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Abstract—With the proliferation of data-driven services and 

latency-sensitive applications, fog computing has emerged as a 

pivotal extension of cloud infrastructure, enabling data processing 

and resource allocation at the network edge. However, the 

trustworthiness of task offloading in such decentralized and 

heterogeneous environments remains insufficiently explored, 

posing significant concerns related to system reliability, security, 

and performance. This review aims to address this gap by 

providing a comprehensive and systematic analysis of current 

research on trust-based task offloading in fog computing. The 

study investigates various trust evaluation mechanisms, 

categorizing them into three major paradigms: Direct Trust-

based, Recommended Trust-based, and Comprehensive Trust. 

Through this classification, the study identifies and examines key 

trust-related metrics that influence offloading decisions, including 

task execution accuracy, trust evaluation accuracy, and evaluation 

latency. A critical assessment of the strengths and limitations of 

existing approaches reveals ongoing challenges such as dynamic 

trust management, scalability in large-scale networks, 

interoperability among diverse nodes, and resilience against 

malicious behaviours. Based on these insights, the study highlights 

pressing research opportunities and recommends the development 

of lightweight, adaptive, and context-aware trust frameworks 

capable of supporting real-time decision-making in dynamic fog 

environments. By synthesizing fragmented research and offering 

a forward-looking perspective, this review contributes a 

foundational reference for scholars and practitioners seeking to 

enhance the reliability and security of task offloading in fog 

computing, thereby supporting the evolution of more robust and 

efficient edge-based computing infrastructures. 
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I. INTRODUCTION 

Recently, the swift evolution of cloud computing, along 
with the rise of mobile smart devices and wireless networking 
technologies, has prompted a reassessment of computing 
architecture to better support mobile terminals. This adaptation 
aims to reduce system latency and enhance the user experience 
[1]. Therefore, Cisco introduced the concept of fog computing, 
defining it as a highly virtualized platform that shifts 
computational tasks from centralized cloud data centre to edge 
devices of the network [2]. This approach addresses the 
inherent limitations of the cloud computing architecture, which 
centralizes computing far from data sources, resulting in 
increased latency, congestion, reduced reliability, and 

augmented security vulnerabilities. Around a decade after the 
emergence of cloud computing, fog computing garnered 
extensive attention as an optimization of the existing cloud 
computing infrastructure [3]. 

Fog computing, in essence, represents a form of cloud 
computing with a local-oriented nature. It acts as an addition to 
the conventional cloud computing paradigm. In this regard, 
when cloud computing is paralleled to Wide Area Network 
(WAN) - based computing, fog computing can be compared to 
Local Area Network (LAN) - based computing. In a similar 
vein, just as the Content Delivery Network (CDN) deals with 
the problem of local caching within the TCP/IP framework, fog 
computing endeavors to solve the intrinsically local computing 
difficulties presented by cloud computing [4]. A pivotal 
moment in the development of fog computing occurred in 
November 2015, when industry giants such as Cisco, ARM, 
Dell, Intel, Microsoft, and Princeton University Edge Lab 
collaborated to establish the OpenFog Consortium [5]. The 
primary objective of this consortium was to promote and 
expedite the adoption of open fog computing, thereby 
facilitating advancements in the Internet of Things (IoT) 
domain. The fog computing market is anticipated to experience 
robust growth, with a projected Compound Annual Growth 
Rate (CAGR) of 67.90% during the forecast period of 2021-
2026 [6]. Despite being a relatively new domain in the 
technological landscape, fog computing has rapidly established 
itself as a significant field. 

Fog computing, introduced by Cisco, has emerged from the 
rapid evolution of cloud computing and mobile technologies. It 
shifts computational tasks from centralized data centres to edge 
devices, addressing latency, congestion, and security issues. 
Acting as a local extension of cloud computing, it parallels 
LAN to WAN. The OpenFog Consortium, formed in 2015 by 
industry leaders, promotes this technology and supports the 
Internet of Things (IoT). The fog computing market is expected 
to grow significantly, with a CAGR of 67.90% from 2021 to 
2026, highlighting its growing importance in technology. 

II. FOG COMPUTING CONCEPT 

The architecture of fog computing is structured into a three-
tier system extending from the network core to the periphery. 
This system comprises the cloud layer, the fog layer, and the 
terminal layer, as illustrated in Fig. 1. Compared to traditional 
computing paradigms, fog computing offers several 
advantages. These advantages include significantly reduced 
latency, conserved backbone bandwidth, enhanced support for 
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high mobility, extensive geographical distribution, 
interoperability, and reduced energy consumption [7, 8]. 

With the development of grid computing, cloud computing, 
and fog computing as a complement to cloud computing came 
into being. Fog computing cannot replace cloud computing and 
needs to work together with cloud computing. Fog computing, 
as an emerging computing paradigm focused on providing 
services close to the user side, and it doesn't require all data to 
be sent to the cloud computing centre. It builds an infrastructure 
for IoT-oriented distributed computing and provides various 
services, including computing, storage and network 
connectivity between interconnected devices at the edge of the 
network and cloud computing platforms in the core of the 
network. By extending the capabilities of cloud computing to 
the edge of the network, users can analyse and manage data 
locally. 

All in all, fog computing is an innovative computing model 
that concentrates on providing services such as computing, 
communication and storage for users on network edge devices 
close to them. Specifically, it utilizes network devices to realize 
services like computing, storage and network communication 
between cloud servers and mobile terminal devices. By 
expanding the fog layer with storage and computing 
capabilities, the data processing and computing processes are 
made closer to the terminal devices, and then three main 
functions, namely data caching, localized computing and 
wireless access, are provided for users. This can not only 
effectively relieve the computing and storage pressure on the 
cloud but also significantly improve the response speed of the 
entire application system. Moreover, it can better fit the 
characteristics of high mobility of mobile terminal devices and 
fully meet the strict requirements of mobile applications for 
high traffic transmission and low-latency response. 

A. Cloud, Fog and Edge Computing 

Unlike cloud computing, the main goals of fog and edge 
computing are similar in some ways; both enable services to be 
closer to the user and provide lower latency [10]. Fog 
computing performs as a bridge between cloud computing and 
mobile terminal devices, building a platform with remarkable 
performance in computing, digital storage and network 
services. Therefore, cloud computing and fog computing are 
not independent entities; on the contrary, they interact and 
influence each other. In practical applications, there are several 
main differences among cloud computing, fog computing and 
edge computing. As shown in Table I, these differences span 
over various aspects, including latency characteristics, network 
characteristics, location awareness and target users [11]. 

B. Fog Computing Application Scenarios 

Since the inception of fog computing, a wide range of 
scientific research institutions, internet companies, and scholars 
have conducted extensive studies on the subject. This 
collaborative effort has led to the emergence of various fog 
computing platforms, including OpenFog, LocalGrid, and 
PrismTech Vortex. These platforms facilitate the deployment 
of fog computing solutions across diverse sectors. Typical 
applications of fog computing encompass automotive 
networking, where vehicles communicate and share data; 
wireless sensor networks, which enable real-time monitoring; 
and intelligent building control systems that optimize energy 
use. Additionally, fog computing plays a crucial role in the IoT, 
augmented reality experiences, mobile communications, and 
Software Defined Networking (SDN) applications. This wide 
array of applications illustrates the versatility and potential of 
fog computing in enhancing network efficiency and 
performance [12]. 

 

Fig. 1. Fog computing system architecture [9]. 
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TABLE I COMPARISON ON DIFFERENT COMPUTING PARADIGMS 

Attributes Cloud Computing Edge Computing Fog Computing 

Expected Task Execution 

Time 
High High-Medium Often Low 

Provided Services Universal services Often uses mobile networks 
Vital for a particular domain and 

distributed 

Security 
Centralized (guaranteed by the Cloud 

provider) 

Centralized (guaranteed by the 

Cellular operator) 

Mixed (depending on the 

implementation) 

Energy Consumption High Low Varying but higher than for Edge 

Identifying location No Yes Yes 

Main Providers Amazon and Google Cellular network providers Proprietary 

Interaction in Real-Time Available Available Available 

Latency High Low Varying but higher than for Edge 

Bandwidth Cost High Low Low 

Storage capacity and 

Computation 
High Very limited Varying 

Scalability Average High High 

Overall usage 

Computation distribution for huge data 

(Google MapReduce), Apps 

virtualization, Storage of data scalability 

Control of traffic, data caching, 
wearable applications 

CCTV surveillance, imaging of 

subsurface in real-time, IoT, Smart city, 

Vehicle-to-Vehicle (V2X) 

Fog computing as much as possible to the user’s needs of 
the content and application services close to the end user, 
through this way, fog computing with support for mobile 
performance, low latency and high scalability and other 
advantages. Fog computing can be widely used in augmented 
reality (Augmented Reality, AR) and health monitoring and 
other real-time services; smart grid and local content 
distribution and other data dissemination areas; mobile big data 
processing and computing offloading and other distributed data 
areas; shopping centres and public transport and other 
temporary storage and other areas. In distributed data scenarios, 
fog computing efficiently handles user requests by leveraging 
the computing and storage capabilities of fog nodes. This 
approach alleviates the pressure on centralized cloud data 
processing and minimizes the response time for end-user data 
requests. Additionally, it reduces both the data traffic sent to the 
cloud and the storage requirements within it. Ultimately, this 
leads to a more balanced distribution of data processing 
demands across the cloud, fog, and terminal layers. 

III. MOTIVATION 

With the development of the Internet, fog computing has 
gradually become a new type of Internet infrastructure that has 
attracted much attention, but its research in the field of trusties 
is still insufficient [14]. Trust evaluation and management for 
fog nodes is an important means to improve the reliability of 
the network, which can effectively mitigate the security risks 
brought by the geographical dispersion of nodes and differences 
in the network environment. Although fog computing is more 
secure than cloud computing due to temporary data storage and 
local processing [15], inter-node collaboration may still trigger 
malicious behaviors, such as theft or manipulation of private 
data by malicious nodes. Traditional encryption solutions 
cannot effectively counter internal attacks from authenticated 
malicious fog nodes [16]. 

Trust management in fog computing faces critical 
challenges, particularly delayed trust value updates caused by 
computational overhead. While mechanisms like fuzzy logic 
trust evaluation, and multi-source feedback aggregation 
enhance trust and accuracy, they increase computational 

complexity, leading to high resource consumption and delayed 
updates in dynamic environments. Hierarchical trust models 
and reputation-based schemes, such as Gu et al. [17], improve 
reliability but introduce significant computational burdens. 
Similarly, adaptive mechanisms like those proposed by Almas 
et al. [18] struggle with timely updates due to overhead, and 
methods relying on recommendation information are 
vulnerable to malicious nodes. Fog computing faces several 
challenges in the process of trust management, particularly in 
balancing trust management and system performance. The 
complexity of trust models, such as reputation-based or 
subjective logic models, introduces significant computational 
overhead, making real-time decision-making difficult in large-
scale environments. For instance, Alemneh et al. [19] highlight 
that while two-way trust management enhances security, it 
places a heavy computational burden on resource-constrained 
fog nodes. Moreover, approaches like the one proposed by 
Atwa et al. [20] experience difficulties in adapting to dynamic 
environments, such as Vehicular Ad Hoc Networks (VANETs), 
while models that aggregate multiple feedback sources, as 
discussed by Liang et al. [21], are prone to implementation 
complexity and require robust infrastructure. Furthermore, 
techniques like fuzzy logic and reputation-based mechanisms, 
employed by Bukhari et al. [22], introduce increased 
computational complexity that can hinder real-time 
performance. These challenges are compounded by the need for 
frequent updates in highly dynamic environments, which may 
lead to delays in trust evaluation and, consequently, suboptimal 
node selection. 

The fog computing environment faces significant 
challenges related to reliability, primarily due to the 
participation of various vendors, including private cloud 
providers and multiple Internet Service Providers (ISPs). A fog 
network comprises numerous fog nodes, and ensuring their 
reliability is crucial during the task offloading. If the tasks are 
sent towards the malicious fog nodes, it can result in serious 
issues such as denial of service, jamming, spamming, 
impersonation, and data tampering [23, 24]. 
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IV. CONTRIBUTION 

This study advances research on trust-based task offloading 
in fog computing through several key contributions. 

It first provides a systematic classification of trust 
evaluation mechanisms into three paradigms—Direct Trust-
based, Recommended Trust-based, and Comprehensive 
Trust—consolidating fragmented research to clarify their 
principles and application scenarios, facilitating targeted 
comparisons for specific fog use cases. 

Second, the work identifies and analyses critical trust-
related metrics (task execution accuracy, trust evaluation 
accuracy, evaluation latency) and their interdependencies, 
offering a holistic reference for designing multi-objective trust 
frameworks that balance security and efficiency, critical for 
latency-sensitive fog applications. 

Third, it critically assesses existing approaches, delineating 
core challenges including dynamic trust management in volatile 
networks, scalability in large-scale deployments, 
interoperability barriers, and vulnerability to malicious 
behaviours. This analysis transcends summarization to guide 
researchers toward high-impact problems. 

Fourth, the review highlights emerging opportunities and 
recommends lightweight, adaptive, context-aware trust 
frameworks for real-time decision-making in dynamic fog 
environments, bridging research and practical implementation 
with actionable roadmaps. 

Finally, by synthesizing knowledge into a unified 
perspective, it serves as a foundational reference for academia 
(guiding state-of-the-art advancements) and industry 
(supporting robust system deployment), advancing fog 
computing as a pivotal cloud extension. 

V. ORGANIZATION 

The organization of the study is designed to provide an in-
depth exploration of fog computing, beginning with an 
Introduction that establishes the topic's significance in the 
context of modern technology, as shown in Fig. 2. 

This section sets the stage for understanding how fog 
computing enhances traditional computing frameworks. 
Following this, the study delves into the Fog Computing 
Concept, where it outlines the core principles that define fog 
computing and its advantages over conventional cloud 
computing. Next, the study differentiates among Cloud, Fog, 
and Edge Computing, providing clarity on their unique roles 
and how they interact within the broader computing ecosystem. 
This distinction is crucial for understanding the specific 
contributions of fog computing. The section on Fog Computing 
Application Scenarios highlights various real-world 
implementations, showcasing its transformation influence 
across several industries that includes smart cities, healthcare, 
and industrial automation [13]. 

The Motivation section articulates the pressing challenges 
that fog computing aims to address, such as latency issues and 
bandwidth constraints, emphasizing its relevance in today’s 
data-driven world. Following this, the Contribution section 
details the novel insights and findings that the study presents, 

adding to the existing body of knowledge on fog computing. An 
overview of the study’s structure is provided in the 
Organization section, guiding the reader through the subsequent 
discussions. The main body focuses on Trust in Fog 
Computing, which is critical for ensuring secure operations in 
distributed environments. This includes an examination of 
Trust Management strategies, the design of a Trusted Task 
Offloading Architecture, and the various methods involved in 
the Trust Evaluation Process. The Task Offloading Process is 
also explained, detailing how tasks are managed within a fog 
framework. 

The study further reviews specific techniques for Trust 
Evaluation in Fog Computing and presents a Comparative 
Analysis of Calculation Methods, evaluating different 
approaches to trust assessment. In addition to these discussions, 
the section on Classical Algorithms for Task Offloading 
examines traditional algorithms that facilitate efficient task 
management in fog environments, with a focused look at the 
particle swarm optimization algorithm and its relevance. A 
comprehensive Related Work section reviews existing 
literature, identifying gaps in current research and highlighting 
contributions to the field. The study concludes with a discussion 
on Future Challenges, addressing potential obstacles that may 
arise as fog computing evolves. Finally, the Conclusion 
summarizes the key findings and emphasizes the critical roles 
of trust and task offloading in the advancement of fog 
computing, reinforcing its importance in the current 
technological landscape. 

 

Fig. 2. Organization of the study. 
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VI. TRUST IN FOG COMPUTING 

Trust is essential in fog computing due to its decentralized 
architecture and proximity to end-users, requiring robust 
mechanisms to ensure data integrity and reliable service 
delivery. This is achieved through several interconnected 
processes: 

1) Trust management: Establishes and maintains trust 

relationships between nodes. 

2) Trusted task offloading architecture: Ensures tasks are 

only delegated to trustworthy nodes. 

3) Trust evaluation process: Defines methods for assessing 

the trustworthiness of nodes. 

4) Task offloading process: Integrates trust verification 

prior to data transfer. 

5) Dynamic trust assessment: Employs specific techniques 

to evaluate trust levels in real time. 

6) Comparative analysis of calculation methods: Assesses 

the effectiveness of different trust calculation approaches. 

Together, these components create a comprehensive 
framework that fosters a secure and reliable fog computing 
environment. 

C. Trust Management 

Fog nodes in fog computing networks are capable of 
executing data processing tasks near the data sources, which 
enhances support for real-time applications and reduces 
dependency on remote cloud resources. However, security and 
privacy concerns remain prominent within these networks. 

Although fog computing is often perceived as more secure 
than traditional cloud computing due to the localized storage 
and analysis of data, vulnerabilities still exist. For instance, 
when fog nodes collaborate and share data to complete tasks, 
they may expose themselves to risks. Offloading tasks to 

untrustworthy fog nodes can lead to unauthorized access or 
manipulation of sensitive user information, raising significant 
privacy concerns. 

To address these challenges, effective management of trust 
within fog nodes is vital. Implementing robust trust frameworks 
can help ensure that only reliable nodes are used for data 
processing. This includes assessing the trustworthiness of 
nodes, establishing secure communication channels, and 
continuously monitoring node behavior to prevent malicious 
activities. By prioritizing trustworthy management, fog 
computing can enhance its security posture, safeguarding user 
data and maintaining the integrity of services. Sunilkumar S. 
Manvi and others [25] explored various aspects of trust 
management within the realm of fog computing. Trust is a 
critical factor in the contemporary networked landscape, 
significantly influencing users' willingness to adopt fog 
computing solutions. In their research, they emphasize that trust 
management systems can build user confidence by ensuring 
secure and transparent data processing and storage. Effective 
trust management mitigates risks related to data integrity and 
privacy while enhancing the reliability of fog networks. By 
implementing clear trust protocols and assessment 
mechanisms, users can feel assured that their information is 
handled appropriately, which is crucial for the widespread 
adoption and success of fog computing technologies. 

D. Trusted Task Offloading Architecture 

As depicted in Fig. 3, this solution primarily focuses on the 
task offloading mechanism based on trust values within fog 
networks. In this architecture, every fog node has the capability 
to directly share tasks with other fog nodes. Meanwhile, it is 
assumed that fog nodes can reach each other from any location 
within the same fog domain. In real-world task flow scenarios, 
the task arrival rate can vary significantly depending on the 
location of the fog nodes [26]. 

 

Fig. 3. Trusted task offloading architecture. 
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E. Trust Evaluation Process 

Each fog node is equipped with a trust evaluation module 
that regularly assesses the trustworthiness of other fog nodes. 
Additionally, each node can function as both a task initiator and 
receiver, enabling task offloading to other fog nodes when 
necessary. When offloading a task, the node selects the most 
suitable fog node based on trust evaluation results and 
additional metrics such as completion time and latency [27]. 

Fog nodes can obtain each other's network load lightness 
information through local communication mechanisms. For 
example, network load information sharing: fog nodes can 
periodically exchange information about their own resource 
usage and task load among themselves. Such information 
includes CPU utilization, memory usage, task rank length, etc. 
The communication can be carried out through a neighbor-
based communication policy. Trust evaluation is done by the 
fog nodes themselves. Each fog node can initiate computational 
detective tasks and select other fog nodes to handle these tasks 
based on the trust evaluation results. Fig. 4 shows the flowchart 
of trust evaluation, and the steps of trust evaluation can be 
represented as: 

a) Initialization: All fog nodes set the same initial trust 

value. 

b) Trust evaluation: Adjusting the trust value according 

to the completion of tasks by other fog nodes. When the 

network load is light, it is performed by sending some probing 

tasks with less data volume to the fog nodes with free resources. 

When the network load is large, i.e., exceeds the pre-set load 

threshold, the frequency of trust evaluation is reduced, or the 

trust value of the collaborators is evaluated by the fog nodes 

during the task collaboration. 

c) When a fog node needs to offload a task, it identifies 

the most appropriate node by considering trust evaluation 

results and time delays. This strategy guarantees that tasks are 

directed to dependable fog nodes that offer optimal 

performance. As a result, overall efficiency and security are 

significantly improved. 

F. Task Offloading Process 

As shown in Fig. 2, there are two types of fog nodes present 
in the fog layer: trusted fog nodes and untrusted fog nodes. At 
the time of offloading, according to the different number of task 
packets and priority of the tasks (indicated by different colors 
in the figure), which are distributed to different fog nodes. Each 
fog node maintains a task processing rank for tasks waiting to 
be processed, and each task has its arrival time, processing time 
and deadline. The relationship between the task processing rank 
and the time delay is as follows: the length of the task 
processing rank, which represents the number of tasks in the 
rank, may affect the waiting time of the tasks. The longer the 
rank, the longer the waiting time may be, which leads to an 
increase in the total time delay of the task. When a fog node 
𝑓𝑛9  initiates a task offloading interaction, it selects a 
neighbouring fog node to interact with. Neighboring node 𝑓𝑛7  
has a short task rank but a low trust value and hence does not 
interact with node 𝑓𝑛7. Whereas, neighboring node 𝑓𝑛10 has 
both low latency and high trust and hence chooses to interact 

with node 𝑓𝑛10 on tasks. 

 

Fig. 4. Trust evaluation process [28]. 

G. Fog Computing Concept 

Trust management in direct trust, recommended trust, and 
comprehensive trust: 

a) Direct trust: In the fog-to-fog collaboration model, a 

fog node evaluates its interactions with other fog nodes, such as 

during task offloading or resource sharing. It updates its trust 

levels based on the outcomes of these interactions. For instance, 

the trust value of a fog node that successfully completes a task 

increases, while the value for a node that fails or produces 

subpar results decreases. The results of these trust calculations 

are recorded locally to assess the trustworthiness of each node. 

b) Recommended trust: Fog nodes can request 

trustworthiness recommendations about third-party fog nodes 

from other fog nodes. This recommendation trust information 

helps fog nodes to understand the trust status of nodes in the 

entire network and thus make more informed task offloading 

decisions. However, the recommendation trust information can 

be affected by malicious nodes spreading false information. 

However, the recommended trust information may be affected 

by malicious nodes spreading false information. To ensure the 

reliability of the recommendation trust information, the 

trustworthiness of the recommender and the similarity of the 

recommendation information (recommender's trustworthiness) 

are calculated. Similarity (weight of recommendation trust) of 

the recommendation information. In this way, after obtaining 

direct trust and recommendation trust information about other 

fog nodes. 
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c) Comprehensive trust: The comprehensive trust value 

is a metric that thoroughly assesses the reliability and 

trustworthiness of fog nodes. It combines two key dimensions: 

direct trust value and recommended trust value. This integrated 

approach offers a solid foundation for making task offloading 

decisions in fog computing. By providing a clearer picture of 

fog nodes' performance during task allocation, the 

comprehensive trust value helps in selecting the most suitable 

nodes for task assignments. 

H. Comparative Analysis of Calculation Methods 

Each trust value calculation method has its unique 
advantages and disadvantages. Choosing a suitable calculation 
method and improving it with optimization suggestions can 
better address the challenges in specific application scenarios 
and improve the accuracy and efficiency of trust value 
calculation [20]. In Table II, combining the advantages and 
weaknesses of the seven algorithms mentioned above, along 
with their application scenarios, suggests that the fuzzy logic 
algorithm is particularly well-suited for real-time task 
offloading needs.

TABLE II MAINSTREAM WAYS OF TRUST EVALUATION 

Techniques Advantages Weaknesses Applicable Scenarios 

Weighted Sum Method Simple to implement and flexible 
Dependent on weight settings, 
linear assumptions 

Used in scenarios where there are fewer 

indicators and the weights are relatively easy 

to determine 

Fuzzy Logic 
Flexible rule definition for complex 

environments 

Too many rules may lead to 

computational inefficiency 

Fuzzy logic is suitable for scenarios dealing 

with uncertainty and ambiguity 

Bayesian Inference Dynamically updated and adaptable Higher computational complexity 
Used in scenarios where trust needs to be 
updated dynamically 

Trust Chain Model Highly flexible 
Over-reliance on network 

structure 

Distributed network environments for multi-

hop trust delivery 

Machine Learning 
Methods 

Ability to handle complex multi-

dimensional data and non-linear 

relationships 

Requires large amounts of high-
quality training data 

Ideal for scenarios dealing with complex, 
multi-dimensional data 

Graph-Based Trust 

Calculation 

Ability to globally evaluate the trust value of 

nodes in the network 

Slower response to dynamic 

changes, which may lead to lags 

Suitable for social networks, P2P networks 

and other scenarios 

Reputation-Based 

Trust Calculation 

Flexibility to adjust the final trust value 

according to different evaluation sources 
and weights 

Vulnerable to malicious ratings or 

subjective bias 

Used in scenarios where reputation needs to 

be assessed and built up over time 

VII. CLASSICAL ALGORITHMS FOR TASK OFFLOADING 

The task of offloading problems in fog computing is 
typically considered as either a single-objective or multi- 
objective optimization problem, subject to diverse constraints. 
These constraints include task completion latency, the quantity 
of tasks fulfilled within the deadline, the degree of load 
balancing, the energy consumption of the fog computing 
system, and the overall service quality. This section outlines 
several commonly used algorithms for addressing task 
offloading challenges. Among the algorithms discussed are 
heuristic approaches such as the PSO algorithm and the Ant 
Colony (AC) algorithm, as well as the Min-Min algorithm. 
These methods provide crucial insights and form the basis for 
the research explored in this study. 

A. Particle Swarm Optimization Algorithm 

The PSO originated from scholars' research on the feeding 
behavior of bird flocks and was first proposed by Kennedy and 
Eberhart [29]. The particle swarm algorithm has become a hot 
research topic, and has been used by scholars to produce a large 
number of research results in various fields, and has been 
continuously improved to produce a number of improved PSO 
algorithms, such as the binary PSO algorithm, the 
heterogeneous PSO algorithm, the adaptive PSO algorithm, the 
cooperative PSO algorithm, and the discrete PSO algorithm, 
etc, [30]. Compared with other intelligent optimization 

algorithms, particle swarm optimization algorithms are easy to 
implement and efficient for solving combinatorial optimization 
problems. 

The main process of the standard particle swarm 
optimization algorithm is as follows: 

1) Initialisation: Initialise the particles in the population by 

assigning random initial values to their positions and velocities. 

The positions and velocities of the particles can be initialised 

according to the following equation, as shown in Eq. (1) and 

Eq. (2): 

𝑥𝑖 = 𝑟(𝑋𝑚𝑎𝑥 −  𝑋𝑚𝑖𝑛) + 𝑋𝑚𝑖𝑛   (1) 

𝑣𝑖 = 𝑟(𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛) +  𝑉𝑚𝑖𝑛    (2) 

In the above equations, "r" represents a random number 
between 0 to 1, “𝑋𝑚𝑎𝑥” and “𝑋𝑚𝑖𝑛”, respectively, denote the 
maximum and minimum positions of the particle, and “𝑉𝑚𝑎𝑥” 
and “𝑉𝑚𝑖𝑛”, respectively, denote the maximum and minimum 
velocities of the particle. The velocity and position of the 
particle cannot exceed the specified maximum and minimum 
ranges. 

The fitness values of particles within a population are 
determined by setting a fitness function. This fitness function 
should be established based on the specific objective function 
that requires optimization. 
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The fitness value of each particle's current position within 
the population is compared with the fitness value of its 
historical best position. Through this comparison, the best 
fitness value for each individual particle can be obtained. 

The fitness values of the current positions of all particles in 
the population are compared with the fitness value of the global 
best position. As a result, the global best fitness value of the 
population can be determined. 

Update the velocity and position of particles. For the 
(𝑡 + 1) generation iteration, update each particle's velocity and 
position [see Eq. (3) and Eq. (4)]: 

𝑣𝑖𝑑(𝑡 + 1) = 𝑣𝑖𝑑(𝑡) + 𝑐1𝑟1(𝑡)[𝑝𝑖𝑑(𝑡) − 𝑥𝑖𝑑(𝑡)] +
𝑐2𝑟2[𝑝𝑔𝑑(𝑡) − 𝑥𝑖𝑑(𝑡)]   (3) 

𝑥𝑖𝑑(𝑡 + 1) = 𝑥𝑖𝑑(𝑡) + 𝑣𝑖𝑑(𝑡 + 1)  (4) 

where, 𝑟1 and 𝑟2 denote random numbers between (0,1), 𝑝𝑖𝑑 
and 𝑝𝑔𝑑  are the optimal positions of the particle and the 

population, respectively, 𝑐1  and 𝑐2  are the acceleration 
constants. One of the common optimization methods for 
particle swarm algorithms is to add inertia weights to control 
the current velocity of the inherited particles when updating 
their positions. ω includes a check to see if the maximum 
number of iterations has been reached, or if the desired fitness 
value has been reached. If the termination condition is met, the 
individual with the highest fitness value is output. 

B. Ant Colony Algorithm 

The Ant Colony Optimization (ACO) algorithm is a swarm 
intelligence approach inspired by the foraging behavior of ants 
and driven by positive feedback. When ants search for food, 
they release pheromones to communicate with the colony, 
naturally favoring shorter paths that lead to the target more 
quickly. As ants traverse these paths, pheromone accumulation 
increases, making those routes more attractive to others. Over 
time, pheromones evaporate, ensuring the colony gravitates 
towards the path with the highest concentration, ultimately 
leading to the most efficient solution. 

Similar to the particle swarm optimization algorithm, ACO 
is a highly effective parallel search method capable of solving 
complex combinatorial optimization problems [31]. The typical 
process of an ACO algorithm follows these steps: 

Initialize parameters: Initialize parameter information, such 
as colony size and pheromone. 

Place ants: Randomly place ants in the colony on the path. 

Path selection: The ants choose the path according to the 
difference of pheromone concentration on the path, and the 
probability of choosing the path (𝑖, 𝑗) is Eq. (5): 

𝑝𝑖𝑗
𝑘 (𝑡) = {

[𝜏𝑖𝑗(𝑡)]
𝛼

⋅[𝜂𝑖𝑗(𝑡)]
𝛽

∑𝑠∈𝐽𝑘(𝑖)  [𝜏𝑖𝑠(𝑡)]𝛼⋅[𝜂𝑖𝑠(𝑡)]𝛽 , 𝑗 ∈ 𝐽𝑘(𝑖)

0,  others 

 (5) 

where, ( 𝐽𝑘(𝑖) = {1,2, … , 𝑛} − 𝑡𝑎𝑏𝑢𝑘 ) is the set of next 
paths that the ant can choose,  𝑡𝑎𝑏𝑢𝑘 represents the set of paths 
that the ant has already travelled, and the paths that have already 
been chosen will be added to the taboo list for no further 

choices, and the ant completes a path selection when all paths 
have been added to the taboo list; 𝜏𝑖𝑗 is the pheromone 

concentration of the path (𝑖, 𝑗) at this point in time. Pheromone 
concentration; 𝜂𝑖𝑗  is the heuristic factor with 𝜂𝑖𝑗 = 1/𝑏𝑖𝑗 , the 

expected degree of ant κ choosing the path (𝑖, 𝑗). Where, α is 
the pheromone heuristic factor, indicating the degree of 
importance of the pheromone, and β indicates the degree of 
importance of the heuristic factor. Generally, α takes a constant 
value between 1 and 4, with its value positively correlated to 
the influence of the pheromone. To find the optimal path, once 
all the ants have completed their path selection, the best path 
among all the ants is selected. The pheromone is then updated. 
In this iteration, the pheromone on the path remains constant, 
and the update occurs according to the following Eq. (6) and 
Eq. (7): 

𝜏𝑖𝑗(𝑡 + 𝑛) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + Δ𝜏𝑖𝑗  (6) 

Δ𝜏𝑖𝑗 = ∑𝑘=1
𝑚  Δ𝜏𝑖𝑗

𝑘    (7) 

where, 𝜌(0 < 𝜌 < 1)denotes the evaporation coefficient of 
the pheromone on the path, Δ𝜏𝑖𝑗 denotes the increment of 

pheromone in this iteration.  Δ𝜏𝑖𝑗
𝑘  denotes the pheromone 

produced by ant k on path (i, j). 

C. Min-Min Algorithm 

The Min-Min algorithm was originally proposed to solve 
the task offloading problem in Grid computing [32]. The idea 
is first to map tasks with small computational resource 
requirements and schedule these small tasks to servers with 
high computational power, i.e., fast execution speed. The 
typical execution steps of the Min-Min algorithm are: Compute 
the expected completion time of every task on each available 
server. Then, identify the earliest completion time for each task 
and its corresponding server. Locate the task with the shortest 
earliest completion time from the task list. Dispatch this task to 
the server according to the earliest time calculated in Step (I). 

Update the task list on the server with the earliest time. After 
the scheduling, update the expected completion times of other 
tasks in the task list on the available server, and remove this 
task from the task set. Repeat the above steps until all the tasks 
in the task list have been scheduled. 

The Min-Min algorithm is simple and easy to operate, but 
there are some problems. On one hand, it maps many small 
tasks to servers with high computing power, resulting in load 
imbalance, and on the other hand, it causes large tasks with high 
computational resource demand to have no free servers to 
process them, so the tasks cannot be processed as quickly as 
possible to meet the latency requirements. 

VIII. RELATED WORKS 

In the increasingly complex landscape of fog computing, 
trust management has emerged as a critical concern, with 
various mechanism developed to ensure secure and reliable 
interactions between IoT devices and fog nodes. Mahmood et 
al. [33] introduced a trust-based architecture that leverages 
digital certificates signed by fog nodes acting as certification 
authorities. This approach significantly enhances the security 
and privacy of communications within a trusted domain, but it 
faces challenges related to the complexity and cost of deploying 
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multiple fog nodes and managing revoked certificates. Building 
on this, Atwa et al. [20] developed a reputation-based model for 
VANETs, which integrates fog computing to reduce the need 
for extensive cloud communication by aggregating trust 
evaluations at the fog nodes. Although this model reduces 
message transmission overhead, it encounters difficulties in 
adapting to the highly dynamic nature of VANET 
environments. 

Liang et al. [21] proposed a reliable trust computing 
mechanism that aggregates multisource feedback within a 
Social Sensor Cloud (SSC) environment. By using a fusion 
algorithm, this approach improves the accuracy of trust 
evaluations and enhances the detection of malicious nodes. 
However, the integration of multiple feedback sources 
introduces significant implementation complexity and requires 
robust infrastructure. Meanwhile, Mahmoud et al. [34] applied 
the Fuzzy Analytic Hierarchy Process (Fuzzy-AHP) to 
prioritize multiple trust criteria, such as Quality of Service 
(QoS) and Quality of Security (QoSec), to deliver more 
accurate and reliable trust assessments. Despite its 
comprehensiveness, this method is limited by the complexity of 
implementation and the potential for bias due to reliance on 
expert judgment. 

Alemneh et al. [19] proposed a two-way trust management 
system using subjective logic, which allows both service 
requesters and providers to evaluate each other's 
trustworthiness. This approach enhances the overall security of 
the fog network by combining direct and indirect trust, but the 
computational burden introduced by subjective logic, 
particularly in processing large volumes of recommendation 
information, poses challenges for resource-constrained fog 
nodes. In addressing cybersecurity issues within Sensor-Cloud 
Systems (SCS), Wang et al. [35] introduced a hierarchical trust 
mechanism that employs real-time monitoring and behaviour 
analysis at the fog layer to quickly identify and isolate 
malicious nodes. While effective in threat detection, this system 
may experience significant computational and communication 
overheads in large-scale networks due to the multi-layered trust 
computations required. 

Almas et al. [18] contributed to the field by proposing a 
context-based adaptive trust mechanism tailored for smart 
healthcare systems. By utilizing a Bayesian approach and 
similarity measures, the system dynamically adjusts trust 
weights to respond to environmental changes, effectively 
mitigating trust-related attacks. However, the system may face 
challenges in maintaining timely updates to trust values in 
highly dynamic network environments, potentially leading to 
misjudgments. Bukhari et al. [22] introduced the Fog Node 
Selection Engine (FNSE), an AI-driven framework that 
employs Fuzzy Logic, Logistic Regression, and Deep Neural 
Networks to predict the trustworthiness of fog nodes. This 
approach demonstrated superior accuracy but also increased 
computational complexity, which could impact the system's 
real-time performance. 

Yadav and Baranwal [36] developed a trust management 
mechanism based on feedback credibility evaluation to combat 
malicious feedback in fog computing. The system enhances the 
accuracy of trust evaluations by using a checkers-based method 

to prioritize recent interactions. However, in highly dynamic 
environments, the computation of trust values may not reflect 
the latest state of nodes, leading to delays in decision-making. 
Gu et al. [15] proposed a reputation-based resource allocation 
scheme in community-based fog computing, which matches 
user tasks with fog nodes that meet specific reputation criteria, 
thereby improving service reliability. This approach, however, 
introduces significant computational overhead due to the 
complexity of reputation computations across multiple layers 
of communities and nodes. 

Kochovski et al. [37] integrated blockchain technology into 
fog computing trust management by utilizing smart contracts 
and trustless oracles to manage trust relationships in real-time. 
While this approach enhances transparency and 
trustworthiness, it also increases computational complexity and 
latency, particularly in handling a large number of transactions. 
Zhang et al. [38] introduced a fog-based detection system 
(FDS) for Sensor-Cloud Systems, focusing on hierarchical trust 
evaluation to detect hidden data attacks. Although effective in 
detecting malicious activity, the system may struggle with 
timely updates to trust values in dynamic networks, impacting 
decision accuracy. 

Rehman et al. [39] proposed FogTrust, a lightweight trust 
management mechanism for IoT that uses fuzzy logic and trust 
aggregation to detect and mitigate various IoT attacks, such as 
on-off good-mouthing and bad-mouthing attacks. Despite its 
effectiveness, the multiple trust calculation processes involved, 
particularly with fuzzy logic, may affect the real-time 
performance and responsiveness of the system. 

Collectively, these studies illustrate the diverse mechanisms 
employed to manage trust in fog computing environments. 
They highlight the ongoing trade-offs between enhancing 
security, maintaining system performance, and managing 
computational complexity. As the field continues to evolve, 
future research must address the challenges of scalability and 
real-time application, ensuring that trust mechanisms remain 
robust and efficient even in large-scale, dynamic fog computing 
environments. 

Continuing from the previous detailed exploration, 
additional studies have further expanded on trust management 
in fog computing, focusing on various aspects such as trust 
evaluations, feedback credibility, and resource allocation. 

Muhtadi et al. [40] presented a trust model for fog 
computing that leverages subjective logic to evaluate 
trustworthiness among fog nodes. This model considers belief, 
disbelief, and uncertainty in its calculations, combining direct 
experiences with recommendations from other nodes to assess 
trust. While effective in identifying and mitigating malicious 
nodes, the model is susceptible to bias if the network contains 
a high number of malicious nodes. Moreover, the reliance on 
recommendation information could lead to inaccuracies if the 
sources of these recommendations are compromised. 

Mazumdar et al. [41] introduced a trust-based load-
offloading protocol specifically designed to optimize service 
delivery in fog computing for IoT applications. This protocol 
uses a distributed scheme where fog nodes collaborate to share 
the load based on trust evaluations. Trust is established through 
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a Fog Registration Center (FRC) that authenticates fog nodes 
using Shamir's secret sharing scheme, ensuring that only trusted 
nodes participate in load-sharing. Although this approach 
minimizes service delays and ensures timely task completion, 
it adds complexity, especially in high-load or emergency 
situations where the scheme’s security mechanisms might 
introduce additional computational burdens. 

Yadav and Baranwal [42] proposed a trust evaluation 
method that combines Quality of Service (QoS) attributes with 
social relationships among fog nodes. This multi-layered 
approach enhances the security of fog computing environments 
by minimizing the risk of malicious nodes disrupting 
operations. However, the approach’s complexity, particularly 
in large-scale networks, may lead to significant computational 
overheads and delays, as multiple layers of trust computations 
and data analyses are required to accurately assess 
trustworthiness. 

Rathee et al. [43] introduced a trust-based security 
framework designed to enhance communication security 
between fog nodes and IoT devices. This framework includes a 
Trust Manager (TM) that evaluates the legitimacy of fog nodes 
and IoT devices by calculating trust values and factors based on 
past interactions. The TM records these metrics in a lookup 
table, using optimization algorithms to ensure reliable 
communication paths. Although the framework effectively 
reduces the risk of malicious activities, the need to compute 
multiple levels of trust values introduces high computational 
complexity, potentially impacting the system’s real-time 
performance. 

Ben Daoud et al. [44] developed the TACRM model, which 
integrates access control with trust and resource management 
in fog computing environments. The model computes trust 
based on user behaviors and assigns trust levels to users, which 
are then used for access control decisions. This approach 
enhances security by monitoring user activities and ensuring 
that resources are allocated securely and efficiently. However, 
the continuous monitoring required by the system raises 
potential privacy concerns, particularly in sensitive or personal 
data contexts. 

Hamza et al. [45] proposed a bi-directional trust 
management system for fog computing, which uses both direct 
and indirect trust computations to establish trust between 

Service Requesters (SR) and Service Providers (SP). The 
system employs fuzzy logic to aggregate trust scores, with a 
decay function modelling the influence of past interactions on 
current trust assessments. While this approach effectively 
mitigates common trust-related attacks, such as ballot stuffing 
and self-promotion, the introduction of Bayesian inference and 
centrality into the trust evaluation process increases 
computational complexity, which may affect real-time 
performance in large-scale networks. 

Ogundoyin and Kamil [16] introduced a trust management 
system that also uses fuzzy logic to evaluate trust in fog 
computing environments. This system integrates direct trust 
from self-observation with indirect trust from past reputation 
and recommendations, considering multiple criteria such as 
QoS and Quality of Security (QoSec). While the system 
combines various factors to provide a nuanced trust assessment, 
the use of a trust decay function in highly dynamic 
environments may not update trust values in a timely manner, 
potentially affecting the accuracy of trust-based decisions. 

Finally, Rahman et al. [46] introduced a trust management 
system that uses a fuzzy control system to evaluate the security, 
reputation, and availability of vehicular fog nodes (v-fogs). 
This system is particularly adaptable to dynamic environments, 
as it handles uncertainty and variability in trust evaluation 
processes. The use of a fuzzy control system enables the 
processing of multiple inputs and the evaluation of numerous 
rules to generate a final trust score. However, the computational 
overhead introduced by this method can be challenging in real-
time applications, especially in large-scale networks where 
rapid decision-making is crucial. 

Collectively, the above literature related to trust in fog 
computing from 2019 to 2024 illustrates various approaches to 
trust management in fog computing, each addressing specific 
challenges related to security, reliability, and performance. In 
Table III, the ongoing development of these mechanisms 
highlights the necessity of balancing robustness with efficiency, 
particularly as fog computing environments scale in size and 
complexity. Future research in this area is likely to focus on 
optimizing these trust management policies to ensure that they 
meet the needs of real-time applications while maintaining a 
high level of security and scalability in heterogeneous 
computing environments. 

TABLE III COMPARATIVE ANALYSIS OF TRUST MANAGEMENT APPROACHES IN FOG COMPUTING LITERATURE (2019-2024) 

Author Method Advantage Weakness How to Evaluate 

Shahid 

Mahmood, et 

al. [26] 

Based on digital certificate 

trust management 

Enhances security and 

privacy of data 

communication between 

IoT devices through digital 

certificates. 

Complex and costly deployment of 

numerous fog nodes as certification 

authorities. Cumbersome management 

and distribution of revoked certificates 

across devices. 

Measure latency reductions. Assess 

security enhancements (e.g., fewer 

successful cyber-attacks). Evaluate 

resource utilization efficiency. 

Rasha Jamal 

Atwa,et al. 

[20] 

Task-based Experience 

Reputation (TER)： 

combines traditional 

Experience-based 

Reputation Models and 

Recommendation-based 

Reputation Models  

Significantly reduces 

message transmission 

overhead and vehicle 

workload compared to 

experience-based models. 

Traditional reputation computation 

methods struggle to adapt to the high 

mobility and transient nature of 

vehicles in VANETs. 

 

Performance evaluated through 

MATLAB simulations. Comparison 

against experience-based trust models. 

Assessment of message overhead 

reduction and accuracy of trust 

assessments via task-specific 

reputation values. 
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Junbin 

Liang,et al. 

[21] 

Multi-source feedback trust 

computation, combining 

both direct and 

recommended trust 

methods 

Improves detection of 

malicious feedback nodes, 

enhancing the overall 

trustworthiness of the SSC. 

Complicated implementation due to 

the integration of multiple feedback 

sources and the need for robust 

infrastructure. 

Performance evaluated through 

theoretical analysis and simulation. 

Simulation results demonstrate higher 

trust accuracy with the multisource 

feedback mechanism. 

Ogundoyin, 

et al. [34] 
Based on Fuzzy-AHP 

Enables comprehensive 

evaluation of trust by 

simultaneously considering 

multiple criteria, resulting in 

more accurate and reliable 

trust assessments. 

Complex implementation due to the 

need for expert opinions and 

mathematical computations for 

prioritizing criteria. Subjectivity in 

expert judgment can lead to biased 

results, especially with inconsistent or 

inaccurate opinions. 

Utilizes Fuzzy-AHP to prioritize 

trust criteria and calculate their 

weights. Assesses the impact on 

overall trust evaluations. Effectiveness 

demonstrated through nuanced and 

accurate trust assessments, enhancing 

reliability and security of fog 

computing services. 

E. 

Alemneh,et 

al. [19] 

Based on Subjective Logic: 

Direct Trust, Indirect Trust, 

Trust Tuple 

Ensures trustworthiness of 

both service providers and 

requesters, enhancing 

overall security and 

reliability of the fog 

network. 

Involves complex computational 

operations (e.g., discounting and 

consensus) that may burden resource-

constrained fog nodes, particularly 

with large amounts of 

recommendation information. 

Performance evaluated through 

simulations. Focuses on metrics such 

as accuracy, convergence, and 

resistance to trust-based attacks. 

T. Wang, et 

al. [35] 

Based on Hierarchical trust: 

Direct Trust, 

Recommendation Trust, 

Comprehensive Trust 

Quickly identifies and 

isolates malicious nodes 

through real-time 

monitoring. 

Involves multiple levels of trust 

computation and data analysis, 

leading to high computational 

complexity and potential overhead in 

large-scale networks. 

Evaluated through simulations 

measuring performance metrics such 

as energy consumption, malicious 

node detection speed, and recovery of 

misjudged nodes. 

A. Almas, et 

al. [18] 

Based on Bayesian 

approach: Direct Trust, 

Indirect Trust, Total Trust 

Dynamically adjusts trust 

weights to respond to 

environmental changes, 

effectively mitigating trust-

related attacks. 

Timeliness of trust value updates may 

be insufficient in highly dynamic 

network environments, potentially 

leading to misjudgement. 

Evaluated through simulations using 

Contiki-NG and Cooja in a smart 

healthcare scenario. Analysis includes 

the impact of different similarity 

measures and comparisons between 

static and adaptive weighting methods 

on trust scores. 

S. Mahmood, 

et al. [33] 

Based on multi-source trust 

evaluation: Direct Trust, 

Recommendation Trust, 

Context-Aware Feedback, 

Content-Based Trust 

Enhances reliability and 

accuracy of trust 

assessments by 

incorporating multiple 

sources of trust data. 

Involves multiple levels of trust 

computation and data analysis, 

leading to high computational 

complexity and potential overhead in 

large-scale networks. 

Evaluated through extensive 

simulations demonstrating 

effectiveness and reliability in 

assessing user trustworthiness. 

Analysis includes the impact of weight 

factors and the significance of monitor 

mode. 

A. A. 

Bukhari, et 

al. [22] 

Based on Fuzzy Logic: 

Fuzzification, Rule Setup, 

Fuzzy Inference, 

Defuzzification 

The FL-based FNSE 

approach demonstrated 

superior performance with 

the highest accuracy, 

precision, recall, and F1 

score in predicting fog node 

trustworthiness. 

The fuzzy logic approach involves 

multiple steps (fuzzification, rule 

inference, and defuzzification), 

leading to high computational 

complexity that may impact real-time 

system performance. 

Conducted experiments comparing 

three models (FL, LR, DNN) based on 

metrics such as accuracy, precision, 

recall, F1 score, and execution time. 

R. Yadav, G. 

Baranwal 

[42] 

Based on Feedback 

Credibility Evaluation: 

Direct Trust, Indirect Trust, 

Feedback Credibility 

Evaluation, Final Trust 

Score 

Filters out malicious 

feedback before trust 

evaluation, enhancing the 

accuracy of trust scores 

assigned to fog nodes. 

In highly dynamic network 

environments, trust value 

computations may not reflect the 

latest state of nodes in a timely 

manner, leading to delayed decision-

making. 

Evaluated through simulations using 

synthetic data to measure effectiveness 

in filtering malicious feedback and 

maintaining accurate trust scores. 

Performance metrics included 

detection rate, false rate, and deviation 

of trust scores from an ideal baseline. 

Ke Gu, et al. 

[17] 

Based on Reputation 

Mechanism: Internal 

Reputation, Indirect 

Reputation, Overall 

Reputation Value 

Effectively matches user 

tasks with fog nodes that 

meet reputation 

requirements, improving 

service reliability. 

Involves multiple levels of reputation 

computation and data analysis, 

leading to high computational 

complexity, especially with many 

communities and nodes, which can 

cause overheads and delays. 

Evaluated using simulations on the 

CloudSim platform. Focused on 

metrics such as reputation changes, 

resource allocation success rate, 

average completion delay of tasks, and 

average distance between users and 

service providers. 

J. Al. 

Muhtadi, et 

al. [40] 

Based on Subjective Logic: 

Direct trust, Recommended 

Trust, trust convergence 

Effectively identifies and 

mitigates malicious nodes 

using subjective logic that 

incorporates uncertainty and 

indirect evidence. 

Heavily relies on recommendation 

information, which can bias trust 

calculations in networks with a high 

number of malicious nodes. 

Evaluated through simulations 

assessing accuracy, convergence, and 

resilience against various trust-based 

attacks. 
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N. 

Mazumdar, 

et al. [41] 

Based on Direct Trust, 

Indirect Trust, 

Comprehensive trust 

evaluation 

Minimizes service delays 

and ensures timely task 

completion by offloading 

tasks to trusted nodes. 

Shamir's secret sharing scheme adds 

complexity and burden, particularly in 

high-load or emergency situations. 

Evaluated through simulations 

focusing on average latency, service 

response rate, and task completion 

success. 

R. Yadav and 

G. Baranwal, 

[36] 

Based on multilevel trust: 

Trust Factor Calculation, 

Overall, Trust Evaluation 

Enhances security in fog 

computing by evaluating 

trust through QoS and social 

relationships, minimizing 

risks from malicious nodes. 

Involves multi-layered trust 

computation and data analysis, 

leading to high computational 

complexity and potential overheads in 

large-scale networks. 

Considers historical interactions and 

reputation among fog nodes to assess 

trustworthiness. 

P. 

Kochovski, 

et al. [37] 

Based on blockchain: 

Smart Contracts, Trustless 

Smart Oracles, Markov 

Supports real-time 

monitoring and trust 

updates for quick responses 

to changes in node behavior. 

Use of blockchain and smart contracts 

increases computational complexity 

and latency, especially with numerous 

transactions. 

Evaluated through simulations 

focusing on the ability to detect and 

handle malicious nodes while 

maintaining performance. Metrics 

included accuracy in detecting trust 

anomalies and system overhead. 

G. Rathee, et 

al. [43] 

Based on Tidal Trust 

Algorithm 

Ensures only trusted nodes 

communicate, effectively 

reducing the risk of 

malicious activities. 

Requires computation of multiple trust 

values and uses complex algorithms, 

leading to high computational 

complexity that may impact real-time 

performance. 

Examines performance in scenarios 

with malicious versus trusted fog 

nodes, focusing on managing security 

for handoff IoT devices (HEU) and 

mobile HEU (MHEU). 

W. Ben 

Daoud, et al. 

[44] 

Based on TACRM 

framework 

Monitors and controls 

access based on trust levels, 

reducing the risk of 

unauthorized access and 

attacks. 

Continuous monitoring of user 

behaviour may raise privacy concerns. 

Evaluated through simulations of 

various network scenarios to measure 

the impact on security breach 

incidents. 

M. Hamza, et 

al. [45] 

based on a Bayesian 

inference model: Direct 

Trust, Reputation Function, 

Degree Centrality, Service 

Score, Final Trust 

Detects and mitigates 

common trust-related 

attacks like ballot stuffing 

and self-promotion. 

Comprehensive trust evaluation and 

the use of Bayesian inference increase 

computational complexity, potentially 

affecting real-time performance in 

large-scale networks. 

Measures the accuracy of trust 

assessments through modelling. 

S. O. 

Ogundoyin 

and I. A. 

Kamil [16] 

Based on fuzzy logic: 

Direct Trust, Indirect Trust, 

trust convergence 

Combines QoS, QoSec, and 

social interactions for a 

nuanced trust assessment. 

Trust decay function may not update 

values timely in highly dynamic 

environments, affecting decision 

accuracy. 

Evaluated through simulations 

measuring the system's ability to 

mitigate trust-related attacks and the 

accuracy of trust assessments. 

G. Zhang, et 

al. [38] 

Based on Hierarchical Trust 

Evaluation: Direct Trust, 

Indirect Trust, Hierarchical 

Trust Evaluation 

Efficiently detects hidden 

data attacks by analysing 

sensor data correlations and 

historical trust states. 

Layered architecture may lead to 

untimely updates of trust values in 

dynamic networks, affecting decision-

making accuracy. 

Evaluated through MATLAB 

simulations testing detection accuracy 

of the FDS under various scenarios, 

including different malicious sensor 

ratios and group sizes. 

A. Rehman, 

et al. [39] 

Based on Fuzzy Logic: 

Direct Trust, Indirect Trust, 

Trust Encryption and 

Aggregation 

Effectively detects and 

mitigates various IoT 

attacks, including on-off, 

good-mouthing, and bad-

mouthing attacks through 

encryption and trust 

aggregation. 

Involves complex trust calculations, 

particularly with fuzzy logic, leading 

to high computational complexity that 

may affect real-time responsiveness. 

Evaluated through simulations testing 

FogTrust's effectiveness against 

various attacks. 

Q. Zhang, et 

al. [47] 

a semantic-based trust 

management system 

integrated: Semantic 

Analysis, Direct Trust, 

Indirect Trust 

Enables faster and more 

accurate emergency 

responses through semantic 

analysis, reducing failure 

risks in critical situations. 

Scaling the system may challenge 

trust evaluations and semantic data 

processing, impacting performance. 

Fog nodes assess trustworthiness 

based on historical interactions, data 

freshness, and recommendations, 

filtering out untrustworthy content. 

T. Wang, et 

al. [35] 

based on both direct trust 

and indirect trust 

Utilizes both direct and 

indirect trust to adapt to 

network changes, including 

node mobility and varying 

trust levels. 

Growing network size may 

complicate trust value calculations 

and data management, impacting 

scalability. 

Final trust value is computed by 

combining direct and indirect trust 

values using a weighted sum. 

F. H. 

Rahman, et 

al. [46] 

Based on a fuzzy 

control system: Security, 

Reputation, Availability 

Fuzzy control system 

effectively handles 

uncertainty and variability 

in trust evaluation, adapting 

to dynamic environments. 

Introduces computational overhead 

from processing multiple inputs and 

evaluating numerous rules, 

challenging real-time applications. 

Trust value is calculated using a fuzzy 

control system that processes security, 

reputation, and availability metrics to 

determine vehicle cluster membership. 

IX. CHALLENGES AND FUTURE PROSPECTS 

As the landscape of fog computing continues to shift, new 
challenges emerge that must be addressed to ensure effective 

trust management and task offloading. The increasing 
complexity and dynamism of network environments require 
innovative solutions to enhance the reliability and security of 
these systems. This section outlines several key challenges and 
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research directions that researchers and practitioners will need 
to tackle in the pursuit of more robust trust management 
frameworks. 

A. AI and Machine Learning Integration 

Integrating AI and machine learning techniques can 
significantly enhance trust assessments by leveraging historical 
data and real-time interactions. Research can explore 
supervised and unsupervised learning algorithms to model node 
behavior and predict trustworthiness, allowing for more 
accurate and adaptive trust evaluations that evolve with the 
network. 

B. Hybrid Trust Models 

Hybrid models that combine various trust evaluation 
techniques can provide more resilient systems. Research can 
explore the integration of reputation systems, subjective logic, 
and Bayesian approaches to create comprehensive models that 
account for both direct experiences and indirect 
recommendations, enhancing the accuracy of trust assessments. 

C. Context-Aware Trust Management 

Context-aware mechanisms can adjust trust evaluations 
based on environmental factors and user behaviors. Future 
research can focus on developing systems that dynamically 
modify trust metrics according to contextual information, 
ensuring that trust assessments are relevant and responsive to 
the current state of the network. 

D. Decentralized Trust Management Systems 

Decentralized approaches reduce reliance on central 
authorities and enhance resilience. Research should explore the 
design of decentralized trust management frameworks that 
empower nodes to independently evaluate trust, using peer-to-
peer communication protocols to share and validate trust 
information among nodes. 

E. Cross Domain Trust Management 

Managing trust across different domains (e.g., fog and cloud 
computing) is vital for seamless interactions. Future studies 
should investigate methods for establishing trust relationships 
that span multiple environments, ensuring that resources can be 
shared securely and efficiently without compromising the 
integrity of trust evaluations. 

F. Performance Optimization Techniques 

Optimizing computational processes involved in trust 
evaluations can minimize overhead. Research should focus on 
developing algorithms that streamline trust computations, 
utilizing techniques such as caching trust values, batching 
evaluations, or employing approximation methods to reduce 
computational complexity without sacrificing accuracy. 

G. User Centric Trust Models 

Developing user-centric trust management systems can 
enhance user experiences by prioritizing individual preferences 
and interactions. Research should explore personalized trust 
models that adapt to user behaviors and preferences, allowing 
for more relevant interactions and trust assessments that reflect 
user needs. 

By addressing these challenges and pursuing the outlined 

research directions, the field of trust management in fog 
computing can evolve to meet the demands of increasingly 
complex and dynamic environments, ensuring both security and 
performance. 

X. CONCLUSION 

This study provides a comprehensive exploration of the 
critical role of trust management in fog computing, particularly 
in ensuring secure and efficient task offloading among diverse 
IoT devices. It highlights significant gaps in existing 
methodologies and emphasizes the urgent need for advanced 
trust assessment frameworks. By establishing key metrics for 
evaluating trust management systems, we lay the groundwork 
for measuring their effectiveness, which is essential for 
fostering reliable interactions in dynamic environments. The 
integration of AI and machine learning techniques is examined 
as a promising approach to enhancing trust evaluations. These 
technologies allow systems to adapt to real-time data and 
evolving network conditions. However, several challenges 
persist, including scalability, the management of diverse IoT 
devices, the achievement of real-time trust evaluations, and the 
need to address security and privacy concerns. Moreover, 
addressing these challenges through innovative research and 
practical implementations is crucial for advancing fog 
computing technologies. This work aims to provide valuable 
insights that will facilitate the development of more secure and 
efficient applications, ensuring that trust management evolves 
alongside the rapidly changing landscape of IoT and fog 
computing. 
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