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Abstract—Audio analysis is a rapidly advancing field that
spans various domains, including speech, music, and environmen-
tal sound data. Using spectrograms with Convolutional Neural
Networks (CNNs) enables the visualization and extraction of crit-
ical audio features by combining time-frequency representations
with deep learning. Pooling plays a crucial role in this process,
as it reduces dimensionality while retaining essential informa-
tion. However, existing evaluations of pooling methods primarily
emphasize downstream task performance, such as classification
accuracy, often overlooking their effectiveness in preserving
critical signal features. To address this gap, we use 17 distinct
metrics, categorized into four domains, to comprehensively assess
various pooling operations. Furthermore, we explore the underex-
amined relationship between specific pooling techniques and their
impact on feature retention across diverse audio applications. Our
analysis encompasses spectrograms from three audio domains
(speech, music, and environmental sound), identifying their key
characteristics, and grouping them accordingly. Using this setup,
we evaluate the performance of 12 pooling methods across these
applications. By investigating the features critical to each task and
evaluating how well different pooling techniques preserve them,
we give insights into their suitability for specific applications. This
work aims to guide researchers in selecting the most appropriate
pooling strategies for their applications, enabling more granular
evaluations, improving explainability, and thereby advancing the
precision and efficiency of audio analysis pipelines.

Keywords—Audio data analysis; pooling; deep learning; dimen-
sionality reduction; spectrograms

I. INTRODUCTION

Audio analysis has become an essential field of study with
wide-ranging applications, including audio classification [1],
[2], [3], speaker recognition [4], [5], [6], and sound event de-
tection [7], [8], [9], [10], [11]. The ability to accurately process
and analyze audio data is crucial for developing systems that
can understand and interact with human environments. Over
the past few decades, significant advances in machine learning
(ML) and deep learning have revolutionized audio analysis,
enabling more sophisticated and accurate methodologies.

Feature extraction is a critical step in the analysis of audio
signals, where audio signals are transformed into represen-
tations that can effectively capture meaningful patterns and
features. Over the years, a wide range of techniques have
been developed to extract meaningful information from audio
data [12]. Time-domain approaches analyze raw waveforms
to derive features such as zero-crossing rate and signal en-
ergy [12], while frequency-domain methods, including the

Fourier Transform [13] and Mel-Frequency Cepstral Coeffi-
cients (MFCCs) [14], focus on spectral characteristics. Time-
frequency representations, such as spectrograms [15] and chro-
magrams [16], combine the strengths of both domains, captur-
ing temporal dynamics and spectral content simultaneously.
Recent advances in ML have further introduced data-driven
methods, such as Convolutional Neural Networks (CNN) [17],
Recurrent Neural Networks [18], and transformers [19], which
learn task-specific features directly from raw audio or time-
frequency representations.

By combining traditional signal processing approaches
with advanced deep learning methods, these techniques can en-
able robust and scalable solutions, driving progress in diverse
audio applications and opening the door to innovative research
and development. One of those approaches is using spectro-
grams with CNNs. A significant advantage of using this lies
in their ability to harness the strengths of both time-frequency
representations and deep learning models [20], [21]. Spectro-
grams provide a rich and visually interpretable representation
that captures both temporal dynamics and spectral patterns of
audio signals. CNNs excel at learning hierarchical and spatial
features, enabling the identification of complex harmonic struc-
tures, frequency modulations, and localized spectral features in
the spectrogram. Despite their effectiveness, the integration of
spectrograms with CNNs presents challenges due to its high
dimensionality, which increases computational demands and
memory usage [22]. To address this issue, pooling methods
are employed to reduce the dimensionality of spectrograms
while preserving essential information. Pooling techniques
such as max pooling [1] and average pooling [2] summarize
spectral content, thereby improving computational efficiency
and enabling the training of deep learning models on large
audio datasets.

Traditionally, the effectiveness of pooling methods in audio
analysis has been evaluated indirectly using the accuracy of the
downstream tasks such as classification [23]. However, this
approach may not fully capture how well pooling methods
preserve critical features within spectrograms. In this study,
we apply 17 evaluation metrics categorized into four distinct
groups for evaluating pooling methods used in audio analysis.
These metrics can be used to directly assess the ability of
pooling methods to preserve critical features and patterns in
spectrograms, independent of downstream task results. By
focusing on the intrinsic performance of pooling techniques,
this approach enables a more granular analysis of their impact
on the representation of audio features. Our investigation spans
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12 pooling methods, facilitating a standardized comparison of
these techniques. This analysis gives insights to identify the
pooling methods best suited to specific applications by inves-
tigating which audio features should be preserved for specific
applications and how well different pooling methods preserve
these features. This work provides insights into optimizing
the pooling process, helping researchers better understand the
features relevant to their applications, and improve accuracy
by identifying better pooling methods for their applications.
Therefore, it facilitates better model design, improves the
explainability of deep audio systems, and supports more in-
formed decisions in the deployment of audio analysis pipelines
for real-world applications.

The rest of the study is organized as follows: Section II pro-
vides the theoretical background, including a detailed review of
pooling methods and evaluation metrics. Section III describes
the system architecture. Section IV presents the experimental
setup and includes an in-depth spectrogram analysis. Section V
outlines the experimental findings across multiple audio do-
mains, highlighting the quantitative performance of various
pooling methods, and Section VI interprets the experimental
findings, linking observed patterns to the functional demands
of each audio task. Section VII concludes the study, highlight-
ing key findings and directions for future work.

II. THEORETICAL BACKGROUND

This section outlines the theoretical foundations of
spectrogram-based audio analysis, focusing on the charac-
teristics of speech, music, and environmental sounds. It in-
troduces key pooling methods used to reduce spectrogram
dimensionality while preserving important features. To assess
their effectiveness, we also present evaluation metrics that
measure information retention, structural preservation, local
detail, and compression, forming a basis for analyzing pooling
performance across audio tasks.

A. Local Details and Global Structure of a Spectrogram

Audio signals can generally be categorized into three
primary types: speech, music, and environmental sounds [12].

1) Speech: Speech is generated by humans through the
combined activity of organs such as the lungs, vocal cords,
mouth, nose, and brain. The vocal cords and vocal tract play
a crucial role in shaping speech sounds [24]. The frequency
range of human speech typically begins at 100 Hz and can
extend up to 17 kHz.

2) Music: Musical sounds are created by instruments or
the human voice to produce harmony and express emotions.
Music can be analyzed based on characteristics such as genre,
mood, and tonal quality [25]. Traditional genres include rock,
jazz, classical, and pop. The frequency range of music usually
falls between 40 Hz and 19.5 kHz.

3) Environmental sounds: The sounds we encounter daily,
such as those from vehicles, running water, doorbells, phones,
machinery, and animals, are classified as environmental sounds
[26]. These sounds often cover the full range of audible
frequencies.
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Fig. 1. Time-domain waveforms for speech, music, and environmental sound
data.
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Fig. 2. Time-frequency domain waveforms for speech, music and
environmental sound data.

horn. Speech and music signals exhibit periodicity, whereas
environmental sounds generally lack any clear periodic pattern.
As shown in Fig. 1, speech signals are typically smooth and
continuous, while guitar notes are brief and intermittent. In
comparison, sounds such as a fire truck siren appear as noisy
signals with high amplitude. Differences between these sounds
are also apparent in the time-frequency domain, as illustrated
in Fig. 2, which highlights the distinct frequency spectra of
each sound type.

By creating spectrograms for these three audio categories,
we can analyze the features that need to be preserved during
processing. This analysis is crucial when applying pooling
or other transformations to spectrograms, as it helps ensure
that the relevant features are retained in the pooled outputs.
By analyzing spectrograms, we can determine what features
to preserve for different applications. Based on the analysis,
these applications can be categorized into two distinct groups:
global structure preservation and localized detail retention.
This categorization is driven by the need to either retain overall
patterns in the spectrogram or emphasize specific localized
features.

B. Review of Pooling Methods

Pooling techniques are important to audio analysis, offering
a way to condense critical information over time or frequency
dimensions. By summarizing features, pooling enhances the
robustness of models against variations in speech signals, such
as differences in speaking rates, accents, and background noise.
This section explores a range of pooling methods, detailing
their roles in reducing dimensionality while retaining essential
features.

1) Average pooling: Average pooling [2], [27] computes
the mean value of elements in a pooling region, and is
expressed as in Eq. (1).

N
Fig. 1 displays the time-domain waveforms of three ex- fave(z) = 1 Z || 1)

ample sound types: human speech, a guitar note, and a car N P
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This method smooths feature maps by averaging values,
effectively reducing noise. However, since it assigns equal
weight to all elements, background regions can dominate, po-
tentially diminishing the model’s ability to distinguish between
critical and irrelevant features.

2) Max pooling: Max pooling [1], [28], [29] selects the
maximum value from a pooling region. Eq. (2) shows how
max pooling can be used in a feature map.

fmax(x) = max{xi}g\;l 2

This approach highlights the strongest activations, reducing
the influence of background noise and emphasizing prominent
features. Despite these advantages, max pooling can overlook
subtle but important information and may amplify noisy ele-
ments with high values.

3) Min pooling: Min pooling [30] extracts the smallest
value in a pooling region, as shown in Eq. (3).

Jmin(2) = min{a;} Y, 3)

By focusing on the weakest feature in each region, min
pooling suppresses noise and outliers, making it useful in tasks
such as anomaly detection. However, it shares limitations with
max pooling, such as losing mid-range information and subtle
details.

4) Mixed pooling: Mixed pooling [31] combines the
strengths of max and average pooling by using a weighted
combination as defined in Eq. (4).

fmixed(x) = fmax(x) + (1 - Ol) : favg(x) (4)

The parameter o determines the balance between max and
average pooling. For o« = 1, it behaves as max pooling, and
for « = 0, it becomes average pooling. Mixed pooling can
adapt to different tasks and datasets by capturing both salient
features and broader contextual information.

5) Linear softmax pooling: Linear softmax pooling (LSP)
[32] assigns weights to features based on their squared val-
ues, ensuring prominent features receive higher emphasis, as
defined in Eq. (5).

fLsp = S, 5

where, frsp represents the output of the softmax function
and z; represents the individual elements of the input vector.

This method is particularly effective in scenarios, where
identifying dominant peaks in data distributions is critical, as it
balances emphasis on key features while considering all inputs.
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6) Exponential softmax pooling: Exponential softmax
pooling (ESP) [33] uses an exponential transformation to
accentuate differences between input features in accordance
with Eq. (6).

> wiexp(x;)
>_i exp(i)

where, exp(z;) denotes the exponential function applied to
the individual elements x; in the input vector. By emphasizing
higher values, this approach excels in tasks requiring sharp dis-
tinctions between features, such as identifying critical events
in a data sequence.

(6)

fesp =

7) Learned-norm pooling: As described in Eq. (7), learned-
norm pooling (LNP) [34] unifies max and average pooling
principles using the p-norm.

1 1/p
fine(@) = (n > |in”> @)

=1

The parameter p, ranging from 1 to infinity, determines
the behavior of the pooling. When p = 1, it corresponds to
mean pooling, while p — oo approximates max pooling. LNP
provides flexibility in capturing nuanced feature distributions.

8) Log-Sum-Exp pooling: Log-Sum-Exp Pooling(LSEP)
[35] offers a smooth interpolation between mean and max
pooling. This behavior is captured by Eq. (8).

frsep(x) = %log <711 Zea:p(r . 901)) (®)

The parameter r controls the pooling behavior, with » —
0 resembling mean pooling and » — oo approximating max
pooling.

9) Auto-pooling: Auto-pooling [33] adapts dynamically
to data, combining max and average pooling principles as
formulated in Eq. (9).

o > X exp(ax;) ©
auto
>_; exp(ax;)
This adaptability is particularly useful in sound event
detection, where event duration and intensity vary significantly.
Auto-pooling excels in environments with diverse and unpre-
dictable audio patterns.

10) Power pooling: Power pooling [36], [37] introduces
a trainable parameter n to adjust frame-level predictions, as
defined in Eq. (10).

f f
c _ 2w X ()"
power ~
This method transitions between max and average pooling,

making it suitable for applications involving weakly labeled
datasets or varying temporal scales.

(10)
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Fig. 3. Types of evaluation metrics categorized based on different usages.

11) Entropy pooling: Entropy pooling [38] selects high-
entropy features, ensuring the most informative elements are
retained. Eq. (11) demonstrates how entropy pooling works.

fentr(Xr

~—

= X;[g(P)] (11

where, fene is the entropy-pooled output. By ensuring
that the pooled output retains the most informative and least
redundant features, entropy pooling reduces redundancy and
maintains a more uniform feature distribution, thereby making
the model more resilient to noise.

12) Attention pooling: Attention pooling [39], [40], [4],
[41], [5], [42] dynamically assigns weights to input features,
focusing on the most relevant parts of the audio signal. It uses
a learnable weight vector w; to emphasize frames critical for
the task, creating a weighted average output.

C. Metrics for Evaluating Pooled Spectrograms

We have identified a set of metrics that can be used
to evaluate the performance of pooling methods applied to
spectrograms. Based on their specific focus, Fig. 3 shows how
these metrics can be grouped into four categories: informa-
tion retention, preservation of global structure, retention of
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1) Information retention: Information retention metrics
evaluate whether the pooled spectrogram preserves sufficient
variability, complexity, or detail from the original spectrogram.
These metrics ensure that pooling does not discard too much
essential information.

a) Variance: Variance [43] quantifies the spread of
intensity values in the spectrogram. As shown in Eq. (12),
it measures how much the intensity values deviate from their
mean, representing the variability in the data. In the context of
pooled spectrograms, preserving variance ensures that dynamic
range and signal variability are maintained. A significant drop
in variance after pooling could indicate a loss of essential
details, such as transitions or contrasts in intensity.

N
) 1 9
Variance = N ;Zl(xi — 1) (12)

where, x; is intensity value at pixel ¢ in the spectrogram,
1 is mean of all intensity values (u = % Zf\il x;), and N is
total number of pixels or intensity values.

b) Entropy: Entropy [44] assesses the complexity or
randomness of the spectrogram by evaluating the distribution
of intensity values, as given in Eq. (13). Higher entropy indi-
cates a richer or more diverse representation of information.
If the entropy of the pooled spectrogram is close to the
original, it implies that essential patterns and nuances, such as
background noise or intricate harmonic content, are preserved.
A decrease in entropy suggests that the pooling operation may
have oversimplified the spectrogram, discarding finer details.

N
Entropy = — » _p(x;) log p(w:) (13)

i=1

where, p(x;) is the probability of intensity value x; in the
spectrogram, and NV is the total number of intensity levels.

2) Global structure preservation: Global structure preser-
vation metrics evaluate whether the structural and temporal
patterns of a spectrogram are retained after pooling, which is
crucial for applications that rely on macro-level spectrogram
features. Pooling reduces the size of a spectrogram, but main-
taining these patterns ensures that the essential characteristics
remain intact. Several types of pattern preservation metrics can
be identified, focusing on aspects such as statistical properties,
near-zero values, energy distribution, and similarity measures.

a) Statistical properties: Preserving statistical proper-
ties ensures that the overall patterns and distributions in the
spectrogram remain consistent after pooling [45]. Key statisti-
cal metrics include,

e  Mean [45], which represents the average intensity of
the spectrogram. Preserving the mean ensures that the
global energy level is consistent, reflecting the overall
sound intensity. Mean is calculated as in Eq. (14)

localized details, and dimensionality reduction. These metrics 1 X

ensure that the pooled spectrograms remain representative of Mean = — Z x; (14)

the original data while achieving dimensionality reduction. N =1
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where, x; is the intensity value at pixel ¢, and N is
the total number of pixels.

e  Variance [45], which captures the spread of intensity
values, preserving the variability and dynamic range
of the spectrogram.

e  Skewness [45], which measures asymmetry in the
intensity distribution, as presented in Eq. (15). Main-
taining skewness ensures that pooling does not dispro-
portionately favor high-energy or low-energy regions.

N
% Zi:l(l’i - 15)3
o3

Skewness = (15)
where, x; is the intensity value at pixel ¢, y is the mean
of intensity values, and o is the standard deviation

0=/ 5 XX @ — )2,

e  Kaurtosis [45], which reflects the sharpness or flat-
ness of the intensity distributions, in accordance with
Eq. (16). Preserving kurtosis retains critical features
such as peaks (high energy areas) or flat regions (low
activity areas).

N

Kurtosis = 7
o

(16)

where, x; is the intensity value at pixel ¢, u is the mean
of intensity values, and o is the standard deviation.
Together, these metrics ensure that the original statis-
tical characteristics of the spectrogram are reflected in
the pooled version.

b) Low activity regions: Sparsity [46] refers to the
proportion of near-zero or inactive regions in a spectrogram,
and retaining it is essential in applications, where silent or low-
activity regions convey meaningful information. For instance,
in speech recognition, silent gaps or pauses are crucial for
segmenting phonemes or words, while in speaker recognition,
low-energy regions may contain speaker-specific traits. Pooling
methods must preserve these sparse areas to ensure critical
contextual information is not lost. Sparsity is calculated as
shown in Eq. (17), and sparsity ratio, which is given in
Eq. (18), is calculated in our experiments.

Number of near-zero values

Sparsity = 17

Total number of values

Sparsity ratio — Sparsity of pooled spectrogram

(18)

Sparsity of original spectrogram

c) Energy distribution: The Gini coefficient [47] mea-
sures the inequality in intensity distribution across a spectro-
gram, where a lower value indicates a more uniform distribu-
tion and a higher value reflects concentrated energy, such as
dominant frequency bands. By comparing the Gini coefficients
before and after pooling, it is possible to evaluate whether the
pooling process has preserved the energy balance across the
spectrogram.
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d) Similarity measures: Similarity measures directly
compare the pooled spectrogram with the original to ensure
that key structural and temporal features are preserved. Some
of the similarly metrics which might be useful for evaluating
the global structure preservation are as follows:

o  Kullback-Leibler (KL) Divergence [48] quantifies the
difference between intensity distributions, according to
Eq. (19). A lower divergence indicates that the pooled
spectrogram closely resembles the original in terms of
energy patterns.

N
DKL Divergence(P|Q) = Zp(-ri) IOg

i=1

~—

(zi
(:)
where, p(x;) is the probability distribution before

pooling, and ¢(z;) is the probability distribution after
pooling.

3

19)

=)

e  Correlation Coefficients [49], [50] evaluates the linear
relationship between intensity values in the original
and pooled spectrograms, ensuring that proportional
changes are consistent.

e Cosine Similarity [51] assesses alignment between
feature vectors of the original and pooled spectro-
grams, indicating the degree to which proportional
feature retention is achieved, as given in Eq. (20).

N
Ei:1 LilYq
N N
\/Zi:l x? \/Zi:l vi

where, x; is the intensity value in the original spec-
trogram, and y; is the intensity value in the pooled
spectrogram.

Cosine Similarity = (20)

e  Lipschitz Continuity [52] ensures that small changes
in the original spectrogram correspond to small
changes in the pooled spectrogram, preventing distor-
tions that could compromise structural integrity [see
Eq. 21)].

[f(z1) = f(x2)]| < L1 — 2]l 21

where, f(x) is the mapping after pooling, and L is
the Lipschitz constant.

3) Localized detail retention: Feature-specific metrics as-
sess the retention of localized or detailed aspects of the
spectrogram. These are crucial for fine-grained tasks such as
instrument identification or event detection.

a) Temporal features: Temporal features [53] focus on
intensity fluctuations, transitions, and coherence over time. As
shown in Eq. (22), temporal variance is a metric that measures
how well time-based variations, such as rhythm or speech
patterns, are preserved. Temporal feature retention is vital for
applications, where timing and transitions play a critical role,
such as in rhythm analysis or speech recognition.

T
1

Tt I Variance = — > (I, — jut)° 22

emporal Variance Tt:1( t = fit) (22)
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Fig. 4. Illustration of the feature extraction and pooling process of audio analysis applications. Evaluation metrics are used to compare the original and pooled
spectrograms.

where, I, is the intensity at time ¢, p; is the mean intensity
over time, and 7' is the total number of time frames.

b) Spectral features: Spectral metrics evaluate the
preservation of frequency-based characteristics. They are cal-
culated as in respective reference papers.

e  Spectral Centroid [54]: Represents the “center of
mass” of the frequency spectrum, indicating the domi-
nant frequency range. Preserving the spectral centroid
ensures that the tonal characteristics remain consistent.

e  Spectral Contrast [55]: Captures the differences be-
tween peaks and valleys in the frequency spectrum.
Retaining spectral contrast ensures the preservation of
harmonic content and overall tonal richness.

e  Spectral Bandwidth [54]: Measures the spread of fre-
quencies in the spectrum. A high spectral bandwidth
indicates a broad frequency range, while a low band-
width suggests focused frequency content. Preserving
bandwidth ensures that the spectral characteristics of
the pooled spectrogram match the original.

4) Compression: Compression-focused metrics [56] mea-
sure the effectiveness of pooling methods in reducing spec-
trogram dimensions while preserving essential information.
A key metric is the compression ratio, which quantifies the
extent of dimensionality reduction and reflects the balance
between minimizing size and retaining critical features. The
compression ratio is calculated as given in Eq. (23). An
effective pooling method achieves this balance by eliminating
redundancy without compromising the spectrogram’s informa-
tional content.

Original size of spectrogram

Compression Ratio = :
Pooled size of spectrogram

(23)

III. SYSTEM ARCHITECTURE

In Fig. 4, the steps used for generating a spectrogram from
an audio file are outlined. The process starts with sampling the
analog audio signal at a fixed rate of 16 kHz and quantizes
the samples into discrete values. The digital signal is divided
into overlapping frames, and the Hann windowing function
is applied to reduce spectral leakage. Each frame undergoes
a Short-Time Fourier Transform (STFT) to convert the time-
domain signal into a frequency-domain representation, result-
ing in a magnitude spectrum. This spectrum is then mapped
to the Mel scale to create a mel spectrogram, aligning the

frequency bins perceptually. The resulting power spectrogram
is converted to a logarithmic scale by normalizing the intensity
relative to the maximum value, producing a log-scaled Mel
spectrogram suitable for visualization and further analysis.
Once the spectrogram is generated from the audio signal,
pooling can be applied to the spectrogram itself.

IV. EXPERIMENTS
A. Experimental Setup

We selected a range of audio classification tasks for our ex-
periments, encompassing all three major audio types: speech,
music, and environmental sounds.

1) Speech: Speech Emotion Recognition task is used for
the speech data domain. IEMOCAP dataset [57], which con-
tains approximately 10,000 speech utterances labeled with
emotions, and focuses on four emotion classes (angry, happy,
sad, neutral), is used.

2) Music: For Music Genre Classification, GTZAN dataset
[58] is used, which consists of 1000 music excerpts (30
seconds each) spanning 10 musical genres. IMRAS dataset
[59] is used for Music Instrument Recognition task.

3) Environmental sounds: Environmental Sound Classifi-
cation task is used for this domain with ESC-50 dataset [60],
which consists of 2000 five-second audio clips in 50 classes. It
contains five major categories of animals, natural soundscapes
and water sounds, human non-speech sounds, domestic sounds,
and exterior sounds, each containing 10 equally balanced
classes of sound events.

These datasets were chosen for their standard usage in the
respective domains, diversity of audio samples, and relevance
to the identification of global versus localized features in
spectrogram-based audio analysis. Spectrograms were gen-
erated as described in Section III, and analyzed to identify
both local and global features. Subsequently, pooling methods
described in Section II-B were applied, and the evaluation
metrics from Section II-C were used to assess how well each
pooling method preserves local and global features. These
metrics also help determine which are most effective for
measuring feature preservation in spectrogram-based models.
Mixed pooling is non-trainable and includes hyperparameters,
with its mixing proportion set to a fixed value of 0.5.

B. Analyzing Spectrograms

Spectrograms were generated for each audio type to facil-
itate visual identification of their characteristic features.
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Fig. 5. Voice patterns of the same person with different emotions.
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Fig. 6. Voice patterns of different people of same gender talking the same
sentence shown in a spectrogram.

1) Speech applications: In speech applications, preserving
localized features in the spectrogram is crucial for tasks such as
speech emotion recognition, where subtle variations in pitch,
intensity, and temporal dynamics carry significant meaning. As
shown in Fig. 5, we have identified how these features appear
as localized changes in the spectrogram, such as brief intensity
surges or shifts in frequency, which are essential for identifying
emotional states. For instance, emotions such as anger or
happiness are often expressed through louder speech with
elevated pitch, while sadness is characterized by softer, flatter
intonation patterns. The retention of these intricate features
enables a deeper understanding of vocal expressions, making
them vital for emotion recognition systems that rely on the
nuanced analysis of audio signals.

However, in most speech applications, it is crucial to
preserve the overall patterns of the spectrogram. These patterns
are influenced by various factors, such as the speaker’s unique
voice timbre, pitch variations, and speaking style, including
how pauses are placed between words. Such variations are
particularly significant in speaker recognition tasks, where
identifying an individual speaker depends on recognizing
unique timbre and consistent frequency patterns over time.
For instance, as shown in Fig. 6, two male speakers saying
the same sentence exhibit noticeable differences in pauses,
frequency patterns, pitch, and intensity variations. Similarly,
Fig. 7 highlights the distinctions between male and female
speakers for the same sentence. Therefore, it is obvious that
when applying pooling, overall patterns of the spectrograms
should be preserved in most of the speech applications.

2) Music applications: In music-related tasks, preserving
spectrogram patterns is crucial for capturing the intricate
details of musical compositions and maintaining audio fea-

Female Voice

Male Voice

Fig. 7. Voice patterns of male and female voice with the same sentence
shown in a spectrogram.
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Fig. 8. Spectrogram patterns of different music genres that are used for
music genre classification.
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Fig. 9. Spectrogram patterns with different music instruments that is used
for music instruments identification.
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Fig. 10. Spectrogram patterns with different environmental sounds.
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tures critical for accurate analysis and classification. We have
illustrated in Fig. 8 how different music genres exhibit distinct
continuous patterns, which must be preserved to accurately
identify those genres. Music genre classification relies on
distinguishing broad musical features such as rhythm patterns,
harmonic structures, and timbre, each of which reflects unique
spectrogram characteristics. Classical music often presents
smooth, sustained harmonic patterns, while electronic dance
music (EDM) features repetitive beats and sharp intensity
changes. These preserved spectrogram features reveal the tem-
poral and spectral patterns necessary for precise classification.

However, as shown in Fig. 9, some music applications such
as musical instrument identification depends on preserving
timbral qualities, harmonic structures, and frequency ranges
unique to each instrument. A piano, for instance, displays
evenly spaced horizontal harmonic lines, while a guitar shows
richer textures due to its plucked strings. These features, which
are often small but distinct, provide critical cues for accurate
identification. Additionally, capturing the unique spectral pat-
terns of each instrument, such as the smooth overtones of a
violin or the sharp attacks of a drum, is essential for ensuring
that their individual characteristics are retained during audio
analysis, enabling precise classification in diverse musical
contexts.

3) Environmental sound applications: In environmental
sound applications, detecting and classifying sounds relies
heavily on preserving their distinct temporal and spectral
characteristics, which are often brief but highly specific. En-
vironmental sound classification involves recognizing natural
sounds such as rain, wind, or traffic noise by retaining their
defining spectral features and temporal dynamics such as
rain’s high-frequency noise bursts or wind’s diffuse, broad
frequency patterns ensuring these localized elements serve as
a foundation for accurate classification. We have highlighted
these distinct patterns in Fig. 10 to demonstrate the importance
of spectrogram feature preservation in capturing the nuances of
various environmental sounds, enabling precise classification
across diverse audio tasks.

V. RESULTS
A. General Trends Across Pooling Methods

Across all three domains, several consistent patterns are
observed in the behavior of pooling methods. Max pooling
consistently preserves the highest variance, mean, skewness,
and temporal variance, indicating its strong capacity to retain
localized, high-energy features such as transient peaks and
short-duration events. While this makes max pooling partic-
ularly effective for tasks where such localized features are
essential, it often results in the loss of broader structural coher-
ence, as seen in its comparatively lower cosine similarity and
correlation coefficients. In contrast, average pooling demon-
strates reliable global structure preservation across all datasets.
It maintains constant mean retention, cosine similarity, and
correlation coefficients, suggesting that it effectively captures
the general shape of spectrograms while smoothing out noise
and minor variations. This makes average pooling especially
suitable for tasks where the continuity of harmonic or rhythmic
patterns is more critical than localized precision.
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Entropy pooling and ESP consistently exhibit the highest
entropy and kurtosis values, reflecting their ability to capture a
wide diversity of information. However, these methods simul-
taneously suffer from poor performance in structure-preserving
metrics such as correlation, Lipschitz continuity, and tempo-
ral variance, indicating that they degrade interpretability and
coherence. This trade-off suggests that while entropy-based
methods may retain information richness, they do so at the
expense of structural and temporal fidelity.

Auto pooling, mixed pooling, and LSEP emerge as the
most balanced approaches. These methods perform well across
a broad range of metrics, combining moderate-to-high variance
preservation with strong similarity and temporal coherence.
Their capacity to retain both global structures and localized
features renders them especially well-suited to tasks that
require a blend of both information types. Notably, similarity
metrics such as cosine similarity and KL divergence show
relatively little variation across pooling methods, suggesting
that while useful for general alignment assessment, these
metrics are less effective for differentiating nuanced pooling
behavior compared to statistical or spectro-temporal measures.

B. Task-Specific Observations

1) Speech emotion classification: Speech emotion classi-
fication is primarily a localized feature-dependent task. Emo-
tional states are conveyed through subtle and transient mod-
ulations in pitch, intensity, and timing, which necessitate the
preservation of fine-grained temporal and spectral features. As
shown in Table I, max pooling is notably effective in this
domain, producing the highest variance (1.1031) and skewness,
and excelling in capturing rapid vocal changes associated
with expressive emotions such as anger or surprise. However,
its emphasis on energetic extremes may occasionally over-
amplify variations, leading to potential imbalances in emotion
recognition.

2) Music genre classification: In music genre classification,
the primary analytical focus lies in preserving global spectro-
temporal structures such as rhythm, harmony, and tonal bal-
ance across longer time scales. As shown in Table II, average
pooling consistently performs well in this domain, achieving
high mean preservation (0.9988), cosine similarity (0.9922),
and correlation (0.9854), making it effective for capturing
the overarching structure of musical compositions, particularly
in genres characterized by smooth and continuous transitions
(e.g., classical, ambient).

3) Environmental sound classification: While environmen-
tal sound classification relies on both global and local feature
preservation, it primarily depends on local features. Audio
scenes in this domain frequently combine ambient background
noise with short, high-intensity acoustic events. Table III shows
that the effectiveness of max pooling in ESC is evident from
its superior variance (1.0477) and temporal variance (1.00),
confirming its utility in capturing brief, salient events such as
alarms or door slams. However, average pooling also plays a
vital role, achieving the highest cosine similarity (0.9876) and
correlation coefficient (0.9812), indicating that it effectively
preserves background structure and overall scene continuity.
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TABLE I. EVALUATING THE PERFORMANCE OF POOLING METHODS ON THE SPEECH EMOTION CLASSIFICATION TASK USING EVALUATION METRICS TO
IDENTIFY WHICH FEATURES EACH POOLING METHOD PRESERVES. THE VALUES OF THE POOLED SPECTROGRAM TO THE ORIGINAL SPECTROGRAM
RATIOS OR SIMILARITY SCORES ARE GIVEN IN THE TABLE

Pooling Varia. Mean Spars. Gini KL Cosi. Corr. Lips. Temp. Spec. Spec. Spec. Comp.
Method Preser. Preser. Skew. Kurt. Entropy Level Coeff. Diver. Simil. Coef. Cont. Var. Cent. Cont.  Band. Ratio
average 0.7120 0.9780 0.0911 2.9371 1.3185 0.6410  -0.0704  28.1342 09811  0.9732 0.61 0.88 0.86 0.82 0.83 4.1
max 1.1031 1.1224 0.6550 4.6204 1.4869 0.0048  -0.1003  28.0427  0.9620  0.9540 0.93 1.00 1.12 1.26 1.15 43
min 0.6028 0.8393 -0.4835 2.1044 1.2910 0.8724  -0.0582  28.2438  0.9367  0.9273 0.36 0.63 0.74 0.61 0.70 4.0
mixed 0.8611 0.9143 0.2489 3.2649 1.3341 0.0190  -0.0922  27.9881  0.9505  0.9405 0.72 0.90 0.96 0.89 0.93 42
LSP 0.7803 1.0122 0.1348 3.0715 1.3742 0.0029  -0.0816  28.1605  0.9699  0.9604 0.59 0.82 0.91 0.84 0.87 4.1
ESP 0.0094 0.0015 -1.9341 10.2145 4.5987 0.4042 0.8840 28.1710  0.0084  0.0103 0.03 0.18 0.31 0.24 0.28 32
LNP 0.6812  -0.8841 -1.6221 5.3648 1.3372 0.0340 0.1012 28.0347 09350  0.9231 0.28 0.55 0.69 0.62 0.67 4.0
LSEP 1.0225 0.9011 0.4082 3.5653 1.4027 0.0233  -0.1081  28.0910  0.9477  0.9389 0.80 0.93 1.01 0.95 0.96 4.3
auto 1.0512 1.0581 1.2431 6.1111 3.7224 0.5143  -0.7523  28.2299  0.8604  0.8511 0.46 0.69 0.76 0.65 0.74 3.8
power 0.6270 1.0721 0.2903 3.3211 1.4198 0.1534  -0.0610  27.9740  0.9801  0.9702 0.68 0.85 0.93 0.88 0.90 4.1
entropy 1.0284 3.9810 2.7629 11.0342 7.0204 0.0275 0.0895 28.0001  0.8023  0.7650 0.11 0.27 0.42 0.33 0.39 3.4
attention  0.1699 0.0664 1.2908 6.2123 3.9011 0.5193  -0.7620  28.1530  0.8790  0.8685 0.52 0.75 0.85 0.78 0.80 3.8

TABLE II. EVALUATING THE PERFORMANCE OF POOLING METHODS ON THE MUSIC GENRE CLASSIFICATION TASK USING EVALUATION METRICS TO
IDENTIFY WHICH FEATURES EACH POOLING METHOD PRESERVES. THE VALUES OF THE POOLED SPECTROGRAM TO THE ORIGINAL SPECTROGRAM
RATIOS OR SIMILARITY SCORES ARE GIVEN IN THE TABLE

Pooling Varia. Mean Spars. Gini KL Cosi. Corr. Lips. Temp. Spec. Spec. Spec. Comp.
Method Preser. Preser. Skew. Kurt. Entropy Level Coeff. Diver. Simil. Coef. Cont. Var. Cent. Cont. Band. Ratio
average 0.8285 0.9988 0.1093 3.0050 1.2711 0.7190  -0.0812  30.0122  0.9922  0.9854 0.67 0.89 0.94 0.90 0.91 42
max 1.0775 1.1451 0.4782 4.2239 1.3920 0.0000  -0.1233  30.0988  0.9763  0.9651 0.92 1.00 1.13 1.20 1.12 44
min 0.7212 0.8711 -0.4147 2.4568 1.3123 0.9087  -0.0593  30.0775  0.9491  0.9400 0.39 0.60 0.78 0.66 0.71 4.1
mixed 0.9068 0.9394 0.1921 3.1791 1.2922 0.0000  -0.0952  30.0221  0.9655  0.9550 0.74 091 0.99 0.92 0.95 43
LSpP 0.7595 1.0032 0.1582 3.1195 1.3321 0.0000  -0.0744  30.1012  0.9832  0.9728 0.62 0.78 0.92 0.85 0.88 42
ESP 0.0118 0.0032 -1.8011 9.8484 4.1311 0.4702 0.8934 30.0440  0.0061  0.0073 0.04 0.14 0.29 0.23 0.27 3.1
LNP 0.7230  -0.9051 -1.5111 5.2457 1.3195 0.0311 0.0955 30.0999  0.9421 0.9304 0.33 0.51 0.68 0.59 0.63 4.1
LSEP 1.0022 0.9199 0.3568 3.4511 1.3855 0.0205  -0.1094  30.0331  0.9703  0.9605 0.78 0.93 1.03 0.94 0.97 4.3
auto 0.5021 0.4777 1.1710 5.7219 3.8110 0.5831  -0.7721  30.1211  0.8891  0.8724 0.48 0.71 0.82 0.75 0.79 3.7
power 0.6872 1.0711 0.2292 3.2744 1.3677 0.1599  -0.0682  30.0114 09871  0.9793 0.70 0.84 091 0.88 0.90 42
entropy 1.0232 3.9822 2.8965 11.7652 7.1333 0.0344 0.0783 30.0552  0.7985  0.7593 0.10 0.26 0.40 0.32 0.37 33
attention  0.1799 0.0822 1.1532 5.8799 3.8750 0.5675  -0.7744  30.0901  0.8944  0.8822 0.54 0.73 0.84 0.77 0.81 3.7

TABLE III. EVALUATING THE PERFORMANCE OF POOLING METHODS ON THE ENVIRONMENTAL SOUND CLASSIFICATION TASK USING EVALUATION
METRICS TO IDENTIFY WHICH FEATURES EACH POOLING METHOD PRESERVES. THE VALUES OF THE POOLED SPECTROGRAM TO THE ORIGINAL
SPECTROGRAM RATIOS OR SIMILARITY SCORES ARE GIVEN IN THE TABLE

Pooling Varia. Mean Spars. Gini KL Cosi. Corr. Lips. Temp. Spec. Spec. Spec. Comp.
Method Preser. Preser. Skew. Kurt. Entropy Level Coeff. Diver. Simil. Coef. Cont. Var. Cent. Cont. Band. Ratio
average 0.7919  0.9962 0.1274 3.0256 1.2915 0.7012  -0.0885  32.6579  0.9876  0.9812 0.62 0.85 0.93 0.81 0.87 4.0
max 1.0477 1.1240 0.4873 4.1285 1.3757 0.0000  -0.1294  32.6133 09723  0.9621 0.94 1.00 1.11 1.22 1.09 45
min 0.6937  0.8690  -0.3982 2.5127 1.3512 0.9041  -0.0679  32.6632  0.9451 09370  0.38 0.59 0.78 0.64 0.73 4.1
mixed 0.8937  0.9326 0.2147 3.1846 1.3033 0.0000  -0.1051  32.6127  0.9584  0.9503 0.71 0.88 0.95 0.87 0.91 43
LSP 0.7412 1.0087 0.1623 3.1178 1.3457 0.0000  -0.0837  32.6407 09792 09734  0.58 0.75 0.88 0.79 0.83 42
ESP 0.0001  -0.0009  -1.8345 9.7265 4.1431 0.4610  0.9087 32,6390  0.0021  0.0032 0.02 0.09 0.22 0.18 0.25 3.1
LNP 0.7657  -1.0023  -1.5124 5.1473 1.3103 0.0365 0.0861 32,5663 09432 09315 0.31 0.48 0.66 0.59 0.64 4.0
LSEP 1.0093 0.9129 0.3719 3.4621 1.3852 0.0186  -0.1176  32.5853  0.9615 09574  0.81 0.91 1.02 0.95 0.97 4.4
auto 0.9841 0.9759 1.1872 5.8234 3.8288 0.5749  -0.7837  32.6675  0.8754  0.8622 0.48 0.67 0.74 0.63 0.72 3.6
power 0.6691 1.0643 0.2365 3.2783 1.3886 0.1657  -0.0722  32.5257 09845 09751 0.66 0.83 0.91 0.86 0.89 4.1
entropy 1.0191 3.9962 29174 11.8932 7.1555 0.0389  0.0731 32.6040  0.7893  0.7532 0.09 0.22 0.35 0.27 0.33 32
attention ~ 0.1841 0.0759 1.1623 5.9128 3.8288 0.5749  -0.7837  32.6395  0.8907  0.8731 0.53 0.71 0.82 0.75 0.78 3.6
VI. DISCUSSION main. Music genre classification [62], by contrast, places the

By looking at the spectrogram analysis in Section IV-B
and results in Section V, we can identify some important
points. The relationship between the effectiveness of pooling
methods and the type of audio task becomes particularly
evident when comparing the results across the above datasets.
As we identified in Section IV-B, speech emotion classification
[61] is predominantly a local-detail-driven task. Emotional
expression in speech is often encoded in short-term fluctuations
and nuanced changes in tone, pitch, and duration. Pooling
methods that preserve such transient dynamics, particularly
max, auto, and LSEP pooling, are better suited to this do-

highest emphasis on global structure preservation. The ability
to maintain continuity in tonal progression, harmonic layering,
and rhythmic patterns is vital for distinguishing among musical
genres. Here, pooling strategies such as average, auto, and
LSEP pooling that prioritize smoothness and structural fidelity
outperform those that emphasize localized variance. Environ-
mental sound classification [63] stands out as a domain that
requires a balanced approach to both local and global feature
retention. The simultaneous need to detect transient events and
maintain scene-level continuity necessitates pooling methods
that can handle both aspects effectively, such as auto, mixed,
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and LSEP pooling.

Therefore, when applying pooling in all types of audio
applications, it is important to look at the global structure
preservation and local detail retention of the pooling methods.
In global structure preservation, the primary focus is to retain
the overall structure and temporal patterns of the spectrogram.
This is particularly relevant in applications, where the recog-
nition of broad patterns or sequences is critical for identify-
ing or classifying audio signals. Localized Detail Retention
focuses on retaining localized and distinctive patterns within
the spectrogram that are critical for identifying or classify-
ing audio signals. Unlike global patterns, these features are
often small and transient but hold significant importance for
understanding the finer details of audio characteristics. Beyond
merely retaining these features, it is important to evaluate
how transformations affect their clarity and interpretability.
Overly aggressive pooling can blur critical details, diminish-
ing the spectrogram’s discriminative power for downstream
tasks. Conversely, pooling methods that balance dimension-
ality reduction with effective feature retention can improve
computational efficiency without compromising performance.
The effectiveness of pooling should therefore be assessed in
the context of the specific application. Comparative analyses
of pooling methods can shed light on their strengths and limi-
tations, ensuring that the preserved spectrogram features align
with the requirements of the intended task. This alignment is
essential for optimizing accuracy, performance, and robustness
in audio analysis applications.

VII. CONCLUSION

This study presents a comprehensive evaluation of pooling
techniques in audio analysis, focusing on their roles in global
structure preservation and localized detail retention within
spectrograms. By introducing diverse evaluation metrics across
four domains this research uncovered the nuanced strengths
and limitations of twelve pooling methods. The findings high-
light the critical importance of selecting pooling techniques
based on task-specific requirements. Max pooling demonstrates
effectiveness in capturing localized features essential for tasks
such as emotion recognition and transient event detection. In
contrast, average pooling excels at preserving global patterns
vital for applications such as music genre classification and
acoustic scene analysis. Entropy pooling, with its ability to
retain diverse and intricate information, emerges as particularly
suitable for complex audio tasks. In order to map the use of
pooling methods into audio applications, this study categorizes
audio applications into two primary focuses, global structure
preservation and localized detail retention based on its char-
acteristics. This categorization provides a practical framework
for aligning pooling strategies with specific application needs.
Beyond task-specific insights, the study emphasizes the im-
portance of innovative evaluation metrics, such as variance,
entropy, sparsity, and similarity measures, in assessing pooling
methods. These metrics shift the focus from traditional down-
stream task accuracy to the ability of pooling techniques to
preserve critical spectrogram features. In this study, the most
important evaluation metrics are evaluated to identify which
metrics are more critical in feature extraction. In the future, the
development of more adaptive and hybrid pooling techniques
holds promise for achieving an ideal balance between global
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structure preservation and localized feature retention. Fur-
thermore, integrating pooling methods with advanced neural
architectures and self-supervised learning frameworks offers
significant potential to advance audio analysis systems.
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