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Abstract—The resilience of stingless bee colonies has become 

increasingly challenged by erratic climate conditions and 

intensified environmental stressors. While previous studies have 

introduced diagnostic models for monitoring colony health, most 

remain constrained by a narrow reliance on either environmental 

or behavioral parameters alone. This study proposes a refined 

diagnostic model that builds on existing frameworks and is 

further shaped by expert insights from the field. The model 

integrates environmental inputs, specifically temperature and 

humidity, with behavioral activity detected via video analysis to 

deliver a multi-dimensional assessment of colony status. Through 

a structured review of the literature and interviews with 

apiculture experts, we identify critical gaps in conventional 

systems and translate those findings into a more responsive and 

field-deployable architecture. The result is an improved model 

capable of categorizing colony health with greater sensitivity and 

clarity, designed to support early intervention and long-term 

monitoring. The model is visualized through comparative 

schematic diagrams, showing the evolution from a basic 

environmental-only logic to a more holistic decision-making 

system. 
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I. INTRODUCTION 

Stingless bees are considered one of the most important 
pollinators in tropical and subtropical regions [1]. They can 
help in sustaining crop production and balancing ecological 
systems [2], especially in areas where traditional pollinators 
like honeybees are in decline. Unlike other bees, stingless bees 
are more adaptable and are kept in small-scale meliponiculture 
farms for honey, pollen, and propolis. The existence and health 
of these colonies impact not only biodiversity but also the 
economic welfare of rural populations who rely on these 
products. 

Nonetheless, the existence of stingless bee colonies is 
increasingly threatened by sudden environmental changes, such 
as erratic temperature changes, long periods of high humidity, 
and habitat destruction [3]. These stressors often weaken 
colonies and, in more extreme cases, can lead to colony 
collapse disorder, in which bees suddenly and inexplicably 
abandon the hive. 

The most common approach to assess the colonies’ health 
remains manual inspection. These methods usually require 
opening the hive and examining stores of food, brood patterns, 
and bee activity; however, frequent inspections are invasive 
and can disturb the colony’s microclimate and social 
thermoregulation, thereby increasing stress on the colony. 
Moreover, manual checks are typically episodic and depend on 
the observer’s experience and judgment, making them 
subjective and prone to inconsistency; as a result, important 
early-warning signals may be missed or detected late. Recent 
reviews, therefore, highlight the growing role of non-invasive, 
sensor-based precision-beekeeping and AI methods as 
complementary tools to reduce disturbance and provide 
continuous, objective monitoring [4], [5], [6], [7]. 

To address these problems, technological solutions have 
been gradually integrated into beekeeping to enable more 
continuous and less invasive monitoring. However, many 
existing precision-beekeeping systems primarily rely on a 
narrow set of environmental parameters, most commonly in-
hive and ambient temperature, humidity and sometimes hive 
weight, measured by simple sensors. While these indicators are 
valuable for assessing thermostatically performance and colony 
strength, they do not directly capture behavioral responses such 
as reduced movement, altered foraging flux, entrance traffic 
changes, or other anticipatory actions that can precede overt 
environmental shifts. Consequently, systems that omit 
behavioral dimensions are limited in their ability to detect early 
warning signals and critical precursors of colony stress; recent 
literature therefore recommends integrating video, audio, 
weight and advanced pattern-recognition methods to improve 
early diagnostics [8], [9], [10]. 

Existing stingless bee monitoring systems predominantly 
focus on either environmental sensing or activity observation 
in isolation. Environmental-only systems therefore provide 
useful information about nest microclimate or mass balance, 
but they are limited in detecting early behavioral responses, 
such as changes in movement, entrance traffic, or foraging 
flux, that often precede measurable environmental shifts. 
Conversely, behavior-only approaches (camera or acoustic 
monitoring) typically lack concurrent environmental context, 
which complicates interpretation of causal drivers. In addition, 
many operational threshold values and alarm rules have been 
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inherited or adapted from Apis-centric studies without 
systematic validation for Meliponini species, reducing 
predictive accuracy when applied to stingless-bee colonies in 
varied ecological settings. Finally, several deployed systems 
use monolithic, fixed architectures that are difficult to extend to 
additional sensor modalities or site-specific calibration, 
constraining adaptability across management regimes and 
habitats. Recent reviews and empirical studies, therefore, 
recommend multimodal, modular monitoring architectures and 
species-specific validation of thresholds to improve early-
warning performance for stingless bee management [11], [12], 
[13], [14]. 

The motivation for this research arises from the need to 
bridge these gaps through an integrated, adaptable, and 
empirically validated diagnostic framework. This study 
proposes a model that combines temperature and humidity 
monitoring with automated behavioral analysis using computer 
vision, refined through expert consultation to ensure parameter 
thresholds align with local field realities. By embedding the 
system within a modular architecture, it supports future 
expansion to include additional environmental or behavioral 
indicators as required by practitioners. 

This study aims to address the following research 
questions: 

1) How can environmental monitoring and bee activity 

analysis be integrated into a unified diagnostic framework for 

stingless bee colony health? 

2) What key environmental and behavioral parameters are 

critical to accurately classify colony health status? 

3) How can expert validation be incorporated to refine the 

model and enhance its practical applicability in real-world 

beekeeping? 

The remainder of this study is organized as follows: Section 
II reviews relevant literature on stingless bee monitoring 
systems and related technologies. Section III presents the 
proposed initial model, outlining its structure and components. 
Section IV describes the expert review process and the 
subsequent model refinements. Section V reports the results 
and analysis of expert feedback. Section VI discusses the 
findings, identifies limitations, and suggests directions for 
future research. Section VII concludes the study. 

II. LITERATURE REVIEW 

The deterioration in stingless bee health is frequently 
signaled by declining population levels, decreased foraging 
activity, and irregular behavioral patterns. These symptoms 
often result from the complex interplay between environmental 
disturbances and biological stress [1]. Fluctuating temperature 
and humidity, increasing pollutant exposure, and unpredictable 
climate variability have been identified as key contributors to 
destabilizing colony health. As an example, sudden 
temperature fluctuations can disrupt bees’ navigation systems, 
causing lower foraging efficiency and disorientation on the 
way back to the hive [15]. Pesticides and heavy metals 
introduced to the food chain further weaken immune systems, 
diminishing the vitality of colonies [3]. 

Due to this ecological fragility, stingless bees are viewed as 
effective indicator of broader environmental changes. Among 
all environmental variables, temperature is by far the most 
important. It controls the metabolic rate, enzyme activity, and 
developmental processes within colonies. Departures from 
ideal temperature ranges either above or below will disturb 
normal physiological functions, impair social cohesion, and 
increase susceptibility to infections [16]. Excessive heat can 
cause high water loss, energy loss, and loss of internal hive 
control, while the cold slows metabolism and essential cleaning 
tasks vital to hygiene. At the same time, relative humidity 
affects the microclimate important for rearing brood and for the 
integrity of wax. These reasons explain why the parameters are 
considered essential indicators for assessing the impact of 
human activity on the environment and monitoring the health 
of the colony. 

Monitoring of stingless bees has improved with the 
incorporation of technology. Real-time environmental 
monitoring, such as the Internet of Things (IoT), can utilize 
temperature, humidity, gas, and even sound sensors to check 
on health systems [17]. Though these sensor technologies 
facilitate continuous monitoring, early detection of risks, and 
automated data collection, their practical application is still 
hampered by significant obstacles like integration difficulties, 
drifting sensors, and unreliable power supplies. 

Modeling environmental risks has received great focus 
because of its ability to predict. Many models combine several 
environmental factors like temperature, humidity, and air 
conditioning to create risk assessment models that can provide 
dynamic alerts and automation in decision-making [18]. 
Advanced computation methods, like statistical methods and 
machine learning, have developed these models. Even with the 
availability of data, there is still a challenge in creating usable 
models that are interpretable for the field in different ecological 
contexts. In response, recent systems have integrated web-
based dashboards for real-time sensor data visualization using 
Flask and similar frameworks [19]. While these platforms 
improve usability, their performance depends on reliable 
connectivity, efficient data processing, and interface 
responsiveness, areas still under active development [20]. 

Growing interest in bee rehabilitation has driven parallel 
innovation in system architectures. Several projects have 
applied LoRa communication protocols to enable wide-area 
data collection in low-power field settings [21]. Predictive 
frameworks based on real-time sensor data have also been 
proposed to mitigate health risks [22]. Beyond colony-level 
monitoring, studies on plant resource availability underscore 
the broader ecological factors affecting bee behavior and 
resilience [23]. A system-based approach for understanding 
colony decline recommends modeling across behavioral, 
environmental, and management layers [24], aligning well with 
recent IoT-enabled diagnostic platforms [25]. 

Stingless bee research increasingly emphasizes smart hive 
solutions. Low-cost microcontrollers combined with DHT22 
temperature sensors and weight modules have formed the basis 
for continuous environmental assessment [26]. Additionally, 
machine learning applications have been used to analyze health 
signals and optimize colony management based on predictive 
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patterns [27]. Environmental data streams, including 
microclimate, hive weight, and diurnal cycles, are now 
routinely collected to inform health assessments and enhance 
productivity [28]. 

Swarm detection and motion analysis have also evolved 
through radar-based systems capable of capturing flight 
frequency and trajectory with high precision [29]. Computer 
vision applications, particularly those using YOLO-based 
object detection, offer automated monitoring of colony 
entrances, detecting forager numbers, pollen load, and potential 
threats such as varroa mites [30]. In Brazil, stingless bee 
monitoring has been strongly aligned with ecological 
preservation and economic sustainability, driving the 
integration of IoT infrastructure with policy support [2]. 
Simultaneously, lightweight and modular systems, often 
relying on open-source hardware such as Arduino and 
ESP8266, continue to play a central role in decentralized 
deployments [31]. 

Further efforts have RFID-based data collection for 
evaluating pesticide exposure, which remains one of the most 
pressing threats to pollinator viability [32]. Policy 
recommendations increasingly emphasize the need for 
regulatory frameworks that ensure sustainable beekeeping 
practices while supporting the adoption of digital technologies 
[33]. In this context, wireless systems for tracking hive 
parameters, such as temperature and honey yield, are proving 
vital to optimizing production strategies [17],[22]. RFID also 
supports individual bee tracking, facilitating more nuanced 
behavioral research [34]. 

Integrated systems such as HiveLink [35] and 
IntelliBeeHive [36] illustrate how visual data, sensor readings, 
and AI analytics can converge to offer non-invasive, real-time 
diagnostic support. These systems demonstrate how timely 
insights can reduce colony loss and improve beekeeper 
response. Complementing this direction, Liang [37] proposed a 
hybrid vision-audio health evaluation model that achieved over 
92% classification accuracy, showing particular promise in 
low-light or acoustically active environments. 

Recent developments emphasize not only precision but also 
environmental breadth. Real-time monitoring solutions now 
include air quality indices such as CO₂, NH₃, and NOx 
concentrations measured through LoRa networks [38]. The 
iBees system, for instance, integrates GPS, thermal, and 
humidity tracking with cloud-based storage for production 
optimization [39]. Rosli et al. [40] further expanded this design 
with the addition of weighing and pressure sensors for hive 
condition profiling. These solutions highlight the continuous 
evolution of intelligent beekeeping, reflecting growing 
demands for accuracy, usability, and adaptability in diagnostic 
system design. 

Finally, diagnostic expert systems like MoViCES, paired 
with mobile diagnostic tools such as Dr. Kelulut, reflect a 
broader shift toward accessible, user-centric tools built on the 

Model-View-Controller paradigm [41]. These platforms enable 
real-time hive inspection using embedded borescopes and 
interface logic designed to support non-expert users. Together, 
these technological pathways form the basis for next-
generation diagnostic systems aimed at securing stingless bee 
populations through adaptive, evidence-driven monitoring. 

III. PROPOSED INITIAL MODEL 

Compared to existing stingless bee monitoring approaches, 
which typically focus on either environmental sensing or 
activity observation in isolation, this study proposes an 
integrated diagnostic model that combines environmental 
parameters (temperature and humidity) with behavioral 
indicators (bee entry/exit frequency). This dual-source data 
approach enables earlier and more reliable detection of colony 
stress. Additionally, the classification thresholds are not 
arbitrarily set; they are refined through expert consultation, 
ensuring that the system aligns with practical field conditions. 
The architecture is designed with modularity and scalability in 
mind, allowing the integration of additional sensors in future 
iterations. This combination of environmental–behavioral 
integration, expert-validated thresholds, and expandable 
architecture addresses key limitations in existing systems and 
enhances applicability for real-world meliponiculture. 

The environmental parameters, such as temperature and 
humidity, are widely acknowledged as primary indicators of 
hive conditions. In early-stage research and prototype planning, 
these two variables were selected as the core inputs for the 
proposed diagnostic framework. The rationale behind this 
choice was twofold: first, temperature and humidity sensors are 
readily available at low cost, and second, these environmental 
metrics directly influence key biological processes within the 
stingless bee colony, including brood development, foraging 
efficiency, and thermoregulation. 

In addition to monitoring environmental parameters, the 
proposed system integrates a behavioral-monitoring module to 
quantify colony activity. A video camera is placed at the hive 
entrance to capture continuous footage of bee traffic. Recorded 
video is processed with a YOLO-based object detection 
algorithm to identify and count individual bees per frame. 
These counts are aggregated over time to generate an activity 
index that reflects foraging and hive-traffic dynamics. 
Significant deviations from the colony’s baseline activity, such 
as sudden drops in bee traffic during normally busy foraging 
periods, can signal environmental stressors, disease onset, or 
other disruptions. By integrating this behavioral stream with 
environmental temperature and humidity data, the system 
achieves enhanced sensitivity in detecting early-warning signs 
that may not manifest in environmental parameters alone 
[42],[43],[44],[45]. 

The conceptual model, as shown in Fig. 1, hereafter 
referred to as the Proposal Model, was designed to accept 
temperature and humidity readings, compare them against 
defined thresholds, and generate a basic health classification 
for the colony. The output is presented in one of three health 
categories: Healthy, Medium-Healthy, and Least-Healthy, each 
represented by a range of percentage scores (71 to 100%, 30 to 
70%, and 0 to 29%, respectively). This scoring range is 
intended to give beekeepers an intuitive understanding of their 
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colony’s status, without requiring specialized knowledge to 
interpret raw sensor data. 

 

Fig. 1. The conceptual model. 

The system begins with environmental sensing units placed 
within or adjacent to the hive. Two major environmental 
factors are processed: 

Temperature: measurements beyond 25℃ to 34℃ are not 
optimal. Temperatures over 35℃ may lead to overheating of 
the brood and a reduction in the activity of worker bees. On the 
other hand, slowing metabolism and foraging are risks at 
temperatures below 20℃ [46]. 

Humidity: fostering fungal growth may occur with 
excessive humidity over 75%, whereas below 50% contributes 
to desiccation of the brood and pollen stores [47]. 

The three health categories: Healthy (71 to 100%), 
Medium-Healthy (30 to 70%), and Least-Healthy (0 to 29%), 
were calibrated based on optimal temperature and humidity 
ranges for stingless bee colonies reported in previous studies. 
Published data indicate that brood development and colony 
stability are best maintained within 25 to 34 ℃ and 60 to 85% 
relative humidity. These threshold values were further refined 
through consultation with six domain experts, incorporating 
observational data from two local meliponiculture sites. The 
combination of literature-based ranges and expert validation 
ensures that the classification rules reflect both empirical 
evidence and local field conditions, thereby improving 
diagnostic reliability and reducing false alerts. 

Once inputs are captured, the model uses a rule-based 
approach to capture deviation from the optimal range. Each 
input is assessed individually. In the case that both parameters 
reside within the defined safe zone, the model outputs a 
Healthy classification. If one variable deviates while the other 
is acceptable, the system designates the colony as Medium-
Healthy. If both exceed warning thresholds, the system marks 
the colony as Least-Healthy, indicating it is at risk and requires 
closer examination. 

This system makes it possible to track and analyze health 
status over time. Data from multiple time points can be 
collected to map out and analyze defined changes over time. 
For example, persistent classification as Medium-Healthy 
signals potential unaddressed stress that, if unaddressed, could 
result in sudden collapse. 

Even though the Proposal Model is easy to use and 
understand, it has some limitations. It considers the relationship 
between the environment and the colony as fixed and therefore 
oversimplifies complex systems. It does not account for minor 
shifts in temperature or even the tiny changes in the 
environment that bees respond to, such as clustering or 
fanning. Moreover, environmental parameters do not 
sufficiently depict the internal processes of the colony, 
especially in the case of behavioral cues signaling distress long 
before temperature or humidity changes can be detected. 

Moreover, external environmental conditions could alter 
humidity and temperature readings temporarily, which might 
activate distress signals. This reinforces the need for a system 
that goes beyond environmental inputs and considers the cross-
validation of the signals with behavioral indicators, such as 
activity and resting rhythms, foraging habits, and motion 
density around hive entrances. 

Understanding these limitations, the next section 
incorporates expert feedback to explain how precisely their 
input was used to improve the model. These insights induced a 
number of changes that resulted in the creation of the more 
thorough behavior-inclusive, diagnostic model framework. 

IV. EXPERT REVIEW AND MODEL REFINEMENT 

A. Purpose of Expert Review 

Prior to field deployment, it is essential for diagnostic 
models to undergo validation not only through technical testing 
but also via theoretical scrutiny by domain experts. The 
purpose of conducting an expert review at this development 
stage is to evaluate the conceptual soundness, structural 
feasibility, and practical applicability of the proposed 
environmental diagnostic model. Expert feedback helps 
uncover blind spots, refine assumptions, and ensure that system 
design aligns with the operational context of stingless bee 
rehabilitation. 

B. Expert Panel and Review Scope 

A panel of six domain experts was assembled, selected 
based on their academic and applied experience in the fields of 
meliponiculture, environmental monitoring, and system 
modeling. Each expert was invited to participate in a structured 
review process using a detailed questionnaire. 

The scope of the review encompassed four functional 
aspects of the model: the conceptual framework linking 
environmental variables to colony health, the diagnostic 
module responsible for classification based on sensor data, the 
behavioral monitoring module enhanced by object detection, 
and the system architecture including modularity, scalability, 
and usability. 

C. Review of Instrument Design 

The expert review was conducted using a structured 
questionnaire designed to support both quantitative assessment 
and qualitative feedback. The instrument was organized into 
four sections, aligned with the functional modules of the 
model. Each section included closed-ended items on a three-
point Likert scale: "Agree, no modification", "Agree, with 
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modification", and "Disagree", as well as open-text fields to 
capture elaborative suggestions. 

The questionnaire design was informed by validation 
practices in information systems and agricultural technology 
research. Particular attention was paid to clarity, neutral 
phrasing, and accessibility across disciplinary backgrounds. 

1) Conceptual framework: Evaluates the theoretical basis 

of the model, particularly its capacity to represent the 

relationship between environmental stressors (temperature and 

humidity) and colony health. Items assess whether the model 

adequately reflects the real-world dynamics of stingless bee 

rehabilitation. 

2) Diagnostic module: Assesses the model environmental 

sensing component, including the use of DHT22 sensors, the 

design of health classification thresholds, and the practicality 

of data capture methods in field conditions. 

3) Behavioral monitoring module: Focuses on the 

integration of computer vision, particularly YOLO-based 

activity detection, and its relevance for monitoring early 

indicators of colony stress. 

4) System architecture: Evaluates the structure of the 

system from the perspective of modularity, upgradeability, 

and end-user usability, including questions related to interface 

logic, data separation, and adaptability to new sensors. 

The instrument emphasized ethical standards, ensuring 
expert anonymity, voluntary participation, and informed 
consent. 

D. Evaluation Criteria 

The evaluation criteria were structured to assess the 
scientific rigor, operational viability, and ecological relevance 
of the model. These included: 

1) Accuracy of environmental variable selection: Whether 

temperature and humidity sufficiently capture key influences 

on stingless bee colony health. 

2) Diagnostic reliability: Ability of the classification 

module to process sensor data, apply thresholds, and produce 

actionable health scores. 

3) Behavioral analysis validity: Effectiveness of the 

activity detection scheme and its adaptability to field 

conditions. 

4) System modularity and scalability: Capacity for future 

extension, and separation of functional layers (data capture, 

processing, interface). 

Experts were invited to provide improvement suggestions, 
highlight oversights, and recommend additional system 
capabilities where applicable. 

E. Questionnaire Administration and Data Collection 

Questionnaires were distributed electronically to the six 
selected experts. Each received a complete packet including a 
system overview, visual schematics of the model, and an 
explanation of the review purpose. 

The structured responses were compiled and analyzed 
thematically. Results indicated strong agreement on the model 
conceptual clarity, with minor modifications suggested for 
threshold ranges and behavior classification granularity. 

Insights gained from this review directly informed the 
revision of the improved model, ensuring that the final 
prototype is both scientifically grounded and practically 
deployable in real-world meliponiculture contexts. 

V. RESULTS AND ANALYSIS OF EXPERT FEEDBACK 

Gaining feedback through the expert review process 
revealed both the strengths and weaknesses of the 
environmental diagnostic model. The systematic evaluation 
and open-ended commentary provided by six experts in the 
domain allowed for the appraisal of the model integrity, 
feasibility, and technical scope. Their responses were crucial to 
the refinement process of the model which took place prior to 
prototyping and implementation. 

In summary, specialized consensus recognized that 
temperature and humidity are the crucial parameters for the 
well-being of stingless bee colonies. Focus group members 
argued that there exists sufficient literature and empirical 
evidence—both for and field data—to support these factors as 
significant for brood survival and foraging activity. While 
some specialists proposed to study additional factors like 
pesticide, rainfall, or wind, most respondents believed that 
these inclusions would be too complex for the model, adding 
unnecessary system complexity and making data collection 
impractical. Therefore, the model was considered to have an 
adequately narrow scope for its initial phase while still 
allowing for these additional factors to be included in later 
revisions. 

Reviewers concentrated on the empirical thresholds as the 
classification logic and stressed the necessity to define these 
values more rigorously. These critiques were addressed in the 
revised model which incorporated predefined empirical ranges 
for temperature and humidity based on field study data and 
data collected at the sites. This change was made to improve 
the objectivity and transparency of the classification procedure, 
especially in the differentiation of Healthy, Medium Healthy, 
and Least Healthy. Besides the fixed boundaries, the precise 
measurement and observation nexus was simplified to integrate 
more behavioral input to strengthen classification consistency. 

The incorporation of computer vision to monitor activity 
patterns was positively received. Experts agreed that bee 
behavior often reflects underlying stress before environmental 
parameters shift dramatically. The use of YOLO-based 
movement tracking was considered a practical and innovative 
approach, provided lighting conditions and camera angles are 
well-controlled. Some experts encouraged exploring audio 
analysis in future model iterations, especially for applications 
in low-light environments or enclosed hives where visual data 
may be unreliable. 

Further feedback addressed the overall system architecture, 
particularly the modularity and potential for scalability. Experts 
viewed the separation of data collection, processing, and 
interface layers as beneficial for future upgrades. The improved 
model maintains compatibility with additional sensors and 
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analytics modules, allowing the system to evolve with user 
needs and technological advancements. 

The revised diagnostic model, presented as Fig. 2, reflects 
the collective input received through the expert review process. 
The visual representation now illustrates the integration of 
clearly defined environmental thresholds, behavior scoring 
modules, and a composite health assessment logic. While some 
expert recommendations—such as multi-factor environmental 
correlation—were deemed outside the current scope due to 
limited data availability, the model retains flexibility for 
phased development. 

 

Fig. 2. The improved diagnostic model. 

A total of six domain experts participated in the validation 
of the proposed environmental diagnostic model. The 
evaluation combined structured questionnaire items with open-
ended feedback to capture both quantitative agreement levels 
and qualitative improvement suggestions. 

Regarding environmental parameter selection, five experts 
(83%) fully agreed that temperature and humidity are the most 
critical indicators for stingless bee colony health, supported by 
literature and field experience. One expert (17%) 
recommended the inclusion of additional variables such as 
pesticide exposure, rainfall, and wind speed for future model 
iterations. 

For threshold definitions, the original model expressed 
temperature and humidity using broad qualitative categories 
(ranging from "very high" to "very low"). Based on expert 
feedback and literature review, these were replaced with 
quantitative ranges. The temperature threshold was refined to 
25℃ to 34℃, aligning with documented optimal conditions for 
brood development and adult bee activity, and narrowing the 
previous qualitative extremes to improve measurement 
precision. The humidity threshold was set to 60% to 85%, 
representing a narrowing from the broader original qualitative 
range. This adjustment reduces classification ambiguity and 
better reflects the optimal moisture conditions for maintaining 
brood health, as confirmed by preliminary site measurements. 

In terms of behavioral monitoring, all six experts (100%) 
endorsed the integration of computer vision for activity 
tracking. Four (67%) supported the use of entry/exit frequency 
and foraging intensity as primary indicators, while two (33%) 
proposed adding in-nest movement metrics for more granular 
behavioral assessment. Future work will investigate the 
feasibility of incorporating these additional in-nest movement 
metrics, as they could provide deeper insights into colony 
therm. 

On system architecture, five experts (83%) agreed that the 
modular design separating data collection, processing, and user 
interface layers supports scalability and future integration of 
additional sensors or analytics modules. One expert (17%) 
highlighted the need for detailed user interface customization 
to match local beekeeper practices. To address this, future 
work will include developing a customizable user interface 
framework that allows adaptation to different cultural, 
linguistic, and operational contexts, thereby enhancing the 
model’s usability and facilitating its broader adoption. 

Overall, the statistical results indicate strong expert 
consensus on the core environmental and behavioral 
parameters, with constructive recommendations aimed at 
refining threshold precision and expanding the behavioral 
dataset. The incorporation of these validated ranges and 
prioritized behavioral metrics into the improved model 
enhances both its scientific robustness and its practical 
applicability in real-world beekeeping contexts. 

By aligning expert opinion with empirical research and 
real-world constraints, the refinement process has strengthened 
both the diagnostic logic and the system relevance to field 
practitioners. The structured feedback not only confirmed the 
conceptual robustness of the model but also identified practical 
adjustments that improve usability, interpretability, and future 
integration potential. These insights will guide the next stage of 
model validation and system deployment. 

VI. DISCUSSION 

The integration of environmental parameters with bee 
activity data provides a holistic perspective on colony health, 
addressing limitations in traditional monitoring approaches that 
rely solely on manual observation or single data types. Expert 
feedback further supports the model’s practical feasibility, 
highlighting its potential to inform proactive interventions. 
However, the current threshold definitions remain in a 
preliminary stage, as they were derived from a combination of 
literature-based ranges and short-term data from a limited 
number of colonies under specific seasonal and geographic 
conditions. This restricted dataset may not capture variability 
due to climate, floral availability, or hive management 
practices in other regions. 

To achieve more definitive calibration, future work should 
follow a structured roadway: 1) conduct longitudinal 
monitoring across multiple colonies, seasons, and habitat types; 
2) integrate external environmental datasets (local 
meteorological data) for contextual correlation; 3) perform 
statistical sensitivity analyses to determine optimal threshold 
boundaries; and 4) validate the refined model through cross-
site field trials with independent beekeeper cohorts. This multi-
stage approach will enable the thresholds to be both 
scientifically robust and broadly applicable to diverse 
meliponiculture contexts. 

Compared to existing stingless bee monitoring systems that 
rely solely on either environmental sensors or behavioral 
observations, the proposed model delivers a more 
comprehensive health assessment by integrating both data 
sources into a unified diagnostic framework. The inclusion of 
expert-validated thresholds ensures that the classification logic 
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is both scientifically grounded and field-ready. Furthermore, 
the modular architecture allows for future upgrades, such as 
adding sound analysis, air quality sensing, or advanced 
behavioral metrics, without requiring major system redesign. 
This combination of data integration, expert refinement, and 
practical scalability enhances the model’s originality and 
applicability for sustainable stingless bee colony management 
[46], [48]. 

VII. CONCLUSION 

This study has presented the development and refinement 
of an environmental diagnostic model tailored to the health 
monitoring needs of stingless bee colonies. Recognizing the 
limitations of conventional inspection methods and single-
parameter sensing systems, the model integrates both 
environmental variables namely temperature and humidity and 
behavioral indicators derived from computer vision analysis to 
generate a composite health assessment. This multidimensional 
framework enables earlier detection of colony stress and 
delivers actionable insights in a format suitable for field 
practitioners. 

To ensure conceptual clarity and practical relevance, the 
model underwent a structured expert review involving six 
specialists across meliponiculture, environmental sensing, and 
system design. Their feedback validated the scientific basis of 
the model, affirmed the choice of key parameters, and 
highlighted important refinements, such as clearer threshold 
definitions and improved interpretability. As a result, the 
revised model incorporates empirically grounded 
environmental ranges, activity-based behavioral detection, and 
a modular architecture that supports future system 
enhancement. 

Future work will focus on deploying the system in live 
apiary environments to evaluate real-time performance, 
robustness under variable weather conditions, and end-user 
interaction feedback. In parallel, work will continue on refining 
the behavioral analysis component, exploring the use of hybrid 
vision and sound recognition to enhance accuracy in low-
visibility settings. 

In conclusion, this expert-informed environmental 
diagnostic model represents a promising step towards more 
intelligent, interpretable, and scalable monitoring tools for 
stingless bee colony rehabilitation. By combining ecological 
understanding with low-cost sensing and expert knowledge, it 
contributes not only to applied beekeeping technologies, but 
also to the broader goal of sustaining pollinator health in 
increasingly stressed environments. 
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