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Abstract—This study introduces a grey clustering algorithm
based on the Central Triangular Whitenization Weight Function
(CTWF), designed to classify urban air quality under conditions
of limited or uncertain data. Based on Grey Systems The-
ory (GST), the proposed algorithm facilitates structured multi-
criteria assessments using sparse or irregular datasets—a condi-
tion frequently encountered in urban environmental monitoring.
The algorithm stands out for its low computational complexity,
interpretability, and ability to integrate multiple pollutants into a
single qualitative classification, making it particularly suitable for
smart city applications and real-time decision support systems. To
evaluate its performance, the grey clustering algorithm (CTWF)
was applied to a case study in Northern Lima, Peru, covering
eight semesters between 2011 and 2019 and including four key
pollutants: PM10, SO2, NO2, and CO. Although all periods were
classified as “Good” under national standards, the disaggregated
analysis revealed PM10 as the most persistent concern, while
CO levels remained consistently low, and SO2 and NO2 showed
moderate fluctuations. These findings validate the algorithm’s
capacity to extract pollutant-specific insights and spatiotemporal
trends even in data-scarce environments. Future enhancements
may include meteorological integration, broader pollutant sets
(e.g., PM2.5, ozone), and satellite data to extend forecasting
capabilities and spatial resolution.

Keywords—Grey clustering algorithm; air quality classification;
grey systems theory; urban air pollution

I. INTRODUCTION

Urban air pollution remains a critical and escalating en-
vironmental concern, particularly in rapidly growing cities in
the global South, where population growth often outpaces in-
frastructure development. Its detrimental effects on respiratory
health, mortality, and environmental sustainability are well
documented, especially in low- and middle-income countries
[1], [2], [3]. In Latin America, cities such as Lima, São
Paulo, and Bogotá routinely report air pollutant concentrations
that exceed both national regulations and international safety
guidelines [4].

In the case of Lima, Peru, the second largest city in South
America, unregulated urban sprawl, high vehicular density, and
industrial activity have all contributed to significant air quality
degradation [5], [6]. This issue is especially pronounced in
northern districts such as Comas, Los Olivos, and Carabayllo,
where socioeconomically vulnerable populations are exposed
to elevated pollution levels but lack access to comprehen-
sive monitoring systems [7]. Despite growing public concern,
air quality assessments remain constrained by fragmented
datasets, limited monitoring infrastructure, and the absence of
tools designed to function under data uncertainty [8], [9].

These challenges have prompted the need for alternative
modeling approaches that are capable of generating reliable

insights from minimal or limited data. In this context, Grey
Systems Theory (GST), introduced by Deng in the early 1980s,
offers a mathematical framework tailored for decision-making
under conditions of limited or uncertain information [10], [11].
Unlike traditional statistical models, which rely on consistent
and extensive datasets, GST is designed to function effectively
even when sample sizes are small or measurements are in-
complete, conditions commonly found in urban environmental
assessments in Latin America [12], [13].

The flexibility and scalability of GST have led to its
increasing application in environmental engineering. Studies
have used GST to analyze water quality [14], assess en-
vironmental impacts [15], or uncertain environments [16].
Among its techniques, grey clustering has gained attention
for its capacity to classify environmental conditions using
minimal but representative datasets [17]. These models assign
qualitative categories (for example, “Good”, “Unhealthy”) to
pollution levels by mapping quantitative indicators through tri-
angular membership functions, allowing intuitive yet rigorous
environmental assessments [18].

In recent years, the integration of GST with entropy weight-
ing, fuzzy logic, and multi-criteria decision making (MCDM)
has further expanded its utility, particularly in complex sce-
narios with multiple and overlapping pollution sources [19],
[20], [21]. Such hybrid models offer enhanced classification
accuracy and robustness, particularly in urban areas where
pollution is influenced by dynamic factors such as traffic,
industry, and meteorology [22].

Given these advantages, this study develops and applies
an algorithm based on the Central Triangular Whitenization
Weight Function (CTWF), a specific grey clustering model, to
classify historical air quality conditions in Northern Lima over
an eight-semesters period (2011 to 2019). Drawing on publicly
available concentration data for four primary pollutants (PM10,
SO2, NO2, and CO), the grey clustering algorithm (CTWF) en-
ables a structured multi-criteria classification aligned with na-
tional Environmental Quality Standards (EQS). This method-
ological framework is particularly valuable in urban settings
like Lima, where technical and governance constraints limit
the use of conventional monitoring infrastructure.

Therefore, this work pursues two main objectives:

• To develop a grey clustering algorithm (CTWF) to
classify urban air quality; and

• To evaluate the performance of the algorithm through
a case study in Lima, Peru.

Overall, this study contributes to applied environmental
engineering by demonstrating how intelligent clustering tools
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like CTWF can support monitoring, analysis, and decision-
making in urban environments where conventional systems
fall short. Its methodological simplicity and replicability also
position it as a practical tool for use in similar data-constrained
urban contexts globally.

This study is organized as follows: Section I provides the
introduction. In Section II, the grey clustering algorithm is
presented. In Section III, the case study is developed and in
Section IV the results are discussed. Finally, in Section V the
conclusions are presented.

II. GREY CLUSTERING ALGORITHM

In this section the grey clustering algorithm for air quality
classification, based on CTWF, is developed.

A. Definition

First, to develop the grey clustering algorithm (CTWF), the
following components are defined:

• Study object m study objects are defined O1, O2, O3,
..., Om

• Criteria n criteria are defined C1, C2, C3, ..., Cn

• Grey classes s grey classes are defined S1, S2, S3, ...,
Ss

B. Algorithm Structure and Computational Steps

The steps of the algorithm proposed in this work are
detailed below [14]:

1) Step 1 – Center-point determination: The center-points
of the s grey classes are determined, the sequence of the center-
points is: µ1, µ2, µ3, ..., µs.

2) Step 2 – Data normalization: The center-points of the
grey classes, for each criterion, are normalized using Eq. (1):

λs =
µs

ȳs
(1)

where, ȳs is the mean of the center-points of grey classes
for each criterion. Then, the sample data (Xij) are normalized
using Eq. (2):

xij =
Xij

ȳs
(2)

3) Step 3 – Membership function (CTWF): Each nor-
malized value is transformed into a triangular membership
function centered at a reference class midpoint, as shown in
Fig. 1 and Eq. (3) to Eq. (5):

Fig. 1. CTWF graphical representation.

f1
j (xij) =


0, x /∈ [0, λ2]

1, x ∈ [0, λ1]
λ2 − x

λ2 − λ1
, x ∈ [λ1, λ2]

(3)

fk
j (xij) =


0, x /∈ [λk−1, λk+1]
x− λk−1

λk − λk−1
, x ∈ [λk−1, λk]

λk+1 − x

λk+1 − λk
, x ∈ [λk, λk+1]

(4)

fs
j (xij) =


0, x /∈ [λs−1,+∞)
x− λs−1

λs − λs−1
, x ∈ [λs−1, λs]

1, x ∈ [λs,+∞)

(5)

4) Step 4 – Criteria weight calculation: Relative weights
are assigned to each criterion using Eq. (6) [23].

ηkj =

1

λk
j∑m

j=1

1

λk
j

(6)

5) Step 5 – Grey clustering coefficient computation: Clus-
tering coefficients are calculated for each study object and grey
class, integrating both the CTWF value and the corresponding
weight of each criterion by Eq. (7):

σk
j =

m∑
j=1

fk
j (xij) · ηkj (7)

6) Step 6 – Final classification: Each study object is
assigned to the grey class with the highest clustering coefficient
using Eq. (8):

σk∗

j = max
1≤k≤s

{
σk
j

}
(8)
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III. CASE STUDY IN LIMA, PERU

Lima, the capital of Peru, is a coastal mega-city of over ten
million inhabitants and is among the most air-polluted cities in
South America [24]. Characterized by high vehicular density,
poor atmospheric dispersion, and unregulated urban growth,
Lima’s air pollution is driven largely by emissions from the
transportation sector and informal waste burning.

The northern districts of Lima, including Comas,
Carabayllo, Los Olivos, San Martı́n de Porres, and Puente
Piedra, exemplify these challenges. These areas combine high
residential density with commercial corridors and are under
constant urban expansion. Meteorological conditions such as
thermal inversion and limited wind flow further exacerbate
pollutant accumulation [25]. Urban infrastructure and envi-
ronmental monitoring are weaker in these districts, which
are often socioeconomically marginalized and environmentally
underserved [26]. The evaluation of this air quality study was
carried out in metropolitan Lima, specifically in northern Lima,
in Los Olivos district, as shown in Fig. 2.

Fig. 2. Location of the study area.

A. Application of the Definition

The components for the case study were defined as follows:

1) Study object: Eight study objects were defined accord-
ing to the semesters studied from 2001 to 2019 years. The
study objects are presented in Table I .

2) Criteria: Four criteria were studied. The definition of
these criteria was based on air pollution parameters, consid-
ering the following main pollutants: PM10, SO2, NO2, and
CO. The collected data (in µg/m3) for each study object are
presented in Table I [27].

3) Grey classes: Four grey classes were defined, based on
Peru’s Environmental Quality Standards (EQS) for PM10, SO2,
NO2, and CO parameters, as shown in Table II [28].

B. Application of Algorithm steps

The steps of the algorithm proposed in this work were
applied to the case study as shown below:

TABLE I. STUDY OBJECTS, CRITERIA, AND MONITORING DATA

Study Object Semester PM10 (C1) SO2 (C2) NO2 (C3) CO (C4)
O1 2011-1 85.6 13.5 3.8 3.1
O2 2012-1 134.2 11.8 3.7 2.6
O3 2013-1 117.8 13.0 156.0 1809
O4 2014-1 143.2 12.15 78.35 600
O5 2015-1 165.4 13.0 45.46 1599
O6 2016-1 100.56 13.0 66.81 600
O7 2018-1 99.12 12.15 8.75 652
O8 2019-1 95.48 13.0 3.33 600

TABLE II. GREY CLASSES OF THE CASE STUDY

Air Quality Level Range (µg/m3) Grey Class
PM10 (C1)

Good 0–75 S1
Moderate 76–150 S2

Unhealthy for sensitive groups 151–250 S3
Unhealthy 251–350 S4

SO2 (C2)
Good 0–20 S1

Moderate 21–80 S2
Unhealthy for sensitive groups 81–500 S3

Unhealthy 501–920 S4
NO2 (C3)

Good 0–100 S1
Moderate 101–200 S2

Unhealthy for sensitive groups 201–300 S3
Unhealthy 301–400 S4

CO (C4)
Good 0–5000 S1

Moderate 5001–10000 S2
Unhealthy for sensitive groups 10001–15000 S3

Unhealthy 15001–20000 S4

1) Step 1: From Table II, the center-points of the four grey
classes, in each criterion, were determined. The results are
presented in Table III.

TABLE III. CENTER-POINTS OF THE GREY CLASSES

Class C1 C2 C3 C4
(PM10) (SO2) (NO2) (CO)

S1 37.5 10.0 50.0 2500.0
S2 113.0 50.5 150.5 7500.5
S3 200.5 290.5 250.5 12500.5
S4 300.5 710.5 350.5 17500.5

2) Step 2: From Table III, the center-points of the grey
classes, for each criterion, were normalized using Eq. (1). The
results are presented in Table IV.

TABLE IV. NORMALIZED VALUES FOR GREY CLASSES

Criterion λ1 λ2 λ3 λ4

C1 0.230 0.694 1.231 1.845
C2 0.038 0.190 1.095 2.677
C3 0.250 0.751 1.250 1.749
C4 0.250 0.750 1.250 1.750

Then, from Table I , the sample values, for each criterion,
were normalized using Eq. (2). The results are presented in
Table V.

3) Step 3: Each normalized value was transformed into a
triangular membership function centered at a reference class
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TABLE V. NORMALIZED VALUES FOR SAMPLE VALUES

Study Object C1 C2 C3 C4

O1 0.526 0.051 0.019 0.000
O2 0.824 0.044 0.018 0.000
O3 0.723 0.049 0.779 0.181
O4 0.879 0.046 0.391 0.060
O5 1.016 0.049 0.227 0.160
O6 0.617 0.049 0.333 0.060
O7 0.609 0.046 0.044 0.065
O8 0.586 0.049 0.017 0.060

midpoint by Eq. (3) to Eq. (5). The equations were then
synthesized and adapted to the four grey classes, resulting in
the following base Eq. (8) to Eq. (11).

f1
j (xij) =


0, x /∈ [0, λ2]

1, x ∈ [0, λ1]
λ2 − x

λ2 − λ1
, x ∈ [λ1, λ2]

(8)

f2
j (xij) =


0, x /∈ [λ1, λ3]
x− λ1

λ2 − λ1
, x ∈ [λ1, λ2)

λ3 − x

λ3 − λ2
, x ∈ [λ2, λ3]

(9)

f3
j (xij) =


0, x /∈ [λ2, λ4]
x− λ2

λ3 − λ2
, x ∈ [λ2, λ3)

λ4 − x

λ4 − λ3
, x ∈ [λ3, λ4]

(10)

f4
j (xij) =


0, x /∈ [λ3,+∞)
x− λ3

λ4 − λ3
, x ∈ [λ3, λ4)

1, x ∈ [λ4,+∞)

(11)

The values from Table IV and Table V were then substi-
tuted into Eq. (8) to Eq. (11). As an example, the results of
O1 study object are presented in Table VI.

TABLE VI. CTWF VALUES FOR STUDY OBJECT O1

Function C1 C2 C3 C4

f1
j 0.362 0.914 1.000 1.000

f2
j 0.638 0.086 0.000 0.000

f3
j 0.000 0.000 0.000 0.000

f4
j 0.000 0.000 0.000 0.000

4) Step 4: From Table IV, the criteria weights were cal-
culated using Eq. (6). The results obtained are presented in
Table VII.

TABLE VII. WEIGHT OF EACH CRITERION

Criterion λ1 λ2 λ3 λ4

C1 0.11 0.15 0.24 0.26
C2 0.68 0.56 0.27 0.18
C3 0.10 0.14 0.24 0.28
C4 0.10 0.14 0.24 0.28

5) Step 5: Clustering coefficients were calculated for each
study object and grey class using Eq. (7). As an example, the
results obtained for O1 study object are presented in Table VIII.

TABLE VIII. CLUSTERING COEFFICIENTS FOR O1

Function C1 C2 C3 C4 Coeff.
f1
j 0.362 0.914 1.000 1.000 0.861

f2
j 0.638 0.086 0.000 0.000 0.144

f3
j 0.000 0.000 0.000 0.000 0.000

f4
j 0.000 0.000 0.000 0.000 0.000

6) Step 6: Each study object was assigned to the class with
the highest clustering coefficient, using Eq. (8). The results of
maximum value of clustering coefficient for each study object
are presented in Table IX.

TABLE IX. MAXIMUM VALUES OF THE CLUSTERING COEFFICIENT

Semester λ1 λ2 λ3 λ4 Max.
2011-I 0.861 0.144 0.000 0.000 0.861
2012-I 0.853 0.136 0.058 0.000 0.853
2013-I 0.731 0.314 0.026 0.000 0.731
2014-I 0.816 0.167 0.083 0.000 0.816
2015-I 0.831 0.100 0.144 0.000 0.831
2016-I 0.833 0.189 0.000 0.000 0.833
2018-I 0.864 0.152 0.000 0.000 0.864
2019-I 0.857 0.155 0.000 0.000 0.857

IV. RESULTS AND DISCUSSION

The results and discussion, according to specific objectives
in this work, are presented below:

A. Significance of the Grey Clustering Algorithm

This work contributes meaningful insights, both in theory
and in practice, for classifying air quality in uncertain con-
ditions. By applying the grey clustering algorithm (CTWF),
which is based on the grey systems theory, it offers a flexible
and adaptable way to classify air quality, especially in places
where data are limited, a situation often seen in Latin American
cities [24].

In addition, the grey clustering algorithm (CTWF) brings
several practical advantages that make it highly applicable for
managing air quality, as shown below:

• It delivers consistent and trustworthy results, even
when working with small datasets or limited infor-
mation, which is particularly useful for cities lacking
extensive monitoring infrastructure [16].

• Unlike traditional air quality indices that typically
reflect only the worst pollutant, the grey clustering
algorithm (CTWF) provides a more complete picture
by incorporating all measured pollutants into the eval-
uation [11].

• The use of triangular membership functions produces
results that are easier to interpret for both technical
experts and policymakers [14].

However, the grey clustering algorithm (CTWF) presents
some limitations for considering, as shown below:
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• It is focused on classification rather than prediction.
Therefore, it needs to be complemented to design for
forecasting or proactive environmental planning.

• It relies on predefined categories and thresholds, which
can introduce some level of subjectivity into the
analysis.

• While this algorithm used a specific method for
weighting the importance of criteria, using different
weighting schemes could lead to different classifica-
tion outcomes [29].

Despite these limitations, this algorithm stands out as a
robust and adaptable tool for analyzing how air quality changes
over space and time. Its simplicity and resilience in contexts of
uncertainty or limited information make it a valuable resource
for environmental planning in fast-growing urban areas.

B. Performance of Algorithm in the Case Study

The grey clustering algorithm (CTWF), was implemented
to classify air quality levels in Lima, Peru, over an eight-
semester period from 2011 to 2019. The analysis was based
on the concentration levels of four primary pollutants: PM10,
SO2, NO2, and CO. This classification relied on the calculation
of grey clustering coefficients for each semester, allowing
for an integrated assessment aligned with Peru’s national
Environmental Quality Standards (EQS).

As shown in Table IX, all semesters analyzed were catego-
rized as “Good”, with λ1 clustering coefficients exceeding the
0.70 threshold. The highest air quality was recorded during the
first semester of 2018, with a λ1 value of 0.864. In contrast,
the lowest value within the “Good” range was observed in
the first semester of 2013, registering a λ1 of 0.731. These
findings suggest moderate seasonal variation, but an overall
trend of compliance with national air quality standards.

Fig. 3 illustrates the temporal evolution of clustering coef-
ficients. A gradual improvement in air quality is evident after
2016, likely reflecting the impact of stricter emissions regula-
tions implemented in Lima’s transportation sector. Conversely,
the lowest λ1 scores—ranging from 0.73 to 0.76—were ob-
served during the first three semesters (2011-I to 2013-I),
possibly due to the expansion of the vehicle fleet and increased
industrial activity during that period [30].

Fig. 3. Temporal evolution of air quality from 2011 to 2019.

To explore the behavior of individual pollutants, Fig. 4
presents a disaggregated analysis derived from the grey clus-
tering results. Among all measured parameters, PM10 (C1)

consistently recorded the lowest clustering values through-
out the study period. In particular, during the first semester
of 2013, NO2 levels dropped below a clustering coefficient
of 0.3, indicating poor air quality even though the overall
classification remained within the “Good” category. These
findings reinforce the characterization of PM10 as Lima’s most
persistent pollutant, primarily due to road dust re-suspension
and emissions from diesel-powered vehicles [31].

Fig. 4. Disaggregated results trends by pollutant from 2011-1 to 2019-1.

In contrast, CO (C4) consistently recorded the highest grey
clustering values—often above 0.9—indicating minimal health
risk. Meanwhile, SO2 (C2) and NO2 (C3) showed moderate but
stable trends. Their lower values during 2012 to 2013 may be
linked to increased traffic emissions and reduced atmospheric
dispersion capacity during dry seasons [6].

These temporal and pollutant-specific trends confirm the
grey clustering algorithm (CTWF) strength in delivering com-
prehensive multi-criteria air quality assessments, even under
conditions of uncertainty and limited information.

V. CONCLUSION

First, this work demonstrates that the grey clustering al-
gorithm (CTWF) offers a practical and adaptable solution
for classifying urban air quality under uncertain and limited
information. Its capacity to integrate multiple pollutants high-
lights its suitability for real-world urban environments with
restricted monitoring infrastructure. By enabling structured and
interpretable assessments, the algorithm provides a reliable
alternative to traditional models, contributing to more informed
and inclusive environmental management strategies.

As a second key finding, the grey clustering algorithm
not only enabled classification but also uncovered distinct
pollutant-specific trends that would be masked by aggregated
indices. While all periods met national “Good” air quality
standards, disaggregated analysis revealed PM10 as the most
recurrently critical pollutant, particularly in high-traffic and
industrial areas. CO maintained consistently low risk levels,
while SO2 and NO2 showed moderate but stable variability.
Notably, a gradual improvement in air quality after 2016
suggests early effects of emissions control measures, although
inconsistent enforcement likely limits their full potential. These
insights underscore the value of multi-indicator, temporally
sensitive approaches in supporting more nuanced and targeted
environmental policy.

Finally, future research could expand the grey clustering
algorithm (CTWF) by integrating meteorological variables
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such as wind speed, temperature, and humidity to better
contextualize seasonal pollution trends. The use of predictive
grey models like GM(1,1) may strengthen early warning ca-
pabilities, while incorporating pollutants such as PM2.5 and
ozone would improve health relevance. Combining CTWF
with satellite-derived data could further enhance its spatial
resolution and support its application in regional planning. As
urban centers continue to grow under constrained conditions,
grey modeling offers a promising pathway for more resilient
and inclusive environmental governance.
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