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Abstract—Anomaly detection is crucial in a variety of areas, 

with the Dendritic Cell Algorithm (DCA) being one of the most 

used artificial immune systems (AIS) and introduced for binary 

classification of data. Both traditional and current perspectives on 

classification in DCA have primarily been threshold-based 

methods. Such approaches are limited in important ways, 

including inflexibility, manual tuning, and not being context-

aware. The latest improvements in literature have provided 

adaptive dynamic threshold mechanisms that allow the system to 

adjust the sensitivity of the threshold using some statistical data of 

real-time observations. Although this is progress, the systems 

proposed are still based on rules, which have traditionally 

struggled with the more complex, higher-dimensional and 

nonlinear nature of data. This is common in most complex 

anomaly detection tasks today. In this study, we propose an 

improved DCA-MLP framework that uses a Multi-layer 

Perceptron (MLP) classifier replacing the thresholding phase. The 

MLP allows the DCA to learn from data context adaptively 

through a context-sensitive learning mechanism that can also 

change with the data distribution as it evolves, eliminating the 

need to robotically calibrate based on static or heuristic 

thresholds. The framework was tested thoroughly on fourteen 

benchmark datasets, and performance was evaluated against 

standard DCA in terms of accuracy, sensitivity and specificity 

measures. The performance results revealed considerable 

enhancements in DCA-MLP’s performance: 12%–50% 

improvements in accuracy (increasing accuracy to 93%–99%), 

46% improvements in sensitivity (sensitivity as 98%), and 39% 

improvements in specificity. This shows that DCA-MLP is better 

adaptable, with learning capacity and robustness - a paradigm 

shift away from thresholds or threshold-based systems to an 

intelligent self-adjusting anomaly detection classification scheme. 

Keywords—Dendritic Cell Algorithm (DCA); anomaly 

threshold; Multi-Layer Perceptron (MLP); anomaly detection 

I. INTRODUCTION 

Anomaly detection, or the process of identifying patterns 
that are identified as the unusual portion of normal behavior, is 
important across several domains, including cybersecurity, 
healthcare, finance, and industrial systems. Anomalies such as 
fraudulent financial transactions, malignant tumors in a medical 
image, and cyberattacks on network traffic, all signal important 
implications, transforming raw data into actionable insights [7, 
24, 33, 37]. Traditional classification algorithms often falter on 
dynamic, high-dimensional data; so researchers have resorted to 
diagnostic and biologically inspired solutions, such as artificial 
immune systems (AISs).AISs emulate the human immune 
system’s ability to distinguish self from non-self, offering 
unique advantages in adaptability and unsupervised learning [1]. 

Among AIS-based approaches, the Dendritic Cell Algorithm 
(DCA)[2]stands out for its success in anomaly detection, 
leveraging the biological "danger theory" to classify threats by 
monitoring antigen behavior through metrics like the Multi-
Context Antigen Value (MCAV) [3]. 

Despite its effectiveness, the DCA faces significant 
limitations. Its reliance on fixed, empirically derived thresholds 
for anomaly classification introduces rigidity, as static 
parameters fail to adapt to evolving data patterns or outliers [4]. 
For instance, threshold-setting methods like try-and-test 
experiments or class distribution analysis depend heavily on 
historical data and expert input, limiting scalability and real-
world applicability [4]. These constraints are particularly 
evident in complex tasks such as network intrusion detection or 
time-series analysis, where dynamic environments demand 
adaptive solutions [5]. 

To address these challenges, this study proposes a novel 
integration of the DCA with a Multi-Layer Perceptron (MLP), 
replacing the static threshold mechanism with a dynamic, data-
driven classification framework. Inspired by the immune 
system’s interaction between dendritic cells (DCs) and T-cells 
(TCs), our approach enhances the DCA’s decision-making 
process by embedding an MLP to learn complex relationships 
within antigen signals. Unlike traditional threshold-based 
methods, the MLP adaptively adjusts classification boundaries, 
improving robustness against outliers and reducing false alarms. 
This integration leverages the MLP’s capacity to handle non-
linear patterns while preserving the DCA’s unsupervised 
learning strengths. 

The contributions of this work are threefold: 

1) Improved accuracy: The MLP refines [6] anomaly 

classification through supervised learning on fused antigen 

signals (e.g., danger, safe, and co-stimulatory signals), 

achieving accuracy improvements of 12% to 50% across 

benchmark datasets. 

2) Dynamic adaptability: By eliminating fixed thresholds, 

the DCA-MLP framework dynamically adjusts to new data 

patterns, enhancing resilience in evolving environments. 

3) Scalability: Non-Negative Matrix Factorization (NMF) 

streamlines signal extraction, enabling efficient processing of 

high-dimensional data without compromising detection 

performance. 

Experimental validation on fourteen datasets proves the 
framework’s superiority over traditional DCA, with sensitivity 
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and specificity gains of up to 46% and 39%, respectively. These 
advancements position the DCA-MLP as a scalable, adaptive 
solution for complex anomaly detection tasks, bridging the gap 
between immune-inspired algorithms and modern machine 
learning. 

The rest of this study is organized as follows: Section II 
reviews related work on AIS and DCA enhancements. Section 
III details the proposed DCA-MLP architecture, while Section 
IV presents the experiment setup. Section V details the 
experimental results. Section VI presents the discussion of the 
study. Finally in Section VII, the study concludes with 
implications and future research directions. 

II. RELATED WORK 

Anomaly detection plays a crucial role in various fields, 
including network security, healthcare, and industrial systems, 
where identifying unusual patterns or behaviors is essential for 
maintaining system integrity and performance [7]. While 
traditional methods such as (MLP, KNN, SVM and Decision 
Tree) have been effective in specific contexts, they often face 
challenges when dealing with the complexity and dynamic 
nature of modern datasets [8]. Advanced algorithms like the 
Dendritic Cell Algorithm (DCA) have appeared as promising 
solutions to these challenges, offering improved capabilities for 
solving anomaly detection problems [4]. The DCA, introduced 
by [2] operates through four key phases [9], as illustrated in 
Fig.  1. 

In the first phase, pre-processing, the algorithm performs 
two critical tasks: feature reduction and signal categorization. 
Feature reduction selects the most relevant attributes from the 
dataset, and these attributes are then categorized into three signal 

types: safe, danger, and Pathogen-Associated Molecular 
Patterns (PAMP). The most popular methods for feature 
reduction include Principal Component Analysis (PCA) and 
Non-Negative Matrix Factorization (NMF). While PCA is 
widely used, it can obscure data interpretation by transforming 
the dataset into components that may lose connection to the 
original features [10]. In contrast, NMF excels by identifying 
weakly correlated or uncorrelated factors, revealing hidden 
patterns, and transforming data into a reduced yet interpretable 
space [11]. This approach avoids overfitting, improves 
prediction accuracy, and effectively manages data sparsity. 
Furthermore, NMF operates without strict statistical 
assumptions, making it highly adaptable for large-scale datasets. 
By maintaining essential data characteristics, NMF simplifies 
computational demands related to time and storage while 
ensuring robust model performance. 

In the second phase, detection, the DCA generates a signal 
database by combining the input signals with antigens, resulting 
in cumulative output signals. The third phase, context 
assessment, evaluates the context of antigens using the 
cumulative signals. If a Dendritic Cell (DC) collects more 
Mature Dendritic Cells (mDC) than Semi-Mature Dendritic 
Cells (smDC), the antigen is labelled as anomalous (1); 
otherwise, it is classified as normal (0) [12]. Finally, during the 
classification phase, the Mature Context Antigen Value 
(MCAV) is calculated for each antigen to assess the likelihood 
of an anomaly. The MCAV is determined by dividing the 
number of times an antigen appears in the mature context by the 
total number of antigen presentations. This value is then 
compared to a predefined anomaly threshold, classifying 
antigens with higher MCAV values as anomaly.

 
Fig. 1. The standard architecture of the Dendritic Cell Algorithm (DCA) diagram. 
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The MCAV plays a pivotal role in the DCA, representing the 
ratio of how often an antigen appears in a "mature context" 
compared to the total number of antigen presentations[13]. In 
the DCA, dendritic cells exist in two states: Mature Dendritic 
Cells (mDC), which detect danger or anomalies, and Semi-
Mature Dendritic Cells (smDC), which reflect normal or non-
threatening behavior. The MCAV measures how frequently an 
antigen is associated with dangerous contexts (mDC) versus 
normal ones (smDC), aiding in determining whether the antigen 
is more likely to be abnormal or normal. A higher MCAV 
indicates a higher likelihood of the antigen being anomalous, 
while a lower MCAV suggests it is normal. The MCAV is 
calculated as Eq. (1): 

MCAV =  (Mature)/ (Semi Mature +  Mature)     (1) 

The importance of the MCAV lies in its adaptive nature, 
allowing the DCA to assess anomalies based on the environment 
rather than static rules [14]. This flexibility makes the DCA 
highly capable of handling unfamiliar data points by evaluating 
how often an antigen appears in mature contexts, improving the 
algorithm’s ability to classify new or unseen data accurately. 
Furthermore, combining the MCAV with a flexible anomaly 
threshold allows the DCA to adapt to different domains, such as 
network intrusion detection, spam filtering, and fault diagnosis, 
where normal and abnormal patterns vary significantly. 

Anomaly Threshold (AT) is a default value used to 
differentiate between normal and abnormal antigens by 
comparing it to the MCAV of an antigen. If the MCAV exceeds 
the threshold, the antigen is considered abnormal or an anomaly. 
Currently, there are three primary strategies for determining the 
AT in DCA: 1) trial-and-error experimentation, 2) class 
distribution between normal and abnormal groups and 3) the 
average MCAV method [10]. The class distribution method is 
based on the ratio of normal to abnormal classes, requiring both 
classes to be balanced to generate a suitable threshold value, as 
shown in Eq. (2). However, achieving this balance is 
challenging, especially since anomalies are often rare and can 
create a significant gap between the two classes. 

𝐴𝑇 = (∑𝑀𝐶𝐴𝑉)/(∑ 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠)           (2) 

The anomaly threshold (AT) in standard DCA 
implementations has been applied across various domains with 
different strategies. In [15], the authors has enhanced the 
traditional DCA by introducing a migration threshold strategy 
that adapts to various attack scenarios, applied in network 
intrusion detection on the UNSW-NB15 dataset, achieving an 
anomaly value of 76.69% using the min MCAV approach. In 
[16], the authors also focused on network intrusion, using the 
NSL-KDD dataset to classify traffic as normal or anomalous 
based on immune-like danger signals. This approach identified 
DoS attacks through a class and min MCAV distribution 
strategy, providing scalability in dynamic network 
environments. Similarly, [17] employed a try-and-test approach 
in conjunction with min MCAV within a fuzzy logic system on 
the KDD99 dataset, enhancing adaptability to varied data types. 

In [7], the authors adopted a different method, using class 
distribution to determine AT by assessing the ratio of abnormal 
to normal traffic in the NSL-KDD dataset, achieving a 0.60% 
anomaly threshold. In [5], the authors applied min MCAV 

across general classification domains with datasets such as 
Sonar and GCD, adjusting the threshold based on dataset-
specific characteristics. Finally, [10] utilized min MCAV for 
anomaly detection in medical diagnosis, using datasets like 
WBC and LDR, focusing on metrics such as Mean Correlation 
Activity Value to identify anomalies dynamically. This variety 
of approaches underscores the flexibility of DCA in different 
application areas, with each study refining AT to suit specific 
datasets and anomaly detection needs. Some investigations have 
focused on the DCA classification phase, aiming to refine and 
enhance its effectiveness. More precisely, researchers have 
explored ways to improve the decision-making process by 
optimizing how the algorithm classifies data points as either 
normal or anomalous. The traditional classification approach in 
the DCA relies on fixed thresholds based on the multi-context 
antigen value (MCAV) [16], which can be limited in 
applications such as network intrusion detection [13] and 
medical anomaly detection [17]. The core of this process 
revolves around the calculation of the Mature Context Antigen 
Value, handling complex or extreme data patterns. A critical 
stage for identifying anomalous patterns across different 
domains (MCAV) [8], which determines whether a pattern is a 
normal presentation. When the MCAV exceeds a predefined 
threshold, the pattern is classified as anomalous (depicted or 
anomalous. The MCAV is the ratio of antigen encounters in a 
mature context to the total number of antigens by the decision 
boundary in the figure). Otherwise, it is classified as normal 
[18]. This classification method, though effective in many cases, 
highlights the challenge of setting an appropriate threshold, 
which directly impacts the detection accuracy of the algorithm. 

Several techniques have been proposed to establish the 
anomaly threshold for MCAV, each with its own limitations 
[19]. For instance, the try-and-test method involves iterative 
testing to find the optimal threshold, though this process is time-
consuming and highly reliant on expert knowledge. Other 
approaches, such as the minimum MCAV threshold introduced 
by[7] and adaptive thresholds based on cumulative sum 
(CUSUM)[10], have also been explored. While these methods 
offer systematic approaches to threshold determination, they 
deal with outliers and data changes over time, which can limit 
their effectiveness for longer-term anomaly detection. However, 
the challenge remains that these methods still depend on 
historical data for initial threshold values may not be reliable in 
rapidly evolving datasets [10, 16, 20]. 

An effective method for enhancing the traditional threshold 
methods in the DCA is to adopt the Multi-Layer Perceptron 
(MLP) algorithm into the DCA. Unlike the standard method of 
comparing MCAV values to a predefined threshold for anomaly 
detection, the MLP algorithm learns from the data, adjusting its 
parameters to better manage outliers and extreme values. This 
adaptability enables the MLP-DCA combination to have greater 
accuracy and success in detecting and classifying anomalies. By 
leveraging the machine learning capabilities of MLP, this 
integration enhances the overall process, making it more 
resilient against unusual data points that might otherwise 
challenge a simple MCAV-based threshold approach. 

Integrating the DCA with an MLP algorithm presents several 
key advantages. To begin with, it enhances system robustness 
by giving the MLP the ability to better deal with extreme values 
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and outliers. This ensures that the algorithm maintains reliable 
performance even when faced with unexpected data. Secondly, 
the learning capabilities in the MLP improve the ability to detect 
and classify anomalies by allowing the model to recognize 
complex patterns and associations in the data assignments. The 
MLP refines its understanding over time, it produces more 
precise and reliable results. Moreover, the adaptability of the 
MLP enables it to respond to evolving data patterns, making it a 
flexible and sustainable solution for anomaly detection. 

This combination overcomes the limitations of traditional 
threshold-based approaches by introducing adaptive learning 
from data, making it a valuable advancement in the field of 
anomaly detection. 

III. THE PROPOSED METHOD 

This study proposes an enhanced anomaly detection 
framework known as MLP-DCA, which integrates the Dendritic 
Cell Algorithm (DCA) with a Multi-Layer Perceptron (MLP) 
classifier to overcome critical limitations of traditional 
threshold-based decision-making in DCA. Two primary 
limitations of the standard DCA model motivate this integration: 

1) Its reliance on a fixed threshold for anomaly 

classification, which leads to poor adaptability when handling 

datasets with imbalanced class distributions or dynamic 

patterns. 

2) The manual effort and expert knowledge required to tune 

this threshold, making it impractical for real-world, large-scale, 

or evolving data environments. 

To address these challenges, the proposed MLP-DCA model 
retains the original architecture of the standard DCA, which 
includes four primary phases: signal preprocessing, antigen 
processing, signal integration, and classification (see Fig. 1). 
The first three phases are preserved to leverage the biologically 
inspired behavior and contextual data fusion capabilities of 
DCA, which have proven effective in prior studies [11]. 

In the preprocessing phase, the model introduces Non-
Negative Matrix Factorization (NMF) for automated feature 
transformation and signal categorization. This enhancement 
allows the model to handle high-dimensional datasets by 
reducing complexity and focusing on the most informative 
features. NMF serves as a dimensionality reduction technique, 
helping to categorize input attributes into the necessary signal 
types (PAMP, danger, and safe) without manual mapping. 

The major innovation lies in the classification phase, where 
the traditional MCAV-based anomaly threshold (AT) is 
replaced with an MLP classifier (see Fig. 2). Instead of relying 
on static decision rules, the MLP dynamically learns non-linear 
and high-level feature relationships from the processed signals 
and antigen information. This adaptive learning approach 
enables the system to generalize better across diverse datasets, 
respond to class imbalance, and improve classification 
robustness On the whole, by combining context-aware 
processing capabilities of DCA with the learning power of MLP, 
we proposed model achieves a more flexible and scalable 
anomaly detection system. The MLP-DCA architecture in 
addition to completely removing threshold tuning, these 
powerful neurons improve the accuracy, sensitivity and 

specificity across many benchmark datasets, demonstrated in the 
experimental section. 

As depicted in Fig. 2, the classification process begins the 
same as a standard DCA which is by calculating the MCAV [Eq. 
(1)]. The calculated MCAV values (acting as the independent 
variable) are fed into the MLP that classifies the antigens, as 
shown in Eq. (3): 

𝑓(𝑀𝐶𝐴𝑉) = (∑ 𝑤𝑖  . 𝑀𝐶𝐴𝑉𝑖
𝑚
𝑖=1 ) + 𝑏                (3) 

 
Fig. 2. Proposed method MLP_DCA. 

where: 

 𝑀𝐶𝐴𝑉: Represents the mean of context activation vectors 

  derived from the inputs or data points. 

 𝑤𝑖: Weights assigned to each MCAVi during training. 

 𝑏: Bias term. 

 𝑚: Total number of MCAV inputs. 

 The MLP leverages this transformation to predict the 
class of each antigen (e.g., normal or abnormal) based on 
learned parameters. 

Fig. 3 illustrates the pseudocode for integrating the Dendritic 
Cell Algorithm (DCA) with a Multi-Layer Perceptron (MLP) 
during the classification phase. This integration comprises three 
primary steps: 

1) Step 4.1 Calculation of MCAV values: Initially, for each 

antigen generated in prior stages, the Mature Context Antigen 

Value (MCAV) is computed using Equation (1). These MCAVs 

are then stored in the MCAV_values []. array for subsequent 

classification. 

2) Step 4.2 Training the MLP model: After the MCAV 

values are recorded, and their labels normal or abnormal, we 
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can use those as inputs to train the MLP. The MLP contains 

three hidden layer sizes of 10, 10, and 5. Initial weights and 

biases are initialized random. Then the dataset is split into 

training and test data. The model trains through many epochs, 

and in each epoch all the samples will go through forward 

propagation in the layers of the MLP. The activations of the 

neurons are calculated using Eq. (3). The loss of the model is 

determined through cross entropy loss, and gradients are 

calculated by backpropagation for the weights and biases and 

updating them in many epochs until convergence. 

3) Step 4.3 Prediction using the trained MLP: Finally, for 

each test sample, forward propagation is executed using the 

trained model to compute activations. The output activation is 

determined by Eq. (4): 

𝑀𝐶𝐴𝑉(𝑙) = 𝑓(𝑊(𝑙).𝑀𝐶𝐴𝑉(𝑙 − 1)𝑏(𝑙)          (4) 

where, l indicates the output layer. A threshold of 0.5 is 
applied to classify the sample: outputs exceeding 0.5 are labeled 
as abnormal, while those below are labeled as normal. 

This method uses the DCA's ability to generate MCAVs, and 
then it will be used as input to the MLP. The MLP is trained to 
classify the data into normal or abnormal categories, enhancing 
the overall classification performance by combining the 
strengths of both algorithms. 

Phase 4: Classification 

#Step 4.1: calculate MCAV values 
1.  For each antigen: // where antigen is the output of previous 

steps 

2.        Compute MCAV (antigen) using Equation 1 

3.        Append the computed MCAV (antigen) to the array 

MCAV_values []. 
#Step 4.2: Feed MCAV Values into MLP for Classification 

4. Train the MLP model as follow: 

5.        Input: MCAV_values []and their corresponding predefined 
labels (normal/abnormal). 

6.       Output: A trained MLP model with updated weights and 
biases. 

7. Randomly initialize weights and biases for all layers 

based on the architecture (hidden layer    sizes: 10, 10, 5). 
8.       Split the data into training and testing sets: Xtrain, Xtest  

9.       Repeat the following steps until convergence: 

10.       For each epoch 
11.           For each training sample in Xtrain: 

     Perform forward propagation through the layers: 

Input Layer → Hidden Layers → Output Layer. 
              Compute activation for each neuron using equation (3) 

              Compute the loss between the predicted output and the 

actual label using across-entropy loss 
 Backpropagate the error using the chain rule to 

compute gradients of the loss with respect to the 
weight and biases. 

             Update weights and biases. 

12             Store Final Weights and Biases: 
#Step 4.3: Use trained MLP for prediction 

13. For each test sample in Xtest: 

14.         Perform forward propagation the trained model: Input 
Layer → Hidden Layers → Output Layer. 

15.         Compute activations for the output layer using 

                    MCAV(l) = f(W(l).MCAV(l − 1) + b(l)) 

16.          Classify each test sample based on the output 

            If output > 05 → Assign ABNORMAL. 
                           Else → Assign NORMAL.  

Fig. 3. The pseudo-code for the proposed DCA_MLP algorithm. 

The reason for the connection of the MLP to the DCA is that 
the MLP is a very strong learning procedure that can learn many 
complex, non-linear relationships from the data; without relying 
on any fixed decision rules. As a type of artificial neural 
network, the MLP classifier builds models through multiple 
interconnected layers of neurons, allowing it to capture intricate 
patterns between input features—such as the Mean Context 
Antigen Value (MCAV)and corresponding class labels (e.g., 
normal or anomalous). 

During training, this MLP will repeatedly adjust its internal 
variables (weights and biases) to minimize overall classification 
error, in the hopes of maximizing performance across multiple 
types and dimensions of data. Unlike threshold methods, the 
dynamic nature of the learning process allows the model to learn 
and adjust to a number of data distributions with no need for 
human threshold adjustment. By combining MLP with the 
biologically inspired architecture of DCA—which is retained 
through its four-phase structure, the proposed MLP-DCA hybrid 
model enhances anomaly detection by preserving the contextual 
fusion strengths of DCA while improving classification 
robustness, generalization, and adaptability through machine 
learning. 

IV. THE EXPERIMENTAL SETUP 

As previously discussed, the standard Dendritic Cell 
Algorithm (DCA) [20] suffers from key limitations, particularly 
its reliance on manually defined, static thresholds for 
classification. This section details the experimental procedures 
undertaken to investigate these limitations and to validate the 
proposed enhancement of integrating a Multi-Layer Perceptron 
(MLP) into the DCA classification phase. The following 
hypotheses were formulated: 

 H1: The performance of the standard DCA is 
significantly influenced by using static, predefined 
threshold values, particularly in datasets with varying 
class distributions. 

 H2: Replacing the static threshold mechanism with an 
adaptive classifier, such as an MLP, improves 
classification performance by dynamically learning from 
the data. 

To validate these hypotheses, we designed a two-part 
experimental framework. All experiments across both parts 
were conducted using a consistent set of fourteen benchmark 
datasets, listed in Table I, which span multiple domains 
including medical diagnosis, credit scoring, email classification, 
and network intrusion detection. These datasets were obtained 
from the UCI Machine Learning Repository[21], as well as 
widely used intrusion detection benchmarks—NSL-KDD [22] 
and UNSW-NB15[23]. 

1) Threshold sensitivity in the standard DCA model: To 

explore H1, we looked at the responsiveness of the standard 

DCA algorithm to different threshold values. For demonstrative 

purposes, the Wisconsin Breast Cancer (WBC) dataset was 

used under two distinct scenarios: 

 Scenario A: Original dataset with 100% of the instances 
are anomalous. 
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 Scenario B: Modified version containing only 10% 
anomaly instances. 

2) In each case, the DCA’s decision threshold was 

manually tuned to maximize classification accuracy. The 

findings showed significant variability in performance 

depending on configuration of threshold which validated our 

assertion that the model was responsive and furthermore, not 

robust to changing class distributions. Evaluating the Proposed 

DCA-MLP Model. 

To test H2, we implemented the DCA-MLP model by 
integrating the Multi-Layer Perceptron classifier into the DCA’s 
classification stage. Unlike static thresholding, the MLP enables 
adaptive and data-driven decision-making by learning complex, 
nonlinear relationships in the data. 

For a comprehensive evaluation, we applied the DCA-MLP 
model to all fourteen benchmark datasets mentioned in Table I. 

These datasets were selected to ensure diversity in feature 
dimensionality, sample size, and application domain. The 
model’s performance was compared to the standard DCA using 
metrics including accuracy, sensitivity, and specificity, 
demonstrating the robustness and generalizability of the 
proposed approach across different types of data distributions 
and class imbalances. 

To assess the performance of the proposed DCA-MLP 
model, the following evaluation metrics were used: 

 Accuracy (ACC): Overall classification correctness. 

 Sensitivity (SNS): The ability to correctly identify 
abnormal (positive) instances. 

 Specificity (SPS): The ability to correctly identify 
normal (negative) instances. 

 False Discovery Rate (FDR): The proportion of 
abnormal predictions that are normal.

TABLE I.  DATASET DESCRIPTION 

Dataset Source Feature Record Target class Class count 

Sonar (sonar) UCI 60 208 2 Normal (111), Abnormal (97) 

Wisconsin Breast Cancer (WBC) UCI 9 699 2 Normal (458), Abnormal (241) 

Wisconsin Diagnostic Breast Cancer (WDBC) UCI 30 569 2 Malignant (212 cases) or benign (357 cases) 

Pima Indians Diabetes (PID) UCI 8 768 2 500 (non-diabetic), 268 (diabetic). 

Indian Liver Patient Dataset (ILPD) UCI 10 583 2 416 liver disease and 167 without liver disease 

Horse Colic(horse) UCI 28 368 2 Survival (204), non-survival (164) 

German-Credit (GC) UCI 20 1000  Good 700, Bad 300 

Red-Win-quality(win) UCI 13 6497  Low quality (63, High quality (217)) 

Ionosphere (ionosphere) UCI 35 351 2 Normal (225), Abnormal (126) 

Statlog (Heart) UCI 16 270  (105) normal, (165) abnormal 

Spambase (SP) UCI 57 4601  Spam (1,813), not spam (2,788) 

BUPA liver disorder (LDR) UCI 7 345 2 Liver disorder present (145), Not present (200) 

UNSW-NB15 (UNSW-NB15) IDS 42 2007 2 Normal (243), Abnormal (1764) 

NSL-KDD (NSL_KDD) IDS 41 3577 2 Normal (1577), Abnormal (2000) 
 

High values of ACC, SNS, and SPS indicate good 
performance, while a lower FDR reflects fewer false alarms. 
These metrics were computed as follows [see Eq. (5) to Eq. (8)] 
[24]: 

𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁/(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁  )        (5) 

𝑆𝑁𝑆 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                          (6) 

  𝑆𝑃𝑆 =  𝑇𝑁/ (𝑇𝑁 +  𝐹𝑃                         (7) 

FDR =  𝐹𝑃/ (𝑇𝑃 +  𝐹𝑃)                         (8) 

To ensure statistical reliability, each experiment was 
repeated 30 times, and mean values of each metric were 
reported. The statistical significance of performance 
improvements (Δ) between the standard DCA and the proposed 
DCA-MLP was evaluated using p-values from independent t-
tests. 

3) Parameter configuration and preprocessing: In all the 

experiments we conducted, the setup for the Dendritic Cell 

Algorithm (DCA) included a population of 100 dendritic cells 

(DCs), and each iteration selected 10 DCs to sample the antigen 

vector. The migration threshold for each DC was set to 10 

iterations. Signal classification employed a feature-based 

approach- the smallest standard deviation represented the 

PAMP and safe signals, while the largest standard deviation 

represented the n-NS signal. standard deviation was selected 

during preprocessing to prioritize informative features. 

For the Multi-Layer Perceptron (MLP) classifier, we applied 
standard training approaches; adaptive learning rate, early 
stopping to prevent overfitting, and K-fold cross validation in 
order to ensure robust model evaluation. These parameters were 
not only chosen based on best practices in literature but were 
also found to significantly influence detection performance. For 
example, increasing the amount of DCs can increase the number 
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of antigen samples, but the cost of the computation may be 
increased. Likewise, if the migration threshold is lowered, it will 
improve the speed of classification but may decrease decision-
making accuracy in noisy data. Within the MLP, we found that 
adaptive learning rate and early stopping had the most 
significant impacts, effectively allowing the MLP to converge 
without overfitting. While the proposed model demonstrated 
stability over a range of parameter values, a sensitivity analysis 
revealed that signal selection and learning rate had the most 
effect on classification accuracy and generalization capability. 

Comparative Analysis of Benchmark Literature Finally, we 
validated the proposed DCA-MLP model by comparing its 
performance to established benchmark literature methods, 
including GA-DCA, dDCA, NMF, standard DCA, and COID-
DCA, on several datasets (Sonar, NSL-KDD, UNSW-NB15, 
HC, GC, LR). Key metrics (Accuracy, Sensitivity, Specificity) 
were compared to confirm the superiority of the DCA-MLP 
model. In addition, Receiver Operating Characteristic (ROC) 
curve analysis was conducted to further highlight the 
performance robustness of the proposed method. 

V. EXPERIMENTAL RESULTS 

A. Threshold Sensitivity in the Standard DCA Model 

The traditional Dendritic Cell Algorithm (DCA) relies on a 
predefined threshold during the classification phase. While this 

threshold allows for the differentiation between normal and 
anomalous instances, its effectiveness is dataset dependent. 
Particularly in imbalanced datasets, a static threshold leads to 
suboptimal performance and reduced sensitivity. 

As shown in Table II, reducing anomaly proportion to 10% 
results in a performance drop of 5% in accuracy. This 
demonstrates the sensitivity of standard DCA to class 
distribution, which compromises its generalizability across. 

B. Performance of the Proposed DCA-MLP Model 

To overcome the above limitations, we propose an enhanced 
DCA model by integrating a Multi-Layer Perceptron (MLP) 
classifier, replacing the static threshold with dynamic learning. 
We evaluated the proposed DCA-MLP on fourteen datasets, 
comparing its performance with the standard DCA using 
Accuracy (ACC), Sensitivity (SNS), and Specificity (SPS), 
alongside statistical significance (p-values). 

As shown in Table III, DCA-MLP consistently outperforms 
the standard DCA across all datasets, with statistically 
significant improvements (p < 0.001) in all key metrics. 

C. Comparative Evaluation with Benchmark Literature 

To further validate the proposed model, we compared it with 
recent state-of-the-art DCA extensions and hybrid methods, as 
shown in Table IV. 

TABLE II.  EFFECT OF THRESHOLD ON ANOMALY DETECTION ACCURACY IN DCA 

Dataset Total data 
Threshold value 

Result 

WBC Normal Anomaly Accuracy 

Original (100% anomaly) 458 241 0.65 0.98 

Reduced (10% anomaly) 241 40 0.26 0.93 

TABLE III.  THE RESULTS OF COMPREHENSIVE EVALUATION OF PERFORMANCE METRICS (ACC, SNS & SPS) WITH STATISTICAL SIGNIFICANCE (P-VALUES) 

FOR THE STANDARD DCA AND THE PROPOSED DCA-MLP ACROSS DATASETS 

Datasets 
Accuracy (%) Sensitivity (%) Specificity (%) 

DCA DCA-MLP ∆ pval DCA DCA-MLP ∆ pval DCA DCA-MLP ∆ pval 

Sonar 0.88 0.99 0.11 2.26E-07 0.59 0.98 0.39 0.0004 0.78 0.98 0.2 0.000726 

WBC 0.93 0.98 0.05 2.26E-07 0.90 0.98 0.08 0.0004 0.90 0.96 0.06 0.000726 

WDBC 0.88 0.94 0.06 2.26E-07 0.39 0.86 0.47 0.0004 0.91 0.99 0.08 0.000726 

PID 0.61 0.95 0.34 2.26E-07 0.39 0.87 0.48 0.0004 0.91 0.99 0.08 0.000726 

ILPD 0.69 0.92 0.23 2.26E-07 0.57 0.77 0.20 0.0004 0.47 0.98 0.51 0.000726 

horse 0.75 0.98 0.23 2.26E-07 0.95 0.99 0.04 0.0004 0.10 0.96 0.86 0.000726 

GC 0.75 0.97 0.22 2.26E-07 0.95 0.99 0.04 0.0004 0.27 0.91 0.64 0.000726 

win 0.70 0.91 0.21 2.26E-07 0.75 0.91 0.16 0.0004 0.42 0.91 0.49 0.000726 

Ionosphere 0.75 0.95 0.20 2.26E-07 0.97 0.98 0.01 0.0004 0.88 0.9 0.02 0.000726 

Heart 0.72 0.92 0.20 2.26E-07 0.25 0.85 0.60 0.0004 0.87 0.97 0.10 0.000726 

SP 0.88 0.94 0.06 2.26E-07 0.84 0.90 0.15 0.0004 0.90 0.98 0.32 0.000726 

LDR 0.67 0.97 0.30 2.26E-07 0.51 0.97 0.46 0.0004 0.79 0.95 0.16 0.000726 

UNSW-
NB15 

0.86 0.98 0.12 2.26E-07 0.86 0.98 0.12 0.0004 0.60 0.99 0.39 0.000726 

NSL-KDD 0.75 0.94 0.19 2.26E-07 0.82 0.84 0.02 0.0004 0.78  0.20 0.000726 
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TABLE IV.  RESULT COMPARISON BETWEEN THE PROPOSED MODEL AND STATE-OF-THE-ART APPROACHES 

Ref. Method Dataset 
Results in percentage 

Acc. Sen. Spe. 

[5] GA-DCA Sonar 83.4 - 64.2 

[7] dDCA 
NSL-KDD 93.29 - 88.93 

UNSW-NB15 97.25 - 95.01 

[15] DCA UNSW-NB15 79.8 - - 

[25] COID-DCA 

HC 87.77 91.66 82.23 

GC 87.90 83.94 89.66 

LR 82.45 80.00 83.78 

Proposed Model MLP_DCA 

Sonar 0.99 0.98 0.98 

NSL-KDD 0.94 0.84 0.98 

UNSW-NB15 0.98 0.98 0.99 

HC 0.98 0.99 0.96 

GC 0.97 0.99 0.91 

  
Fig. 4. The range between Sensitivity (SNS) and False Detection Rate (FDR) for DCA-MLP and DCA in benchmark datasets. 

As illustrated in Fig. 4, the results are summarized in terms 
of SNS and FDR, which are critical performance metrics for 
anomaly detection models. The increased distance between the 
two metrics for the DCA-MLP model demonstrates its improved 
ability to clearly distinguish between normal and abnormal data 
groups. This larger gap indicates that the DCA-MLP not only 
increases the detection of actual anomalies but also 
appropriately limits false positives, leading to more accurate and 
dependable classification results. This capability is essential in 
high-stakes domains like cybersecurity, healthcare, or fraud 
detection, where accuracy and reducing false alarms are crucial. 

Across all fourteen datasets, the proposed MLP-DCA model 
consistently achieved the highest Area Under the Curve (AUC) 
values when compared to other DCA variants and traditional 
classifiers, including stand-alone MLP, K-Nearest Neighbors 
(KNN), Support Vector Machine (SVM), and Decision Tree. As 
illustrated in Fig. 5, this robust and consistent performance 
highlights the superior generalization capability of the MLP-
DCA model. Furthermore, the statistically significant 
improvement over both the standard DCA and conventional 
classifiers underscores the effectiveness of integrating adaptive 
learning through MLP into the biologically inspired DCA 
framework. 
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Fig. 5. Illustrates the comparative classification performance of the various 

DCA expansions and traditional classifiers in terms of ROC analysis across 

multiple datasets. 

VI. DISCUSSION 

The experimental results provide ample evidence for the 
effectiveness and robustness of the proposed DCA-MLP model 
against the traditional Dendritic Cell Algorithm (DCA) model. 
One of the major limitations of a standard DCA is that it relies 
on a fixed threshold value during classification. As the results 
show, the fixed threshold is very sensitive to dataset specific 
distributions, especially with class imbalance (which is typically 
the case with anomaly detection tasks). The static nature of the 
threshold often results in decreased detection accuracy and 
increased false negatives when applied to datasets with evolving 
or uneven data distributions. 

Integrating a Multi-Layer Perceptron (MLP) into the DCA 
framework, the model overcomes this threshold sensitivity and 
gains the ability to learn and generalize complex decision 
boundaries. The MLP enables dynamic classification by 
continuously adjusting to the patterns within the input data. This 
adaptability significantly improves classification performance 
across a wide variety of datasets. For example, substantial 
improvements were observed in both sensitivity and specificity 
on datasets like Sonar, PID, and NSL-KDD, which are known 
for their variability and complexity. 

Another important aspect highlighted by the results is the 
consistent superiority of the DCA-MLP model across different 
domains and data types, including medical (WBC, WDBC), 
cybersecurity (NSL-KDD, UNSW-NB15), and signal 
processing (Sonar). This indicates that the proposed hybrid 
model is not only effective for a single category of data but is 
also generalizable and robust across diverse anomaly detection 
scenarios. The model's capacity to handle both structured and 
unstructured features contributes to its high adaptability and 
makes it suitable for real-world applications where data 
distributions are not always known in advance. 

Moreover, the comparison with recent state-of-the-art 
approaches further supports the DCA-MLP model’s 
effectiveness. When evaluated against various DCA variants—
such as GA-DCA, COID-DCA, and dDCA—as well as 
conventional classifiers, the DCA-MLP consistently achieved 
higher accuracy and demonstrated better sensitivity-specificity 
trade-offs. These improvements are statistically significant, with 
p-values well below the 0.01 threshold, indicating that the 
observed performance gains are not due to random variation but 
rather a result of the model's enhanced learning capabilities. 

The model also shows strong capability in minimizing false 
positives, a critical factor in anomaly detection systems. The 
analysis of sensitivity versus false detection rate (FDR), as 
shown in the experimental figures, illustrates a wider 
performance gap for the DCA-MLP model. This means it not 
only detects true anomalies more accurately but also avoids 
misclassifying normal instances as abnormal, thereby improving 
the reliability and precision of the system. Such performance is 
particularly crucial in high-stakes applications such as fraud 
detection, network intrusion prevention, and medical diagnosis, 
where incorrect predictions can lead to severe consequences. 

VII. CONCLUSION 

This research presents an enhancement of the Dendritic Cell 
Algorithm (DCA) aimed at improving anomaly detection 
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performance. The new approach utilizes a Multi-Layer 
Perceptron (MLP) embedded into the DCA framework, thereby 
eliminating the threshold-based classification reliant exclusively 
on the multi context antigen value (MCAV). This innovation 
solves the fundamental problems of fixed thresholds, which 
generally perform badly when measured with extreme values 
and bad from the perspective of typically improving the 
accuracy of anomaly detection. By leveraging the adaptive 
learning capabilities of the MLP, the enhanced MLP-DCA 
model demonstrates increased robustness and adaptability. 
Experimental results conducted on fourteen benchmark datasets 
validate that the MLP-DCA model significantly outperforms the 
conventional DCA, showing notable improvements in 
sensitivity, specificity, and overall accuracy. 

These updates suggest that there is a good reason to believe 
that combining the strong principles of anomaly detection in the 
DCA with the extremely capable pattern detection and 
recognition advantages of the MLP. However, this study also 
has certain limitations. First, while the current model maintains 
consistent performance across many datasets, its effectiveness 
will vary when used on large-scale or highly imbalanced real-
world data where rare anomalies are often prevalent. Second, the 
model's performance depends on hyperparameter configurations 
in both the DCA and MLP components, which may require 
manual tuning or additional optimization for each dataset. To 
add, the current model has not yet taken streaming or online data 
into account so there is no direct application of it towards real-
time anomaly detection. As a result, the MLP-DCA model may 
have significant advantages for complex classification tasks, 
specifically for anomaly detection, which is characterized by 
non-linear data distributions or imbalances related to classes. 
Future research could explore integrating the Dendritic Cell 
Algorithm with advanced deep learning architectures or 
reinforcement learning-based decision modules. Hybrid 
approaches have the capacity to further improve performance on 
the class of complex datasets, which can be found in time-series 
anomaly detection, streaming data environments, and image-
based pattern identification applications. 
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