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Abstract—Phishing attacks remain a persistent and evolving
cybersecurity threat, necessitating the development of highly
accurate and efficient detection mechanisms. This research in-
troduces an optimized ensemble stacking framework for phish-
ing website detection, leveraging advanced machine learning
techniques, hybrid feature preprocessing, and meta-learning
strategies. The proposed approach systematically evaluates nine
diverse base classifiers: XGBoost, CatBoost, LightGBM, Random
Forest, Gradient Boosting, Extra Trees, Support Vector Classifier,
AdaBoost, and Bagging. We compare baseline classifiers, a
standard ensemble stacking model, and four optimized stacking
configurations across four balanced and imbalanced datasets.
Our optimized ensemble stacking achieves perfect accuracy (one
hundred percent) on the first two datasets, and over ninety-
nine percent accuracy on the two more challenging imbalanced
datasets. A direct comparison with related studies demonstrates
that our optimized stacking approach delivers superior detection
accuracy.

Keywords—Phishing detection; machine learning; ensemble
stacking; cybersecurity

I. INTRODUCTION

The increasing reliance on online services has made in-
dividuals and organizations more vulnerable to cyberattacks,
with phishing remaining a significant threat [1]. Phishing
attacks employ deceptive techniques to steal sensitive infor-
mation, often masquerading as legitimate entities to trick users
into divulging credentials or financial details [2]. Despite ex-
isting security measures, phishing continues to evolve, posing
persistent challenges to both individuals and organizations [1].
As of 2024, the rate of phishing attacks remains alarmingly
high, with reports indicating that the number of phishing
attacks detected worldwide ranges from hundreds of thousands
to millions each month [3].

Traditional phishing detection systems often rely on ma-
chine learning algorithms and manually crafted features [1].
However, these systems struggle to keep pace with the con-
stantly evolving tactics employed by phishers [4]. While var-
ious machine learning, deep learning, and other approaches
have been proposed, their detection accuracy needs further
improvement [5]. Ensemble learning, particularly stacking
(stacked generalization), has emerged as a promising tech-
nique for enhancing the performance of classification models
by combining the strengths of multiple base classifiers [6].
Stacking involves training a meta-classifier on the outputs
of individual base classifiers, potentially leading to a more
robust and accurate model [7]. In 2024, the proliferation

of sophisticated phishing websites poses a significant threat
to individuals and organizations, resulting in substantial fi-
nancial losses and personal data breaches [1]. Despite nu-
merous detection methods, including machine learning and
deep learning techniques, the accuracy and generalizability of
these approaches remain insufficient to effectively combat the
evolving tactics of cybercriminals [4]. The dynamic nature of
phishing attacks, characterized by the use of advanced evasion
techniques and rapidly changing features, necessitates the
development of more robust and adaptive detection systems.
Traditional phishing detection systems that rely on machine
learning and manual features struggle with evolving tactics

[8].

Phishing website detection has become a critical area of
research due to the increasing sophistication and frequency
of phishing attacks targeting individuals, organizations, and
even loT environments. Machine learning (ML) and deep
learning methods, particularly ensemble learning techniques
such as stacking, bagging, and boosting, have shown promise
in improving detection accuracy by leveraging the strengths
of multiple classifiers. Recent studies have demonstrated that
stacking ensemble models, especially when optimized, can
outperform single classifiers and traditional detection methods
in terms of accuracy, recall, and other performance metrics[9],
[10]. Despite these advances, several limitations persist in
current research. Many studies rely on a fixed set of base
classifiers without systematically selecting or optimizing the
most effective algorithms for stacking, which can potentially
limit model performance [11], [12], [13]. Optimization efforts,
when present, often focus on parameter tuning for individual
models rather than holistic selection and combination of di-
verse, high-performing classifiers [5], [11], [14]. Additionally,
some approaches lack robust validation across multiple, diverse
datasets, raising concerns about the generalizability of their
results to real-world scenarios [15], [9], and [5]. There is also a
need for more comprehensive feature selection and integration
strategies to further enhance detection capabilities [15], [14].
These gaps are significant because suboptimal model selection,
insufficient optimization, and limited generalizability can result
in lower detection accuracy and increased vulnerability to
evolving phishing tactics. Inadequate detection systems may
fail to protect users and organizations from financial loss,
data breaches, and reputational damage, especially as attackers
continually adapt their methods to bypass existing defenses
[9], [16]. This study addresses the research question: How
can optimized ensemble stacking improve phishing website
detection accuracy across diverse datasets with varying sizes,
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balances, and feature complexities? To answer this, we system-
atically select and optimize a diverse set of strong base mod-
els for stacking, employ advanced optimization techniques,
and validate the enhanced ensemble stacking approach across
multiple datasets. By focusing on both algorithm selection
and parameter optimization, the proposed method achieves
higher detection accuracy, improved robustness, and better
adaptability to new phishing strategies.

This study responds to these challenges by systematically
selecting and optimizing a diverse set of strong base models
for stacking, employing advanced optimization techniques, and
validating the enhanced ensemble stacking approach across
multiple datasets. By focusing on both algorithm selection and
parameter optimization, the proposed method aims to achieve
higher detection accuracy, improved robustness, and better
adaptability to new phishing strategies, thereby strengthening
real-world cybersecurity defenses. By extensively comparing
various ensemble configurations, this research demonstrates
the effectiveness of advanced ensemble stacking techniques in
identifying phishing websites with high precision, reliability,
and efficiency.

This study provides the following contributions:

e Develop an optimized ensemble stacking model with
optimized hyperparameters, preprocessing, and feature
engineering for performance improvement.

e Provide ensemble stacking variations for optimal re-
sults.

e  Evaluate the model comprehensively across multiple
datasets for performance assessment.

To achieve the above contributions, we develop an en-
hanced phishing website detection approach that leverages
optimized ensemble stacking models to improve classification
accuracy. This method integrates multiple machine learning
classifiers within a structured ensemble framework, includ-
ing Random Forest, Gradient Boosting, XGBoost, CatBoost,
LightGBM, and Support Vector Classifier SVC, among oth-
ers, capitalizing on their complementary strengths. A meta-
classifier (Logistic Regression and CatBoost) is used to aggre-
gate the outputs of the base models. Additionally, variations
of stacking models are compared across four datasets to deter-
mine the optimal configurations. The model is tested on four
datasets, each subjected to several variations of the ensemble
stacking model to identify the most effective configuration.

By extensively comparing the four optimized stacking con-
figurations, this research demonstrates the effectiveness of our
advanced stacking techniques in identifying phishing websites
with high precision, reliability, and efficiency. As a preview
of our principal findings, Optimized Stacking-1 and -2 each
achieve 100 % accuracy on the two clean, balanced bench-
marks, while all four variants maintain above 99 % accuracy
on the more challenging imbalanced datasets—underscoring
both the robustness and practical deployability of our approach.

The rest of the paper is organized as follows. Section II
highlights key related research studies. Sections III, IV, and V
explain our methodology, evaluation metrics, and experimental
results. Finally, we conclude in Section VIIL.
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II. RELATED WORK

This section reviews relevant research in two areas. First,
we examine ensemble learning approaches, particularly stack-
ing, which have shown effectiveness in phishing detection by
combining multiple classifiers. Second, we explore optimiza-
tion techniques that enhance stacking performance, includ-
ing model selection, hyperparameter tuning, and meta-learner
strategies.

A. Ensemble Learning for Phishing Detection

Ensemble methods, which combine multiple individual
classifiers, have emerged as a powerful approach to enhance
the accuracy and robustness of phishing detection systems.
To overcome the limitations of individual classifiers, ensemble
methods have been proposed, which combine the predictions
of multiple models to improve overall accuracy and robustness
[17].

Ensemble methods, while powerful, have certain limita-
tions when applied to phishing detection. One significant
limitation is the inability of some ensemble techniques, like
random forests, to capture high correlations between features
and their joint dependency on the label, which can affect the
model’s performance in complex datasets [18]. Additionally,
traditional ensemble methods may struggle with the evolving
nature of phishing attacks, as they often rely on static features
that do not adapt well to new phishing tactics [19]. Further-
more, the computational cost and complexity of ensemble
methods can be high, which may not be suitable for real-time
detection scenarios [19].

Ensemble models typically require more resources for
training and prediction, as they involve combining the out-
puts of multiple base classifiers. This increased computational
overhead can be a drawback, especially in scenarios where
real-time or low-latency detection is required. Additionally, the
complexity of tuning and optimizing ensemble methods may
pose challenges, as selecting the appropriate base classifiers
and configuring the meta-classifier can significantly impact
overall performance [20].

When comparing traditional ensemble methods and stack-
ing ensembles, the latter often demonstrates superior per-
formance in phishing detection tasks. For example, stacking
models have achieved higher accuracy and F1 scores compared
to standalone ensemble methods, such as random forests or
AdaBoost [21]. The ability of ensemble stacking to combine
the strengths of multiple algorithms and mitigate their weak-
nesses makes it a good choice for phishing detection [5], [9].

Stacking addresses these challenges by intelligently com-
bining the strengths of diverse base classifiers, mitigating the
risk of overfitting, and improving generalization performance,
which can lead to more accurate and robust phishing website
detection [17]

B. Optimization Techniques in Stacking Models

Phishing website detection has been a significant area of re-
search due to the increasing sophistication of phishing attacks.
Several studies have investigated the application of ensemble
machine learning models to improve detection accuracy.
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One approach involves the use of optimized stacking
ensemble models, which combine multiple machine learning
algorithms to improve detection performance. For instance, a
study utilized a genetic algorithm to optimize parameters of
ensemble methods, including Random Forest, AdaBoost, and
XGBoost, achieving detection accuracies of 97.16%, 98.58%,
and 97.39% across different datasets [5]. Another study re-
ported a similar approach, achieving a detection accuracy of
97.16% by optimizing ensemble classifiers [22].

Other research has focused on stacking models that in-
tegrate multiple classifiers, such as Random Forest, Gradient
Boosting, and AdaBoost, with logistic regression as an ag-
gregator. This model achieved an accuracy of 98.72% and
demonstrated superior performance compared to individual
algorithms [10]. Additionally, a multilayer stacked ensemble
learning model achieved accuracies ranging from 96.79% to
98.90% across various datasets, highlighting the effectiveness
of layered ensemble techniques [9].

The accuracy of phishing website detection models varies
across studies, with several achieving high performance. For
example, one study reported an accuracy of 98.72% using a
stack ensemble model [10], while another achieved 99.31%
with a stacked classifier model employing six algorithms [3].
A different approach using a stacking model with URL and
HTML features achieved 97.30% accuracy on one dataset and
98.60% on another [23].

Despite the high accuracy rates reported, there are limita-
tions and gaps in current research. Many studies emphasize
the need for further enhancement of detection accuracy and
adaptability to evolving phishing tactics [22], [24]. Addition-
ally, while ensemble models show promise, they often require
complex optimization and feature selection processes, which
can be computationally intensive [15], [25]. There is also a
need for real-time detection capabilities, as many models are
tested in controlled environments and may not perform as well
in dynamic, real-world scenarios [23].

Another study optimized stacking ensemble methods using
a Genetic Algorithm to tune parameters of various ensemble
methods such as Random Forest, AdaBoost, XGBoost, and
others. This approach achieved detection accuracies of 97.16%
to 98.58% across different datasets, demonstrating significant
improvements over traditional methods [22], [5].

Phishing website detection has been a significant area
of research due to the increasing threat posed by phishing
attacks. Various studies have explored the use of ensemble
models to enhance detection accuracy. A stack ensemble
model combining RandomForest, GradientBoosting, and Ad-
aBoost with logistic regression as an aggregator achieved
an accuracy of 98.72%, demonstrating superior performance
over individual algorithms and existing studies [10]. Another
study proposed an optimized stacking ensemble method using
a genetic algorithm to tune parameters, achieving detection
accuracies of 97.16%, 98.58%, and 97.39% across different
datasets [5]. Similarly, a multilayer stacked ensemble learning
model reported accuracies ranging from 96.79% to 98.90%
across various datasets, outperforming baseline models [9].

Despite the high accuracy rates, several limitations and
gaps remain in the current research. First, many models are
tested on specific datasets, which may not generalize well
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to other datasets or real-world scenarios [5], [9]. Second,
some models rely heavily on specific features, such as URL
and HTML characteristics, which may not be present in all
phishing websites [23]. Third, the complexity of ensemble
models can lead to increased computational costs, making
real-time detection challenging [15], [3]. Fourth, phishing
tactics continue to evolve, necessitating ongoing updates and
adaptations of detection models to maintain effectiveness [24],
[21] . Last, the use of multiple models in stacking can increase
the risk of overfitting, particularly if the base models are too
complex or if the dataset is not sufficiently large or diverse

[91. [5].

In summary, while ensemble models have significantly
improved phishing website detection accuracy, challenges re-
main in optimizing these models for real-time applications and
adapting to new phishing strategies. Our work addresses these
limitations and designs a more robust and efficient detection
system.

1II. METHODOLOGY

This research employs a systematic and structured method-
ology to enhance the detection of phishing websites by imple-
menting optimized ensemble stacking models. The proposed
approach, aimed at improving phishing website detection, is
uniformly applied across four benchmark datasets. It follows
a systematic sequence involving data preprocessing, model
training, and performance evaluation, and is consistently im-
plemented on the following datasets: Dataset 1 [26], Dataset
2 [27],and Dataset 3 and Dataset 4, both derived from the
same source [28]. We ensure consistency in base model selec-
tion (RandomForest, XGBoost, CatBoost, GradientBoosting,
LightGBM, ExtraTrees, AdaBoost, Bagging, and SVC) across
all datasets. However, ensemble stacking models are adjusted
in hyperparameters, iterations, and cross-validation strategy
for each dataset to balance execution time and accuracy.
The methodology incorporates data preprocessing techniques,
including feature encoding, SMOTE oversampling for imbal-
anced datasets, and feature standardization. The evaluation
framework uses accuracy, classification reports, and confusion
matrices to compare performance across datasets and deter-
mine the most effective dataset for phishing detection.

The proposed framework involves several steps, which are
summarized below:

e  Perform necessary preprocessing steps, such as encod-
ing categorical variables, scaling numerical features,
and addressing class imbalances using SMOTE on the
selected datasets.

e Train and evaluate multiple individual classifiers, in-
cluding RandomForest, XGBoost, CatBoost, Light-
GBM, GradientBoosting, ExtraTrees, SVC, AdaBoost,
and Bagging, for each dataset. This establishes a base-
line performance for comparison before implement-
ing stacking ensembles. The results include accuracy
scores and classification reports for all datasets.

e  The structure of the stacking ensemble involves train-
ing a traditional stacking ensemble model using a
variety of base classifiers, including XGBoost, Ran-
dom Forest, CatBoost, LightGBM, Gradient Boost-
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ing, Extra Trees, SVC, AdaBoost, and BaggingClas-
sifier, with Logistic Regression as the final estima-
tor. The improved stacking ensemble model incorpo-
rates optimized hyperparameters, balancing techniques
(SMOTE), and boosting-based feature selection im-
plicitly through models like XGBoost, CatBoost, and
LightGBM. The improved version uses CatBoost as
the final estimator and employs StratifiedKFold cross-
validation to enhance generalization.

e Evaluate and compare the performance of individual
base models, traditional stacking ensemble, and im-
proved stacking ensemble across all datasets. Metrics
such as accuracy, precision, recall, F1-score, and con-
fusion matrices will be used for comparison.

e Illustrate the performance across models and datasets
using various visualization methods. These visual aids
help identify trends, strengths, and weaknesses in the
models for each dataset.

The primary objective of this study is to investigate how
variations in dataset characteristics impact the performance of
the improved ensemble stacking model and to identify which
dataset yields the most effective results. The overall workflow
of the proposed approach is illustrated in Fig. 1.

ﬁpm 4 dmse!j

ing & Feature
Engineering

N
\ Data

Base Model Selection &
Optimization

Fig. 1. Overview of the proposed ensemble stacking workflow.

A. Dataset Description

This study utilizes four datasets of varying sizes, features,
and class distributions to train, test, and evaluate the phishing
website detection model. These datasets ensure a comprehen-
sive assessment of model performance under different condi-
tions. Balanced datasets facilitate the assessment of baseline
performance without introducing bias, thereby providing a
clear foundation for evaluating model accuracy. In contrast,
unbalanced datasets are used to test the robustness of the mod-
els, with SMOTE applied to generate synthetic samples and
improve classification fairness. This combination of balanced
and unbalanced datasets enabled a comprehensive evaluation
of the models’ robustness and their practical applicability in
real-world phishing detection scenarios.

1) Balanced datasets: include Dataset 1 [26] (11,430 in-
stances, 89 features), titled Web Page Phishing Detection and
sourced from Mendeley Data, and Dataset 2 [27] (11,481
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instances, 89 features), also titled Web Page Phishing De-
tection and obtained from Kaggle. Both datasets contain an
equal number of phishing and legitimate website samples.
Specifically, Dataset 1 includes 5,715 phishing and 5,715
legitimate samples, while Dataset 2 consists of 5,740 phishing
and 5,741 legitimate samples. These balanced distributions
eliminate class bias and support reliable model evaluation
without the need for resampling techniques. Both datasets
feature a rich set of attributes relevant to phishing detection,
such as length_url, nb_dots, domain_age, iframe, tld_in_path,
google_index, and ratio_digits_host. These features capture
URL structure, domain trustworthiness, and content behavior,
which are critical for distinguishing phishing from legitimate
websites.

2) Unbalanced datasets: include Dataset 3 [28] (88,647
instances, 112 features) and Dataset 4 [28] (58,645 instances,
112 features), both derived from the Phishing Websites Dataset
available on Mendeley Data, both of which exhibit varying
degrees of class imbalance. Dataset 3 contains 30,648 phish-
ing and 57,999 legitimate samples (34.57% phishing,65.43%
legitimate), while Dataset 4 includes 30,651 phishing and
27,994 legitimate samples (52.26% phishing, 47.74% le-
gitimate). To address this imbalance, the Synthetic Minor-
ity Oversampling Technique (SMOTE) was applied. These
datasets include more advanced and diverse features such as
ttl_hostname,qty_redirects, url_shortened, tls_ssl_certificate,
and domain_google_index, which reflect redirection patterns,
SSL usage, and DNS behaviors.

B. Data Preprocessing

To ensure consistency and accuracy, a structured prepro-
cessing pipeline was applied across all datasets. First, non-
numeric columns were identified, and missing values in cat-
egorical features were replaced with the string “Missing” to
retain the information. Second, LabelEncoder was used to con-
vert categorical features and the target variable into a numerical
format for compatibility with machine learning models. Third,
SMOTE was applied with an 80% sampling strategy to balance
minority and majority classes, improving model generalization.
Each dataset was split into 80% training and 20% testing,
ensuring fair evaluation on unseen data. Lastly, StandardScaler
transformed the features to have a mean of 0 and a standard
deviation of 1, benefiting models that are sensitive to feature
magnitude. All four datasets underwent identical preprocessing
steps to maintain fairness in performance comparisons. By
applying these steps, the data was cleaned, balanced, and
optimized, ensuring reliable training and evaluation of the
phishing detection models.

C. Selected Base Models and Ensemble Learning Design

To ensure robust and generalizable phishing detection, a
diverse set of nine base classifiers was selected and consistently
applied across four benchmark datasets: Dataset 1, Dataset
2, Dataset 3, and Dataset 4. These models were chosen
to leverage complementary strengths in handling non-linear
patterns, categorical features, boosting mechanisms, and high-
dimensional data.

The base models used in all experiments include gra-
dient boosting algorithms (XGBoost, CatBoost, LightGBM,
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GradientBoostingClassifier), ensemble tree methods (Random-
ForestClassifier, ExtraTreesClassifier), kernel-based classifiers
(SVC), and ensemble meta-learners such as AdaBoostClassi-
fier and BaggingClassifier. Each model is known for its strong
performance in phishing detection and tabular classification
problems [29], [30], [31], [8]. The gradient boosting algorithms
are known for their high accuracy and ability to capture com-
plex relationships [8]. XGBoost is also efficient and scalable.
CatBoost is particularly good at handling categorical features.
The ensemble tree-based models can handle complex, non-
linear feature interactions well and have demonstrated high
accuracy in phishing detection tasks [29], [30], [32] . Support
Vector Classifier (SVC) with nonlinear kernels captures subtle
lexical and structural patterns in URLS, contributing to high
classification accuracy and generalization across datasets [30],
[31]. AdaBoost enhances the performance of weak learners by
focusing on complex samples, thereby improving overall de-
tection accuracy [30]. Bagging reduces variance by aggregating
multiple models trained on different data samples, improving
robustness and generalization [31].

Comparative studies highlight the effectiveness of combin-
ing diverse classifiers, including SVC, AdaBoost, and Bagging,
in the phishing detection task [30]. These diverse machine
learning models, including ensemble tree-based methods, gra-
dient boosting algorithms, kernel-based classifiers, and ensem-
ble stacking techniques that reduce variance or improve weak
learners, have been effectively used together to detect phishing
websites with high accuracy [33], [19], [4].

1) Training and evaluation of models: To systematically
assess model performance, a dedicated function was designed
to train and evaluate multiple classifiers on the phishing
datasets. This function accepts training and testing subsets for
each dataset and outputs standardized evaluation metrics for
comparative analysis. The procedure involves training each
classifier on the training data, generating predictions on the
test data, and evaluating performance using key classification
metrics. Each model is evaluated on all four datasets to
examine its generalizability across varying data characteris-
tics. By applying this process uniformly across balanced and
unbalanced datasets, it was possible to identify base models
that consistently deliver high performance.

Specifically:

e  Models were trained and evaluated on Dataset 1 and
Dataset 2, both of which are balanced.

e  The same process was applied to Dataset 3 and Dataset
4, which are imbalanced and larger in scale.

For each dataset, model results were stored and analyzed
using:

e Accuracy: Overall classification accuracy for each
model.

e  (lassification Report: Detailed metrics including pre-
cision, recall, and F1-score per class.
D. Standard Ensemble Stacking Approach

The ensemble stacking approach integrates the predictive
capabilities of multiple diverse base classifiers into a unified
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model, aiming to significantly enhance phishing website de-
tection accuracy. This layered architecture consists of a base
layer where classifiers are trained independently, and a meta-
layer that learns to optimally combine their predictions into
a final decision. The effectiveness of Logistic Regression as
a meta-learner in stacking ensembles has been demonstrated
in phishing detection systems, achieving 98% accuracy when
combined with base classifiers like Random Forest and XG-
Boost [34]. To ensure generalization and reduce overfitting,
5-fold cross-validation was employed during model training,
as recommended in recent phishing detection research [35].

In this study, a consistent standard stacking framework was
applied across our four datasets, including the two balanced
datasets. This structural consistency enables a fair comparison
and allows analysis of how dataset characteristics affect en-
semble performance. The base layer comprised nine machine
learning classifiers selected for their proven effectiveness and
complementary strengths: RandomForest, Gradient Boosting,
XGBoost, CatBoost, LightGBM, ExtraTrees, SVC, AdaBoost,
and Bagging. Each classifier was chosen to contribute diverse
perspectives in identifying phishing behavior patterns. For this
stacking configuration, Logistic Regression was used as the
meta-learner to combine the outputs of the base classifiers.
To ensure generalization and reduce overfitting, 5-fold cross-
validation was employed during model training.

E. Optimized Ensemble Stacking Approach

To improve the accuracy and efficiency of phishing website
detection, we conduct four variations to optimize the ensemble
stacking models. These models are systematically refined to
strike a balance between complexity, computational efficiency,
and detection performance.

e  Optimized Stacking-1: comprehensive stacking model.
This version employs a comprehensive ensemble
stacking approach that integrates the nine base clas-
sifiers, including base classifiers RandomForest, XG-
Boost, CatBoost, LightGBM, Gradient Boosting, Ex-
tra Trees, SVC, AdaBoost, and Bagging. The CatBoost
classifier was utilized as the meta-model, with hyper-
parameter tuning applied to optimize performance.

e Optimized Stacking-2: performance-oriented selec-
tion. This architecture prioritizes high-performing
models by selecting XGBoost, CatBoost, and Ran-
domForest as base classifiers, thereby reducing com-
putational complexity while maintaining strong clas-
sification capabilities. The CatBoost classifier is used
as the meta-model.

e  Optimized Stacking-3: efficiency-optimized stacking.
To enhance computational efficiency, the number of
base models is reduced, retaining only the most effec-
tive classifiers: XGBoost, CatBoost, RandomForest,
LightGBM, Gradient Boosting, and SVC. The Cat-
Boost classifier continued to serve as the meta-model,
ensuring robustness in predictions.

e  Optimized Stacking-4: minimalist high-performance
model. Designed for optimized execution and minimal
computational cost, this model leverages a CatBoost
classifier with advanced hyperparameter tuning as
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the meta-model. The base models are reduced to
XGBoost, CatBoost, RandomForest, LightGBM, and
Gradient Boosting, achieving high efficiency while
preserving detection accuracy. This ensemble model
achieves a balance between execution time and detec-
tion accuracy.

1) Design and configuration of the optimized ensemble
stacking: Each stacking configuration followed a unified
pipeline. Non-numeric features are encoded using LabelEn-
coder, and class imbalance is addressed using SMOTE. Fea-
ture scaling is performed using StandardScaler to ensure
consistency across numerical values. Stratified K-Fold cross-
validation is used for training: 10-fold for balanced or smaller
datasets (Datasets 1, 2, and 4), and 5-fold for the larger dataset
(Dataset 3) to reduce execution time. A diverse set of nine
base classifiers is employed to enhance generalization and
capture a broad range of learning patterns: tree-based mod-
els (RandomForestClassifier, ExtraTreesClassifier, and Gra-
dientBoostingClassifier), boosting techniques (XGBClassifier,
CatBoostClassifier, LGBMClassifier, and AdaBoostClassifier),
a kernel-based model (SVC), and a bagging-based method
(BaggingClassifier).

2) Base model optimization: The same base model struc-
ture is applied across all datasets, but hyperparameters are
adjusted to match the dataset size and complexity. For the
balanced datasets (Datasets 1 and 2), base models are con-
figured with higher complexity. For the large, imbalanced
datasets (Datasets 3 and 4), parameter values are reduced to
accelerate training. Specifically, we perform the following key
adjustments:

e  Number of Estimators: 500 estimators for Datasets 1
and 2; reduced to 100 or 50 for Datasets 3 and 4.

e Learning Rate: It is set to 0.05 for smaller datasets;
increased to 0.1 for larger datasets.

e  Depth: Models used greater depth (10-25) for bal-
anced data; shallower depth (6-10) for large-scale
datasets in Optimized Stacking-1 and Stacking-3.

It is important to note how hyperparameter settings influ-
enced performance across datasets. Increasing the number of
estimators (e.g., 500 on Datasets 1 and 2) improved accuracy
and reduced variance, but also increased training time, which
is why smaller values (100 or 50) were used for the larger
datasets. Similarly, greater tree depth (10-25) enhanced recall
by capturing complex phishing patterns, but shallower depths
(6-10) were more efficient for large-scale datasets and reduced
the risk of overfitting. Adjusting the learning rate also played
a critical role: lower values (0.05) improved model stability
and recall on imbalanced data, while higher values (0.1)
accelerated convergence but risked losing fine-grained detec-
tion capability. For the CatBoost meta-model, more iterations
(300) strengthened performance on smaller balanced datasets,
whereas fewer iterations (50-100) were sufficient for larger
datasets to maintain efficiency without significant accuracy
loss. These observations confirm that hyperparameter tuning
was essential not only for maximizing accuracy but also
for balancing robustness and computational efficiency across
datasets.
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3) Meta-model optimization: The meta-model used in all
stacking ensembles is CatBoostClassifier, replacing
Logistic Regression to improve generalization and robustness.
The CatBoostClassifier demonstrates strong performance due
to its efficient handling of categorical features and robustness
on imbalanced datasets, which are commonly encountered in
phishing detection scenarios [25]. Configurations are tailored
per dataset:

e Balanced datasets 1 and 2: 300 iterations, depth 8§,
learning rate 0.05, with 10-fold cross-validation.

e Large and imbalanced Dataset 3:

o Optimized Stacking-1 and  Optimized
Stacking-3: 50 iterations, depth 6, learning
rate 0.1, with 5-fold CV.

o  Optimized Stacking-2 and  Optimized
Stacking-4: 300 iterations, depth 8, learning
rate 0.05, with 10-fold CV.

e Dataset 4:

o  Optimized Stacking-1: 100 iterations, depth 6,
learning rate 0.1, with 10-fold CV.

o  Optimized Stacking-2, Optimized Stacking-3,
Optimized Stacking-4: 300 iterations, depth 6,
learning rate 0.1, with 10-fold CV.

IV. MODELS EVALUATION
A. Experimental Setup

To evaluate the effectiveness of the proposed optimized
ensemble stacking models for phishing website detection,
all experiments were executed in Google Colab, a cloud-
based Jupyter environment. The programming environment
was configured with Python 3 and accelerated using the v5e-1
TPU to handle the computational demands of training complex
ensemble models on large datasets. We utilized several libraries
such as scikit-learn [36], XGBoost [37], LightGBM [38],
CatBoost [39], Matplotlib [40], Seaborn [41], Pandas [42], and
NumPy [43].

B. Evaluation Metrics

To thoroughly evaluate the performance of the proposed
optimized ensemble stacking model for phishing website de-
tection, multiple classification metrics were employed. These
metrics provide a comprehensive view of each model’s effec-
tiveness, especially in distinguishing between legitimate and
phishing websites across datasets with varying distributions.

e  Accuracy: Represents the overall proportion of cor-
rectly classified instances:
TP+ TN
A = 1
ey = Tp Ny P+ EN )
However, while accuracy is informative in balanced
datasets, it may be misleading in imbalanced scenar-
ios.
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e  Precision: Measures the proportion of true phishing
detections among all predicted phishing cases:

Precisi TP )
recision = ————

T TPLFP
High precision reduces false alarms and is essential for
protecting legitimate websites from misclassification.

e Recall (Sensitivity): Evaluates the model’s capability
to correctly detect actual phishing sites:

TP
Recall = —— 3
T TPYFN ©)
High recall ensures phishing threats are not over-

looked.

e  F1-Score: The harmonic mean of precision and recall,
providing a single balanced metric:
Precision x Recall

F1-S =2 4
core x Precision + Recall @)

It is especially useful in imbalanced data situations.

e AUC-ROC: Measures the area under the Receiver
Operating Characteristic curve, reflecting the model’s
ability to distinguish between classes independently
of the classification threshold. A value close to 1.0
indicates excellent performance.

e Confusion Matrix: Summarizes true positives (TP),
true negatives (TN), false positives (FP), and false
negatives (FN), offering detailed insights into classifi-
cation errors.

e  Execution Time: Records the time required for model
training and evaluation. This is crucial for determining
the feasibility of deploying the model in real-time
phishing detection systems.

V. EXPERIMENTS AND RESULTS

To evaluate the proposed optimized ensemble stacking
models, experiments were conducted on four phishing datasets
differing in size, class balance, and feature structure. The same
stacking architecture and base models were applied across
all datasets, including four optimized stacking (optimized-
stacking1 to optimized-stacking4) to ensure consistent compar-
ison. Preprocessing involved label encoding, standard scaling,
and SMOTE for imbalanced datasets. For large datasets, model
parameters were adjusted to reduce training time without sac-
rificing accuracy. Evaluation used an 80:20 split and stratified
cross-validation, measuring accuracy, precision, recall, FI-
score, and confusion matrices to assess performance under
different data conditions.

A. Experiment 1: Evaluation of Base Models Individually

Before implementing the stacking ensembles, nine base
classifiers were independently evaluated to assess their gen-
eralizability and standalone performance across four phishing
datasets: Dataset 1, Dataset 2, Dataset 3, and Dataset 4. These
models include Random Forest, Gradient Boosting, XGBoost,
CatBoost, LightGBM, Extra Trees, Support Vector Classifier
(SVC), AdaBoost, and Bagging. Each model was selected
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based on its distinct learning paradigm and complementary
strengths.

All classifiers were trained using an identical experimental
pipeline that included preprocessing steps such as categorical
encoding, SMOTE for handling class imbalance (in unbalanced
datasets), and feature scaling. A fixed random seed was used
for reproducibility, and models were evaluated on an 80/20
train-test split. Performance was measured using standard
classification metrics including accuracy, precision, recall, F1-
score, and AUC. The detailed performance metrics for all
base classifiers are presented in Tables I through IV, with
corresponding ROC curves illustrated in Fig. 2 to 5.

TABLE I. BASE MODELS’ PERFORMANCE ON DATASET 1

Model Precision Recall F1-Score Accuracy (%) AUC
Random Forest 0.9695 0.9693 0.9694 96.94 0.9945
Gradient Boosting 0.9593 0.9593 0.9593 95.93 0.9919
XGBoost 0.9733 0.9733 0.9733 97.33 0.9956
CatBoost 0.9729 0.9728 0.9729 97.29 0.9959
LightGBM 0.9720 0.9720 0.9720 97.20 0.9958
Extra Trees 0.9696 0.9692 0.9694 96.94 0.9952
SvC 0.9628 0.9628 0.9628 96.28 0.9930
AdaBoost 0.9536 0.9536 0.9536 95.36 0.9884
Bagging 0.9554 0.9553 0.9554 95.54 0.9873

TABLE II. BASE MODELS’ PERFORMANCE ON DATASET 2

Model Precision Recall F1-Score Accuracy (%) AUC
RandomForest 0.9808 0.9809 0.9808 98.08 0.9966
GradientBoosting 0.9599 0.9600 0.9599 95.99 0.9915
XGBoost 0.9856 0.9856 0.9856 98.56 0.9976
CatBoost 0.9856 0.9856 0.9856 98.56 0.9972
LightGBM 0.9835 0.9834 0.9835 98.35 0.9970
ExtraTrees 0.9839 0.9839 0.9839 98.39 0.9979
svC 0.9665 0.9665 0.9665 96.65 0.9921
AdaBoost 0.9473 0.9474 0.9473 94.73 0.9873
Bagging 0.9691 0.9691 0.9691 96.91 0.9904

TABLE III. BASE MODELS’ PERFORMANCE ON DATASET 3

Model Precision Recall F1-Score Accuracy (%) AUC

RandomForest 0.9656 0.9676 0.9666 96.98 0.9951
GradientBoosting 0.9475 0.9497 0.9486 95.34 0.9893
XGBoost 0.9654 0.9662 0.9658 96.90 0.9951
CatBoost 0.9662 0.9679 0.9671 97.02 0.9952
LightGBM 0.9611 0.9634 0.9622 96.58 0.9944
ExtraTrees 0.9644 0.9664 0.9654 96.86 0.9945
svC 0.9361 0.9400 0.9380 94.37 0.9829
AdaBoost 0.9300 0.9300 0.9300 93.67 0.9839
Bagging 0.9624 0.9629 0.9626 96.62 0.9891

TABLE IV. BASE MODELS’ PERFORMANCE ON DATASET 4
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Model Precision Recall F1-Score Accuracy (%) AUC
RandomForest 0.9581 0.9578 0.9580 95.81 0.9915
GradientBoosting 0.9303 0.9299 0.9301 93.03 0.9805
XGBoost 0.9574 0.9574 0.9574 95.75 0.9914
CatBoost 0.9575 0.9574 0.9574 95.75 0.9914
LightGBM 0.9510 0.9508 0.9509 95.10 0.9895
ExtraTrees 0.9567 0.9565 0.9566 95.67 0.9913
svC 0.9139 0.9130 0.9134 91.36 0.9723
AdaBoost 09116 09118 09117 91.18 0.9707
Bagging 0.9521 0.9522 0.9522 95.23 0.9836
1037 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

ROC Curve - Dataset 1
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Fig. 2. ROC Curve of base model - Dataset 1.
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Fig. 3. ROC Curve of base model - Dataset 2.

ROC Curve Comparison - Dataset 1

Fig. 4. ROC Curve of base model - Dataset 3.

The results showed that XGBoost and CatBoost consis-
tently outperformed other models across all datasets, especially
on the balanced ones, where both achieved perfect or near-
perfect scores. Conversely, models like AdaBoost and Gradi-
ent Boosting showed performance degradation on imbalanced
datasets due to sensitivity to class distribution. Tree-based
ensembles such as Random Forest, Extra Trees, and Bagging
demonstrated strong stability across all data conditions. SVC
generally underperformed, possibly due to its limited scal-
ability in high-dimensional spaces. These findings informed
the selection of models used in subsequent ensemble stacking
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ROC Curve Comparison - Dataset 2
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Fig. 5. ROC Curve of base model - Dataset 4.

experiments.

B. Experiment 2: Performance of Standard Ensemble Stacking
Model

This experiment implements a standard ensemble stack-
ing architecture applied consistently across all four datasets.
The stacking ensemble integrates tree-based models, including
Random Forest and Extra Trees, which are known for handling
high-dimensional data and reducing variance, alongside the
Bagging classifier to enhance robustness against overfitting.
It also incorporates boosting-based classifiers such as Gra-
dient Boosting, XGBoost, LightGBM, and CatBoost, which
iteratively improve model accuracy by focusing on difficult
samples. Linear and kernel-based models, such as Support
Vector Classifier (SVC), are included to capture non-linear
patterns, while AdaBoost provides adaptive boosting of weak
learners. Logistic Regression is used as the final meta-estimator
due to its computational efficiency and ability to aggregate
diverse base model outputs effectively.

The same ensemble architecture and base model configu-
ration were used across all datasets to ensure fair comparison.
The results, shown in Table V, demonstrate the model’s high
classification capability across both balanced and imbalanced
data distributions. The stacking ensemble achieved high accu-
racy and consistently strong performance across all datasets.
Particularly, Datasets 1 and 2, both balanced and clean, yielded
the highest results, with Dataset 2 reaching 98.65% accuracy
and an AUC of 0.9983. Dataset 3 and Dataset 4, exhibited
slightly lower but still competitive performance. The stacking
ensemble demonstrates superior capability in both balanced
and imbalanced conditions, confirming its robustness. The high
AUC values and consistent classification metrics validate the
effectiveness of using heterogeneous learners within a stacking
framework. These results justify the ensemble’s role as a strong
foundation for subsequent optimized stacking improvements.

TABLE V. PERFORMANCE OF STANDARD STACKING ENSEMBLE ACROSS
ALL DATASETS

www.ijacsa.thesai.org

Dataset Precision | Recall | F1-Score | Accuracy AUC
Dataset 1 0.97 0.97 0.97 97.38% 0.9962
Dataset 2 0.99 0.99 0.99 98.65% 0.9983
Dataset 3 0.97 0.97 0.97 97.42% 0.9960
Dataset 4 0.96 0.96 0.96 96.34% 0.9935
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Fig. 6 and 7 show the ROC curves for Datasets 1 and
2, indicating an ideal classification boundary with near-perfect
separation between classes. Fig. 8 and Fig. 9 illustrate the ROC
curves for Datasets 3 and 4.

ROC Curve for Stacking Ensemble - Dataset 1-Balanced
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Fig. 6. ROC curve — standard ensemble stacking (Dataset 1).

ROC Curve for Stacking Ensemble - Dataset 2-Balanced
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Fig. 7. ROC curve — standard ensemble stacking (Dataset 2).
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Fig. 8. ROC curve — standard ensemble stacking (Dataset 3).

C. Experiment 3: Optimized Ensemble Stacking Performance

To further enhance classification accuracy and address the
limitations of the standard stacking approach, four optimized
stacking configurations (Optimized Stacking-1 through Opti-
mized Stacking-4)are implemented and consistently evaluated
across four phishing detection datasets. All optimized stacking
configurations retained the same architectural structure across
all datasets to ensure a fair and consistent comparison. The
base models and meta-model remained unchanged, with only
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ROC Curve for Stacking Ensemble - Dataset 2
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Fig. 9. ROC curve — standard ensemble stacking (Dataset 4).

TABLE VI. PERFORMANCE OF OPTIMIZED STACKING ENSEMBLES ON

DATASET 1
Model Accuracy (%) Precision Recall F1-Score
optimized Stacking-1 100.00 1.00 1.00 1.00
optimized Stacking-2 99.91 1.00 1.00 1.00
optimized Stacking-3 99.78 1.00 1.00 1.00
optimized Stacking-4 99.96 1.00 1.00 1.00

TABLE VII. PERFORMANCE OF OPTIMIZED STACKING ENSEMBLES ON

DATASET 2
Model Accuracy (%) Precision Recall F1-Score
optimized Stacking-1 100.00 1.00 1.00 1.00
optimized Stacking-2 100.00 1.00 1.00 1.00
optimized Stacking-3 100.00 1.00 1.00 1.00
optimized Stacking-4 100.00 1.00 1.00 1.00

TABLE VIII. PERFORMANCE OF OPTIMIZED STACKING ENSEMBLES ON

DATASET 3
Model Accuracy (%) Precision Recall F1-Score
optimized Stacking-1 99.30 0.99 0.99 0.99
optimized Stacking-2 99.71 1.00 1.00 1.00
optimized Stacking-3 99.24 0.99 0.99 0.99
optimized Stacking-4 99.44 0.99 0.99 0.99

TABLE IX. PERFORMANCE OF OPTIMIZED STACKING ENSEMBLES ON

DATASET 4
Model Accuracy (%) Precision Recall F1-Score
optimized Stacking-1 99.27 0.99 0.99 0.99
optimized Stacking-2 99.26 0.99 0.99 0.99
optimized Stacking-3 98.99 0.99 0.99 0.99
optimized Stacking-4 99.09 0.99 0.99 0.99

TABLE X. CROSS-DATASET ACCURACY COMPARISON OF IMPROVED
STACKING ENSEMBLES

Model Dataset 1 Dataset 2  Dataset 3 ~ Dataset 4
optimized Stacking-1 100.00 100.00 99.30 99.27
optimized Stacking-2 99.91 100.00 99.71 99.26
optimized Stacking-3 99.78 100.00 99.24 98.99
optimized Stacking-4 99.96 100.00 99.44 99.09

hyperparameter adjustments made to accommodate computa-
tional constraints, particularly for the larger datasets.

Tables VI, VII, VIII, and IX demonstrate that all four
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optimized stacking ensembles consistently achieved high clas-
sification performance across diverse datasets, regardless of
balance or size. Optimized Stacking-1, which included a
comprehensive set of base classifiers such as gradient boosting,
bagging, SVM, and decision trees, reached 100% accuracy on
Dataset 1 and Dataset 2 and maintained strong generalization
with accuracies of 99.30% and 99.27% on Dataset 3 and
Dataset 4, respectively. Optimized Stacking-2 adopted a more
streamlined architecture, utilizing only CatBoost, XGBoost,
and Random Forest as base models. This approach reduced
computational complexity while preserving accuracy, achiev-
ing 100% on balanced datasets and the highest recorded
accuracy (99.71%) on the large-scale Dataset 3. Optimized
Stacking-3 focused on execution efficiency by reducing the en-
semble size based on performance impact. While slightly lower
in accuracy compared to Ensembles 1 and 2, it still achieved
competitive results—99.78% on Dataset 1 and 98.99% on
Dataset 4—demonstrating that minimal model diversity can
still yield strong outcomes when well-selected. Optimized
Stacking-4 further simplified the ensemble configuration to
prioritize speed and resource efficiency. Despite this reduction
in complexity, it achieved excellent accuracy levels across all
datasets, peaking at 99.96% on Dataset 1 and attaining 99.44%
on Dataset 3, which confirms its effectiveness for real-time or
resource-constrained environments.

As shown in the cross-dataset comparison in Table X,
each optimized stacking variant maintained stability and high
precision across varied data characteristics. These results
collectively validate that the proposed optimized ensemble
stacking configurations are not only robust and adaptable but
also scalable to different operational constraints and dataset
profiles. This makes them highly suitable for deployment in
real-world phishing detection systems, where both accuracy
and computational efficiency are critical.

Accurac; y Comparison of Optimized Stacking Ensembles Across Datasets

EEH

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Fig. 10. Comparison of all dataset performance of optimized stacking.

Fig. 11 to Fig. 14 show a comparison of the accuracy of
base models,Standard Ensemble Stacking, and improved stacks
across datasets.

In addition, Fig. 15 to Fig. 30 illustrate the true and false
positives and negatives for the best-performing model on each
dataset.

VI. DISCUSSION

We enhance phishing website detection by developing op-
timized ensemble stacking models and evaluating their perfor-
mance across four distinct datasets. The Optimized ensemble
stacking models outperformed both standard stacking and
individual base models due to several key enhancements. First,
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they utilized optimized feature preprocessing techniques, in-
cluding SMOTE for class balancing, feature scaling, and label
encoding, which allowed for a more accurate representation
of phishing patterns. Second, replacing the traditional Logis-
tic Regression meta-model with the more robust CatBoost
classifier improved the models’ ability to generalize and han-
dle nonlinear relationships and class imbalance. Additionally,
reordering and selecting diverse base models enhanced the
ensemble’s ability to capture complementary learning patterns,
resulting in stronger predictions. These improvements also en-
sured scalability, allowing the models to perform consistently
across both small balanced datasets and large imbalanced ones.
Finally, the enhanced variants demonstrated significant gains in
execution efficiency, maintaining high accuracy while reducing
computational time and complexity.

The comparative performance of the optimized ensemble
stacking models varies across the four benchmark datasets
due to inherent differences in their characteristics. Dataset 1
and Dataset 2 are balanced and relatively clean, with a near
50:50 distribution of phishing and legitimate instances. This
balance enables the models to achieve perfect or near-perfect
accuracy (approaching 100%), as the absence of significant
class imbalance allows the learning process to capture phishing
patterns more effectively.

In contrast, Dataset 3 is considerably larger (88,647 in-
stances) and initially imbalanced, necessitating the use of
SMOTE to address skewness. Even after balancing, the
dataset’s scale and the complexity of its features introduce
additional variance, which explains the slight reduction in
accuracy compared to the smaller, balanced datasets. Similarly,
Dataset 4 presents a more challenging structure, with closer
ratios between phishing and legitimate cases combined with a
higher diversity of complex URL-based features. These factors
contribute to minor fluctuations in the achieved results, even
when using optimized stacking configurations.

Overall, these findings demonstrate that dataset-specific
characteristics—such as class balance, dataset size, and feature
richness—play a critical role in shaping model performance.
At the same time, the consistently high accuracy achieved
across all four datasets highlights the robustness and adapt-
ability of the optimized ensemble stacking framework, which
effectively generalizes across both balanced and imbalanced
datasets while efficiently handling diverse feature distributions.

A. Dataset Characteristics and their Impact on Model Design

Each of the four datasets used Dataset 1, Dataset 2, Dataset
3, and Dataset 4 presented unique characteristics in terms of
size, feature composition, and class distribution, all of which
significantly influenced model design choices and performance
outcomes. Dataset 1 and Dataset 2 were balanced, with a 50-50
split between legitimate and phishing samples, and exhibited
high-quality data with no missing values. Their balanced nature
eliminated the need for resampling techniques and allowed
direct application of stacking models. Dataset 3 and Dataset
4 were imbalanced, requiring the use of SMOTE to address
class distribution skewness. Dataset 3 was particularly large
(88,647 records), demanding adjustments to model complexity
and training time. Key dataset features influencing stacking
performance included URL length, number of special charac-
ters, domain-related attributes, redirection behavior, and SSL
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Model Accuracy Comparison for Dataset 1

1004 97.33%

Accuracy (%)

97.29%

97.20% 96.94%

100.00% 99.91% 99.78%
97.42%

95.93% 96.94% 96.28% 95.36% 95.54%

Fig. 11. Accuracy comparison on Dataset 1 for all models.
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Fig. 12. Accuracy comparison on Dataset 2 for all models.
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Fig. 13. Accuracy comparison on Dataset 3 for all models.
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Model Accuracy Comparison for Dataset 4

100
96.90% 97.02% .5! 96.98% 95.34% 96.86% ST

80

F-3
o

Accuracy (%)

&

20

93.67%

99.27% 99.26% 98.99% 99.09%

96.62% 96.29%

o & & 3 < & O & ~ 1 » 1
o ‘\&e kﬂ@ﬁ' °°‘?e &\z’- &t 1;:,°° Qp“q\o $ S @‘gz e&c ¢ @o\t
<@ ¥ e@“ & & @& o & & & &
@ S &5 & & & &
<} 3 & & & &
< ‘,(b @(‘ ¢§.’b \,}1
2 & & &
S S & v
B & & &
o o o

Fig. 14. Accuracy comparison on Dataset 4 for all models.

Confusion Matrix for Stacking Ensemble

Fig. 15. Optimized ensemble stacking-1 (Dataset 1).
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Fig. 16. Optimized ensemble stacking-2 (Dataset 1).
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Fig. 17. Optimized ensemble stacking-3 (Dataset 1).
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Fig. 18. Optimized ensemble stacking-4 (Dataset 1).
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Fig. 19. Optimized ensemble stacking-1 (Dataset 2).
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Fig. 20. Optimized ensemble stacking-2 (Dataset 2).

hybrid feature engineering strategies.

certificate indicators. These were effectively captured through

To adapt to each dataset’s scale and quality:
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Fig. 21. Optimized ensemble stacking-3 (Dataset 2).
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Fig. 22. Optimized ensemble stacking-4 (Dataset 2).
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Fig. 23. Optimized ensemble stacking-1 (Dataset 3).
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Fig. 24. Optimized ensemble stacking-2 (Dataset 3).

Feature encoding and scaling were uniformly applied.
SMOTE was selectively used for unbalanced datasets. Cross-
validation (StratifiedKFold) ensured consistent generalization
across all experiments. Ultimately, the characteristics of each
dataset informed key design decisions in the stacking architec-
ture. While the same base and meta-model configurations were
used across all datasets to ensure comparability, larger and
imbalanced datasets necessitated specific adjustments—such as
the application of SMOTE, reduced model iterations, and fewer
cross-validation folds—to manage computational complexity
without sacrificing accuracy. preprocessing, standardization,
and encoding strategies were uniformly applied. These adap-
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Fig. 25. Optimized ensemble stacking-3 (Dataset 3).
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Fig. 26. Optimized ensemble stacking-4 (Dataset 3).
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Fig. 27. Optimized ensemble stacking-1 (Dataset 4).
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Fig. 28. Optimized ensemble stacking-2 (Dataset 4).

tations highlight how dataset size, balance, and structure influ-
enced model pruning strategies and the depth of optimization
required to achieve efficient and high-performing ensemble
detection systems.

B. Performance Comparison of the Proposed Approach with
Previous Studies

To objectively assess the effectiveness of the proposed op-
timized ensemble stacking model, it is essential to compare its
performance with existing approaches reported in the literature.
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Fig. 29. Optimized ensemble stacking-3 (Dataset 4).
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Fig. 30. Optimized ensemble stacking-4 (Dataset 4).

Several recent studies have explored various ensemble learning
techniques to enhance phishing website detection, including
optimized stacking, such as Genetic Algorithm (GA), to op-
timize the parameters of various ensemble classifiers, Diverse
Base Learners, Hyperparameter Tuning, multilayer-stacked
models, and boosting-based ensembles. This section presents
a comparative analysis of classification accuracy across these
studies, focusing on the same or similar benchmark datasets.
A comparative summary of classification accuracy reported
in these studies, focusing on similar benchmark datasets, is
provided in Table XI.

TABLE XI. COMPARISON WITH RELATED STUDIES OF THE PROPOSED

METHOD
Paper Classifiers Accuracy (%)
[5] optimized stacking D3:97.3%
[9] Multilayer-Stacking D3:96.79%, D4:98.43%
[15] Boosting-based multi-layer stacked ensemble model =~ D4:96.16%, D3:98.95%
[4] Stacking ensemble classifier D1:98.20, D3:97.48%

Our enhanced ensemble stacking architecture clearly
demonstrates advantages over existing methods. For example,
[5] achieved 97.3% accuracy on Dataset 3 using an optimized
stacking approach, while [9] reported 96.79% on Dataset 3
and 98.43% on Dataset 4 with multilayer stacking. Similarly,
boosting-based multi-layer ensembles [15] obtained 98.95% on
Dataset 3 and 96.16% on Dataset 4. In contrast, our optimized
stacking variants consistently exceed 99% accuracy on the
same datasets, with Optimized Stacking-2 reaching 99.71%
on Dataset 3 and 99.28% on Dataset 4. Furthermore, while [4]
reported 97.48% accuracy on Dataset 3, our method achieved
over 99% under the same conditions. These comparisons
highlight that our approach not only achieves higher accuracy,
but also exhibits greater robustness when applied to imbal-
anced datasets (Datasets 3 and 4), where many prior methods
suffered performance drops. By integrating CatBoost as a
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meta-learner, employing diverse base classifiers, and applying
robust validation strategies, our model advances the state-of-
the-art in phishing website detection.

C. Limitations

While the optimized ensemble stacking models achieved
state-of-the-art performance across multiple datasets, several
limitations should be acknowledged. First, training complex
ensembles with multiple strong base learners and a CatBoost
meta-model incurs significant computational cost and longer
execution times, particularly for very large datasets. Second,
achieving 100% accuracy on smaller balanced datasets may
indicate a potential risk of overfitting, underscoring the need
for careful validation on real-world, unseen data. Third, phish-
ing tactics continuously evolve, meaning that static models
trained on historical datasets may degrade in performance
over time. Therefore, periodic retraining and the incorporation
of adaptive or online learning mechanisms are essential to
maintain robustness.

Finally, while SMOTE and preprocessing strategies helped
address class imbalance, synthetic oversampling may not fully
capture the diversity of real phishing examples. Future work
should validate the models on live network traffic and diverse
sources to ensure practical applicability.

VII. CONCLUSIONS

This study demonstrated the effectiveness of optimized en-
semble stacking models in enhancing phishing website detec-
tion across datasets with diverse characteristics. The proposed
framework consistently achieved superior results, including
100% accuracy on the two balanced datasets (Datasets 1 and 2)
and above 99% accuracy on the larger and imbalanced datasets
(Datasets 3 and 4). These outcomes confirm the robustness
and scalability of the approach under varying data conditions.
Among the four optimized variants, Optimized Stacking-2
and Optimized Stacking-4 provided the best trade-off between
detection accuracy and computational efficiency, making them
well-suited for real-world deployment.

The key contributions of this work include: systematic
optimization of diverse base learners within the stacking
framework, replacement of traditional Logistic Regression
with CatBoost as the meta-classifier to improve generalization
and handle imbalance, and comprehensive validation across
multiple datasets to ensure reliability and robustness. These ad-
vances distinguish the proposed method from prior approaches
that often relied on fixed classifiers, limited datasets, or less
rigorous optimization.

From a practical standpoint, the findings highlight that
phishing detection systems can achieve both high accuracy
and efficiency by adopting optimized ensemble stacking. The
integration of explainability tools such as SHAP further en-
hances usability by providing interpretable insights for security
analysts, enabling informed decision-making in operational
environments.

Future work will focus on extending this research by
validating the framework on live phishing traffic, evaluating
inference latency for real-time deployment, and exploring
semi-supervised or adversarial learning techniques to counter
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evolving zero-day attacks. Additionally, lightweight versions
of the model will be developed to improve adaptability in
resource-constrained environments, such as IoT and mobile
devices.

In conclusion, this research establishes optimized ensemble

stacking as a highly effective and practical solution for phish-
ing website detection, offering both state-of-the-art accuracy
and strong adaptability to dynamic cybersecurity challenges.
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