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Abstract—Pneumonia, a potentially fatal infection and a 

common disease-causing culprit among children and the elderly, 

still remains as a prevalent threat even after years of research on 

tackling it. Rapid and proper identification is crucial for timely 

treatment and improved results. While thoracic radiographs are 

widely employed in pneumonia diagnosis, real-world clinical 

assessment is frequently questioned by factors such as subtle 

radiographic patterns, overlapping symptoms, subjective manual 

judgement and dependency on expert radiologists. The study 

proposes a hybrid deep learning model integrating ResNet50 and 

the Swin Transformer, coupled with an auxiliary segmentation 

decoder to facilitate both classification and lesion localization in 

chest X-ray images. ResNet50 acts as the backbone for 

hierarchical spatial feature extraction, capturing fine-grained 

local textures indicative of pulmonary abnormalities, and the Swin 

Transformer serves as the global attention-driven feature 

aggregator. The shifted window mechanism of the Swin 

Transformer maintains spatial hierarchy while facilitating 

effective contextual modelling. Global Average Pooling (GAP) and 

Multilayer Perceptron (MLP) form the classification head, 

yielding accurate predictions in classifying the images, while the 

segmentation decoder utilizes multiscale features to generate 

pixel-wise masks for pneumonia lesion regions. The model 

outperformed conventional methods with 98.4% classification 

accuracy, 98.2% precision, 99.2% recall and an F1-score of 98.7% 

with a 0.88 Dice Coefficient in segmentation. These results reflect 

the hybrid architecture’s superior performance and its dual 

capacity for diagnostic prediction and lesion interpretability. The 

proposed model demonstrates promising results for deployment in 

real-world clinical workflows, especially in resource-constrained 

or high-patient-load environments. 
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I. INTRODUCTION 

Pneumonia is a potentially life-threatening pulmonary 
infection causing inflammation of the alveoli, the tiny air sacs 
within the lungs, filling up with fluid or pus. Affecting over 150 
million individuals and causing around 2.5 million deaths every 
year, it is the primary cause of infectious disease deaths among 
children under five years old globally, responsible for 70,000 
deaths per year, a terrifying 14% of deaths [1]. A number of 
pathogens, including bacteria, viruses and fungi, could act as the 
agents of the fatal disease. Streptococcus pneumoniae remains 
the most common bacterial agent, and respiratory viruses such 
as influenza and SARS-CoV-2 also contribute significantly to 
disease incidence [2]. Prolonged coughing, chest pain, fever, 
chills and respiratory difficulties are common signs of 
pneumonia, and in extreme cases, additional symptoms like 
confusion, cyanosis and fast breathing can also occur. Delayed 

or inaccurate diagnosis results in disease progression, 
complications or even death, highlighting the critical need for 
timely and reliable diagnostic methodologies [3]. 

Clinical examination, auscultation, laboratory tests and 
manual chest radiography analysis are the basic traditional 
pneumonia detection methods. Clinical examination and 
auscultation have limited sensitivity and delayed turnaround 
times, are frequently used only as a manual screening process, 
and that too with high error rates in early pneumonia 
manifestations [4]. Due to the unavailability of specific 
biomarkers, laboratory tests frequently fail to pinpoint 
pneumonia from other respiratory illnesses. Even though chest 
X-rays offer a non-invasive and accessible tool for visual 
confirmation of pneumonia, their interpretation is subjective, 
depending heavily on the expertise of a radiologist [5]. 
Misinterpretation or variability in radiographic evaluations 
usually leads to delayed diagnosis or misdiagnosis. Traditional 
image analysis techniques have limited capacity to discern 
subtle pathological patterns or overlapping pulmonary 
anomalies, especially in early or atypical Pneumonia infections 
[6]. 

Deep learning (DL) based models have displayed promising 
results in automated pneumonia detection methods from chest 
radiographs in their initial phases. Convolutional neural 
networks (CNNs), DenseNet and Vision Transformers (ViT) 
frameworks have demonstrated considerable success in 
enhancing classification accuracy and reducing diagnostic 
turnaround time [7]. But the lack of spatial interpretability, being 
computationally complex and costly, hinder real-time 
deployment of most of the models. Limited interpretability and 
high resource requirements, and skilled hardware operation 
requirements make them irrelevant in rural and resource 
constrained regions. Moreover, few integrate simultaneous 
segmentation of pathological regions, which is vital for localized 
analysis and clinical insight. 

The study proposes a novel ResNet50-Swin Transformer 
hybrid model, addressing the diagnostic challenges by 
combining robust local feature extraction with global contextual 
representation, enabling both accurate classification and precise 
segmentation of pneumonia from chest X-rays. This dual-
capability framework enhances diagnostic reliability while 
maintaining computational efficiency rendering it ideal for 
practical clinical deployment. To bridge the gap between 
theoretical accuracy and practical feasibility, the proposed 
model aims to design a model that not only performs robustly in 
controlled settings but is also scalable and reliable in high-
patient-load environments such as rural clinics or emergency 
care centers lacking expert radiologists. By reducing reliance on 
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manual interpretation and enabling automatic lesion 
localization, the hybrid framework holds the potential to 
significantly reduce diagnostic delays in telemedicine setups and 
frontline screening programs. The lightweight architectural 
design further enables deployment on edge devices such as 
mobile radiology units and AI-enabled X-ray machines, making 
it especially useful in developing countries or disaster-struck 
zones. In real-world hospital settings, such a model could assist 
junior clinicians or non-specialist health workers in triaging 
suspected pneumonia cases more efficiently, improving both 
speed and consistency of care. 

The core research question addressed in this study is whether 
a hybrid model integrating convolutional and transformer-based 
architectures with an integrated segmentation decoder enhances 
both classification accuracy and lesion-level interpretability in 
pneumonia detection from chest radiographic images. The key 
objectives of the study are as mentioned below: 

 Design and implement a hybrid DL framework that 
leverages the spatial feature extraction capabilities of 
ResNet50 with contextual attention mechanisms of the 
Swin Transformer for binary classification of thoracic 
radiograph images into affected and healthy cases. 

 Incorporate an integrated segmentation decoder within 
the hybrid model to generate pixel-wise lesion maps, 
enabling accurate localization of pneumonia-affected 
regions and thereby improving diagnostic interpretability 
and clinical decision-making. 

The further sections of the research are structured as follows: 
Section II offers a comprehensive analysis of the latest advances 
in Pneumonia detection research and highlights the current 
research constraints. Section III outlines the proposed 
methodology. Experimental findings are presented in Section 
IV, accompanied by a comprehensive analysis of the model 
performance in Section V. Section VI concludes the study by 
encapsulating the principal results and emphasizing prospective 
areas for further research. 

II. RELATED WORKS 

Ali et al. [8] proposed a DL-based diagnostic framework to 
identify pneumonia from thoracic radiograph images. Six CNN 
architectures were implemented and trained on the dataset. 
EfficientNetV2L outperformed others with an accuracy of 
94.02%, followed by VGG16 (91.66%), Xception (90.7%), 
InceptionResNetV2 (88.94%), ResNet50 (87.98%) and a 
baseline CNN (87.78%). The high performance of 
EfficientNetV2L was attributed to the compound scaling 
strategy and efficient use of network parameters, enabling the 
framework for fine-grained image classification tasks. However, 
the absence of region-wise interpretability restricted the clinical 
transparency of model predictions. 

Shaikh et al. [9] proposed MDEV, an ensemble model for 
thoracic radiograph image classification into Pneumonia 
affected and healthy categories constructed by concatenating 
four deep transfer learning models: MobileNet, DenseNet-201, 
EfficientNet-B0 and VGG-16. Each component was fine-tuned 
and trained on the selected dataset and achieved an accuracy of 
92.15% on evaluation. The MDEV model operated in two 

hierarchical levels: in the first level, learners independently 
extracted features from pre-processed thoracic radiograph 
images using distinct deep networks and in the second level, 
learning was performed by a meta-learner that integrated the 
outputs. The architectural complexity led to reduced 
interpretability and higher computational requirements, 
hampering the real-time deployment in low-resource or point-
of-care environments. 

Barhoom et al. [10] proposed a CNN framework for the 
Pneumonia identification and classification using thoracic 
radiograph images. The study utilized the hierarchical feature 
extraction capabilities of CNN to distinguish between normal 
and infected lungs and utilized a dataset of chest radiographs, 
focusing on three output classes: bacterial pneumonia, viral 
pneumonia and normal lungs. Among the tested architectures, 
VGG16 demonstrated superior performance, attributed to its 
deep structure and effective extraction of low- to high-level 
spatial features. The CNN architecture allowed for scalable 
feature learning and enabled accurate triaging of pneumonia 
subtypes, clinically valuable for treatment planning. The 
absence of cross-validation or external dataset benchmarking 
limited the model’s generalizability to broader clinical 
populations and varying imaging conditions. 

Wang et al. [11] suggested a pneumonia classification 
framework based on DenseNet, addressing the structural 
complexity and uneven gray-level distribution in chest X-ray 
images. The core architecture utilized DenseNet due to its ability 
to propagate learned features across all layers, supporting 
parameter efficiency and improved local feature learning. 
Squeeze and Excitation (SE) blocks, a channel attention 
mechanism, were integrated into the network to emphasize 
pneumonia-related information in the feature maps. The 
integration of attention modules and pooling adjustments 
contributed to a more discriminative lesion focus. Evaluated on 
the Chest X-ray 2017 dataset, the modified DenseNet achieved 
an accuracy of 92.8%. The study’s precision and recall balance 
was flawed, indicating the need for further optimization for 
proper classification. 

Mabrouk et al. [12] presented an ensemble learning (EL) 
approach for the computer-aided pneumonia classification 
utilizing lung radiograph images. The model integrated three 
pretrained architectures: DenseNet169, MobileNetV2 and ViT, 
fine-tuned on pediatric chest radiographs from the Chest X-ray 
Images (Pneumonia) dataset. Each model acted as a functional 
layer, independently extracting feature representations from the 
input images, and these features were passed through GAP for 
dimensionality reduction and subsequently combined to form 
the final predictive output. The proposed EL approach achieved 
93.91% accuracy but was limited by the computational 
complexity, as the simultaneous use of three deep architectures 
increased inference time and resource consumption, hampering 
deployment in real-time or resource-limited clinical 
environments. 

Ortiz-Toro et al. [13] explored the diagnostic potential of 
three textural image characterization techniques as input 
biomarkers for artificial intelligence (AI) models in pneumonia 
detection from thoracic radiograph images. Two datasets, 
Guangzhou Women and Children Medical Center pediatric 
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dataset (GWCMCx) and a composite dataset (Josep-NIH) 
including COVID-19 chest X-rays were utilized and three 
machine learning (ML) classifiers: Support Vector Machine 
(SVM), K-Nearest Neighbors (KNN) and Random Forest (RF), 
were employed in model evaluation. The study integrated 
handcrafted feature descriptors with conventional classifiers and 
demonstrated the utility of texture-based biomarkers in 
distinguishing pneumonia-affected lungs from normal cases 
with minimal preprocessing. On the GWCMCx dataset, the 
super pixel-based histon method yielded the highest accuracy at 
91.3%, outperforming radiomics (83.3% accuracy) and fractal 
dimension (89.9%). On the Josep-NIH dataset, the fractal 
dimension achieved better accuracy, but the latter dataset used 
for evaluation was more biased, hampering the reliability. 

Bhatt et al. [14] proposed an ensemble-based CNN 
framework for pneumonia diagnosis using lung radiographic 
images. The architecture comprised three parallel CNN models 
with distinct kernel sizes, each capturing features at varying 
spatial resolutions and the outputs were fused through a 
weighted ensemble mechanism that enabled dynamic 
thresholding, allowing clinicians to fine-tune diagnostic 
sensitivity based on clinical requirements. The framework 
maintained a lightweight footprint, and the ensemble increased 
feature diversity, robustness and allowed personalized 
classification thresholds for clinical flexibility with an accuracy 
of 84.12% and precision of 80.04%. The model incurred a higher 
computational cost than a single CNN, and the dataset size 
introduced a risk of overfitting. 

Singh et al. [15] proposed an attention-aware CNN 
architecture for pneumonia detection in thoracic radiograph 
images. The study integrated channel and spatial attention 
modules within a deep neural network (DNN) to guide the 
learning process toward clinically relevant regions. A bottom-
up and top-down feedforward attention mechanism was 
adopted, allowing both feedforward and feedback attention 
processes to coexist within each module. The dual-level 
attention provided enhanced feature discrimination and allowed 
the model to dynamically localize pneumonia-affected regions. 
The network achieved a 95.47% accuracy, outperforming both 
baseline CNN and a pretrained ResNet50 model. Comparative 
evaluation revealed that ResNet50 with integrated attention 
modules improved accuracy from 84.53% to 95.73%. The 
attention modules however, increased architectural complexity, 
resulting in extended training time and requiring more 
computational resources in deployment scenarios. 

Ibrahim et al. [16] presented a DL framework employing a 
pretrained AlexNet model to segregate chest X-ray images 
across multiple diagnostic scenarios. By utilizing AlexNet’s 
hierarchical feature extraction capabilities, the study handled 
both binary and multiclass classification tasks and demonstrated 
functional adaptability for a range of diagnostic applications in 
chest radiology. On evaluation through two-way, three-way and 
four-way classification tasks using publicly available datasets, 
the model achieved accuracy of 94.43% for non-COVID-19 
viral pneumonia vs. normal and 91.43% for bacterial pneumonia 
vs. normal and 94.00% accuracy for three-class classification 
and four-class classification with 93.42% accuracy. The 
heterogeneity of image sources across public datasets introduced 

domain shifts affecting consistency and performance in real-
world clinical environments. 

Avola et al. [17] evaluated twelve DNN architectures using 
transfer learning for the pneumonia classification from lung 
radiographic images. Employing two datasets with chest 
radiographs of patients diagnosed with pneumonia caused by 
bacterial, generic viral or SARS-CoV-2 infections and 
unaffected cases. The architecture was adapted for transfer 
learning by replacing the final classification layers of each 
model with task-specific dense layers and leveraged hierarchical 
feature extraction to identify localized pathological patterns. On 
evaluation in the combined dataset, MobileNetV2 and 
MobileNetV3 achieved the highest accuracies of above 0.80, 
followed by AlexNet (0.78), DenseNet and ResNet variants 
(0.75–0.79) and lower accuracies for SqueezeNet (0.33) and 
NASNet (0.55). Significant performance degradation was 
observed for most models under data-scarce conditions. 

Zhu et al. [18] suggested a multi-task DL approach for 
classification of pneumonia types and segmenting associated 
lesions from chest CT scans involving 181 patients, categorized 
as lobar, lobular or interstitial pneumonia, while ground truth 
labels for segmentation were created through manual 
annotation. The network handled segmentation and 
classification tasks, streamlining the diagnostic workflow by 
using shared feature extraction pathways. The multitask 
architecture enabled the model to contextualize lesion 
morphology in parallel with disease categorization and achieved 
a classification accuracy of 92.7%. Bias was introduced by using 
data from a single medical center that hampered generalizability 
across diverse populations, imaging protocols and scanner types. 

An et al. [19] proposed a deep CNN for pneumonia 
classification integrating EfficientNetB0 and DenseNet121 as 
feature extractors. The architecture incorporated multi-head 
self-attention mechanisms to enhance feature representation and 
discrimination across varying spatial regions of chest X-ray 
images. A cross-channel attention-based feature fusion strategy 
is implemented to combine features from both networks and 
employed residual blocks and dynamic pooling layers for 
refining the learning. The attention-enhanced architecture 
allowed for selective amplification of disease-relevant features, 
improving the interpretability and clinical reliability of the 
predictions. The study utilized a chest X-ray dataset that 
included both normal and pneumonia-affected cases and 
achieved an accuracy of 95.19%. The exclusive use of static 
two-dimensional images restricted diagnostic depth compared to 
three-dimensional volumetric data. 

Bhandari et al. [20] presented a DL framework for 
classifying chest radiograph images into four distinct categories, 
with pneumonia as one category. The study utilized a single 
CNN architecture and utilized a publicly available dataset of 
7,132 images. The model was integrated with an explainable AI 
(XAI) framework using SHAP, LIME and Grad-CAM, which 
offered visual and statistical information on the decision-making 
method of the classifier. These XAI techniques provided class-
discriminative feature maps and model interpretability, which 
were further corroborated by medical experts, and the 
interpretive capability added trustworthiness to the diagnostic 
tool. The system achieved an accuracy of 94.31% through ten-
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fold cross-validation, but the dataset size limitations hampered 
the generalization of the study. 

Xue et al. [21] evaluated DL techniques for the segregation 
of COVID-19 and pneumonia utilizing both thoracic radiograph 
and computed tomography scan images. The research employed 
an ensemble of deep transfer learning models: ResNet152, 
ResNet50, DenseNet121 and an enhanced version of VGG16 
across five different datasets. Two datasets contained chest 
radiographs, while the remaining three included CT imaging 
data and achieved precision and accuracy ranging from 95% to 
96%. The integration of deep residual and densely connected 
layers allowed for hierarchical feature extraction across both 
modalities, and transfer learning addressed data scarcity and 
computational efficiency. Despite its better performance, the 
study acknowledged a critical limitation related to 
inconsistencies in ground truth annotations within the datasets, 
affecting the reliability and generalizability of learned features 
across different institutions and clinical settings. 

Barakat et al. [22] suggested an ML-based framework 
designed for the early detection of pediatric pneumonia using 
thoracic radiograph images. The model segmented the input 
chest X-ray into 64 fixed regions of interest (ROIs) for focused 
and granular feature extraction. The extracted features were 
mapped back to their anatomical locations, supporting 
interpretable diagnostics. On evaluation employing various ML 
models, the quadratic SVM classifier, using a 64-region-of-
interest (ROI) feature extraction scheme, achieved the highest 
performance with an accuracy of 97.58%, with a lesser 
classification time compared to transfer learning benchmarks. 
Extensive reliance on hand-engineered feature extraction and 
manually defined ROIs that did not generalize across varying 
image resolutions, anatomical variations and datasets introduced 
the risk of omitting subtle pathological indicators outside the 
preselected ROIs and affected model adaptability in practical 
clinical environments. 

A. Research Gap 

Despite substantial research in pneumonia detection using 
AI such as EfficientNetV2L, DenseNet, ResNet50, ViT etc., 
certain challenges still exist [8] [12] [21]. Most frameworks 
focus on overall accuracy improvement but fall short to address 
segmentation of pathological regions, model explainability and 
clinical adaptability properly [16] [21]. Even though MDEV and 
ensemble CNNs attempt to enhance feature representation, 
computational overhead hinders their real-time deployment [9] 
[14]. Attention-based architectures and multi-head fusion 
exhibits promising performance but is burdened by the model 
complexity, making training and interpretability more 
challenging. Furthermore, segmentation is often excluded, 
limiting end-to-end diagnostic support and limited external 
validation also reduces generalizability across diverse clinical 
environments. A cohesive model that balances both local and 
global feature extraction capabilities is absent in the majority of 
the research. Only a few number of existing methods have 
investigated designs that can carry out simultaneous 
classification and segmentation with great computing efficiency 
and diagnostic confidence. Hence, there is a pressing need for a 
unified, lightweight and interpretable hybrid framework that can 
simultaneously perform accurate classification and 

segmentation while being computationally feasible for practical 
medical applications. 

III. MATERIALS AND METHODS 

The proposed model integrates ResNet50 and Swin 
transformer effectively for the classification and segmentation 
of thoracic radiographs for Pneumonia. The Chest X-Ray 
images (Pneumonia) dataset is utilized in the study, and the 
methodological pipeline consists of a ResNet50 backbone and 
Swin Transformer modules for hybrid feature extraction after 
meticulous preprocessing and data augmentation. A 
segmentation decoder for lesion localization is employed for the 
segmentation task, and the classification head utilizes global 
average pooling (GAP) and a multilayer perceptron head (MLP). 
The proposed model’s block diagram is illustrated in Fig. 1. 

 

Fig. 1. Block diagram. 

B. Dataset Description 

The study utilizes Chest X-Ray images (Pneumonia), the 
openly accessible Kaggle dataset with images gathered from 
Guangzhou Women and Children’s Medical Centre in China 
[23]. It has 5,863 anterior-posterior (AP) view chest radiographs 
of paediatric patients aged between one and five years 
categorized either as Normal or Pneumonia. Fig. 2 represents the 
number of images present in the three primary directories: train, 
test and validation, each with two subfolders corresponding to 
the diagnostic categories. Normal X-rays show clear lungs free 
of any abnormal opacities. Viral pneumonia primarily presents 
as more diffuse, bilateral interstitial opacities, while bacterial 
pneumonia usually exhibits focal lobar consolidation, especially 
in the upper lobes. 
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All chest X-rays underwent quality screening to remove 
unclear or low-resolution scans to guarantee diagnostic accuracy 
and image credibility. Two expert radiologists independently 
confirmed the image diagnose and the evaluation was examined 
by third expert to identify potential discrepancies in 
classification. This pediatric dataset presents real-world 
complexity due to the subtle and variable nature of radiographic 
pneumonia manifestations in young children, making it an ideal 
benchmark for evaluating AI-based diagnostic systems. Its 
expert-verified labels, well-structured format and diversity in 
infection types make it well-suited for both training and 
evaluation of models focused on classification and lesion 
localization. Furthermore, the public accessibility facilitates 
reproducibility, benchmarking and practical deployment of AI 
solutions in resource-limited or high-volume clinical settings. 
Fig. 3 illustrates the random sample images in the dataset.  

Fig. 2. Number of images in each directory. 

 

Fig. 3. Random sample images in the dataset. 

C. Data Preprocessing 

A systematic preprocessing and augmentation strategy is 
designed for the chest X-ray images prior to inputting them into 
the model. Initially, each image is resized to a standardized 
spatial dimension of 224 × 224  pixels to maintain 
compatibility with both ResNet50 and Swin Transformer input 
requirements. The original greyscale chest X-ray image is then 
converted to a 3-channel RGB image through channel-wise 
expansion. This transformation is necessary to match the 
pretrained convolutional backbones that anticipate three-
channel inputs. Subsequently, the pixel intensity values 𝐼 ∈
[0,255] are normalized to a continuous range of [0,1] using the 
rescaling operation, as shown in Eq. (1): 

𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐼

255
   (1) 

Data augmentation is introduced in the training set to 
increase the generalization capability and to reduce overfitting. 
The augmentation operations include horizontal and vertical 
flipping, random zooming with a zoom range up to 0.3, shearing 
with a shear angle of 10 degrees and rotation within ±20 degrees. 
By scaling the intensity in a range of [0.5,2.0], intensity 
variations are also applied, along with spatial translations. As 
certain transformations resulted in vacant pixel areas, the nearest 

neighbour approach is utilized to fill in missing values, as shown 
in Eq. (2): 

  𝐼′(𝑥, 𝑦) =

arg 
𝑚𝑖𝑛

(𝑥′, 𝑦′)
‖(𝑥, 𝑦)(𝑥′, 𝑦′)‖ ; ; such that I′ (𝑥′, y′) ≠ 0         (2) 

The images are then organized into mini-batches and passed 
into the model pipeline. Labels are encoded into binary 
numerical form, as in Eq. (3): 

𝑦 = {
0  ; 𝑁𝑜𝑟𝑚𝑎𝑙      
1 ; 𝑃𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎

    (3) 

In addition to providing enough variation to the training set 
for reliable feature extraction, the preprocessing pipeline assures 
the spatial integrity and semantic information preservation of the 
thoracic radiograph images. 

D. Model Development 

1) ResNet50: ResNet50 is a fifty-layer deep CNN 

architecture built upon the principle of residual learning, which 

resolves the vanishing gradient problem by employing shortcut 

connections [24]. A stem layer is followed by four sequential 

convolutional stages, each containing a stack of convolutional 

blocks and identity blocks. Each block includes a sequence of 
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convolutional layers with kernel sizes set to 1 × 1, 3 × 3 and 

1 × 1, followed by batch normalization and ReLU activation. 

The defining feature of ResNet50 is the residual connection, 

where the input x to a block is added to its output F(x), forming 

the final output, as in Eq. (4): 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥     (4) 

where, {𝑊𝑖} represents a set of learnable parameters of the 
convolutional layers. This residual mapping promotes deeper 
network construction while maintaining productivity and 
enables the network to learn identity functions. Rich local 
characteristics can be extracted from images using the ResNet50 
backbone, which progressively minimizes spatial dimensions 
while deepening feature representations. In the proposed hybrid 
model, only the convolutional and residual blocks of ResNet50 
are utilized. Fig. 4 illustrates the general architecture of 
ResNet50. 

 

Fig. 4. General architecture of ResNet50. 

An input image is initially passed through a convolutional 
layer with a 7×7 kernel and a stride of 2 to reduce spatial 
dimensions while capturing broad features. This is followed by 
batch normalization and a ReLU activation to standardize and 
introduce non-linearity. The network then progresses through a 

sequence of 49 residual layers, each built using bottleneck 
blocks that incorporate skip connections. These connections 
help preserve input information and facilitate efficient gradient 
flow, enabling deep network training without degradation. Each 
residual block performs convolutional transformations and 
combines the original input with the transformed output. 
Following the final activation layer, the architecture applies 
GAP to reduce the spatial dimensions, resulting in a 1×1×2048 
feature vector. The vector is then carried to a fully connected 
dense layer with 1000 units and finally through a softmax 
activation, producing class probabilities. In the proposed model, 
the softmax and classification layers are discarded as ResNet50 
is used solely for deep feature extraction. 

2) Swin transformer: The Swin Transformer (Shifted 

Window Transformer) is a hierarchical ViT that applies self-

attention within non-overlapping local windows and shifts these 

windows across layers to enable cross-window connections 

[25]. It is composed of a series of Swin Transformer Blocks, 

each including Layer Normalization (LN), Multi-head Self-

Attention (MSA) within shifted local windows, MLP layers with 

GELU activation and Residual connections. Fig. 5 represents the 

basic architecture of the Swin transformer. 

Initially, the input image 𝐼 ∈ ℝ𝐻×𝑊×3  is partitioned into 
patches and embedded into a lower-dimensional space, as shown 
in Eq. (5): 

𝑥0 = 𝑃𝑎𝑡𝑐ℎ𝐸𝑚𝑏𝑒𝑑(𝐼), 𝑥0 ∈ ℝ
𝐻

𝑃
×

𝑊

𝑃
×𝐶

  (5) 

where, 𝑃 is the patch size and 𝐶 is the embedding dimension. 
The embeddings pass through a series of stages composed of 
Swin Transformer Blocks. The spatial resolution is minimized 
and the feature dimension is boosted in each stage, resulting in 
a hierarchical representation. Window-based MSA (W-MSA) 
followed by Shifted Window MSA (SW-MSA) is applied in 
each block further. The attention is computed within each 
window 𝑤 , as in Eq. (6): 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
+ 𝐵) 𝑉   (6) 

where 𝑄 , 𝐾  and 𝑉  represent the query, key and value 
matrices respectively, computed from the patch tokens confined 
within a local window and 𝑑, the dimension of the key vectors 
and B, the relative position bias. Each attention output is passed 
through a LN layer to stabilize the training dynamics, as shown 
in Eq. (7): 

𝐿𝑁(𝑥) =
𝑥−𝜇

√𝜎2+𝜖
∙ 𝛾 + 𝛽    (7) 

where, 𝜇, 𝜎 represent the mean and standard deviation of the 
input feature vector respectively and 𝛾, 𝛽 represents learnable 
affine parameters. This is followed by a Feed-Forward Network 
(FFN) comprising two linear transformations with a GELU non-
linearity in between, as in Eq. (8): 

𝐹𝐹𝑁(𝑥) = 𝑊2 ∙ 𝐺𝐸𝐿𝑈(𝑊1 ∙ 𝑥 + 𝑏1) + 𝑏2  (8) 

where, 𝑊1, 𝑊2 represents weight matrices, 𝑏1, 𝑏2 are biases. 
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Fig. 5. Swin transformer: (i) Basic architecture (ii) Swin transformer block. 

3) Proposed ResNet50- Swin Transformer hybrid model: 

The proposed hybrid architecture integrates the advantages of 

both convolutional and transformer-based approaches by 

employing ResNet50 for localized feature extraction and the 

Swin Transformer for global context modelling. ResNet50 

captures low and mid-level spatial features from the input 

thoracic radiograph images, identifying pathological patterns in 

the process. The output feature map of ResNet50 undergoes 

processing to be compatible with the input requirement of the 

Swin transformer. A convolutional adaptation layer consisting 

of a 1×1 followed by batch normalization and ReLU activation 

is utilized to transform the feature dimensions to the patch 

embedding size of the Swin Transformer, as shown in Eq. (9): 

𝐹𝑎𝑑𝑎𝑝𝑡𝑒𝑑 = 𝑅𝐸𝐿𝑈(𝐵𝑁(𝑊𝑐 ∗ 𝐹𝑅𝑒𝑠𝑁𝑒𝑡 + 𝑏))  (9) 

where, 𝑊𝑐 ∈ ℝ1×1×𝑐1×𝑐 represents the kernel for dimension 
adjustment. 𝑐1 , 𝑐  denotes the number of input and output 
channels, respectively, 𝐹𝑅𝑒𝑠𝑁𝑒𝑡  represents the feature map 
output from ResNet50, of shape [𝐻, 𝑊, 𝑐1] , 𝑏  denotes the 
learnable bias added after convolution and ∗  represents the 
convolution operation. Once adapted, the feature maps are 
tokenized into non-overlapping patches and embedded, forming 
the input to the Swin Transformer. The window-based and 
shifted window-based self-attention mechanisms of the 
transformer architecture allow it to gather long-range 
dependencies and semantic patterns across the image. Both local 
features from ResNet50 and global contextual cues from the 
transformer are therefore jointly modelled. The output of the 
final Swin Transformer block is bifurcated: one branch passes 
through a GAP layer followed by an MLP for binary 
classification (pneumonia or normal), while the other branch 
serves as the input to a segmentation decoder. The decoder 
reconstructs high-resolution spatial masks of infected lung 
regions through a cascade of upsampling and convolutional 
layers. 

a) Classification head: Global Average Pooling (GAP) is 

a downsampling operation that reduces each feature map to a 

single scalar by computing the average of all spatial elements 

converting feature maps into compact feature vectors while 

preserving spatially aggregated information [26]. In the 

proposed model, the GAP layer condenses the spatial 

dimensions of the feature map output of the Swin Transformer 

into a single feature vector. This operation preserves the most 

salient global contextual features and drastically minimises the 

number of parameters and computation before classification. 

The resultant feature map of dimension H × W × C  of the Swin 

transformer block is spatially reduced to produce a compact 

descriptor vector, as in Eq. (10): 

𝑥𝐺𝐴𝑃 =
1

𝐻×𝑊
∑ ∑ 𝐹𝑆𝑤𝑖𝑛[𝑖, 𝑗]𝑊

𝑗=1
𝐻
𝑖=1    (10) 

The condensed descriptor is then passed into a final MLP 
layer that serves as the final decision-making unit by 
transforming the aggregated features into a scalar output that 
facilitates binary classification. Its learnable weights and bias 
terms are optimized during training to minimize loss and 
improve diagnostic accuracy. A sigmoid function is applied to 
generate a probability score 𝑦̂ ∈ [0,1]  activated output is as 
shown in Eq. (11): 

𝑦̂ = 𝜎(𝑊 ∙ 𝑥𝐺𝐴𝑃 + 𝑏)   (11) 

where, 𝑊  and 𝑏  denote the weight and bias of the dense 
layer, and the sigmoid function is denoted by 𝜎. 

b) Segmented decoder: The segmentation decoder is 

responsible for reconstructing pixel-wise masks from high-

dimensional feature representations learned by the encoder, a 

combined sequence of ResNet50 and Swin Transformer. 

During the forward pass, selected intermediate feature maps 

from ResNet50 are cached and routed via skip connections to 

the corresponding stages in the decoder. This facilitates the 

recovery of fine spatial details lost during downsampling and 

enhances localization precision. The decoder adopts an up-

sampling architecture that consists of bilinear upsampling 

followed by convolutional blocks that refine spatial granularity. 

The up-sampled feature at level l is obtained, as shown in Eq. 

(12): 

𝐹𝑢𝑝
(𝑙)

= 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒 (𝐹𝑑𝑒𝑐
(𝑙+1)

)   (12) 

where, 𝐹𝑑𝑒𝑐
(𝑙+1)

 is the decoder feature map from a deeper layer 

𝑙 + 1 . The output is concatenated with the corresponding 

encoder feature map 𝐹𝑒𝑛𝑐
(𝑙)

 from ResNet50, as shown in Eq. (13): 

𝐹𝑐𝑜𝑛𝑐𝑎𝑡
(𝑙)

= 𝐶𝑜𝑛𝑐𝑎𝑡 (𝐹𝑢𝑝
(𝑙)

, 𝐹𝑒𝑛𝑐
(𝑙)

)  (13) 
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The concatenated feature is processed through a 
convolutional refinement block, as in Eq. (14): 

𝐹𝑑𝑒𝑐
(𝑙)

= 𝑅𝑒𝐿𝑈 (𝐵𝑁 (𝑊(𝑙) ∗ 𝐹𝑐𝑜𝑛𝑐𝑎𝑡
(𝑙)

+ 𝑏(𝑙)))  (14) 

where, 𝑊(𝑙) and 𝑏(𝑙) are the convolution weights and biases, 
𝐵𝑁 represents batch normalization, and 𝑅𝑒𝐿𝑈 is the non-linear 
activation function. The decoding process is iteratively 
performed through successive layers until the output spatial 
resolution is comparable to that of the input image. Finally, a 
1×1 convolutional layer is applied to map the refined feature 
maps to a single-channel output, as shown in Eq. (15): 

𝑆 = 𝜎(𝑊𝑠𝑒𝑔 ∗ 𝐹𝑑𝑒𝑐
(𝑙)

+ 𝑏𝑠𝑒𝑔)     (15) 

where, 𝑊𝑠𝑒𝑔  and 𝑏𝑠𝑒𝑔  denote weights and bias of the final 

layer. The segmentation output 𝑆 ∈ [0,1]𝐻×𝑊 indicates the 
prospect of pneumonia-affected regions for each pixel in the 
input image. The architecture enables effective integration of 
global context via Swin Transformer and spatial precision via 
ResNet skip features, resulting in reliable and interpretable 
pneumonia lesion segmentation. Fig. 6 illustrates the basic 
architecture of the proposed ResNet50-Swin Transformer 
hybrid model. The detailed algorithm for the proposed model is 
given below (see Algorithm 1). 

 

Fig. 6. Basic architecture of the proposed ResNet50-swin transformer hybrid 

model. 

Algorithm 1: ResNet50-Swin Transformer hybrid model 

Input:  

Chest X-ray image I ∈ ℝ𝐻×𝑊×3 

Label vector 𝑦𝑖 ∈ [0,1] , indicating Pneumonia (1) or 

Normal (0) 

Output: 

Predicted class label 𝑦̂ ∈ [0,1] 
Segmentation mask  𝑆 ∈ ℝ𝐻×𝑊 

Begin: 

Data collection 

Load Chest X-ray image (Pneumonia) dataset 

Pre-processing 

Resize the images into 224x224 

Normalize pixel values to range [0,1]: 

𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐼

255
 

Label encoding in the images: 

 𝑦 = {
0  ; 𝑁𝑜𝑟𝑚𝑎𝑙      
1 ; 𝑃𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎

     

Data Augmentation on the training dataset 

ResNet50 

Local feature extraction and final output 

generation, 𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥 

Store feature maps for decoder skip 

connections. 

Feature Adaptation 

Transform 𝐹𝑅𝑒𝑠𝑁𝑒𝑡  to match Swin 

Transformer input size: 

𝐹𝑎𝑑𝑎𝑝𝑡𝑒𝑑 = 𝑅𝐸𝐿𝑈(𝐵𝑁(𝑊𝑐 ∗ 𝐹𝑅𝑒𝑠𝑁𝑒𝑡 + 𝑏))  

Swin Transformer 

Embed 𝐹𝑎𝑑𝑎𝑝𝑡𝑒𝑑  into non-overlapping 

patches. 

Apply Swin Transformer blocks with shifted 

window attention and FFN: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
+

𝐵) 𝑉  

Apply Layer Norm → FFN → Layer Norm 

sequence 

𝐿𝑁(𝑥) =
𝑥−𝜇

√𝜎2+𝜖
∙ 𝛾 + 𝛽 ; 𝐹𝐹𝑁(𝑥) = 𝑊2 ∙

𝐺𝐸𝐿𝑈(𝑊1 ∙ 𝑥 + 𝑏1) + 𝑏2 

Store final feature map 𝐹𝑆𝑤𝑖𝑛 

Classification Head 

Apply Global Average Pooling: 

𝑥𝐺𝐴𝑃 =
1

𝐻×𝑊
∑ ∑ 𝐹𝑆𝑤𝑖𝑛[𝑖, 𝑗]𝑊

𝑗=1
𝐻
𝑖=1   

Multilayer Perceptron apply sigmoid 

function:  

𝑦̂ = 𝜎(𝑊 ∙ 𝑥𝐺𝐴𝑃 + 𝑏)  
Segmentation Decoder 

Input: 𝐹𝑆𝑤𝑖𝑛  and skip connections from 

ResNet50. 

For each decoder stage: 

Up sample previous output 

Concatenate with corresponding 

skip connection 

Apply convolution → BatchNorm 

→ ReLU 

Final segmentation masks=σ (Conv1×1

(Decoder Output)) 

Model Compilation and Training 

Compile model with loss = Binary 

crossentropy, learning rate = 0.0001, 

optimizer = Adam, Epochs =75 

Train model: model.fit (X_train, y_train) 

Evaluation and Model Saving 

Evaluate model: model. evaluate (X_test, 

y_test) 

Tune hyperparameters  

Save the model 

End 
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E. Simulation Map 

The proposed hybrid model was implemented in a high-level 
deep learning framework and trained on a workstation equipped 
with a high-performance GPU (NVIDIA RTX 3090, 24GB 
VRAM), 128GB RAM and an Intel Xeon processor. Python was 
used as the programming language, and model development was 
carried out using the Keras API built on top of TensorFlow, 
chosen for its modular design, scalability and ease of 
customization for hybrid DL architectures. Training and 
experimentation were conducted on the Google Colaboratory 
(Colab) platform, leveraging its cloud-based infrastructure and 
access to high-performance GPUs. The training process was 
optimized by carefully tuning key hyperparameters, which 
significantly influenced model convergence and generalization. 
Table I shows the full list of hyperparameters and training 
settings employed in the study. 

TABLE I.  HYPERPARAMETER SPECIFICATIONS 

Hyper parameters Values 

Optimizer ADAM 

Swin Transformer Layers 4 

Loss function 

Binary cross-entropy 

(Classification) 

Dice loss (Segmentation) 

Activation function Sigmoid 

Batch size 16 

Epochs 75 

Learning Rate 0.0001 

Dropout 0.3 

IV. RESULTS 

A set of standard evaluation metrics, as illustrated in Eq. (16) 
to Eq. (20), was employed to comprehensively assess the 
proposed model’s performance. True Positives (TP), False 
Positives (FP), True Negatives (TN) and False Negatives (FN) 
are mathematically computed using the confusion matrix core 
elements. Different metrics offer unique insights into the model 
performance. Overall correctness by accuracy, precision and 
recall highlights the ability of the model to correctly detect 
pneumonia without excessive misses or false alarms. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (16) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (17) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (18) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (19) 

The Dice Coefficient evaluates the similarity between 
predicted segmentation and the ground truth and measures the 
degree of overlap between two binary masks and ranges from 0 
to 1. 

𝐷𝑖𝑐𝑒(𝐴, 𝐵) =
2|𝐴∩𝐵|

|𝐴|+|𝐵|
   (20) 

where, 𝐴 and 𝐵 denote the sets of predicted and ground truth 
pixels, respectively, labelled as positive. A dice coefficient close 
to 1 indicates better spatial agreement between prediction and 

ground truth. The accuracy and loss plots serve as fundamental 
diagnostic tools to monitor the model’s learning dynamics over 
successive training epochs. A steadily increasing accuracy curve 
alongside a consistently decreasing loss trajectory indicates 
effective gradient optimization and convergence toward a 
generalized solution. Any divergence between training and 
validation curves may suggest overfitting or underfitting, 
necessitating hyperparameter adjustments. 

The accuracy plot of the proposed hybrid model, represented 
in Fig. 7, demonstrates a strong and consistent learning curve 
over 75 epochs, highlighting effective training convergence. A 
rapid rise in training and validation accuracies is observed 
within the initial 20 epochs, indicative of efficient low-level 
feature acquisition. As the epochs progress, the model’s 
accuracy stabilizes with the training accuracy approaching 
99.5%, while the validation accuracy maintains close proximity, 
around 98.4%. The minimal gap between the two curves 
signifies robust generalization and minimal overfitting and 
affirms the model’s potential in retaining discriminative features 
and achieving high classification reliability on unseen chest X-
ray data. 

 

Fig. 7. Accuracy plot of ResNet50-Swin Transformer hybrid model. 

 

Fig. 8. Loss plot of ResNet50-Swin Transformer hybrid model. 

Fig. 8 illustrates the loss plot for the proposed model that 
demonstrates a steady and significant decrease in both training 
and validation loss over 75 epochs, reflecting effective model 
convergence. In the initial training phase, a steep decline in loss 
is observed during the first 15 epochs, indicating rapid 
optimization of weights and improved learning of discriminative 
features. Beyond epoch 20, the loss values continue to decrease 
gradually and stabilize around 0.04, signifying that the model is 
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minimizing the error function efficiently. The close alignment 
between training and validation loss trajectories throughout the 
epochs confirms the absence of overfitting and affirms the 
generalization capability across unseen data. 

 

Fig. 9. Confusion matrix of the proposed model. 

Fig. 9 represents the confusion matrix highlighting the 
classification performance of the hybrid model on the test 
dataset. Out of 234 normal images, the framework achieved a 
true negative rate of around 97%, and in the pneumonia 
category, 387 out of 390 pneumonia images were correctly 
classified, exhibiting better accuracy. The results indicate strong 
predictive performance and class discrimination, particularly in 
identifying pneumonia cases, and the minimal number of 
misclassifications further emphasizes the model’s reliability for 
binary medical image segregation. 

 

Fig. 10. Dice coefficient plot. 

The Dice Coefficient plot illustrated in Fig. 10 demonstrates 
the segmentation performance of the proposed model over 75 
training epochs. Both training and test curves exhibit a steep 
ascent within the initial 20 epochs, indicating rapid learning and 
effective optimization of segmentation boundaries. Beyond 
epoch 25, the Dice Coefficient stabilizes around 0.88 for the test 
set, while the training score plateaus slightly higher, suggesting 
excellent overlap between predicted and ground truth 
segmentation masks with minimal overfitting. The narrow gap 
between training and test curves throughout the learning process 

reflects the model’s excellent consistency across datasets. The 
stable performance at later epochs confirms that the model 
effectively captures spatial and structural patterns necessary for 
precise medical image segmentation, reinforcing its reliability in 
real-world diagnostic contexts. 

 

Fig. 11. Classification report of ResNet50-Swin Transformer hybrid model. 

Fig. 11 represents the classification report for the proposed 
framework, revealing outstanding predictive performance 
across both classes. With a precision of 0.98 for both classes, the 
model has a high proportion of accurately detected positive 
instances relative to all predicted positives. The recall for the 
Normal class reaches 0.99, while Pneumonia records a recall of 
0.98, demonstrating the excellent sensitivity in detecting true 
positives, particularly for pneumonia diagnosis. The F1-score 
stands at 0.97 for Pneumonia and 0.98 for Normal, highlighting 
the model’s balanced and reliable classification performance, 
and the overall accuracy of 0.984 reaffirms the model’s 
robustness. These results collectively validate the clinical 
reliability of the proposed model in distinguishing pneumonia 
from normal thoracic radiograph images with great precision 
and generalizability. Fig. 12 represents the evaluation metrics of 
the proposed model. 

 

Fig. 12. Evaluation metrics for the proposed model. 

The visual outputs generated by the proposed hybrid model 
are illustrated in Fig. 13 and Fig. 14, effectively demonstrating 
its dual capabilities in both classification and segmentation of 
chest X-ray images. As evident from the classification report, 
the framework accurately distinguishes between pneumonia and 
normal cases, with predictions aligning closely with the actual 
ground truth labels, while the segmentation results highlight the 
effectiveness in accurately localizing lung regions. The original 
mask and the segmented output exhibit strong overlap, with the 
segmented regions closely approximating the annotated ground 
truth. While some minor deviations and false-positive 
activations are observed at the lung peripheries, the overall 
shape, structure and spatial consistency of the lung regions are 
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well-preserved. These outcomes confirm the robustness of the 
segmentation decoder in delineating pulmonary areas, thereby 
supporting further clinical interpretability and diagnostic 
localization. 

 

Fig. 13. Classification results. 

 

Fig. 14. Segmented output. 

TABLE II.  ACCURACY COMPARISON OF RESNET50-SWIN TRANSFORMER 

HYBRID MODEL WITH OTHER METHODS 

Author [Ref] Model 
Accurac

y 

Ali et al. [8] EfficientNetV2L 94.02% 

Shaikh et al. [9] MDEV 92.15% 

Wang et al. [11] DenseNet with SE blocks 92.8% 

Mabrouk et al. [12] Ensemble Learning 93.91% 

Ortiz-Toro et al. 

[13] 
KNN, SVM, RF 91.3% 

Bhatt et al. [14] Ensemble CNNs 84.12% 

Singh et al. [15] Attention-aware CNN 95.47% 

Ibrahim et al. [16] AlexNet 94.43% 

Avola et al. [17] MobileNetV3 80% 

Zhu et al. [18] Multi-task DL 92.7% 

An et al. [19] EfficientNetB0 + DenseNet121 95.19% 

Bhandari et al. [20] CNN + XAI 94.31% 

Xue et al. [21] Ensemble 96% 

Barakat et al. [22] Quadratic SVM 97.58% 

Proposed model 
ResNet50-Swin Transformer 

hybrid 
98.4% 

Table II and Fig. 15 illustrate the comparative analysis of the 
proposed hybrid framework with conventional pneumonia 
detection models, revealing that even though some approaches 
demonstrate comparable classification accuracy, they often 
suffer from drawbacks in terms of interpretability, architectural 
complexity and generalizability. MDEV and ensemble CNN 
architecture models were efficient in capturing diverse features, 
but are hampered by computational overhead due to their multi-
network designs restricting real-time installation, especially in 
limited resource settings. Radiomics and SVM-based 
frameworks, relying on hand-crafted features or region-of-
interest segmentation struggles with adaptability across varying 
anatomical structures and image qualities and were seen as 
inefficient in most clinical scenarios. The better performing 
models such as EfficientNetB0 + DenseNet121 or attention-
aware CNNs, with accuracies in the range of 94 to 96%, require 
complex attention modules or fine-tuned fusion strategies 
increasing training time and computational complexity limiting 
their adaptability. The proposed ResNet50-Swin Transformer 
hybrid model achieves superior accuracy of 98.4%, combining 
the convolutional strength of ResNet50 for low-level feature 
extraction with the hierarchical attention-driven capabilities of 
Swin Transformer for contextual learning. The framework not 
only enhances classification precision but also enables 
segmentation functionality within a unified architecture, 
delivering both diagnostic accuracy and spatial interpretability 
in a computationally efficient manner. 
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Fig. 15. Accuracy comparison of ResNet50-Swin Transformer hybrid model with other methods. 

V. DISCUSSIONS 

The hybrid ResNet50-Swin Transformer framework 
demonstrates a novel architecture for dual-task learning, 
enabling both binary classification and pixel-level lesion 
localization of pneumonia from thoracic radiographs. Unlike 
conventional models that excel in feature extraction but often 
lack contextual awareness, the incorporation of the Swin 
Transformer effectively models global dependencies through its 
hierarchical window-based attention mechanism. This context-
aware learning facilitates improved representation of complex 
pulmonary structures, especially in cases with overlapping 
anatomical patterns or ambiguous radiographic findings. The 
framework’s superior classification accuracy (98.4%) and high 
Dice Coefficient (0.88) for lesion segmentation reinforce the 
robustness in both predictive performance and clinical 
interpretability. Compared to existing models that often perform 
one task effectively but compromise the other, the dual-
capability approach ensures diagnostic relevance without 
incurring excessive computational burden. This efficiency 
renders it particularly suitable for scalable deployment in 
clinical settings where radiologist availability or diagnostic 
infrastructure is constrained. Moreover, the segmentation 
decoder not only assists in validating classification outputs but 
also promotes explainability; bridging the trust gap between 
black-box AI models and medical practitioners. These visual 
insights are vital for treatment planning and follow-up 
monitoring, as the hybrid framework offers a pragmatic solution 
for intelligent diagnostic assistance. 

VI. CONCLUSION 

The study presents a novel hybrid DL model integrating 
ResNet50 with Swin Transformer to simultaneously perform 

classification and segmentation of pneumonia from thoracic 
radiograph images. The local feature extraction capability of 
ResNet50 and the hierarchical attention-driven global context 
modelling of the Swin Transformer are utilized to skillfully 
gather both fine-grained and contextual features. The model 
further branches into a classification head comprising global 
average pooling and a multilayer perceptron and a segmentation 
decoder that reconstructs pixel-level patches, providing 
interpretable diagnostic outputs. With 98.4% accuracy, a 
precision of 98.2%, a recall of 99.2% and an F1-score of 98% in 
classification and a Dice coefficient of 0.88 for segmentation, 
the model outperformed the conventional methods by broad 
margins. 

The segmentation results illustrated accurate delineation of 
lung regions, aligning closely with the ground truth masks, 
indicating exceptional interpretability and potential applicability 
in aiding radiologists. Additionally, the model’s dual 
functionality can streamline radiology workflows by reducing 
dependency on separate diagnostic and localization tools, 
thereby saving time and operational costs. 

However, the study is not without limitations. The dataset 
used is limited to pediatric chest radiographs collected from a 
single institution, which may impact the model’s 
generalizability to broader populations, including adults or those 
with coexisting pulmonary conditions. Additionally, the 
segmentation performance may degrade in cases of overlapping 
pathologies or poor image quality. These limitations call for 
broader validation to ensure clinical robustness. 

Future extensions of this work may focus on multiclass 
classification involving multiple thoracic diseases, 
incorporating explainable AI modules to enhance transparency 
and validating the framework across multi-institutional and 
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multi-demographic datasets to ensure broader generalizability 
and adoption. Further, the integration into mobile diagnostic 
applications or point-of-care systems could significantly expand 
its reach to rural and underserved areas. 
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