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Abstract—Traditional load balancing systems frequently have 

trouble adjusting to abrupt and unexpected changes in traffic. 

This can cause problems like server overload, longer response 

times, and more requests being denied. This problem is highly 

important in areas like healthcare, finance, cloud computing, and 

e-commerce, where performance, stability, and fast data delivery 

are all very important. To solve this problem, this study presents 

ReAdaBalancer, an adaptive load balancing architecture that 

aims to improve system performance, scalability, stability, and 

efficiency in contexts with changing traffic. Flask serves as the 

backend framework for ReAdaBalancer, while Nginx serves as the 

load balancer. Real-time monitoring and analytics are used to 

improve traffic distribution based on the resources that are 

currently available. Leveraging queuing theory (M/M/s/K 

Network), the system’s performance is tested under diverse load 

situations, providing insights into its scalability and efficiency. 

ReAdaBalancer can also learn and adapt all the time, thanks to 

machine learning and heuristic optimization. This makes sure that 

it works the same way even when demand changes. Experimental 

results demonstrate that, under equivalent settings, 

ReAdaBalancer decreases response times by over 67% and 

reduces request denial rates by over 50% in comparison to 

traditional methods. This work has multiple opportunities for 

subsequent investigation. Future improvements could involve 

making ReAdaBalancer work in distributed multi-data center 

environments, adding reinforcement learning to make decisions 

more independently, looking into load balancing strategies that 

use less energy, and making it work in edge computing and IoT 

ecosystems. 
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I. INTRODUCTION 

Cloud computing has gained significant popularity in recent 
years due to the rapid advancement of information and 
communication technology, which has driven the growth of 
data centers with resource virtualization and high connectivity 
[1]. To handle the increasing complexity of cloud 
environments, this study proposes the Rock Hyrax approach, an 
algorithmic model inspired by the adaptive and collaborative 
behavior of hyrax animals. The approach is designed to 
optimize load balancing in cloud computing systems, ensuring 
flexibility, scalability, and continuous access to resources [2]. 
Efficient load management is essential for maintaining 
performance while reducing resource waste. The Rock Hyrax 
model mimics the collective intelligence of hyrax groups, 
allowing computing systems to adapt dynamically to 

fluctuating workloads through intelligent collaboration. 
However, the rapid expansion of cloud services also introduces 
challenges such as system reliability, latency reduction, and 
energy efficiency. Efficient cloud computing faces several 
challenges, including latency, dark data risks, governance 
issues, data availability, privacy, long-term costs, and potential 
threats from edge computing and related technologies [3]. One 
promising solution to address these challenges is the 
implementation of efficient load-balancing techniques. Among 
innovative approaches, the Rock Hyrax method stands out by 
emphasizing adaptive, collective strategies inspired by the 
social behavior of hyrax herds, which are adept at distributing 
risks and surviving in dynamic environments. 

In cloud computing, load balancing distributes workloads 
across smaller nodes, enhancing system performance and 
stability [4, 5]. The Rock Hyrax strategy draws inspiration from 
the cooperative survival tactics of hyrax animals, which 
allocate roles and adapt effectively in unstable habitats. 
Existing load balancing algorithms can be broadly categorized 
into three groups: static, dynamic, and nature-inspired methods 
[5]. To address modern networked cloud environments, newer 
approaches must be smarter, more efficient, and adaptive. 

Static Load Balancing (SLB) leverages prior knowledge of 
system resources such as memory, storage, and processing 
power, resulting in lower overhead compared to dynamic 
methods [6, 7]. However, SLB lacks flexibility in adapting to 
changing workloads. Conversely, Dynamic Load Balancing 
(DLB) offers higher adaptability by adjusting workloads in real 
time, but at the cost of increased overhead [7]. Nature-inspired 
approaches, such as the Rock Hyrax algorithm, integrate the 
strengths of both models by mimicking decentralized, socially 
adaptive survival strategies. This enables accurate workload 
distribution with reduced overhead, even under dynamic and 
uncertain system conditions. 

In contrast, Nature Inspired Load Balancing (NLB) 
algorithms mimic biological and natural processes such as 
genetic evolution and honey bee foraging [8]. Compared to 
traditional methods, NLB is generally more effective in solving 
highly complex problems by approaching global optima rather 
than local ones. For example, Round Robin, although widely 
applied in cloud computing, often struggles with scalability and 
adaptability in dynamic environments. With the growing 
number of users, scheduling and load balancing techniques 
have become essential to sustain the performance of cloud 
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networks [9]. In this context, the Rock Hyrax approach offers 
advantages in social adaptability and efficient load distribution, 
even under unstable network conditions. 

Load balancing also plays a key role in optimizing task 
assignment to virtual machines according to priority [10]. In 
static implementations, cluster nodes are connected through 
fixed routing and exchange specialized information for 
advanced processing [11]. By contrast, dynamic algorithms 
monitor traffic conditions in real time and redistribute 
workloads adaptively. This continuous feedback mechanism 
improves resource utilization, performance, and response time 
without relying on prior system information [12, 13]. 

Nature-inspired methods are becoming increasingly popular 
in this area. For instance, Particle Swarm Optimization (PSO) 
simulates the collective behavior of fish schools or bird flocks 
in search of optimal solutions [5, 6, 14]. Other inspirations 
include the human immune system, which adaptively detects 
and isolates threats, and physical phenomena such as 
earthquakes or avalanches, which inform automated post-
failure recovery models [15]. Since evolutionary principles can 
be applied independently of the underlying medium, they 
enable the development of highly adaptive cloud systems [16]. 

This study also highlights the theoretical importance of 
latency and accessibility in cloud load balancing. By modeling 
more complex dynamic systems, it becomes possible to 
maximize workload distribution while considering energy 
efficiency. Therefore, exploring Rock Hyrax and Regret 
Minimization approaches is highly relevant, as they can 
optimize resource allocation, reduce energy consumption, and 
enhance the operational efficiency of machine learning–based 
applications, including evolving recommendation systems.  

This study is organized as follows: Section I introduces the 
background and related work, Section II describes the design 
and methodology of ReAdaBalancer, Section III presents the 
implementation details and experimental setup and also 
discusses the results and analysis. Finally, Section IV concludes 
the study with key findings and directions for future research. 

II. MATERIALS AND METHODS 

A. Cloud Computing 

Cloud computing has changed the way businesses use and 
manage their IT resources. Now, they focus on ensuring that 
resources are used efficiently and the load is balanced to get the 
best performance. Research conducted a thorough review of 
cloud computing usage and emphasized how important load 
balancing is for cloud service performance [17]. Dynamic load 
balancing approaches are becoming increasingly important as 
cloud setups get more complicated. This approach helps to 
make resources more efficient and reduce system overhead. 
Researchers wrote a long report on dynamic load balancing in 
cloud computing. They talked about how difficult it is for cloud 
service providers to keep their services available and reliable 
while also avoiding resource overload [18]. The research 
suggested using nature-inspired metaheuristic algorithms to 
improve load balancing [19]. This shows that nature-inspired 
methods can be used to find flexible solutions in changing 
contexts. All these studies underline the importance of using 
advanced optimization algorithms to solve load distribution 

problems in cloud computing systems. 

Despite advancements in cloud computing load balancing, 
there is still a big gap in getting the best resource distribution in 
networked systems, especially when workloads and resource 
limits are constantly changing [19]. Current methods frequently 
have trouble dealing with the intricacies of networked cloud 
infrastructures, where the dependency of several nodes and 
changing traffic conditions make load balancing difficult. This 
study suggests that combining the Rock Hyrax strategy with 
Regret Minimization strategies could lead to a better solution 
by reducing the regrets people have about their decisions in 
real-time load-balancing situations [22].  The goal of this study 
is to create a new optimization framework that can adjust to the 
changing nature of cloud networks. This will make better use 
of resources and improve the overall performance of the system 
[20, 21]. However, it still leaves room for further exploration, 
especially in quantifying the impact of factors such as 
technological readiness, top management support, relative 
advantage, competitive pressure, organizational resistance, 
system complexity, and data security [23, 24, 31]. Table I 
shows a critical literature analysis. 

TABLE I. CRITICAL LITERATURE ANALYSIS 

Study /Approach Contribution 
Limitation / Gap 

Identified 

Dynamic Load 

Balancing [17,18] 

Improves efficiency, 

reduces overhead 

Struggles under highly 

dynamic workloads and 
distributed nodes 

Nature-inspired 

Metaheuristics 

[19] 

Flexible, adaptive 
solutions 

Often computationally 

expensive, lacks real-

time responsiveness 

Regret 
Minimization [22] 

Handles decision-making 
under uncertainty 

Not yet applied in large-

scale cloud balancing 

contexts 

Cloud 

Performance 

Factors [23,24,31] 

Identify organizational & 

technical influences (e.g., 

security, complexity) 

Mostly conceptual, not 

integrated into 

optimization algorithms 

B. RHSO 

Many different methods have been created to make the most 
of energy use in cloud computing systems, but a lot of them still 
have trouble managing load distribution well in a changing and 
unpredictable environment [32]. Researchers have come up 
with hybrid ways to use less energy, but they don't completely 
solve the problems of uncertainty and load changes in cloud 
computing [25]. When working with data that changes a lot and 
is hard to understand, like loads that change or are hard to 
estimate, these methods can run into problems. This shows that 
only optimizing energy isn't enough to get the job done without 
taking into account how the load changes in the system. Also, 
the Rock Hyrax Swarm Optimization (RHSO) algorithm that 
was created works well for selecting features for credit card 
fraud detection systems, but it is still not very useful in the cloud 
computing world [26]. These methods are more often used for 
classification and pattern recognition tasks, and they don't 
always take into account how uncertain it is to manage 
resources in the cloud. We still need to look into how well 
RHSO can optimize load distribution in real time in a cloud 
computing environment with different resources and needs that 
aren't always clear [27, 28]. There are many different load 
optimization models, such the Random Regret Minimization 
(RRM) model. However, it still has problems when it comes to 
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being used in the cloud computing environment, which is very 
dynamic and uncertain [29]. On the other hand, Bayesian 
Optimization with expectation correction for cumulative regret 
reduction and other similar methods are more focused on 
finding the best solution in a noisy environment [30]. 

This study's goal is to fill in the gaps by creating a new 
method that uses both the Rock Hyrax Swarm Optimization 
algorithm and the Regret Minimization strategy to optimize 
load balancing in cloud computing networks. One of the main 
goals of this research is to find a solution to the problem of 
uncertainty in load distribution that cloud computing systems 
confront. This is because they often need to allocate resources 
fast and accurately when demand changes. The system can 
lower losses from bad judgments, make load sharing more 
efficient, and use less energy more effectively by utilizing a 
Regret Minimization strategy based on modularity optimization 

[13].  This study focuses to improve the Rock Hyrax and Regret 
Minimization methods for optimizing load balancing on 
networked cloud-based computing systems. The goal of this 
study is to find and improve optimization methods that use 
algorithms to make cloud computing load allocation decisions 
more accurate. One of the problems with load-balancing is how 
to deal with changing and different loads without affecting 
performance or resource availability. The idea behind this study 
is that using Rock Hyrax with Regret Minimization will give 
better results than traditional load-balancing approaches. 

C. Research Stages 

The focus of this research is to identify problems associated 
with throughput optimization to produce an optimal transfer 
rate of data delivery services. The stages used in this research 
are developed from previous research. Making of the modelling 
algorithm is given in the following Fig. 1: 

 

Fig. 1. Process algorithm. 

The Proposed Rock Hyrax Load Balancing Algorithm is 
intended to efficiently manage workloads in a cloud computing 
environment. The following is a complete process flow story of 
how the algorithm functions: 

1) Job submission: Users submit their tasks to the broker, 

which serves as the central controller for job scheduling and 

resource allocation in the cloud environment. The broker is also 

responsible for managing the distribution of tasks across 

different virtual machines (VMs). 

2) Initial load assessment: The algorithm starts by 

checking the workload and resources of each virtual machine to 

find virtual machines that are overloaded. This is done by 

comparing the current load with a preset threshold. 

3) Threshold monitoring: The waiting job queue length for 

each virtual machine (VM) has a threshold. If the queue length 

exceeds this threshold, the algorithm triggers load-balancing 

actions to ensure that no single VM becomes a bottleneck due 

to excessive demand. 
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4) Dynamic load redistribution: The algorithm evaluates 

the current state of the virtual machine (VM) when new jobs 

arrive. If the VM is overloaded, the algorithm reallocates 

waiting tasks to other VMs with available capacity. Dynamic 

redistribution and monitoring ensure optimal performance and 

prevent server failure. 

5) Quality of Service (QoS) considerations: The Rock 

Hyrax algorithm considers quality of service parameters such 

as maxspan, throughput, response time, and energy efficiency. 

This ensures that load balancing addresses live workloads and 

optimizes overall system performance. 

6) Continuous feedback loop: The capacity and workload 

of each server are monitored and sent back to the broker. The 

broker can make informed decisions about task allocation and 

adjust load distribution strategies as needed with this feedback 

loop. 

7) Execution and monitoring: Once tasks are allocated to 

the appropriate virtual machines (VMs), the algorithm 

continuously monitors the execution of these tasks. If any VM 

is overloaded again, the process repeats, ensuring that the 

system remains balanced and efficient during job execution. 

Performance Evaluation: Finally, the results show that 
makespan and energy consumption become lower, which 
indicates that Rock Hyrax's load balancing algorithm really 
works well when organizing resource allocation in cloud 
computing. 

D. Preprocessing and Augmentation Data 

This study looks at common preprocessing or data 
augmentation methods that are utilized in machine learning. If 
we think about the process in terms of data handling and 
optimization, though, we can see that the system is doing some 
"preprocessing" processes to manage tasks. For instance, when 
a new task comes in, the system will add it to the queue and 
check to see whether it goes over the limit. This is like getting 
data ready for more processing. This phase makes sure that only 
jobs that are too heavy are processed, which cuts down on 
unneeded overhead. Also, setting up the "Rock Hyrax" 
population and making subgroups can be considered as setting 
up several possible solutions (or data points) for optimization, 
like feature selection or data splitting. The system does "data 
augmentation" by comparing fitness functions and changing the 
placements of agents based on these comparisons. This is done 
again and over again. You could say that this is an addition to 
the original set of possible answers, with each repetition making 
the solutions better and more suited to the problem at hand. 
Also, the addition of a comparison value and the constant 
changes to the agents' positions are like the iterative nature of 
data augmentation, where new data variations are made by 
making changes and comparisons, which makes the model 
better at adapting and finding the best solution. These phases 
make sure that the optimization process looks at a lot of 
different options, which makes the system stronger and more 
efficient, just like how data augmentation makes models more 
general. 

E. Model Architecture 

The model architecture refers to the overall structure of a 
machine learning model or computational model, which defines 
the components, their relationships, and the flow of data 
through the system. The model architecture serves to design, 
build, and understand how the various parts of the model 
interact to achieve the desired functionality.  

The following is an architectural diagram of the M/M/s/k 
queue pseudocode based on the pseudocode that has been made. 
This diagram illustrates how customers enter the system, wait 
in the queue if needed, are served by the server, and then exit 
the system or are rejected if the queue is full, as can be seen 
from Fig. 2: 

 
Fig. 2. Architectural diagram of the M/M/s/k queuing model. 

Fig. 2 shows a queuing system in a crowded place, such as 
a fast food restaurant or a call centre. Randomly come to the 
queue of customers (represented by a computer icon). However, 
this queue has a limit that not everyone can join. If the queue is 
full (exceeding k capacity), you will be denied entry. In this 
system, several servers (s) serve customers one by one, and 
each server has a certain service speed (μ). Once served, exit 
the system. This model is called M/M/s/k, and is often used to 
measure the performance of capacity-constrained systems, such 
as how fast the service is, and how busy the system itself is. 

Load balancers distribute load based on server capacity and 
user demand. Basic formula: 

       ,i j jS argarg C S L S 
   (1) 

where, Si is the selected server; 

Sj is each server in the pool; 

C(Sj) is the processing capacity of server j; 

L(Sj) is the latency of server j. 

The load balancer selects the server with the lowest C+L 
value. 

1) ReAdaBalancer algorithm: ReaAda balances tasks with 

the smallest load and considers redistribution. Determining the 

smallest load on a server can be analogous to a mathematical 

formula that describes the probability of a server being active 

or not, based on the load received. With a value, which is the 

size of the load, and other parameters, such as α and β, which 

serve to adjust the sensitivity and threshold. Creating the server 

inactive is significantly larger, creating an efficient that when 

the server does not receive many requests. 
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where, P(Si) is the probability of selecting server i; 

Ui is the utilization of server i; 

α and β are parameters that control the sensitivity of the 
algorithm to server load. The lower the Ui value, the greater the 
chance of that server being selected. 

2) Regret minimization: Regret Minimization aims to 

minimize the difference between the best decision and the 

decision taken: 

 
1

,
T

t t t t

t

R w O A

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                                  (3) 

where, Rt is the regret at time t; 

Ot is the optimal outcome that should be obtained if the best 
decision is taken; 

At is the result obtained from the decision taken by the 
system; 

Wt is the weight that determines how important the error is 
at time t. 

The goal of this algorithm is to make Rt→0 over time by 
adaptive learning. 

3) Performance evaluation: Performance evaluation is 

calculated by looking at throughput (T), response time (R), and 

error rate (E): 

,
T

K
R E


     (4) 

where, K is the performance score; 

T is the number of successfully processed requests; 

R is the average response time; 

E is the number of errors that occur. 

The higher the K, the better the system performance. 

Based on the idea of queuing theory, the M/M/k Load 
Balancer Architecture is arranged here in an organized table. 
Typically used in high-performance distributed systems where 
multiple servers (k) handle randomly arriving jobs (Poisson 
process) and each server offers exponential service time. 
Describes the architectural structure of the M/M/k queue 
system with a Load Balancer. These system requests arrive at a 
rate of λ and are then distributed by the Load Balancer to the k 
available servers. If all servers are busy, they enter the Queue 
before being processed. Utilization (ρ) is an important 
parameter that determines whether or not the system is in a 
stable state. There are two main probabilities: P₀, which 
indicates that there are no customers in the system, and Pq, 
which indicates the chance that customers will have to queue 
before being served. 

Output based on system performance is rather different. 
While L (System Length) shows the total customers in the 

system, including those being served. Shows L (Queue Length). 
In terms of time, Wq (Queue Wait Times) calculates how long 
the average customer has to wait in the queue, while W (System 
Wait Times) is the total time spent by the system. After 
proposals, requests go out as completed requests. 

F. Simulation Model 

A simulation model is a computational representation of a 
process, system used to simulate under various conditions. This 
model is built into a diagrammatic architecture.  

Here is a diagram of the queue simulation architecture based 
on the pseudocode you provided. This diagram shows the 
relationship between the main components, such as customer, 
simEventList, queue, and queueSim, which can be seen from 
Fig. 3. 

 
Fig. 3. Architectural diagram of the queue simulation model. 

Performance evaluation at the final stage enables 
continuous monitoring and improvement of the system to 
remain optimum in handling demand. This approach is not 
operational, but it also minimizes the potential for errors and 
quality degradation. 

G. Experimental Setup 

Experimental setup refers to the arrangement of equipment, 
in terms of both hardware and software, to analyze the 
phenomenon under study. 

 The hardware and software used for this study are: 

o The research environment (CloudSim, iFogSim); 

o Infrastructure for both private and public clouds  
(OpenStack, AWS, Azure, GCP); 

o Microservices and container platforms like 
Kubernetes and Docker; 

o systems for edge and fog computing; 

 Frameworks for serverless computing. 

Adaptive and decentralized load optimization is its best 
feature. This makes it very useful in multi cloud, hybrid, and 
edge-cloud environments where real-time decision-making and 
self-learning are very important. 

III. RESULTS AND DISCUSSION 

This study show that the integration of Rock Hyrax and 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

189 | P a g e  

www.ijacsa.thesai.org 

Regret Minimization for cloud computing optimization with the 
ReAdaBalancer concept keeps the system stable and getting 
data quickly is very important. This is done by optimizing 
resource allocation. Under the same conditions, 
ReAdaBalancer cuts the response time by about 67% and the 
request rejection rate by more than 50% compared to the 
standard approach. This is done by adjusting to the traffic in 
real time and considering the server status. Unlike previous 
works such as [22], where only using the Rock Hyrax algorithm 
shows lower accuracy due to its inability to stress the system 
remains stable in optimizing resource allocation. In contrast to 
[28], where they propose a near-optimal discrete optimization 
approach for experimental design using a Regret Minimization 
framework. This approach aims to select the statistically most 
efficient subset of design points from a larger data set. In 
addition, while [29] this RRM model can be adapted to plan 
resource allocation by considering regret over previous 
decisions. 

A. Maths Pseudocode 

Between mathematical conceptual thinking and effective 
programming implementation, Maths Pseudocode is a logical 
and methodical presentation of mathematical algorithms 
organized in half-code form. including the following: 

#Mathematical pseudocode 

import maths 

def lambdaN(lam, k, n): 

Fig. 4 is the pseudocode of the simulation results using 
Python. 

 

Fig. 4. Arrival function, service level, and probability. 

Summary of Fig. 4 

The code above implements the M/M/s/k queuing system, 
which analyses a system with a limited number of servers (s) 
and a maximum capacity (k). The lambdaN function stops if the 
capacity is full, which stops the arrival of customers (λ). 
Calculates the service level (μ), which increases with the 
number of customers but is limited by the number of servers. 
The P0 function terminates an empty system (P₀), which is 
useful for evaluating queuing systems. This model is useful for 
others with capacity constraints, such as call centers, computer 
servers, or service systems. 

 
Fig. 5. Running a mathematical model. 

Fig. 5 shows a snippet of Python code written on Google 
Colab, titled Mathematical Models. This script implements 
several complex mathematical functions used for probabilistic 
modelling or queuing theory, marked with common notations 
such as λ (arrival rate), μ (service rate), and k (number of 
customers in the system). The functions P0 and Pn indicate 
attempts to calculate the probability of states in a queuing 
system, while the functions PC and PQ indicate probability 
calculations in the context of a limited system capacity or 
queue. The use of math.factorial, math.pow, and the use of 
nested loops reflect typical combinatorial and exponential 
calculations in the Poisson or M/M/1/K models. 

B. Simulation Pseudocode 

Run through simulations, before they are used in actual 
computer code, pseudocode, a methodical description of a 
logically ordered simulation process, allows the systematic 
construction and analysis of scenarios, therefore modelling the 
dynamics of complex systems and enabling the comprised. The 
following Fig. 6 shows the customer function, simEventList.. 

 
Fig. 6. Customer function, simEventList . 

Summary of Fig. 6 

Part of a queuing system simulation that uses an exponential 
distribution to determine customer arrival and service times. 
Customer The class represents a customer with attributes of 
arrival time, service time, and event type (or departure). 
Meanwhile, the simEventList class manages the list of events 
in the simulation, generates service times, and determines the 
inter-arrival time of customers based on an exponential 
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distribution. This simulation is useful for analyzing the 
performance of other systems that have limited capacity, with 
queues, such as contact centers, banks, or other systems. 

 
Fig. 7. Running system simulation. 

Summary of Fig. 7 

Simulation of a queuing system that uses an exponential 
distribution to determine customer arrival and service times. 
Each customer has attributes of arrivalTime, serviceTime, and 
event type. In this simulation, events are in the simEventList 
class, which ensures that each customer's arrival and departure 
are sorted chronologically. The available servers, as well as 
calculating performance metrics such as average time and 
queue length, the queueSim class is responsible for running the 
simulation by maintaining the queue. If all servers are busy, 
customers will be put into a waiting queue, provided there is 
still available capacity. 

The simulation is run in a loop that processes each event in 
the list sequentially. If a customer arrives and there is a server, 
they are served immediately. Otherwise, they enter the queue if 
there is still space. Once in the queue, they begin to be served, 
the server becomes available again, and the next customer 
follows. The final results of the simulation include various 
statistical measures that can be used to evaluate the efficiency 
of the queuing system, such as average waiting time and queue 
length. The model can be used in various real-world 
applications, such as customer service, traffic management, and 
data processing systems. 

C. Load Balancer System Test Pseudocode 

The Load Balancer System Test Pseudocode is designed to 
confirm the fair and efficient traffic distribution between 
servers by logical simulation before technical implementation 
is carried out. Pseudocode is a methodical depiction of the load 
balancer system test flow comprising the following, as shown 
in Fig. 8. 

Summary of Fig. 8 

The load balancing () function simulates the M/M/k queue 
model with multiple servers. It calculates system utilization, 
estimated number of customers in the system and queue and 
arrival rate (λ), service rate (μ), and arrival rate (λ). With this 
simulation, it is possible to evaluate service efficiency in 
various queuing systems, such as call centres, hospitals, and 
data centres, in order to optimize capacity and reduce customer 
waiting time. 

Fig. 9 shows the running of simulation results using Python. 

 
Fig. 8. Load balancer function. 

 

 
Fig. 9. Running simulation test of load balancer system. 
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Simulation summary of Load Balancer Test Model 

Load balancing, with the code above, simulates a multiple 
server M/M/k queue system. The load balancing function 
calculates queue parameters such as the number of customers 
in the system (Ly), the waiting time of customers in the system 
(Wy), the number of customers in the queue (Lqy), and the 
waiting time in the queue (Wqy). These results are calculated 
both theoretically and through simulations of varying the value 
of λ (arrival rate) within a certain range. The simulation is 
added with random noise in the real system to represent in. 
After the calculation is complete, the results are visualized 
using Hutmatplotlib to compare the theoretical values and 
simulation results. 

However, there are some implementations of this. Ly is not 
suitable for calculating Ly due to multiple servers (M/M/k), as 
it only applies to M/M/1 systems. Not checking the system, 
which should ensure that the utilization ratio ρ = λ/(kμ)1 in 
order to keep the queue under control. If ρ > 1, the system is not 
able to increase indefinitely. For improvement, it is necessary 
to use the Erlang-C formula to get a more accurate estimation 
in the M/M/k model. 

D. Innovative ReaAdaBalancer 

An innovative load balancing method called 
RegretAdaptive Load Balancing (ReAdaBalancer) dynamically 
optimizes demand distribution by means of regret reduction. 
The simulation in Table II shows how helpful this approach is 
in settings with varying workloads and heterogeneous servers. 

TABLE II. REGRETADAPTIVE LOAD BALANCER PERFORMANCE RESULTS 

Server ID Final Load Final Regret Utilization (%) 

0 11 0 11.0% 

1 5 0 5.0% 

2 0 0 0.0% 

3 0 0 0.0% 

4 6 0 6.0% 

Table Analysis: 

1) Final Load: Shows the final load amount that each server 

has after 20 iterations. 

2) Final Regret: None of the servers are overloaded, so the 

regret score remains 0. 

3) Utilization (%): All servers have a low utilization rate, 

which means the load has been distributed fairly well. 
Fig. 10 shows the running of simulation results using 

Python. 

 
Fig. 10. Simulation graph of adaptive load balancer regret. 

This graph presents "Server Load and Utilization" data 
related to the final load and utilization rate of five server units 
identified by IDs 0 to 4. The observation shows that there is a 
significant imbalance in the workload distribution between 
servers. The server with ID 0 had the highest final load of 11 
and a utilization rate of 10%, indicating that it was working 
intensively and was likely to be the main center of data 
processing. Meanwhile, server ID 1 showed a drastic drop with 
an end load of only 5 and a utilization rate of 5%, suggesting a 
reduction in activity or an imbalance in load allocation. More 
strikingly, server IDs 2 and 3 recorded zero values on both 
metrics, signifying that they were not involved in any 
computing processes at all, potentially indicating high idle time 
or no assignment at all. In contrast, server ID 4 shows an 
increase again with a final load of 6 and utilization of 6 %, 
indicating moderate involvement in system activity. Overall, 
this graph reflects an uneven load distribution among the server 
units. This imbalance can have an impact on operational 
efficiency as well as hardware lifespan. Therefore, there is a 
need to evaluate the scheduling and load distribution strategies 
to ensure that all system resources are utilized optimally and 
proportionally. 

E. Discussions 

In summary, the discussion confirmed that the proposed 
ReAdaBalancer, which includes preprocessing as an important 
first step to prepare the data for the load balancing [10] process, 
and augmentation, which improves the model in the face of 
dynamic changes in cloud environments, both help provide 
smart and efficient solutions for load optimization that can be 
used on a large scale and in cloud environments that change 
quickly. 

Despite its advantages, this research has some limitations, 
including that the algorithm becomes more difficult to compute 
as the number of nodes and the size of the cloud network 
increase. The algorithm may have difficulty in making timely 
adjustments when there is a sudden change in load or system 
failure, which can lead to poor conclusions. Future 
improvements may include: 1) the use of parallel computing 
and distributed processing to speed up the performance of the 
algorithm, 2) the use of online learning or incremental learning 
techniques to keep the model up-to-date as new data comes in, 
3) the addition of reinforcement learning for parameter 
adjustment to provide a dynamic solution that avoids incorrect 
parameter selection, 4) the addition of distributed error 
detection and self-healing features to the algorithm can make it 
more fault-tolerant. For example, replication techniques can be 
used to copy the load to a backup server in case of a failure, and 
5) the use of hybrid algorithms that combine Rock Hyrax with 
other faster optimization methods such as shortest path 
algorithms or approximate algorithms can help you make 
decisions faster and ensure that load distribution occurs quickly 
and efficiently for real-time applications. 

ReAdaBalancer has been shown to work very well for 
improving system resilience and availability. Helping to make 
better use of resources and adapt to changing conditions. The 
Rock Hyrax Approach and Regret Minimization will focus on 
making cloud computing [13] more scalable, able to adapt 
automatically, able to handle failures, better at managing 
energy, and more secure in the future. This research can make 
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a cloud system that is more efficient, safe, and able to adapt to 
future issues by looking into how to combine emerging 
technologies like machine learning, blockchain, and real time 
processing and coming up with solutions for apps that need to 
do more than one thing. 

IV. CONCLUSION 

The model that combines Rock Hyrax and Regret 
Minimization for cloud computing optimization with the 
ReAdaBalancer concept keeps the system stable, and the 
ReAdaBalancer cuts response time by about 67% and request 
rejection rate by more than 50% compared to the standard 
approach by adjusting traffic in real-time. 

Test Server with ID 0 has the largest final load of 11 and 
utilization rate of 10%, which means that it is working hard and 
is probably the major place where data is processed. Server ID 
1, on the other hand, has a final load of only 5 and a utilization 
rate of 5%, which means that either activity has decreased or 
load allocation has become unbalanced. This performance 
boost can be a clever and effective way to optimize load that 
works on a large scale and in cloud environments that change 
quickly. 

Results are in line with the goal and unique features. The 
suggested load balancing optimization method effectively 
solves the main problems found in the study, such as being able 
to adapt to changing system conditions, using a lot of energy, 
and not being very good at distributing workloads in real time. 
Rock Hyrax and Regret Minimization work together to give a 
unique advantage over standard algorithms by changing to 
traffic patterns in real-time. This makes the system more 
responsive and uses resources better. 
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