Being different from traditional IoT honeypots, which
lack the real traffic patterns and can be easily detected,
IoTFlowGenerator employs a fine-tuned SeqGAN and VQ-
STAE (Vector Quantized-Sequence Transformer AutoEncoder)
to produce multivariate, time-consistent packet metadata that
imitates real user-device interactions. The system processes
PCAP files (using Wireshark) to extract features such as packet
length, direction, and timing, clusters packet-level signatures
using DBScan, and encodes packets into discrete tokens. These
tokens are adversarially trained into synthetic sequences, which
are then reconstructed into traffic flows with noise injection for
realism. Using 18 IoT devices for evaluation, IoTFlowGener-
ator not only outperforms DoppelGANger but also reduces

the success rate of the adversarial ML models in the differ-
entiation of synthetic traffic from real traffic. Particularly, this
reduction is in synthetic-data-aware attack scenarios. Despite
its high potential, the main weakness is the dependence on
pre-collected traffic data and device-specific modeling, which
might pose scalability challenges. The research highlights how
sequence-based GANs can be used to increase the deception
of encrypted IoT environments.

Table VII summarizes all the discussed works in internet
of things, providing a comparative overview of their defense
goals, targeted attack types, deception methods, architectural
components, evaluation metrics, and identified limitations.

XII. CYBER DECEPTION IN INTERNET OF VEHICLES

The Internet of Vehicles (IoV) is a transforming new
phase of intelligent transportation systems, which is now
become possible due to the distinct features of the network
that allows vehicles to communicate with each other (V2V),
with infrastructure (V2I), and with broader networks (V2X)
thus improving safety, efficiency and user experience. During
this time, increased connectivity has also brought security
problems, which are challenging to solve. Protection measures
against the spectrum of attacks facing IoV systems, such as
spoofing, eavesdropping, denial-of-service attacks, and unau-
thorized access, have compromised both data integrity and
physical safety. Traditional security measures are not capable
of tackling the challenges of these compound threats [131].
Furthermore, recent works [132] [133] reported the provi-
sion of intelligent sensors in IoV via reinforcement learning
based techniques, where virtualized sensors are dynamically
assigned to achieve the best possible service and resource
optimization. Nevertheless, the main issue of security in IoV
persists, and such provisioning schemes must be examined
about their potential role in supporting defensive strategies
such as cyber deception, which has emerged as a proactive
defense strategy. Through the use of such deceptive elements as
honeypots, decoy nodes, and faulty communication protocols,
the defenders can mislead attackers, make them late, and
procure important information on their strategies. We have the
latest findings that bring sophisticated frameworks to the IoV
setting. To illustrate, the DECEPTWIN framework leverages
digital twins and blockchain to create a decoy environment that
looks real, enhancing the detection and analysis of malicious
activities. Similarly, Honey-Car framework is a great example
of the use of game-theoretic models in the optimization of
honeypot settings; thus, the attackers are involved well, and
we can take actionable threat intelligence. Even if these ideas
are great, the process of introducing cyber deception into IoV
has its problems. It is vital to create decoys that are real, as
well as sustain system performance and incorporate strategies
of deceit in a smooth manner into the already established setup.
This section considers the cyber deception play in IoV, looking
into its methodologies, advantages, and the issues raised during
the process of execution.

In [134], the authors introduced NHBADI, a newly in-
troduced honeypot-based scheme for identifying and isolating
Black Hole attacks in MANETs. The system utilizes AODV
protocol modification so that it sends out RREQ packets to
nonexistent nodes with the help of the destination IDs and
TTL=1 Flag; thus, the system identifies the malicious nodes
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Fig. 16. The overall architecture of the proposed HoneyComb in [129].

TABLE VII. SUMMARY OF CYBER DECEPTION TECHNIQUES IN INTERNET OF THINGS

Reference Defense Goal Attack Type Deception Method Architecture Compo-
nents

Evaluation Metrics Uncovered
Limitations

[125] Understand and defend
against fileless attacks
on Linux-based IoT
devices

Fileless attacks (e.g.,
SSH tunneling, sys-
tem data damage, de-
immunization)

Hardware and
software honeypots
(HoneyCloud) with
high fidelity emulation

Hardware/ software
honeypots, shell
interceptor & inference
terminal, access
controller, reset
manager

Number of suspicious
connections, number of
effective attacks, cost
comparison

No ZigBee support,
visibility limits for en-
crypted tunnels

[126] Track and analyze vari-
ations in IoT botnets
(e.g., Mirai variants)

Mirai-based botnets
(SSH/Telnet), SSH
brute-force attacks,
IRC-based botnets,
coin-mining malware

Cowrie-based medium
interaction honeypots

Cowrie honeypot,
apache webserver,
postfix mailserver,
ELK stack, filebeat

Edit distance cluster-
ing, IP/file hash map-
pings, ssdeep similar-
ity, session success rate

Limited to x86/64 bi-
naries (Cowrie’s emu-
lated architecture), ss-
deep inaccuracies

[127] Capture and analyze
IoT-specific attacks
(e.g., exploiting UPnP/
SOAP vulnerabilities)

SOAP/UPnP-based at-
tacks, port scanning,
CVE-2017-17215 ex-
ploitation

Medium-high
interaction honeypot,
high-interaction
honeypot, multiport
honeypot

Honeypot core, docker
containers, ELK stack,
control center, QEMU

Attack volume,
geographic
distribution, malware
samples, functional
validation

Limited protocol cov-
erage, static emulation,
dependency on Docker

[69] Proactively mitigate
DDoS attacks in
IoT networks
by dynamically
optimizing defense
strategies

DDoS, attacks
launched via IoT
botnets (e.g., Mirai)

MTD techniques
(IP/port shuffling,
dynamic redirection,
response time
adaptation), honeypot

Monitor agents,
decision module,
deployment module,
SDN controller

Survival rate,
time Overhead,
performance metrics
(throughput, packet
loss rate, CPU
utilization, Round-
Trip Time, requests
per second)

Limited for powerful
attackers, limited in-
sider threat handling

[128] Mitigate botnet propa-
gation in IoT networks

Epidemic botnet (e.g.,
Mirai) launching
DDoS

Honeypot deployment
with strategic
placement (e.g., k-
SDS, RDS)

Defender (honeypot
allocator), attacker
(botnet propagator),
IoT devices (S/I/R
states), network
topology (low/high
connectivity)

Botnet Time to Ex-
tinction (TTE), max-
imum proportion of
infected devices, de-
fender’s utility (recov-
ery vs. infection rate)

Limited to random/
simple attacker
strategies, assumes
static game strategies

[129] Proactive collection of
IoT malware forensic
artifacts to analyze and
mitigate threats

IoT botnet propagation
(e.g., Mirai variants)

Darknet-powered
SYN-ACK deception
with backend
honeypots

Darknet traffic
analyzer, virtualized
IoT devices, cloud-
based honeypot
interface

Response rate,
artifacts collected,
response time,
geographical/ASN
distribution of
infections

Limited to ARM archi-
tecture, limited proto-
cols, proxy evasion

[130] Generate realistic
synthetic IoT traffic
flows to deceive
attackers into
mistaking honeypots
for real devices

Passive network sniff-
ing to identify IoT de-
vice types

GAN-based synthetic
flow generation (Seq-
GAN, VQ-STAE)

Traffic analyzer, VQ-
STAE autoencoder, Se-
qGAN, packet fuzzing

Adversarial classifica-
tion accuracy, traffic fi-
delity, response vari-
ability

Device-specific
modeling, dependence
on packet-level
signatures
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when they reply to these decoys. As for the results of the
simulation in NS-2, NHBADI provides a good performance
with 89.03% of the packets being delivered after the interven-
tion (67.73% of packets with vulnerable AODV) and a routing
load which is normalized to just 0.62 (110.79 in AODV with 4
Black Holes), in addition to these, the protocol has cut the end-
to-end delay by 23%. The three-layer architecture (detection,
verification, and isolation) efficiently quarantines attackers but
is built on the assumption that they will react to the specific
requests. The strategy might thus be limited in its effectiveness
to more advanced adversaries. Through this, the authors show
that tactical deception can actually be utilized to improve the
security of MANETs more effectively with less effort in spite
of the initial resource cost.

In [135], the authors provided a detailed survey on Intru-
sion Detection Systems (IDS) for Vehicular Ad Hoc Networks
(VANETs) and VANET Cloud, dealing with such issues as
dynamic en-route node resources, high mobility, protocol dif-
ferences, and security threats (e.g., Denial of Service (DoS)).
The paper condenses into various categories requesting IDS
by deployment (distributed, centralized, hybrid), detection
techniques (signature-based, anomaly-based, watchdog), and
validation strategies while reviewing a total of nearly 25+
different alternatives in a critical manner to achieve trade-offs
on accuracy, latency, and overhead. The proactive Honeypot-
Optimized IDS (HPIDS) is prominently and solely presented
here, which uniquely incorporates bait-based deception along
with lightweight detection in order to defend both known and
zero-day threats. The article enlists some challenges left unre-
solved, including a high number of false positives, mobility
resilience, and VANET Cloud-specific gaps. Meanwhile, it
suggests the implementation of adaptive, low-latency frame-
works, along with the privacy of personal data preserved.

In [136], the authors introduced HoneyCar, a game-
theoretic framework dedicated to the optimal honeypot con-
figurations in the IoV context, by modeling adversarial in-
teractions as a repeated imperfect-information zero-sum game
between a Defender (network administrator) and an Attacker.
Using vulnerabilities data from CVE database and CVSS
metrics, HoneyCar in its evaluation explores two scenarios:
HCG-a, which ignores reconfiguration costs and considers
maximal engagement of the attacker through Low-Interaction
Honeypots (LIH), and HCG-b, which incorporates reconfigu-
ration costs to optimize cyber threat intelligence using High-
Interaction Honeypots (HIH). According to the results of a
case study that belongs to LIH, it is displayed that this option
can significantly cost-effectively make an attacker waste time,
while HIH, along with the selective reconfiguration, can reach
the maximum intelligence gain. The framework is designed
to be in equilibrium regarding deception costs and security
benefits, while improvements are directed towards adaptive
strategies and real-time reconfiguration.

In [137], the authors designed DECEPTWIN, a proactive
deception framework for the IoV, which is a combination
of Digital Twins (DTs) and blockchain, to create realistic,
interactive decoys for attackers while securely logging their
tactics. The architecture of the framework, as illustrated in Fig.
17, consists of six layers: 1) internet/networking for baiting via
decoys, 2) physical system modeling with High-Fidelity DTs,
3) deception environments using Low-Fidelity DTs (LDTs)

embedded with deceptive elements to mimic compromised
IoV networks, 4) monitoring/tracking of attacker actions across
kill-chain stages (reconnaissance, weaponization, exploitation,
command and control, exfiltration, and covering tracks), 5)
analysis/reporting of threat intelligence, and 6) blockchain-
backed storage for immutable logs. Fig. 18 illustrates that
DECEPTWIN, after understanding the attacker’s interaction,
adapts LDTs that show attacker interactions, all through
deceptive commands, decoy communications, and falsified
logs, enhancing realism while gathering actionable threat data.
While it promises proactive IoV security, the framework re-
mains conceptual; its scalability and practical implementation
limitations are emphasized as major challenges for future work.

Table VIII summarizes all the discussed works in internet
of vehicles, providing a comparative overview of their defense
goals, targeted attack types, deception methods, architectural
components, evaluation metrics, and identified limitations.

XIII. CYBER DECEPTION IN UNMANNED AERIAL
VEHICLES

Unmanned Aerial Vehicles (UAVs) are widely used in
various fields such as observation, transportation, and military.
They include various devices inside like sensors, flight con-
trollers, communication modules, and ground control stations
(GCS). Hence, these can be the targets for hackers and
cyber attacks, causing problems like GPS spoofing, jamming,
or unauthorized access that result in compromised mission
security and safety issues. Conventional protective measures
are often insufficient to tackle these dynamic threats [138]. As
a result, cyber deception has been developed as an effective
solution. Counter-measures have been put in place such that
by joining the honeypots with decoy nodes, the defenders can
mislead the attackers, postpone their success, and collect useful
data on their techniques. Recent developments have brought
forth the use of clever deception schemes designed specifi-
cally for UAV environments. For example, the HoneyDrone
framework is based on game-theoretic models to optimize the
honeypot setups and to engage the attackers effectively with
the goal of collecting actionable threat intelligence. Even with
all the potential, integrating cyber deception in UAV systems
is a tough process involving the identification of realist-
looking decoys, performance continuity, and the difficulty of
intertwining the deception tactics into pre-existing frameworks.
This section discusses the utilization of cyber deception within
UAVs, outlining its strategies, advantages, and the limitations
experienced in its use.

In [139], the authors presented HoneyDrone, the first
honeypot created specifically to simulate Unmanned Aerial
Vehicles (UAVs) and effectively detect attacks targeting drone
protocols. This medium-interaction honeypot also supports
UAV-specific protocols such as Telnet, SSH, FTP, and the
essential MAVLink standard, in addition to its low-cost de-
ployment option on devices like Raspberry Pis. Its architecture
comprises the following key features: 1) a Network Interface
Emulator (NIE) which allows the simulation of wireless in-
terfaces (Wi-Fi/Bluetooth/SiK); 2) a UAV Emulation module
like a real drone with visualization of protocol behavior,
filesystems, and telemetry; 3) MongoDB logging backend;
and 4) Ardupilot SITL simulator for the realistic MAVLink
flight data emulation. Two attack scenarios, the Telnet-based
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Fig. 17. The proposed architecture of DECEPTWIN in [137].

TABLE VIII. SUMMARY OF CYBER DECEPTION TECHNIQUES IN INTERNET OF VEHICLES

Reference Defense Goal Attack Type Deception Method Architecture Compo-
nents

Evaluation Metrics Uncovered
Limitations

[134] Detect and isolate
Black Hole attacks in
MANET/IoV

Black Hole attacks
(forged RREP
messages in AODV)

Honeypot-based
spoofed RREQ packets

Malicious node detec-
tion layer, route lookup
layer, isolation layer

Packet Delivery
Fraction (PDF),
Normalized Routing
Load (NRL), End-
to-End Delay (EED),
Packet Drop Ratio
(PDR)

Assumes passive
attackers, limited to
AODV protocol

[135] Detect and mitigate
malicious nodes and
attacks in VANETs
and VANET Cloud

DoS, DDoS, Hidden
Vehicle, Tunnel,
Wormhole, Blackhole,
Location Spoofing,
Privilege Escalation,
alteration, sybil, social
Attacks

Honeypot-optimized
IDS (HPIDS)

Signature-based IDS,
Honeypot nodes, rule
generation engine,
distributed detection

Detection rate, false
positive rate, detection
time, resource over-
head

Limited VANET
Cloud-specific
solutions, challenges in
optimal placement and
density of honeypot
nodes

[136] Develop deception
strategies in IoV to
engage attackers,
gather intelligence,
and optimize honeypot
use within budget
limits

CVE-based
exploitation

honeypots,
honeypatches

Low-interaction and
high-interaction
honeypots,
vulnerability database,
game-theoretic engine

Exploitation time,
re-configuration Cost,
game utility

Assumes rational
attackers, parameter
heuristics

[137] Proactive deception
and attacker profiling
in IoV

Remote hijacking, data
breaches, unauthorized
access (e.g., OTA in-
jection, CAN bus at-
tacks)

Digital Twin (DT)-
based deception with
blockchain integration

Internet/ Networking
(decoys, baiting,
breadcrumbs,
firewalls), physical
System, deception
environment

Cost-effectiveness,
adaptiveness to
evolving threats,
realism of deception,
immutability of
attacker logs/ TTPs
(via blockchain)

No real-world testing,
context-dependent
applicability,
scalability challenges
with blockchain
storage

filesystem manipulation and the MAVLink flightpath hijacking
via QGroundControl were the basis for its evaluation. Honey-
Drone once again came off well against the attackers through
mirroring while recording all the interactions. Still, a possible
drawback of being identified as a honeypot is the static signal
characteristics, so the intention is to dynamically address this
issue with the upcoming work on signal emulation and better
scalability for concurrent connections.

In [140], the authors presented a scheme based on deep
reinforcement learning (DRL), which serves as a deception
strategy to successfully fight reactive jamming in IRS-assisted
UAV communication systems. The system instead uses a UAV
as an aerial base station in the air and trees the control element
as the Intelligent Reflecting Surfaces (IRS) to connect the
signal better through the controllable non-line-of-sight (NLOS)
and direct (LOS) paths. The adversary in this case is a stealthy
reactive jammer that selects the high-power transmissions
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Fig. 18. The realization of DECEPTWIN during the remote access attack on
a vehicle within IOV environment in [137].

after it has sensed the channel activity. To counter this, the
framework includes a Deep Q-Network (DQN) that supports
dynamic power allocation and IRS optimization (e.g., phase
shifts, positioning), deceiving the jammer through a two-layer
strategy: dummy packet transmission to profile the jammer’s
behavior and power-boosted decoy channels to misdirect at-
tacks toward non-critical frequencies. The DQN agent learns
an optimal policy via Q-learning, balancing energy efficiency
and transmission rates. Simulations have shown the improve-
ment in Total Received Power (TRP), the reduction of transmit
power, and the enhancement of resilience against the baseline
methods (e.g., Q-learning only or non-IRS systems). Apart
from limitations, authors have made a single UAV/jammer,
perfect environmental knowledge, and unexplored real-world
deployment challenges (e.g., IRS mobility, multi-jammer sce-
narios).

In [141], the authors addressed an underexplored challenge
of protecting key drones in UAV networks from targeted
attacks. These drones, besides being tracers or service hosts,
may be a means for some malicious elements to compromise
the drone network. The authors begin with the attacker strategy
analysis (which may include degree, betweenness, and close-
ness centrality), and the result is that even targeting a few
key drones can cause significant performance degradation. To
avert such a situation, they proposed an SDN-based topology
deception scheme, which is made up of the following three
parts: 1) a Key Drone Privider that decides by identifying
critical drones with the help of a custom metric to quantify
the connectivity loss; 2) a Virtual Topology Modeler that con-
structs the deceptive graphs by using the minimum spanning
trees and the strategically placed honeypot drones; 3) a Rule
Generator that makes recourse to the SDN controller by redi-
recting the probing attempts (e.g., via TTL-limited traceroute)
to faked topologies. It is evident from the illustration in Fig.
19 that non-critical probes get a basic virtual topology, while
the critical ones respond in a way that misleads the attackers,
by guiding them to honeypots. The plan is executed in a
Mininet-WiFi environment, controlled by a Ryu controller,
and is notable for its high resilience as exhibited by statistics
like Connectivity Loss (CL) and the success rate of attackers,
which show even a small difference in honeypot deployment
reduces attack impact. Nevertheless, the method presupposes
the presence of all drones with OpenFlow support and runs
into scalability problems when the network is larger.

In [142], the authors proposed a protection system for UAV
networks that avails of honeypot-based deception mechanism
and uses learning-based game theory to entice UAVs into
sharing their Valid Defense Data (VDD) with the other UAVs.

Fig. 19. The designed SDN-based topology deception scheme in [141].

In the frame of this idea, every UAV carries low/ or medium-
interaction honeypot modules that catch attack data, with a
ground control station (GCS) designing VDD-reward contracts
for UAVs to deal with issues like information asymmetry and
UAVs’ selfish behaviors. The contract is based on partial in-
formation asymmetry, and contract theory is utilized to ensure
that the incentives are optimal, fair, and budget-feasible, with
guaranteed theoretical feasibility and fairness for contracts.
For scenarios where information is completely asymmetric,
the framework uses a multi-agent Markov game model, and
a two-tier Policy Hill-Climbing (PHC) reinforcement learning
algorithm that is designed to optimize the strategies dynam-
ically to the UAVs and GCS, enabling adaptive decision-
making in the time-varying environments. As illustrated in Fig.
20, the system makes use of UAV private information like
VDD volume and communication delays in contract menu,
that is GCS is cutting the rewards based on the different UAV
types the GCS has and is using Air-to-Air (A2A) and Air-
to-Ground (A2G) links for collaborative defense. Simulation
experiments have shown that the proposed method noticeably
elevates the UAV utility, the rates of participation, and the
defensive effectiveness compared to standard mechanisms.
Nevertheless, the framework takes a GCS to be trusted yet
it does not question the possibility of UAV collusive attacks.
Improvements will focus on understanding the activities of
hostile UAVs, combining active network conditions and seeing
whether stealthy methods such as federated learning might also
work and the implementation of a blockchain model on which
the free of trust data exchange can take place to make the
confidentiality and expansiveness even more secure.

Fig. 20. The illustration of the incentive-driven honeypot game for
collaborative defense in [142].

Table IX summarizes all the discussed works in unmanned
aerial vehicles, providing a comparative overview of their
defense goals, targeted attack types, deception methods, ar-
chitectural components, evaluation metrics, and identified lim-
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itations.

XIV. OPEN ISSUES AND KEY INSIGHTS

Despite significant progress in cyber deception research
across diverse domains, several issues are still unresolved.
The main reasons for this are the rising complexity of infras-
tructures, the changing patterns of attacker behavior, and the
poor implementation of deception frameworks. This section
reviews the main open questions accompanied by the most
representative findings from the surveyed literature.

A. Incomplete or Simplistic Attacker Modeling

Deception strategies often have overly simplified attacker
models, which usually include the assumptions of rational,
single-agent, or static behaviors. Game-theoretic approaches in
cloud settings, as in [91], are a good example as they usually
take into account cost-sensitive attackers but fail to include
adaptive adversaries. Advanced modeling is exemplified in
[102] and [100], which discuss dynamic and context-aware
behaviors in wireless networks. Moreover, adaptive attacker
responses are included in [140], which augment the realism.
However, there are very few systems that can mirror cogni-
tive biases, collaborative threats, or deception-aware APTs.
Cognitive, probabilistic, and multi-agent models should be
used to represent the decision of the attacker under advanced
uncertainty.

B. Limited Coverage of Post-compromise, Multi-Stage Attacks

Deception strategies mainly find their place in the primary
attack phases, namely, scanning, probing, and initial access.
Many of the attackers, however, tend to be open to the traps
and they execute lateral movement or data exfiltration on
their own without even being noticed. The deceiving attack
approach is mostly implemented in the beginning phase in
ICS and smart grids (for example, [114] and [118]). The same
is true for IoT (for example, [129] and [130]), where early
traffic analysis is the main focus. A limited number of systems
include deception in the runtime workflows or administrative
interface. The proposed solutions should cope with final phases
of the attack kill chain using decoys designed for the post-
compromise phases like privilege escalation and persistence.

C. Limited Adaptivity and Real-time Reconfiguration

The current systems are mostly characterized by static
honeypots and inflexible deception logic. There are only a
few exceptions, such as [116] and [140], which adapt their
deception policies dynamically based on the feedback. The
cloud environment has [96] its virtual decoy redeployment
solution. Nonetheless, the majority of the systems do not have
real-time environmental awareness and self-reconfiguration.
It is the application of AI, mainly through reinforcement
learning, behavior modeling, and predictive analytics, that is
the key to flexible adaptation of deception strategies.

D. Scalability and Fidelity in Resource-constrained Environ-
ments

Trade-offs between scalability and deception realism are
often mandated by resource constraints. One example is [105]

where signaling games are employed for a reduction in energy
consumption, whereas [139] and [136] get lightweight decep-
tion appropriate for mobile systems. In the cloud environment,
[97] and [122] show dynamic orchestration of decoy under
resource limitations. Combining low- and high-interaction
techniques in a honeypot and dynamically changing to fit
the perceived threat level are very good but come with the
challenge of creating formal optimization frameworks.

E. Lack of Standardized Metrics and Quantification Frame-
works

Current assessment methods vary across different fields.
Metrics like engagement time, attacker delay, and resource
cost are usually used separately. Some works, such as [122] in
smart grids, introduce innovative privacy-oriented metrics (e.g.,
k-anonymity), while others like [114] and [123] apply reward-
based metrics from game theory. Similarly, measuring decep-
tion success, attacker confusion, or resilience improvements is
not achievable as long as there is no universally adaptable
and context-aware framework. The immediate requirement
is to normalize testing processes and set up reproducible
benchmarks.

F. Limited Testbeds and Validation Platforms

Validation of the majority of deception systems is accom-
plished through simulation, which leads to the diminished
credibility for their real-world deployment. Just like [107]
[142] and [137], they put forward interesting ideas but do
not demonstrate a physical testbed. Moreover, even in safety-
critical areas such as smart grids that have no choice but to de-
pend on simulated environments, there are risks of deployment.
Modular scalable testbeds emulating multi-layer architecture
and realistic user and attacker behavior are prerequisites for
credible evaluation and operational trust.

G. Security and Privacy Trade-Offs in Collaborative Decep-
tion

Collaboration through deception, particularly in distributed
systems (such as UAV swarms, IoV), brings forth coordination,
trust, and privacy challenges. In the case of UAVs, [142] looks
at role-switching and shared intelligence among drones. In IoV,
[137] uses digital twins for proactive deception. Nevertheless,
the majority of the systems don’t address claims like adver-
sarial control injection, secure communication, and privacy-
preserving coordination. Countermeasures like federated learn-
ing, blockchain-based consensus, and zero-trust coordination
models are still under-exploited in cyber deception.

H. Integration Gaps with Existing Defense Ecosystems

Deception platforms are frequently set up as isolated sys-
tems, which means they do not communicate with SIEM,
IDS/IPS, and cyber threat intelligence (CTI) systems. Apart
from the tools given, such as [114] or [129] that have shown
effectiveness in the engagement of the attacker, they usually
miss the mechanisms to put the ideas acquired through this
process back into the general defense workflow systematically.
The cloud-based models, such as [95], that suggest improved
integration potential are left behind due to the unavailability of
standardized APIs, logging formats, and data models that are
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TABLE IX. SUMMARY OF CYBER DECEPTION TECHNIQUES IN UNMANNED AERIAL VEHICLES

Reference Defense Goal Attack Type Deception Method Architecture Compo-
nents

Evaluation Metrics Uncovered
Limitations

[139] Detect UAV attacks,
gather threat intelli-
gence, divert attackers
from real drones

Wi-Fi hijacking,
Telnet/SSH/FTP
exploits, MAVLink
protocol abuse

Medium-interaction
honeypot

Network Interface
Emulator (NIE),
UAV emulation, File
System Emulator,
configuration file

Performance, effective-
ness, realism

Static signal behavior,
limited to emulated
protocols

[140] Mitigate jamming at-
tacks in IRS-assisted
UAV communications

Reactive jamming (in-
telligent, stealthy)

dummy packets, decoy
channels

IRS with passive re-
flecting elements, UAV
as aerial BS, DRL-
driven power alloca-
tion, Q-learning and
DQN for dynamic re-
source allocation

Rate of communication
under jamming, trans-
mit power efficiency,
training time of DRL
methods

Increased resource us-
age, assumes jammers
attack highest power
channels

[141] Protect key drones in
UAV networks from
targeted attacks

Topology probing-
based targeted attacks

Virtual topology gener-
ation (spanning trees)
to hide real key drones,
Honeypot drones

SDN controller, Key
Drone Decider, Virtual
Topology Modeler,
Rule Generator,
OpenFlow-enabled
drones, Honeypot
drones

Connectivity
loss, normalized
communication
connectivity
decrement, importance
degree from attacker’s
view, optimal transmit
power and resource
usage

Assumes OpenFlow-
enabled drones,
scalability issues

[142] Protect UAV networks
by incentivizing col-
laborative defense via
honeypot data sharing

Cyber threats (e.g.,
DoS, hijacking, data
theft), free-riding
attacks

Contract theory +
multi-agent learning
for honeypot sharing

Low/ medium-
interaction honeypots,
Ground Control
Station (GCS), UAVs

Connectivity loss,
social surplus,
defense effectiveness,
UAV/GCS utilities,
Attack detection rate,
CPU utilization of
honeypots

Scalability challenges

valid for interoperability. The operational impact of deception
systems will be maximized only when they are designed with
interoperability as a guiding principle. The introduction of
a common and standardized framework, like STIX in the
CTI, makes it possible to create actionable deception-derived
feedback that could be accessed and used by various other
security solutions.

I. Emerging Technologies as Catalysts for Next-Gen Decep-
tion

Digital twins, large language models (LLMs), and multi-
agent AI have a vast potential for the development of cyber
deception. In the IoT sector, dynamic flow redirection has
been put forward by [69] as the way to mislead the intruders.
Digital twins have been used in the process of anticipatory
deception in [137], which provided an opportunity to the users
for simulating and predicting the attacker’s behavior. Likewise,
in UAV networks [140] and smart grids [122], AI-driven and
privacy-preserving deception architectures have also been the
focus of research. Yet, these things remain primarily theoretical
or applicable to particular areas only. To be queried within a
full range, these key players should be utilized in a cross-
domain, full-stack deception model. As an illustration, digital
twins can be used to replicate real environments, thus allowing
the defenders to either emulate the vulnerable system in the
physical absence of assets or simulate the real-world scenarios
with the data of actual threats. LLMs can be incorporated into
generating deceptive responses, analyzing adversarial traces,
coordinating multi-agent deception strategies, and determining
adaptive actions to disrupt, tolerate, or mislead attacks. Joining
these two technologies together can greatly modify the flex-
ibility, realism, and intelligence of the deception systems in
various functional situations.

J. Challenges in Realism and Fingerprint Resistance

Over time, as the decoys have become more sophisticated,
adversaries have also advanced when it comes to the detection
of such decoys by means of timing anomalies, low-level op-
erating system artifacts, or service inconsistencies. Researches
like [110] and [99] show that the mid-interaction honeypots can
be identified by their fingerprints. The presence of behavioral
mimicry, dynamic response crafting, and protocol emulation
with the help of artificial intelligence makes it possible to stay
one step ahead of the attacker reconnaissance. In most systems,
these capabilities are still not utilized adequately.

XV. CONCLUSION

This survey sorts the cyber deception techniques in a
comparative manner for different domains like CE, WN,
CPS, ICS, SG, IOT, IOV, and UAV. The study rigorously
studied and communicated the architectural structures, attack
types, deception techniques, evaluation metrics, and limitations
present in each domain. The findings, which are collected
and represented in the unified tables, pave the way for an
easy comparison. Besides, the survey deals with the most
frequently met challenges and the research directions that
remain open, which gives practical insights and support in
the design of adaptive and effective deception-based defenses
tailored to different operational environments. In our future
work, we intend to overcome some of the limitations discussed
in the previous section, and our focus will be on utilizing
Large Language Models (LLMs) for cyber deception. We aim
to examine the efficacy of the LLMs in the generation of
deceptive responses, the interpretation of adversarial behavior,
and the decision-making of adaptive strategies for disruption,
misinformation, or acceptance of cyber threats.
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“Honeydrone: A medium-interaction unmanned aerial vehicle hon-
eypot,” in NOMS 2018-2018 IEEE/IFIP Network Operations and
Management Symposium. IEEE, 2018, pp. 1–6.

[140] F. O. Olowononi, D. B. Rawat, C. A. Kamhoua, and B. M. Sadler,
“Deep reinforcement learning for deception in irs-assisted uav com-
munications,” in MILCOM 2022-2022 IEEE Military Communications
Conference (MILCOM). IEEE, 2022, pp. 763–768.

[141] Y. Tan, J. Liu, and J. Wang, “How to protect key drones in unmanned
aerial vehicle networks? an sdn-based topology deception scheme,”
IEEE Transactions on Vehicular Technology, vol. 71, no. 12, pp.
13 320–13 331, 2022.

[142] Y. Wang, Z. Su, A. Benslimane, Q. Xu, M. Dai, and R. Li, “Col-
laborative honeypot defense in uav networks: A learning-based game
approach,” IEEE Transactions on Information Forensics and Security,
2023.

www.ijacsa.thesai.org 986 | P a g e


