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Abstract—Efficient and reliable node deployment in Wireless 

Sensor Networks is crucial for optimizing coverage of the area, 

connectivity among nodes, and energy efficiency. Random 

deployment of nodes may lead to coverage gaps, connectivity 

issues and reduce network lifetime. This study proposes a hybrid 

metaheuristic approach combining a Genetic Algorithm (GA) 

and Particle Swarm Optimization (PSO) to address the 

challenges of energy-efficient and reliable node deployment. The 

GA-PSO hybrid leverages GA’s strong exploration capabilities 

and PSO’s rapid convergence, achieving an optimum stability 

between coverage and energy consumption. The performance of 

the proposed approach is evaluated against GA and PSO alone 

and the innovatory metaheuristic-based Competitive Multi-

Objective Marine Predators Algorithm (CMOMPA) across 

varying sensing ranges. Simulation results demonstrate that GA-

PSO requires 15 to 25% fewer sensor nodes and maintains 95% 

or more area coverage while maintaining connectivity in 

comparison to the standalone GA or PSO algorithm. The 

proposed algorithm also dominates CMOMPA when compared 

for long sensing and communication range in terms of higher 

coverage, improved connectivity, and reduced deployment time 

while requiring fewer sensor nodes. This study also explores key 

trade-offs in WSN deployment and highlights future research 

directions, including heterogeneous node deployment, mobile 

WSNs, and enhanced multi-objective optimization techniques. 

The findings underscore the effectiveness of hybrid 

metaheuristics in improving WSN performance, offering a 

promising approach for real-world applications such as 

environmental monitoring, smart cities, smart agriculture, 

disaster response, and IIoT. 

Keywords—Node deployment; wireless sensor networks; genetic 

algorithm; particular swarm optimization; competitive multi-
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I. INTRODUCTION 

Recently, wireless sensor networks (WSNs) emerged as a 
crucial technology for environ-mental monitoring, wildfire 
monitoring, healthcare, smart cities, flood monitoring, 
industrial automation, military surveillance, monitoring of 
infrastructure, humidity, wind, and population levels [1, 2]. 
WSNs comprise distributed sensor nodes (SNs) that collaborate 

to collect, process, and communicate the data to a central 
system called a sink node or base station (BS). These SNs are 
tiny and contain limited power resources, storage, 
communication, sensing, and processing capacity to facilitate 
real-time monitoring and decision-making of physical and 
environmental conditions of AoI [3]. The importance of WSNs 
is due to their ability to periodically detect events and 
communicate them to the BS for further processing. WSN 
architecture can be used with IoT, fog, and edge computing. 
WSNs have a varying range of applications, so it is important 
to ensure maximum area coverage and node connectivity with 
constrained resources and environmental uncertainty during 
node deployment [4]. Deployment is how to position SNs in 
optimal locations to ensure high-area coverage. An optimal 
deployment ensures enhanced event detection and reduced 
deployment cost. Approaches such as the random scattering of 
nodes or grid-based placement led to coverage gaps, energy 
holes, and sometimes network partitioning, especially in large 
WSNs [5]. 

Traditional optimization methods often fail to address the 
multi-objective nature of the problem due to the lack of 
resources and dynamic characteristics of the environments. 
Metaheuristic approaches have gained popularity due to their 
ability to explore large search spaces and provide near-optimal 
solutions. Existing optimization algorithms, including GA and 
PSO, have shown improvement in node deployment but have 
inherent limitations. GA excels at global exploration through 
crossover and mutation, but struggles with slow convergence 
and poor local refinement. On the other hand, PSO efficiently 
exploits local optima via swarm intelligence but risks 
premature convergence in complex search spaces [6, 7]. 

In this study, we propose a novel metaheuristic-based 
hybrid of the GA-PSO algorithm. Hybrid algorithms leverage 
the advantages of different optimization techniques to over-
come individual limitations. The GA-PSO begins with GA for 
a broad global search, ensuring diversity through crossover and 
mutation. The best solutions from GA are then fine-tuned using 
PSO for faster convergence. The PSO-GA starts with PSO to 
quickly identify promising regions using its quick 
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convergence, and then GA introduces diversity through 
crossover and mutation, preventing stagnation in local optima. 
GA-PSO is ideal for large, complex problems, where avoiding 
premature convergence and ensuring diverse exploration are 
critical. The algorithm employs various parameters, including 
dynamic cognitive and social weights and elitism-driven phase 
transition, to optimize node placement across varying areas. 
The main contributions of the proposed GA-PSO algorithms 
are: 

 A new method with a two-phase hybrid algorithm to 
solve the node deployment problem. The proposed 
algorithm ensures optimal area coverage while ensuring 
connectivity with minimum SNs. 

 The scalability of the proposed algorithm is 
demonstrated with consistent performance across 
varying areas from 100*100 to 500*500 meters, 
reducing node counts by 15 to 25% compared to 
standalone GA and PSO algorithms. 

 The proposed algorithm dominates the CMOMPA 
algorithm for a high sensing and communication range 
and requires less SN to ensure optimal coverage while 
maintaining connectivity. 

 The proposed algorithm ensures optimized placement of 
nodes to reduce energy consumption by minimizing 
redundant coverage overlap. 

The remainder of this study is organized as follows: Section 
II presents the background and related work. Section III 
describes the system model and problem formulation. Section 
IV introduces the proposed hybrid metaheuristic approach. 
Section V outlines the simulation and experimental setup. 
Section VI discusses the results and findings. Finally, Section 
VII concludes the study and suggests directions for future 
work. 

II. BACKROUND AND RELATED WORK 

WSNs play a major role in a wide range of applications that 
require continuous monitoring of the area in which they are 
deployed. The fundamental architecture of WSNs uses 
numerous SNs spread across the AoI to periodically sense and 
collect data, which is then transmitted to the BS either directly 
or through intermediate nodes. These intermediate nodes 
facilitate communication when SNs are too far from the BS or 
to minimize energy consumption, as direct communication 
over longer distances consumes more energy. Sometimes, SNs 
inside the AoI form a local group called cluster, and one of the 
nodes within the cluster works as a CH to perform inter and 
intra-cluster communication among SNs [1, 2]. Fig. 1 
represents a hierarchical WSN. In this research, all nodes have 
identical hardware capabilities and remain in fixed positions 
after deployment. The static nature of SNs poses explicit 
challenges, particularly in optimized deployment to ensure 
maximum area coverage, maintaining reliable connectivity, 
and prolonging network lifetime, which are essential for 
effective monitoring and operation [8]. 

Node deployment is a critical phase in WSNs, as it directly 
influences the overall performance of the network. Coverage 
refers to the part of the AoI that is within the sensing range of 

the SNs, while connectivity ensures that all deployed nodes can 
communicate either directly or indirectly with the BS [9, 10]. 
The coverage problem can be classified as area coverage or 
target coverage. The area coverage concerns the entire AoI, 
whereas the target coverage problem focuses on monitoring 
some points in the AoI. Connectivity within a WSN ensures 
that data collected by the SNs can be reliably transmitted to the 
BS for further processing [15]. A well-connected network 
facilitates efficient communication and data aggregation, 
reducing the likelihood of data loss or delays. Ensuring robust 
connectivity is particularly challenging in large-scale or harsh 
environments, where obstacles or node failures can disrupt 
communication paths. Optimizing connectivity is vital to 
maintaining the network's integrity and ensuring continuous 
data flow [16]. WSNs use several connectivity approaches [see 
Table I] to ensure the network's performance, reliability, 
energy efficiency, and robustness. 

 

Fig. 1. Wireless sensor network. 

The energy efficiency of WSNs is another critical factor. 
SNs are typically powered by limited-capacity batteries. Once 
deployed, these SNs are often difficult or impossible to 
recharge, especially in remote or hazardous environments. As a 
result, energy utilization must be minimized to prolong the 
WSN's operational lifetime. Balancing energy utilization across 
the network while maintaining necessary functionality is a 
complex challenge that directly influences the network's 
sustainability and effectiveness. The interplay be-tween 
coverage, energy efficiency, and connectivity present a 
complex optimization problem. Improving one aspect often 
impacts the others, creating trade-offs that must be carefully 
managed. For instance, increasing coverage might require 
activating more SNs, which could deplete energy resources 
more quickly. Similarly, enhancing connectivity might involve 
more frequent communication between nodes, further draining 
their batteries. Therefore, developing strategies that 
simultaneously optimize coverage, energy efficiency, 
connectivity, and node deployment cost is critical for the long-
term success and re-liability of WSNs. 

In WSNs, nodes are typically deployed using either 
deterministic or stochastic methods. Deterministic deployment 
methods, such as grid and triangular tessellation, ensure 
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uniform node placement in the area [8, 9]. Stochastic methods, 
including random and probabilistic approaches, offer better 
flexibility in deployment but often result in suboptimal 
coverage and connectivity [10-14]. 

TABLE I.  COMMON CONNECTIVITY CATEGORIES [17-20] 

Connectivity Description 

Single-hope 
In single-hop connectivity, SNs directly communicate to the 

BS. 

Multi-hope Various nodes are utilized to send the data to the BS. 

Cluster-based 

/ Hierarchical 

In cluster-based connectivity, SNs form a cluster, and a SN 
node in the cluster works as a cluster-head (CH) and other 

SN communicated sensed data to CH and CH communicate 

this data to the BS. 

Mobile 
agent-based 

Mobile agents move within the network, collecting data from 
sensor nodes and reducing the energy consumption of static 

nodes. 

Hybrid 
A network might use cluster-based connectivity within 
clusters and multi-hop Connectivity between cluster heads 

and the base station. 

Dynamic 

In WSN, network topology can change over time due to SN 
mobility, varying environmental conditions, or energy 

depletion. This type of connectivity is particularly relevant 

for mobile WSNs or environments where nodes frequently 
enter and leave the network. 

Various optimization methods based on traditional 
mathematical models, such as linear programming, integer 
programming, and geometric algorithms, have been used to 
find optimal node positions for node deployment in WSNs. 
These algorithms are effective for small-scale networks and 
become computationally infeasible for large-scale networks 
due to the exponential growth of the search space [21, 22]. In 
recent years, metaheuristic-based algorithms, such as GA, 
PSO, and Ant Colony Optimization (ACO), have gained 
popularity due to their ability to handle multi-objective 
optimization problems with large search spaces. These 
algorithms rely on stochastic processes to explore and exploit 
the solution space that offers a higher degree of flexibility and 
adaptability compared to traditional mathematical models. 

Authors in [23] utilized PSO to improve coverage and 
connectivity by dynamically placing the node to fill the 
coverage gaps. In [24], the integration of the Intelligent Satin 
Bower Optimizer and Reinforcement Learning (ISBO-RL) is 
used for adaptive node placement for improved network 
performance. This combination not only optimizes nodes 
positioning but also improves overall network performance 
offering significant improvements in both coverage and 
connectivity. Work in [25] highlights the role of AI-driven 
algorithms in enhancing coverage, securing connections, and 
reducing energy consumption through dynamic scheduling and 
mobility schemes. These strategies improve network coverage 
and security while addressing the practical limitations of sensor 
nodes, such as limited resources and uncertain monitoring 
capabilities. AI-based optimizations, including data fusion 
models for task scheduling and topology recovery, have been 
shown to effectively manage node deployment, achieving 
better network coverage and reliable security connectivity. 

In [26], there are various algorithms and techniques for 
relay node placement in WSNs to improve performance by 
addressing challenges such as reliability, energy consumption, 

and limited sensing and communication range. These methods 
aim to tackle the relay node deployment problem, enhancing 
WSN performance in real-world applications where these 
limitations can significantly degrade network effectiveness. 
Paper [27] introduces a distributed deployment method for 
WSNs that leverages multi-agent systems with autonomous 
and leadership mechanisms to optimize SN placement and 
improve network coverage. Through a unified deployment 
model featuring CH nodes, this approach effectively integrates 
autonomous and leadership functions, as confirmed by 
simulations that validate the models and algorithms used. 
Addressing limitations like poor self-adaptive deployment 
capabilities and high costs from diverse node types, this 
method enhances adaptive deployment, reduces costs, and 
minimizes blind spots in coverage. Authors in [28] proposed 
that the "X" partition strategy optimizes SN distribution within 
monitored areas, effectively lowering deployment costs and 
extending network life by over 50% compared to the diamond 
partition strategy. By partitioning areas to strategically position 
nodes, this method reduces both energy consumption and 
deployment expenses in WSNs, significantly enhancing 
network longevity through an efficient deployment approach. 

Paper [29] introduces an improved moth flame 
optimization (IMFO) algorithm for node deployment in WSNs, 
enhancing coverage and minimizing energy consumption by 
repairing coverage gaps and leveraging virtual forces among 
nodes. Key features include a variable spiral position update 
and an adaptive inertia weight strategy, which analyze node 
virtual forces and optimize deployment paths for efficient 
coverage and energy use. 

Hybrid metaheuristic approaches have emerged as a 
promising solution to this problem. By integrating the 
exploration capabilities of one algorithm with the exploitation 
strengths of another, hybrid methods aim to achieve a more 
balanced search process. For example, combining GA's robust 
exploration with PSO's efficient convergence can result in 
faster, more reliable solutions to the node deployment problem. 
Despite the success of hybrid methods in other domains, 
relatively few studies have applied them to the specific 
challenges of node deployment in WSNs. This gap in the 
literature motivates the development of a hybrid GA-PSO 
approach, which aims to improve the trade-offs between 
coverage, connectivity, and cost, while addressing the 
limitations of single-method optimization techniques. 

III. SYSTEM MODEL AND PROBLEM FORMULATION 

In the decentralized architecture of WSNs, maximizing area 
coverage along with connectivity among SNs by using a 
minimum number of SNs is an important issue in SN 
deployment. The optimal placement of SNs not only ensures 
maximum area coverage and connectivity but also prolongs 
network lifetime and reliability. We have focused on the 
sensing and communication models of SNs simultaneously, 
and the SNs are deployed within the AoI [33]. Each SN has a 
limited Rs which means the SN can detect events within the 
range. The binary sensing model is used (Fig. 2), where the 
sensing area is circular with a radius of Rs. Eq. (1) calculates 
the probability of any event being detected by an SN [34]. Let 
A denote the area in (M * N) meters. 
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Fig. 2. A node with binary disk sensing. 

𝑆𝑁𝑠𝑒𝑛𝑠𝑖𝑛𝑔 =  
𝜋𝑅𝑠

2

𝐴


∀  ∈ ∀ ∈ 

The Euclidean distance is the distance between two points 
and can be calculated using Eq. (2): 

𝑑(𝑆𝑁𝑖 , 𝐸) =  √(𝑋𝑆𝑁𝑖
− 𝑋𝐸) + (𝑌𝑆𝑁𝑖

− 𝑌𝐸)

If any event occurs within the Euclidean distance from the 
SN, then the event will be detected by the SN. If all the events 
are detected by one or more SNs, the network offers optimal 
coverage. However, the optimal coverage does not ensure 
proper connectivity among nodes. The connectivity ensures the 
transmission of data to the BS either directly or using multiple 
hops. In this study, we have considered Rc twice the Rs, which 
is commonly used in literature. Two SNs (SNi, SNj) are called 
connected if the distance between them is less than or equal to 

the communication range (Rc) [35]. The distance 𝑑(𝑆𝑁𝑖 , 𝑆𝑁𝑗) 

can be calculated using Eq. (2), and connectivity can be 
verified using Eq. (3): 

𝑑(𝑆𝑁𝑖 , 𝑆𝑁𝑗)  ≤  𝑅𝑐  & 𝑅𝑐 ≥  2𝑅𝑠 

The problem of node deployment to ensure maximum 
coverage is an NP-hard problem [36]. Due to constrain in 
computing resources, traditional methods are not suitable to 
solve the complex deployment problem because these 
problems require high computation. The traditional algorithms 
fall into local optima and do not generate optimal solutions. 
Metaheuristic algorithms offer better solutions for NP-hard 
problems [6]. 

The proposed algorithm utilizes a hybrid of GA and PSO 
algorithms to address node placement for ensuring optimal 
coverage and connectivity within the network. Both algorithms 
are metaheuristic optimization algorithms and are adaptable to 
handle complex, multi-objective optimization problems. The 
GA algorithm excels in exploring the search area through 
crossover and mutation, and also avoids premature 
convergence by introducing diversity. The PSO quickly 
converges to regions of the solution space and is suitable for 
continuous optimization problems [6] [37, 38]. The proposed 
hybrid GA-PSO algorithm handles node deployment while 
simultaneously ensuring optimal coverage and connectivity. 
SNs are initially distributed in the area, and the GA-PSO 
algorithm is used to adjust their positions to ensure optimal 
area coverage and connectivity. The study considers regular 
shapes under environmental noise conditions. This problem is 
multi-objective, requiring a balance between various 
objectives. 

A. Objectives 

The primary objectives of the node deployment problem 
has been formulated as follows. 

1) Maximize coverage: Coverage refers to the proportion 

of the area A that is effectively monitored by the SNs. Each 

i ∈ {1,2, … , n} has Rs , defined as a circular area centered at 

the node’s position (xi, yi) with radius Rs . The objective is to 

ensure a minimum 95% of the area is within the Rs of at least 

one node. The coverage (Δ) can be calculated using Eq. (4): 

Δ =  
1

𝐾
 ∑ 𝑖 (∃𝑛 ∈ 𝑛, (𝑝𝑘 , 𝑛) ≤ 𝑅𝑠)𝐾

1 

where, K = 500 Monte Carlo samples 𝑝𝑘  are uniformly 
distributed across the area A. 

2) Ensure connectivity: A network is connected when all 

deployed nodes can communicate with each other, either 

directly or indirectly using intermediate nodes called multi-

hop communication. The objective is to maximize the overall 

connectivity of the network, which can be defined as the 

proportion of nodes that are part of the largest connected 

component of the network’s communication graph, which can 

be calculated using Eq. (5): 

𝛹 =  
|𝜓|

𝑛


where, 𝜓 the set of nodes is in the largest connected 
component, and n is the total number of nodes. 

𝛹 =  {
1 𝑖𝑓∃ 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑝𝑎𝑖𝑟𝑠 𝑣𝑖𝑎 𝑅𝑐

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

3) Minimize energy consumption: Energy efficiency is 

crucial for prolonging the network’s lifetime. Each SN 

consumes energy primarily for communication and sensing 

tasks. The total energy consumption 𝐸𝑡𝑜𝑡𝑎𝑙  of the network is 

the sum of the energy consumed by all SNs. For a node i, the 

energy consumed for transmitting a message to node j at 

distance d (i, j) can be modeled by Eq. (6): 

𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑖, 𝑗) =  𝐸𝑒𝑙𝑒𝑐 ∗  𝐿 +  𝐸𝑎𝑚𝑝 ∗  𝐿 ∗  𝑑(𝑖, 𝑗)2

where, 𝐸𝑒𝑙𝑒𝑐  is the energy dissipated in the electronic 
circuit, 𝐸𝑎𝑚𝑝 is the amplification energy, and L is the size of 

the data packet. The objective is to minimize the total energy 
consumption across all SNs, given using Eq. (7): 

𝐸𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝐸𝑖
𝑁
𝑖=1 

where, 𝐸𝑖 represents the total energy consumed by an SN i. 

4) Minimize node count: Deploy the fewest SNs to satisfy 

coverage and connectivity with constraints to node positions 

(𝑥𝑖 , 𝑦𝑖) are subject to real-world noise. 

B. Constraints in Node Deployment 

The node deployment in area A is subject to the following 
constraints. 

1) Sensing and Communication Range: The 𝑅𝑠 and 𝑅𝑐 of 

each node are limited. A node can only monitor areas within 
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its 𝑅𝑠  and can only communicate with nodes within its 𝑅𝑐 . 

Thus, the distance between two nodes i and j must satisfy the 

Eq. (3) to ensure detection and communication of an event. 

2) Energy limitation: Each SN has a finite energy supply, 

denoted as 𝐸𝑚𝑎𝑥  , which limits the total energy that can be 

consumed during its operation. The total energy consumed by 

each SN must not exceed this limit. 

𝐸𝑖  ≤  𝐸𝑚𝑎𝑥  ∀𝑖

3) Node placement: SNs must be deployed within the 

boundaries of the area A. Let (𝑥𝑚𝑖𝑛 , 𝑥max ) and (𝑦𝑚𝑖𝑛 , 𝑦max )  

represent the boundaries of the area A, then the coordinates 

(𝑥𝑖 , 𝑦i ) of each node i must satisfy the following. 

(𝑥𝑚𝑖𝑛  ≤  𝑥𝑖  ≤  𝑥𝑚𝑎𝑥), (𝑦𝑚𝑖𝑛  ≤  𝑦𝑖  ≤  𝑦𝑚𝑎𝑥)

C. Trade-offs in Node Deployment 

The node deployment problem inherently involves various 
trade-offs between coverage, connectivity, energy efficiency 
and number of nodes. 

 Increasing the number of SNs or their 𝑅𝑠 can improve 
coverage but may lead to higher energy utilization due 
to increased data transmission. 

 Deploying SNs to maximize connectivity may result in 
coverage gaps, reducing the effectiveness of the 
network’s monitoring capabilities. 

 Prioritizing energy efficiency by reducing transmission 
power or node activity may lead to reduced connectivity 
or coverage. 

Thus, the optimization problem involves balancing these 
competing objectives to achieve a deployment strategy that 
maximizes coverage and connectivity while minimizing energy 
consumption. 

D. Mathematical Formulation of the Optimization Problem  

The node deployment problem can be formulated as a 
multi-objective optimization problem, where the goal is to 
maximize coverage and connectivity and minimize total energy 
utilization  𝐸𝑡𝑜𝑡𝑎𝑙  and number of SNs required to ensure 
optimum coverage and connectivity, subject to the constraints 
discussed above. The overall problem can be expressed as: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 Δ & 𝛹 and 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐸𝑡𝑜𝑡𝑎𝑙  



𝑑(𝑖, 𝑗) ≤  𝑅𝑐 ∀𝑖,𝑗𝐸𝑖  ≤  𝐸𝑚𝑎𝑥  ∀𝑖 

(𝑥𝑚𝑖𝑛  ≤  𝑥𝑖  ≤  𝑥𝑚𝑎𝑥), (𝑦𝑚𝑖𝑛  ≤  𝑦𝑖  ≤  𝑦𝑚𝑎𝑥) ∀𝑖

This multi-objective optimization problem requires an 
efficient search algorithm capable of finding solutions that 
balance coverage, connectivity, and energy efficiency while 
satisfying all constraints. 

IV. PROPOSED HYBRID METAHEURISTIC APPROACH 

In this section, key components of the proposed 
metaheuristic-based hybrid GA-PSO algorithm are discussed, 
including the initialization process, fitness function, crossover, 

mutation, particle swarm updates, and stopping criteria. The 
GA is an evolutionary-based optimization algorithm inspired 
by the process of natural selection. It operates on a population 
of candidate solutions called chromosomes and applies 
selection, crossover, and mutation operations to evolve toward 
an optimal solution. PSO is a population-based optimization 
technique inspired by the social behavior of birds flocking or 
fish schooling. It works with particles (potential solutions) that 
move through the search space according to their own 
experience and the collective experience of the swarm. The 
hybrid approach is designed to balance exploration and 
exploitation in the search space, effectively maximizing 
coverage while ensuring network connectivity. The integration 
of GA and PSO helps to overcome the individual weaknesses 
of these algorithms, such as premature convergence in GA and 
slow convergence in PSO. Fig. 3 explains the flow of the GA 
algorithm. The key components of the proposed hybrid GA-
PSO algorithm are discussed below. 

A. Initialization 

The hybrid algorithm starts by initializing a population of 
𝑁𝑝  solutions, where each solution 𝑋𝑖 =

 {(𝑥𝑖
1, 𝑦𝑖

1), (𝑥𝑖
2, 𝑦𝑖

2), … , (𝑥𝑖
𝑁, 𝑦𝑖

𝑁)} represents the coordinates of 
N SNs in A. The initial population is generated randomly 
within the boundaries of A, ensuring that the nodes are placed 
within the allowed region. 

𝑥𝑚𝑖𝑛  ≤  𝑥𝑖
𝑘  ≤  𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑖𝑛  ≤  𝑦𝑖

𝑘  ≤  𝑦𝑚𝑎𝑥  ∀𝑖 , 𝑘

where, k is the node index and i is the population index. 

B. Fitness Function 

The fitness of each candidate solution is evaluated based on 
three objectives: coverage maximization, connectivity 
maximization, and energy consumption minimization. The 
fitness function 𝐹(𝑋𝑖) is a weighted sum of these objectives. 

𝐹(𝑋𝑖) =  𝑤1. 𝛥(𝑋𝑖) + 𝑤2. 𝛹(𝑋𝑖) − 𝑤3. 𝐸𝑡𝑜𝑡𝑎𝑙(𝑋𝑖)

where, (𝑤1, 𝑤2, 𝑤3)  are weight factors that reflect the 

relative importance of each objective to ensure the balance 
among multi-objective criteria of the problem. 

 Coverage 𝛥(𝑋𝑖)  is calculated as the proportion of the 
total area covered by the sensing ranges of the nodes in 
the solution 𝑋𝑖. 

 Connectivity 𝛹(𝑋𝑖) is the ratio of nodes that are part of 
the largest connected component of the network's 
communication graph. 

C. Selection, Crossover, and Mutation (GA Operators)  

 Selection: A subset of solutions is selected from the 
population based on their fitness values using a 
selection method, such as tournament selection or 
roulette wheel selection. This ensures that better 
solutions have a higher chance of being selected for 
reproduction. 

 Crossover: Selected parent solutions are combined 
using crossover operations to create new offspring. The 
crossover operator exchanges segments of the parent 
solutions to explore new regions of the search space. In 
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this case, uniform crossover or two-point crossover can 
be applied to the node coordinates: 

𝑋𝑐ℎ𝑖𝑙𝑑
𝑘 =  {

𝑋𝑝𝑎𝑟𝑒𝑛𝑡1,    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 0.5  
𝑘

𝑋𝑝𝑎𝑟𝑒𝑛𝑡2,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑘

 

where, k refers to a particular node in the solution. 

 Mutation: After crossover, a small mutation is applied 
to the offspring by randomly altering the coordinates of 

a few nodes. The mutation ensures diversity in the 
population and helps avoid premature convergence. 
Mutation is defined as: 

𝑥𝑚𝑢𝑡𝑎𝑡𝑒𝑑 =  𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + ∆𝑥, 𝑦𝑚𝑢𝑡𝑎𝑡𝑒𝑑 =  𝑦𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 +  ∆𝑦

where, ∆𝑥  and ∆𝑦  are small random values within the 

predefined range of the node coordinates. 

 
Fig. 3. Genetic algorithm. 

D. Particle Swarm Updates (PSO Operators) 

In the PSO phase, each solution (now treated as a particle) 
updates its position in the search space based on its current 
velocity and the best solutions found by itself (personal best) 
and by the swarm (global best), given in Fig. 4. The position 

and velocity update rules for each particle 𝑋𝑖
𝑘 are given by: 

𝑣𝑖
𝑘(𝑡 + 1) = 𝑤. 𝑣𝑖

𝑘 + 𝑐1. 𝑟1. (𝑝𝑖
𝑘 − 𝑋𝑖

𝑘(𝑡)) +  𝑐2 . 𝑟2 . (𝑔𝑘 −

 𝑋𝑖
𝑘(𝑡))

𝑋𝑖
𝑘(𝑡 + 1) =  𝑋𝑖

𝑘(𝑡) +  𝑣𝑖
𝑘(𝑡 + 1)

where, 

 𝑣𝑖
𝑘(𝑡) is the velocity of particle i at iteration t, 

 w is the inertia weight that controls exploration, 

 𝑐1  and 𝑐2  are cognitive and social coefficients, 
respectively, 

 𝑟1 and 𝑟2 are random numbers between 0 and 1, 

 𝑝𝑖
𝑘 is the personal best position of particle \(i\), 

 𝑔𝑘 is the global best position found by the swarm. 

The PSO updates help the algorithm to exploit promising 
regions of the search space by fine-tuning the solutions 
generated by GA. 

 

Fig. 4. Particle Swarm Optimization (PSO) algorithm. 

E. Stopping Criteria and Optimization Loop 

The hybrid GA-PSO algorithm (see Algorithm 1) iterates 
through several generations, combining GA and PSO 
operations in each iteration. The algorithm terminates when 
one of the following stopping criteria is met: 

 A maximum number of iterations 𝑇𝑚𝑎𝑥  is reached. 

 The improvement in fitness values falls below a 
predefined threshold 𝜀, indicating convergence. 

The final solution represents an optimal or near-optimal 
node deployment strategy that balances coverage, connectivity, 
and energy consumption in the square area. Fig. 5 provides the 
procedural steps and logical structure of the proposed hybrid 
algorithm. 
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Fig. 5. Flowchart of proposed GA-PSO algorithm. 

Algorithm 1: Pseudocode of the hybrid GA-PSO algorithm 

Initialize population of Np solutions (X1, X2, ..., XNp) 

Evaluate fitness F(Xi) for each solution 

While stopping criteria not met: 

         Apply GA operations (Selection, Crossover, Mutation). 

         Update the fitness of new solutions 

         Apply PSO updates (Update velocity & position of each  

         particle and update personal best (pi) and global best (g)) 

         Evaluate new fitness values 

End 

Return the best solution found 

V. SIMULATION AND EXPERIMENTAL SETUP 

To evaluate the performance of the proposed hybrid 
metaheuristic approach for node deployment in WSN, we 
conducted extensive simulations. The aim was to analyze how 
well the hybrid GA-PSO algorithm maximizes coverage, 
ensures connectivity, and minimizes energy consumption 
𝐸𝑡𝑜𝑡𝑎𝑙  by reducing the number of SNs and intersecting areas 
among them. In this section, we outline the details of the 
simulation environment, parameters, and evaluation metrics, 
followed by the design of the experiments conducted. The 
simulation experiments were conducted using a custom-built 
simulation platform designed to model node deployment, 
coverage, and communication in WSNs. The platform is 
developed in Python. 

A set of N SNs is deployed in the area A, and the position 
of SNs is determined by the optimization algorithms. The 
number of SNs is changed in the experiments to evaluate the 
algorithm's scalability. These parameters are set based on the 
capabilities of the SN. In our experiments, the communication 
range is twice the sensing range of the SN. 

These values ensure that nodes can communicate over 
longer distances than they can sense, which is typical for 
WSNs. The energy consumption model described in Section III 
is applied to simulate the energy dissipation during sensing, 
communication, and transmission. The energy parameters used 
in the simulation are as follows: 

𝐸𝑒𝑙𝑒𝑐 =  50 𝑛𝐽/𝑏𝑖𝑡  

𝐸𝑎𝑚𝑝 =  100 𝑝𝐽/𝑏𝑖𝑡)/𝑚2 

𝐿 = 4000 𝑏𝑖𝑡𝑠 
Each node's energy consumption during transmission is 

calculated using: 

𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 =  𝐸𝑒𝑙𝑒  . 𝐿 + 𝐸𝑎𝑚𝑝  . 𝐿 . 𝑑(𝑖, 𝑗)2 

where, d(i, j) is the distance between nodes i and j. 

To assess the effectiveness of the proposed hybrid GA-PSO 
algorithm, we compare its performance against GA and PSO. 
A standard GA is implemented as a single-method 
optimization approach. The same selection, crossover, and 
mutation mechanisms described in Section IV are applied. A 
traditional PSO algorithm is also implemented, with particle 
velocity and position updates as described in Section IV. The 
algorithm is initialized with the same population as the hybrid 
method for a fair comparison. As a non-optimized baseline, 
nodes are randomly deployed within area A. This serves as a 
lower-bound comparison to demonstrate the improvement 
provided by metaheuristic optimization. 

To evaluate the performance of the proposed algorithm, we 
have used metrics to evaluate coverage, connectivity and 
energy consumption across various parameters. Network 
lifetime is defined as the time until the first SN depletes its 
energy supply. It reflects the energy efficiency and durability 
of the network. The convergence rate of the algorithm is 
evaluated based on how quickly the fitness values stabilize 
across iterations. This provides insight into the algorithm’s 
efficiency in finding near-optimal solutions. 

VI. RESULTS AND DISCUSSION 

In this section, the results of the simulation experiments are 
presented using the proposed hybrid GA-PSO approach for 
node deployment in WSN. We compare the performance of our 
hybrid approach with GA and PSO deployment strategies to 
ensure the effectiveness of the proposed algorithm. We have 
used varying area sizes along with different parameters to find 
out the number of SNs required to ensure optimal coverage of 
the area based on the area size, sensing range, and 
communication range. Several nodes are calculated for various 
area sizes 100*100, 150*150, 200*200, 300*300, and 500*500 
for each area. We have used sensing range (10, 15, 20, and 25), 
and communication range (20, 30, 40, and 50) of nodes. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

139 | P a g e  

www.ijacsa.thesai.org 

A. Parameter Settings 1 

A population of 𝑁𝑝 candidate solutions are initialized 

randomly within the area A. The initial solutions for GA, PSO, 
and the hybrid GA-PSO algorithm are the same for consistency 
in comparison. The parameters of the algorithms are given in 
Table II, whereas Table III contains the number of SNs 
required to ensure optimal coverage and connectivity. 

TABLE II.  PARAMETERS VALUES (SET-1) 

Parameter Value 

Target Coverage 95% 

Monte Carlo Samples 500 

Population Size 50 

Maximum Generations 50 

Crossover Rate 0.8 

Mutation Rate 0.1 

Cognitive Weight 1.5 

Social Weight 1.5 

The above parameters are common for the algorithms used, 
while the area size varies from 100*100, 150*150, 200*200, 
300*300, and 500*500 with varying sensing (10, 15, 20, and 
25) and communication ranges (20, 30, 40, and 50). 

TABLE III.  SNS REQUIRED FOR OPTIMAL AREA COVERAGE 

Area Size 
Sensing 

Range (m) 

Comm. 

Range (m) 

GA 

Alone 

PSO 

Alone 

Hybrid 

GA-PSO 

100×100 10 20 43 41 36 

100×100 15 30 22 21 19 

100×100 20 40 14 13 12 

100×100 25 50 10 9 8 

150×150 10 20 89 85 76 

150×150 15 30 41 39 36 

150×150 20 40 25 24 22 

150×150 25 50 18 17 16 

200×200 10 20 155 148 132 

200×200 15 30 71 68 61 

200×200 20 40 42 40 36 

200×200 25 50 28 27 25 

250×250 10 20 206 198 165 

250×250 15 30 95 89 76 

250×250 20 40 56 52 45 

250×250 25 50 39 36 31 

300×300 10 20 297 285 240 

300×300 15 30 137 130 110 

300×300 20 40 81 76 65 

300×300 25 50 56 52 45 

500×500 10 20 825 790 660 

500×500 15 30 381 365 305 

500×500 20 40 225 215 180 

500×500 25 50 156 149 125 

B. Parameter Settings 2 

The parameters used for evaluating the proposed algorithm, 
along with the GA and PSO algorithm, are updated such as 
maximum generation, cognitive weight and social weight. The 
parameters are given in Table IV, whereas Table V discusses 
the number of SNs required to ensure optimal coverage and 
connectivity. 

TABLE IV.  PARAMETERS (SET-2) 

Parameter Value 

Target Coverage 95% 

Monte Carlo Samples 500 

Population Size 100 

Maximum Generations 100 

Crossover Rate 0.8 

Mutation Rate 0.1 

Cognitive Weight 2.0 

Social Weight 2.0 

TABLE V.  SNS REQUIRED FOR OPTIMAL AREA COVERAGE (SET-2) 

Area Size 
Sensing 

Range (m) 

Comm. 

Range (m) 

GA 

Alone 

PSO 

Alone 

Hybrid 

GA-PSO 

100×100 10 20 38 36 32 

100×100 15 30 19 18 16 

100×100 20 40 12 11 10 

100×100 25 50 8 7 6 

150×150 10 20 75 71 63 

150×150 15 30 34 32 28 

150×150 20 40 21 19 17 

150×150 25 50 14 13 12 

200×200 10 20 132 125 110 

200×200 15 30 60 57 50 

200×200 20 40 35 33 28 

200×200 25 50 23 21 19 

250×250 10 20 175 165 140 

250×250 15 30 80 75 63 

250×250 20 40 47 44 38 

250×250 25 50 32 30 26 

300×300 10 20 255 240 200 

300×300 15 30 115 108 90 

300×300 20 40 68 63 53 

300×300 25 50 47 43 37 

500×500 10 20 750 700 600 

500×500 15 30 345 325 275 

500×500 20 40 200 190 160 

500×500 25 50 135 125 105 
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The Hybrid GA-PSO consistently requires fewer nodes 
than GA and PSO alone, demonstrating its efficiency in 
optimizing SN placement while maintaining coverage. As the 
area size increases, the gap between GA-PSO and the 
standalone methods widens, highlighting its superior scalability 
and optimization capability. 

In Fig. 6, the positions of SNs using GA-PSO are visualize 
on a 100 x 100 area size with all the sensing and 
communication range used in this study. The blue dots 
represent SNs, whereas area within the circle is the 
communication range of the SN. 

 

Fig. 6. Node deployment using GA, PSO and GA-PSO. 

The comparison graph in Fig. 7 illustrates the differences 
between the set-1 and set-2 parameters for GA, PSO, and 
Hybrid GA-PSO. The updated results show a slight reduction 
in the number of deployed SNs across all methods, indicating 
improved efficiency. The Hybrid GA-PSO remains the most 
optimal approach, consistently requiring fewer nodes than GA 
or PSO alone. This suggests refinements in the optimization 
process, leading to better sensor deployment with minimized 
redundancy. 

Further, we compared our proposed hybrid GA-PSO 
algorithm with another state-of-the-art multi-objective 
metaheuristic algorithm, CMOMPA [30-32]. The comparison 
is made for a large AoI with large sensing (25m) and 
communication range (50m). Both algorithms were 
implemented with the same parameters. In this comparison, 
GA-PSO outperforms CMOMPA due to its hybrid mechanism 
that strategically balances exploration (via GA’s 
crossover/mutation) and exploitation (via PSO’s velocity-
driven refinement). Fig. 8 explains how GA-PSO efficiently 
optimizes node placement, ensuring near-optimal coverage (97 
to 99%) and 100% connectivity by explicitly penalizing 
disconnected configurations in its fitness function. In contrast, 
CMOMPA’s reliance on Gaussian perturbations and predator-
prey dynamics often results in scattered clusters with coverage 

gaps (~92%) and connectivity failures (~94%), as its 
exploration lacks directed refinement and constraint 
enforcement. GA-PSO further excels in node efficiency, 
deploying 30 to 50% fewer sensors (e.g., 18 vs. 24 nodes for a 
500m×500m area) by dynamically penalizing redundancy, 
while CMOMPA’s unguided search increases redundancy. 
Statistically, GA-PSO’s superiority is validated by p-values < 
0.05 across coverage, connectivity, and node metrics, 
confirming its robustness. Fig. 9 shows the Wilcoxon test. 

 
Fig. 7. Comparison of set-1 and set-2 parameters used for GA, PSO, and 

GA-PSO performance. 

 

Fig. 8. GA-PSO vs CMOMPA performance comparison. 
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Fig. 9. Wilcoxon test result. 

In the experimental setup, we used identical parameters for 
both algorithms, including a population size of 50, a maximum 
of 100 iterations, and 30 independent runs for different sensing 
ranges (10, 15, 20, and 25 meters). The simulation results 
(Table VI) demonstrate that GA-PSO consistently achieves 
higher coverage across all sensing ranges compared to C-
MOMPA. Additionally, GA-PSO ensures 100% connectivity 
with fewer deployed nodes, whereas C-MOMPA struggles to 
maintain connectivity as the sensing range increases. 
Furthermore, GA-PSO exhibits faster node deployment times 
to enhance the understanding of the readers. Values presented 
in Table VI represent the mean of the generated data, with all 
values converted to decimal by taking the floor of the original 
values, whereas values in figures contain real values. 

GA-PSO succeeds due to its structured search mechanism, 
where PSO’s velocity updates systematically guide nodes 
toward optimal grid-like patterns, avoiding the inefficient 
random clustering in CMOMPA, and its constraint-aware 
fitness function, which enforces practicality by penalizing 
disconnections and excess nodes. Fig. 8 shows that GA-PSO 
achieves faster convergence (~48 seconds vs. CMOMPA’s 
~110 seconds) through PSO’s social learning, making it ideal 
for time-sensitive deployments like IIoT, disaster management, 
smart cities, and environmental monitoring. However, real-
world deployment presents challenges such as signal 
interference, obstacles, and node failures. Scalability remains a 
critical concern, as large-scale WSNs demand efficient parallel 
processing and adaptability to dynamic conditions where 
sensors may relocate or fail. In IIoT, the optimal placement of 
SNs ensures predictive maintenance, process automation, and 
hazard detection in industrial environments, while efficient SN 
deployment ensures effective data collection in disaster 
management. In smart cities, SNs are deployed to maximize 
the coverage of traffic monitoring and air quality monitoring. 
Applications requiring strict coverage-connectivity trade-offs 
and cost-sensitive scenarios prioritizing hardware 
minimization. 

Energy constraints complicate deployment, necessitating 
energy-aware clustering, duty cycling, and adaptive power 
management to extend network lifespan. Communication 
issues such as packet loss, congestion, and interference require 
interference-aware routing and transmission control, while 
deploying WSNs in harsh environments calls for resilient, self-
adaptive strategies, potentially leveraging reinforcement 
learning for dynamic reconfiguration. CMOMPA, with its 
unguided exploration and slower performance, remains more 

suitable for theoretical or loosely defined multi-objective 
problems. Cost-effective, large-scale deployment remains a 
challenge, necessitating optimization techniques that balance 
performance with affordability. In essence, GA-PSO dominates 
real-world, constrained WSN deployments by balancing 
efficiency and precision, while CMOMPA remains relegated to 
theoretical or loosely defined multi-objective problems due to 
its unguided exploration and slower performance. 

VII. CONCLUSION AND FUTURE WORK 

The combination of GA’s exploration and PSO’s global 
search abilities allowed the hybrid algorithm to overcome the 
limitations of each algorithm, providing a well-balanced and 
effective solution for the multi-objective optimization of node 
deployment in WSNs. The algorithm's capability to handle the 
trade-offs between coverage, connectivity, and energy 
consumption offers a promising strategy for improving WSN 
design and deployment in real-world scenarios. Future research 
should focus on integrating deep learning with metaheuristic 
optimization for self-adaptive WSNs, developing lightweight 
algorithms for real-time decision-making, and incorporating 
edge computing to reduce computational overhead. Addressing 
cybersecurity risks and ensuring robust, low-latency 
communication will further enhance WSN reliability. While 
GA-PSO dominates real-world, constrained WSN deployments 
by balancing efficiency and precision, overcoming scalability, 
energy efficiency, and deployment challenges remains crucial 
for its widespread implementation in IoT and WSN 
applications. While the proposed hybrid GA-PSO approach has 
shown promising results, but requires enhancement. There are 
several avenues for further research and enhancement: 

A. Heterogeneous WSN Deployment 

In this study, we focused on homogeneous static WSNs. 
Future work could explore the application of hybrid 
metaheuristic techniques in heterogeneous WSNs, where nodes 
may have different sensing, communication, and energy 
capabilities. This would introduce additional complexity but 
could lead to more efficient and realistic deployment strategies. 

B. Mobile WSNs 

The current approach assumes static node deployment. 
Incorporating mobility, where sensor nodes can move to 
optimize coverage and connectivity over time, is an interesting 
direction for future research. Hybrid metaheuristics could be 
extended to handle dynamic node repositioning in mobile 
WSNs. 

C. Multi-Objective Optimization 

Although the hybrid GA-PSO algorithm effectively 
balances coverage, connectivity, and energy efficiency, future 
work could involve exploring more advanced multi-objective 
optimization techniques, such as Pareto-based approaches, to 
provide more flexible trade-offs between competing objectives. 

D. Improving Computational Efficiency 

While the hybrid approach provides superior performance, 
it comes at the cost of increased computational complexity. 
Future research could focus on optimizing the computational 
efficiency of the hybrid GA-PSO algorithm, perhaps by 
incorporating parallel processing techniques or by developing 
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lightweight variants for deployment in resource-constrained 
environments. Further, the proposed algorithm performs better 
than CMOMPA for a larger sensing range and enhances energy 
consumption. In future, this issue needs to be addressed. 

E. Application to Other Network Types 

The proposed method could also be applied to other types 
of wireless networks, such as Internet of Things (IoT) 
networks, where similar issues of coverage, connectivity, and 
energy efficiency arise. Investigating the generalization of the 
hybrid GA-PSO approach to these contexts could yield 
valuable insights. 

In conclusion, the hybrid GA-PSO method presents a 
robust and effective strategy for optimizing node deployment 
in WSNs, and further exploration of its capabilities in more 
complex and dynamic network environments holds significant 
promise for future developments in this field. 
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