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Abstract—Epilepsy affects more than 50 million people world-
wide, and almost 80% of them live in low-income countries
with limited access to medical and public services. Beyond these
challenges, epileptic patients also face other problems, such as
stigma and social exclusion due the misunderstanding of epilepsy.
Thus, epilepsy has become a major public health problem with
a high social impact. Electroencephalography (EEG) remains the
primary tool for diagnosing epilepsy; however, the traditional
procedure of reviewing long EEG recordings is time-consuming,
error-prone, and highly dependent on the neurologist’s experi-
ence. Recent advances in deep learning (DL) have driven the
development of new methods for automatic epilepsy detection.
Despite these advances, most methods are not generalizable
to all patients, limiting their clinical applicability in real-life
cases. In this work, we present a cross-patient method capable
of improving epilepsy detection by spectral decomposition of
EEG signals into canonical brain rhythms. These spectral bands
improve the signal significance and the model performance. The
proposal was evaluated in a cross-patient validation scheme on the
CHB-MIT dataset and proved superior performance using EEG
signals from the interictal and ictal epilepsy stages. The model
achieved of 100% of sensibility and specificity using the theta
band, outperforming the state-of-the-art methods and offering a
promising step towards real-world clinical implementation.

Keywords—EEG signals; EEG signal decomposition; canoni-
cal brain rhythms; deep learning; convolutional neural network;
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I. INTRODUCTION

Epilepsy is a neurological disorder that is one of the
most severe and affects the normal functioning of the brain
[1]. Epilepsy is characterized by abnormal electrical activity
in neurons that initiates seizures, which is the observable
manifestation of this disease [2]. Seizures or convulsions
consist of movements of the body, arms, and hands, and are
often accompanied by loss of consciousness, fainting, and
salivation [3]. The degree of seizures can vary, from subtle
to strong manifestations. When seizures occur more than once
in a day, the quality of life of patients deteriorates dramatically
[4]. Furthermore, numerous epileptic patients experience social
exclusion and stigmatization [5].

Epilepsy can affect anyone, regardless of age, gender, race,
social status, or geographic location; it affects both children
and adults [6]. Current research is centered on identifying the
causes, medical treatments, and diagnosis of epilepsy since
there is no definite cure [7]. The World Health Organization
states that epilepsy affects over 50 million people worldwide,

and most of them are living in poor or developing countries
without access to medical services or treatments [8]. Because
epilepsy strongly changes the lives of people, it has turned
into a global public health problem with high social impact
that deserves attention [9].

But not all seizures are epilepsy itself. Other diseases
also cause seizures (e.g., Alzheimer’s disease [10], stroke
[11], diabetes [12]). Therefore, the goal of physicians and
neurologists is to obtain a precise diagnosis of epilepsy to
provide the best treatment [13]. Poor treatment of epilepsy
could even worsen the disease [14].

Due to its low cost and non-invasive nature, the elec-
troencephalogram (EEG) has become the standard method
for diagnosing epilepsy [15]. EEG captures the electrical
activity of neurons using electrodes placed on the scalp of
the head [1]. In order to diagnose epilepsy, the physician
visually observes the EEG signals to identify patterns of spikes,
sharp, and slow waves that are characteristic of an epileptic
seizure [16]. Although it may seem very simple, this work is
visually-intense, time-consuming, and error-prone, depending
on neurologist expertise [17]. So, it is crucial to have a proper
diagnosis of epilepsy in order to provide an adequate treatment.

In the past two decades, there have been numerous research
efforts conducted to create automatic tools for detecting epilep-
tic seizures [18], [19], [20] and for predicting seizure episodes
[21], [22], [23]. The majority of research studies rely either
on machine learning (ML) or deep learning (DL) algorithms
to detect seizure patterns in EEG signals. Among them, DL
is one of the most popular due to its ability to model a more
flexible feature space [24].

In spite of the recent progress, the classification of epileptic
seizures still faced some challenging problems. Two main
issues are addressed in this work:

• The majority of methods for developing a DL classifier
to detect epileptic seizures commonly use raw EEG
signals as input data. However, decomposing the EEG
signal into major brain rhythms is more suitable for
clinical diagnosis, as it enhances the interpretation
of the signal [25]. Can classification performance be
improved by the brain rhythms of EEGs?

• The majority of methods to detect epileptic seizures
usually assess their model’s performance at a cross-
validation and intra-subject level. However, cross-
patient assessment remains limited due to the difficulty
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of achieving a good generalization model. Could it
be feasible to create a population-level classifier by
analyzing specific EEG brain rhythms/bands?

Therefore, the main contribution of this work is twofold:

• An approach that decomposes the raw EEG signal
into the four main brain rhythms: theta (θ), alpha(α),
beta(β), and gamma (γ) waves. A basic transformer
neural network proposed in [26] is employed to objec-
tively assess the performance caused by the decompo-
sition of EEG signals .

• Two ways to evaluate the model’s performance. First,
a k-fold cross-validation level to determine how well
the model works with the maximum number of raw
data . Second, to determine how effectively the model
works with the decomposed brain bands on a cross-
patient assessment level.

The remainder of this study is organized as follows:
Section II presents the fundamentals about epilepsy, as well
as the related work. Section III exposes our proposal to detect
epileptic seizures. Section IV shows the achieved results and
provides a comparison against previous work. Lastly, Section
V summarizes the findings of this study and the upcoming
investigations.

II. BACKGROUND

Since its invention, EEG has become the standard device
for diagnosing epilepsy and investigating other brain disorders
[1]. The neuronal electrical activity is recorded by the EEG
through electrodes placed over the head. Thereby, EEG allows
a real time investigation of what is happening in the brain due
to the fact that each electrode registers data from a specific
region of the head. As a result, the EEG produces a recording
file that can be further analyzed by the neurologist [27]. Fig.
1 illustrates an EEG headset and its electrode placements over
the head. The arrows indicate the EEG montage used during
analysis.

Traditional epilepsy diagnosis involves human visual anal-
ysis of EEG registers, which is both time-consuming and
susceptible to misdiagnosis. To overcome these issues, in the
last years, many methods have been proposed for automatic
detection of epilepsy [18], [19], [20]. Therefore, the goal of
epileptic seizure detection is to classify EEG time windows as
normal (non-seizure) or abnormal (seizure) through supervised
binary classification.

To build a classifier, it is desirable to have a large amount of
EEG data [24]. However, researchers select EEG data to reduce
imbalance between seizures and non-seizures classes due to
their strong unbalance. So, given a long-time EEG recording,
investigators extract specific parts of the signal. These parts are
taken from the stages of epilepsy that the patient experiences
over time: the interictal, preictal, ictal, and postictal stages [1],
[2].

The ictal stage refers to the patient’s seizure episode, and
the other stages are placed in relation to this stage over time.
Fig. 2 shows the four phases of epilepsy in an long-time EEG
recording. Note that the ictal stage lasts very short compared to
other stages. Fig. 3 illustrates the ictal or seizure episode (red

Fig. 1. An EEG device and its electrode placements according to the 10–20
system.

shaded), showing variability in the transition between episodes
(green shaded).

Fig. 2. Epilepsy phases in a long time EEG recording. For convenience, only
a single channel is plotted.

Fig. 3. An epilepsy seizure stage (red shaded). For convenience, only a
single channel is plotted.

The interictal stage occurs a few hours before a seizure
episode and the patient experiences a normal condition; the
preictal stage occurs a few minutes preceding a seizure (e.g., 30
minutes); and the postictal stage occurs some minutes after a
seizure (e.g., 5 minutes). However, it is worth mentioning that,
yet there is no consensus about the duration of the interictal,
preictal, and postictal stages due to the high variability of
epilepsy symptoms between patients [28], [29], [30].

In order to construct their classification model for seizure
detection, most researchers use signals from interictal and
ictal stages as input data [31], [32], [33], [34], [35], and a
few investigators use signals from preictal and ictal stages
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[36], [37]. Regardless of the use of interictal versus ictal or
preictal versus ictal sources to build the classification model,
the authors have reported high accuracy results; however the
lack of consensus on the signals used to train and test the
model often prevents these results from being reproducible.

In order to examine how well models detect epilepsy using
EEG signals, researchers have used various validation schemes
to assess their generalizability and clinical relevance [38],
[39]. One common approach is the k-fold cross-validation, that
involves randomly partitioning an entire dataset composed of
EEG recordings from multiple patients into training and testing
subsets. The use of all available data for both training and
testing in this method, typically results in highly optimistic
performance results due to the possibility of EEG patterns of
specific patients can be leaked between training and test folds.
While this setup is useful for benchmarking algorithms in early
development stages, it lacks the rigor needed to evaluate real-
world deployment in clinical settings [26], [39].

Aiming to better approximate practical use cases, re-
searchers also use two more realistic validation schemes: the
intra-patient and cross-patient (or patient-independent) evalua-
tion. In one hand, in the intra-patient mode [31], the model is
both trained and tested exclusively on EEG data from the same
individual. This approach produces a model that is tailored to
the patient and can effectively capture their distinct seizure
characteristics, but they are limited in scalability and do not
generalize to new patients. Furthermore, as epilepsy symptoms
can change over time even in the same patient, the model
should be updated as well [40].

On the other hand, the cross-patient mode [36], [30] is
considered as an ideal evaluation setting. This approach uses
data from one patient as the test set, while the model is
trained on data from other patients. This scheme examines
the generalizability of the model across individuals, which
highlights its potential for clinical application in real-world.
However, achieving high performance in this experimental
setup remains challenging due to inter-patient variability in
EEG patterns, making it a key focus of ongoing research [38],
[39].

Ultimately, although DL approaches have achieved signifi-
cant success in epilepsy detection using raw EEG signals, the
exclusive reliance on unprocessed data may overlook clini-
cally informative structures inherent in the signal. A notably
underexplored yet promising alternative is the decomposition
of EEG signals into canonical brain rhythms, such as thetaθ,
alphaα, betaβ, and gammaγ bands, which are foundational to
neurophysiological interpretation [1]. Moreover, from a clinical
perspective, such decomposition aligns with well established
diagnostic practices and facilitates the identification of abnor-
mal frequency components associated with epileptic activity
[2]. In addition, rhythm-based decomposition can enhance data
quality by reducing noise and concentrating features that are
more stable in the context of inter-patient variability [41].

In the context of DL, these frequency-specific components
could serve as semantically enriched inputs, potentially im-
proving both model generalization and interpretability. So, we
hypothesize that selecting and integrating brain rhythm into
the DL pipeline not only offers a biologically grounded data
representation but also contributes to bridging the gap between

computational learning strategies and clinical reasoning [42].
Therefore, it is expected to achieve an improvement in the
effectiveness and the trustworthiness of diagnostic models to
detect epilepsy.

This work studies the influence of brain rhythms on the
performance of the model in the cross-patient evaluation
scheme. In this way, although there have been many ad-
vances in epilepsy detection, the following literature revision
is restricted to studies that have been experimented in cross-
patient schemes that use preferably the largest public CHB-
MIT EEG dataset [43]. Moreover, the basic assumption is
that the extraction of spatial and temporal features is excellent
and that the unbalanced nature of datasets is manageable. The
studies of [38], [39] provide a deep insight into these problems.

The following are the most relevant works:

The first study to address universal generalization in cross-
patient assessment scheme was presented by Hossain et al.
[36]. The authors propose the EEG channel fusion in the first
layer before proceeding to extract temporal features in the
next layers. The model was trained by extracting data from
the preictal and ictal EEG recordings, with a 2-second time
window and an 80% overlap. The complete model consists of
four CNN blocks (each block containing a convolution, an ac-
tivation function, and a max-pooling). Evaluation in the CHB-
MIT dataset, the models showed sensitivity of 90%, specificity
of 91.65%, and accuracy of 98.05%. Despite the achieved
high performance, the data selection process is unclear and
the number of assessed seizures remains unknown.

Next, Liu et al. [44] also focused on detecting epilepsy
in a cross-patient scheme. They propose a CNN-BiLSTM
(Bidirectional Long Short Term Memory Network) model
enhanced with a novel channel perturbation layer (CPL) during
training, which randomizes EEG channel order to improve
spatial generalization. First, EEG data is preprocessed using
wavelet decomposition, focusing on clinically relevant brain
rhythms (4–32 Hz). Evaluation in the CHB-MIT dataset, the
models showed sensitivity of 86.5%, and AUC-ROC improve-
ments from 77% to over 90% due to CPL. However, this study
lacks interpretability analysis and offers limited insight into
physiological relevance of learned features.

Then, Alqirshi et al. [45] proposed a cross-patient seizure
detection method that utilizes graph convolutional networks
(GCN) with the goal of overcoming the major limitations
of conventional EEG analysis: the insufficient attention to
inter-channel brain dynamics and reliance on patient-specific
training. Hence, the GCN represents the EEG data as graph-
structured input to capture spatial dependencies. Evaluated in a
custom dataset from four unseen patients, the GCN-based ap-
proach achieved a sensitivity of 88.71%, precision of 91.32%,
F1-score of 91.57%, and an accuracy of 91.70%. Although
the method has reported high detection metrics, the dataset is
too limited to prove that the model is highly generalizable.
Moreover, it would benefit from a more transparent analysis
of how specific graph features contribute to classification, and
testing on larger data sets, such as the CHB-MIT database.

Next, Jana et al. [46] presented a channel selection strategy
for EEG-based seizure prediction aimed at using only a single
optimal channel in a cross-patient assessment. The authors
propose a method that ranks each EEG channel based on
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its average performance over five evaluation rounds using a
CNN-LSTM1D model. The top-performing channel is then
selected for prediction, and an ensemble learning framework
(integrating CNN1D, DenseNet1D, and CNN-LSTM1D) is
employed using majority voting. Evaluation in the CHB-
MIT dataset, the model achieves a sensitivity of 94.25%,
and a specificity of 92.94%. The study fails to explain why
specific channels perform better than others, and assumes that
a single channel cannot be generalized to all seizure types or
patients with atypical EEG presentations. Furthermore, using
ensembles increases complexity and could prevent real-time
deployment even with a single-channel design.

Recently, Mohammadpoory et al. [47] proposed a method
for epileptic seizure detection based on the weighted visibility
graph (WVG). Features are extracted from both raw EEG
signals and their decomposed sub-bands (delta to gamma) from
the preictal and ictal EEG recordings. A combination of mul-
tiple feature selection techniques is used to select key features
and evaluate them using five different classifiers. Next, a post-
processing step is performed to improve detection accuracy and
accurately identify seizure onset and offset. Evaluation in the
CHB-MIT dataset, the model detected 163 out of 184 seizures,
achieving a sensitivity of 92.31%, a specificity of 94.12%,
and an accuracy of 94.02%. Despite the high performance, the
main drawback is the complexity of feature engineering, which
could hinder real-time applications and scaling over low-power
clinical systems.

In summary, there are only a few studies focused on cross-
patient or patient-independent settings. The high variability of
epileptic seizures, even between the same patients, prevents
achieving a generalizable model. It is worth mentioning that
sub-bands as input data have only been explored by a small
number of researchers, but those who have employed them
have shown better results, such as the study of [47]. The
main focus of this work is on EEG signal decomposition;
we hypothesize it is the primary source of improvement for
building a model that is highly generalizable at a cross-patient
level.

III. OUR APPROACH

As stated in Section I, this work is an extension of the
study of [26], which aimed to detect epilepsy in a k-fold
cross-validation scheme. Different from the previous one, this
work primarily concentrates on decomposing the EEG signal
into canonical brain rhythms and aims to detect epilepsy in
a cross-patient validation scheme, with minor changes during
application.

Fig. 4 outlines a general pipeline for detecting epileptic
seizures in EEG data using DL. First, a short description of
the data acquisition is provided to collect a dataset of EEG
signals. Then, the signal preprocessing is performed. Next, a
neural classifier is trained in order to discriminate between
non-seizure and seizure signals. Finally, the trained classifier
is evaluated in cross-patient mode to evaluate its generalization
capability.

A detailed description of each step of the pipeline is
provided as follows:

Fig. 4. The general pipeline for epileptic seizure detection.

A. EEG Dataset

The EEG dataset used in this study is derived from the
CHB-MIT public dataset that contains more than 980 hours of
EEG recordings and 198 seizures [43]. In extent, the dataset
contains EEG registers from 23 pediatric patients, 3 to 22 age,
with incurable epilepsy. Because another register of patient
chb01 was obtained 1.5 years later, the chb21 register is
considered a new patient’s register.

EEG data was collected using EEGs of different numbers
of electrodes, but registers of EEG of 23 channels at 256 Hz
are the most common, which are organized in a longitudinal
bipolar montage (see Fig. 1). Because the records are of long-
term duration, as a result, the dataset is released in registers of
one, two, or four hours long recordings. If the register contains
at least one seizure, then it is named seizure records; otherwise,
it is named non-seizure records. Each seizure register provides
the start and end for each seizure episode as ground truth (GT).

The CHB-MIT dataset has been utilized extensively in
numerous studies because it has a large amount of EEG
recordings per patient and is openly accessible [48], [19]. On
the other hand, there are other databases, but they are either
small or privately accessible [49]. For instance, the Bonn EEG
dataset contains sequences of 23.6 seconds long from a single
EEG electrode, which are not suitable for training modern
neural models. On the other hand, the EPILEPSIAE dataset is
a large EEG database that contains continuous and long-term
EEG recordings from 250 epileptic patients, but it is private.

B. Preprocessing

In this stage, four main activities are proposed: data
selection, data decomposition, data segmentation, and data
augmentation.

• Data selection aims to select and extract EEG registers
to be used to train and test the model. In this work,
we selected and extracted data from the interictal and
ictal stages that best discriminate between non-seizure
and seizure signals (see Fig. 2 to illustrate the selected
data coming from). The use of interictal and ictal data
to train classifiers is widely supported by previous
studies [18], [38], [39].
Therefore, the EEG signals come from EEG registers
of 23 channels and contains a total of 181 seizures.
The interictal data comes from signals two hours away
of a seizure, whereas the ictal data comes from all
seizures. Also, the data was downsampled to 128 Hz
like in [26].

• Data decomposition aims to disassemble the raw EEG
signal into four main brain rhythms: theta (θ: 4–8
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Hz), alpha(α:8–12 Hz), beta(β:12–30 Hz), and gamma
(γ:30–50 Hz) waves. Signal decomposition was per-
formed via the Fast Fourier Transform (FFT). The
delta (δ) The delta signal was excluded from this
analysis due to its association with sleep [25].
The process of EEG signal decomposition is per-
formed using the Fast Fourier Transform (FFT), with
the goal of isolating and retaining the frequency
components of a desired brain band [50]. Once the
signal is isolated, it is possible to analyze the neural
activity within the selected frequency band.

• Data segmentation aims to split the selected and
decomposed EEG signals into small processable time
windows. In accordance to the study [26], we use
a time window of one second for non-seizure data,
while seizure data has an 80% overlap to increase the
amount of data.

C. Neural Network

To ensure an impartial evaluation of the proposed hypoth-
esis and compare potential gains in model performance in
the cross-patient evaluation scheme, we suggest reusing the
model presented in [26]. Fig. 5 illustrated the reused neural
architecture in this work.

Fig. 5. The neural network architecture.

The proposed neural model has the main advantage of
being a state-of-the-art (SoA) model for epilepsy detection in
a k-fold cross-validation scheme and leverages the most recent
advances in EEG channel fusion and attention mechanism.

D. Classification

After training, the model has the ability to discriminate be-
tween non-seizure and seizure signals. To determine the label
class of input data, the final layer of the model calculates the
probability distribution with the Softmax activation function
[24].

E. Experimental Design

To determine the feasibility of the proposed brain rhythms
decomposition into sub-bands to improve the model’s ability
to detect epileptic seizures in multiple patients, we use the
leave-one-patient-out (LOPO) validation scheme [24].

In LOPO, the model is trained on EEG data from all
patients except one, and then tested on the held-out patient.
This process is repeated for every patient to guarantee that
their data acts as an independent test sample only once. Finally,
LOPO offers a reliable estimation of the model’s performance

in real-world situations where the system needs to detect
epileptic seizures in patients who have never had seizures
before [47].

IV. RESULTS AND DISCUSSION

In this work, we used the neural architecture presented in
[26], which was implemented in the DL Framework PyTorch
v.2.4 and Python v.3.9. The experimental platform consisted
of a computer desktop Intel CPU I7-8550U, 16GB RAM,
equipped with a GPU NVIDIA RTX 2070 with 8GB RAM.
The model was trained from scratch with the following hyper-
parameters: the Adam optimizer, a weighted cross-entropy loss
function to deal with unbalanced data samples, a batch size of
128, a learning rate of 0.0001, and 150 epochs for training the
model.

The model performance was assessed using the LOPO
validation scheme. Metrics such as sensitivity, specificity,
precision, F1-Score, and accuracy are employed to display the
results in the format mean average plus or minus the standard
deviation.

Table I summarizes the achieved results in the CHB-MIT
database. To highlight the difference between decomposition
and non-decomposition, the non-decomposition (i.e., raw data)
is also displayed in the first row of the table. The next rows of
the table show the spectral signals that have been disaggregated
(theta, alpha, beta, and gamma). The decomposition approach
is proven to produce better results than the non-decomposition
approach, particularly by utilizing only the theta spectral band
(gray shaded row).

Table II shows the achieved results of the model only using
the non-decomposed signal (or raw data) as input data. To gain
an understanding of individual performance, each row of the
table shows the performance of each patient. It is noticeable
that there is variability in patients’ performance.

Using the decomposed approach, the achieved by the model
shown in Table III. In this situation, the input data is repre-
sented by the theta band. The table displays the performance
of each patient in each row, and it is clear that the variability
between patients’ performance has decreased.

To compare the achieved results with the proposed ap-
proach and related work fairly, we selected the most re-
cent methods of SoA that focus on cross-patient or patient-
independent validation schemes (i.e., LOPO). Table IV sum-
marizes the results reported by several SoA works. After
analyzing the results, it is evident that our proposed method
outperforms other studies by a significant margin. Only the
studies of Jana et al. [46] and Mohammadpoory et al. [47] are
among the most close to our reported results.

The following points are worth discussing:

First, although many methods have been proposed for
detecting epileptic seizures, only a few are capable of gener-
alizing to patient-independent scenarios, due to the challenges
in capturing inter-patient variability and the high diversity of
seizure patterns (see Table IV). However, the deployment of
reliable and trustworthy seizure detection systems in clinical
settings will not become a reality unless we continue to address
cross-patient variability.
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TABLE I. SUMMARY OF THE CLASSIFICATION EFFECTIVENESS OF THE PROPOSED METHOD IN THE LOPO EVALUATION SCHEME ON THE CHB-MIT
DATABASE

Brain rhythm Sensitivity Specificity Precision F1-score Accuracy

raw data 93.27±11 96.96±7.59 71.87±32.5 75.69±26.6 96.63±7.39
theta 100±0 100±0 100±0 100±0 100±0
alpha 99.98±0.09 100±0 100±0 99.99±0.04 100±0
Beta 99.91±0.26 100±0.01 99.94±0.31 99.92±0.19 100±0.01
Gamma 99.97±0.08 99.95±0.12 98.58±3.81 99.23±2.03 99.96±0.12

TABLE II. CLASSIFICATION RESULTS USING THE NON-DECOMPOSED EEG SIGNAL IN THE LOPO EVALUATION SCHEME ON THE CHB-MIT DATABASE

Patient Sensitivity Specificity Precision F1-score Accuracy

chb01 94.12 99.96 98.81 96.41 99.76
chb02 98.26 95.52 23.02 37.31 95.55
chb03 96.52 99.96 98.73 97.61 99.85
chb04 98.94 98.44 62.96 76.95 98.45
chb05 98.03 98.81 78.48 87.17 98.78
chb06 92.16 98.97 37.11 52.91 98.92
chb07 95.38 63.33 5.55 10.48 64.04
chb08 100.00 99.56 95.83 97.87 99.60
chb09 100.00 92.50 20.35 33.82 92.64
chb10 99.33 99.42 84.25 91.17 99.42
chb11 97.15 99.98 99.75 98.43 99.81
chb12 51.97 99.94 99.23 68.21 94.15
chb13 97.95 98.22 81.78 89.14 98.20
chb14 70.41 99.06 50.00 58.48 98.68
chb15 88.40 99.79 98.55 93.20 98.24
chb16 97.10 99.63 58.77 73.22 99.61
chb17 92.49 92.58 22.47 36.16 92.58
chb18 85.80 99.99 99.63 92.20 99.64
chb19 88.56 99.94 96.31 92.27 99.73
chb20 99.66 99.99 99.66 99.66 99.98
chb21 99.50 99.96 97.54 98.51 99.95
chb22 98.04 99.96 97.56 97.80 99.93
chb23 100.00 92.10 27.16 42.72 92.33
chb24 98.63 99.35 91.47 94.92 99.30

93.27±11 96.96±7.59 71.87±32.5 75.69±26.6 96.63±7.39

TABLE III. CLASSIFICATION RESULTS USING THE THETA BAND SIGNAL IN THE LOPO EVALUATION SCHEME ON THE CHB-MIT DATABASE

Patient Sensitivity Specificity Precision F1-score Accuracy

chb01 100.00 100.00 100.00 100.00 100.00
chb02 100.00 100.00 100.00 100.00 100.00
chb03 100.00 100.00 100.00 100.00 100.00
chb04 100.00 100.00 100.00 100.00 100.00
chb05 100.00 100.00 100.00 100.00 100.00
chb06 100.00 100.00 100.00 100.00 100.00
chb07 100.00 100.00 100.00 100.00 100.00
chb08 100.00 100.00 100.00 100.00 100.00
chb09 100.00 100.00 100.00 100.00 100.00
chb10 100.00 100.00 100.00 100.00 100.00
chb11 100.00 100.00 100.00 100.00 100.00
chb12 100.00 100.00 100.00 100.00 100.00
chb13 100.00 100.00 100.00 100.00 100.00
chb14 100.00 100.00 100.00 100.00 100.00
chb15 100.00 100.00 100.00 100.00 100.00
chb16 100.00 100.00 100.00 100.00 100.00
chb17 100.00 100.00 100.00 100.00 100.00
chb18 100.00 100.00 100.00 100.00 100.00
chb19 100.00 100.00 100.00 100.00 100.00
chb20 100.00 100.00 100.00 100.00 100.00
chb21 100.00 100.00 100.00 100.00 100.00
chb22 100.00 100.00 100.00 100.00 100.00
chb23 100.00 100.00 100.00 100.00 100.00
chb24 100.00 100.00 100.00 100.00 100.00

100±0 100±0 100±0 100±0 100±0

Second, with respect to the type of EEG input data,
earlier studies primarily utilized raw signals [36], [45], whereas
more recent approaches have begun to incorporate canonical
brain rhythms. Hence, the studies of Liu et al. [44] and
Mohammadpoory et al. [47] specifically perform EEG signal

decomposition into main brain rhythms. But, while previous
approaches attempted to combine features from multiple fre-
quency bands using complex algorithms, this work evaluates
each band individually, revealing that using isolated frequency
bands as input data provides superior performance.
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TABLE IV. COMPARISON OF THE PROPOSED METHOD AND RELATED WORK ON THE CHB-MIT DATABASE

Author Method Total
seizures Sensitivity Specificity Precision F1-score Accuraccy

Hossain et al. [36] CNN - 90.00 91.65 - - 98.05
Liu et al. [44] CNN-BiLSTM - 86.50 - - - -
Alqirshi et al. [45] GCN - 88.71 - 91.32 91.57 91.70
Jana et al. [46] CNN-LSTM1D - 94.25 92.94 - - -
Mohammadpoory et al. [47] WVG-RF 163 92.31 94.12 - - 94.02
This work (θ band) CNN-Transformer 181 100.00 100.00 100.00 100.00 100.00

Third, the analysis of decomposed EEG signals is useful
and intuitive from a clinical diagnostic perspective. For in-
stance, neurologists and physicians are trained to recognize
patterns within specific brain frequency bands and associate
them with specific neurological conditions (e.g., delta band
analysis to diagnose sleep disorders). Therefore, the analysis
of canonical brain rhythms offers new opportunities to deepen
our understanding of brain function, cognitive processes, and
associated diseases [1], [42].

V. CONCLUSION

In this work, a new method to detect epileptic seizures in a
cross-patient scenario has been presented. The method is based
on the use of isolated frequency bands as input data to achieve
superior model performance. This approach can be utilized to
fuel any deep neural network, boosting its performance.

The feasibility of the proposed method was validated in
the public CHB-MIT EEG dataset using the leave-one-patient-
out (LOPO) evaluation scheme with 24 patients. We trained
the well-established CNN-Transformer deep neural network
proposed in [26], using individual EEG frequency bands (i.e.,
theta, alpha, beta, and gamma) as input data. Compared to
using the raw EEG signal, our approach provides significantly
superior performance. Furthermore, our approach outperforms
several state-of-the-art methods and offers a promising step
toward real-world clinical systems implementation.

For future work, it is necessary to conduct more research to
enhance epileptic seizure recognition in clinical setting. First,
the proposed method could be validated on other epilepsy
datasets, such as the EPILEPSIAE database, to evaluate its
generalizability and robustness across a population of patients.
Second, instead of fixed band boundaries, some kind of adap-
tive decomposition may be feasible depending on the type
of patient and his illness. Third, it is desirable to employ
low-cost devices to implement and deploy the neural model,
aiming to emulate clinical environments for epilepsy diagnosis
in developing countries.
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“One Dimensional Convolutional Neural Networks for Seizure Onset
Detection using Long-term Scalp and Intracranial EEG,” Neurocomput-
ing, vol. 459, pp. 212–222, 2021.

[34] A. Abdelhameed and M. Bayoumi, “A Deep Learning Approach for
Automatic Seizure Detection in Children With Epilepsy,” Frontiers in
Computational Neuroscience, vol. 15, p. 29, 2021.

[35] C. Li, W. Zhou, G. Liu, Y. Zhang, M. Geng, Z. Liu, S. Wang, and
W. Shang, “Seizure Onset Detection Using Empirical Mode Decom-

position and Common Spatial Pattern,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 29, pp. 458–467, 2021.

[36] M. Shamim Hossain, S. U. Amin, M. Alsulaiman, and G. Muhammad,
“Applying Deep Learning for Epilepsy Seizure Detection and Brain
Mapping Visualization,” ACM Transactions on Multimedia Computing,
Communications and Applications, vol. 15, no. 1s, 2 2019.

[37] S. Chakrabarti, A. Swetapadma, and P. K. Pattnaik, “A Channel Inde-
pendent Generalized Seizure Detection Method for Pediatric Epileptic
Seizures,” Computer Methods and Programs in Biomedicine, vol. 209,
p. 106335, 9 2021.

[38] N. Fatma, P. Singh, and M. K. Siddiqui, “Survey on Epilep-
tic Seizure Detection on Varied Machine Learning Algorithms,”
https://doi.org/10.1142/S0219467825500135, aug 2023.

[39] J. Xu, K. Yan, Z. Deng, Y. Yang, J. X. Liu, J. Wang, and S. Yuan, “EEG-
based Epileptic Seizure Detection using Deep Learning Techniques: A
Survey,” Neurocomputing, vol. 610, p. 128644, dec 2024.

[40] G. M. Schroeder, P. J. Karoly, M. Maturana, M. Panagiotopoulou, P. N.
Taylor, M. J. Cook, and Y. Wang, “Chronic Intracranial EEG Recordings
and Interictal Spike Rate Reveal Multiscale Temporal Modulations in
Seizure States,” Brain Communications, vol. 5, no. 5, aug 2023.

[41] K. Lehnertz, T. Rings, and T. Bröhl, “Time in Brain: How Biological
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