
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

184 | P a g e

www.ijacsa.thesai.org

Developing ReAdaBalancer for Load Balancing

Optimization in Networked Cloud Computing

M Diarmansyah Batubara1*, Poltak Sihombing2, Syahril Efendi3, Suherman4

Student of Doctoral Program in Computer Science1

Department of Computer Science-Faculty of Computer Science and Information Technology,

Universitas Sumatera Utara, Medan, Indonesia1, 2, 3

Department of Electrical Engineering-Faculty of Engineering, Universitas Sumatera Utara, Medan, Indonesia4

Abstract—Traditional load balancing systems frequently have

trouble adjusting to abrupt and unexpected changes in traffic.

This can cause problems like server overload, longer response

times, and more requests being denied. This problem is highly

important in areas like healthcare, finance, cloud computing, and

e-commerce, where performance, stability, and fast data delivery

are all very important. To solve this problem, this study presents

ReAdaBalancer, an adaptive load balancing architecture that

aims to improve system performance, scalability, stability, and

efficiency in contexts with changing traffic. Flask serves as the

backend framework for ReAdaBalancer, while Nginx serves as the

load balancer. Real-time monitoring and analytics are used to

improve traffic distribution based on the resources that are

currently available. Leveraging queuing theory (M/M/s/K

Network), the system’s performance is tested under diverse load

situations, providing insights into its scalability and efficiency.

ReAdaBalancer can also learn and adapt all the time, thanks to

machine learning and heuristic optimization. This makes sure that

it works the same way even when demand changes. Experimental

results demonstrate that, under equivalent settings,

ReAdaBalancer decreases response times by over 67% and

reduces request denial rates by over 50% in comparison to

traditional methods. This work has multiple opportunities for

subsequent investigation. Future improvements could involve

making ReAdaBalancer work in distributed multi-data center

environments, adding reinforcement learning to make decisions

more independently, looking into load balancing strategies that

use less energy, and making it work in edge computing and IoT

ecosystems.

Keywords—Cloud computing; heuristic optimization; adaptive

load balancing; scalability; ReAdaBalancer

I. INTRODUCTION

Cloud computing has gained significant popularity in recent
years due to the rapid advancement of information and
communication technology, which has driven the growth of
data centers with resource virtualization and high connectivity
[1]. To handle the increasing complexity of cloud
environments, this study proposes the Rock Hyrax approach, an
algorithmic model inspired by the adaptive and collaborative
behavior of hyrax animals. The approach is designed to
optimize load balancing in cloud computing systems, ensuring
flexibility, scalability, and continuous access to resources [2].
Efficient load management is essential for maintaining
performance while reducing resource waste. The Rock Hyrax
model mimics the collective intelligence of hyrax groups,
allowing computing systems to adapt dynamically to

fluctuating workloads through intelligent collaboration.
However, the rapid expansion of cloud services also introduces
challenges such as system reliability, latency reduction, and
energy efficiency. Efficient cloud computing faces several
challenges, including latency, dark data risks, governance
issues, data availability, privacy, long-term costs, and potential
threats from edge computing and related technologies [3]. One
promising solution to address these challenges is the
implementation of efficient load-balancing techniques. Among
innovative approaches, the Rock Hyrax method stands out by
emphasizing adaptive, collective strategies inspired by the
social behavior of hyrax herds, which are adept at distributing
risks and surviving in dynamic environments.

In cloud computing, load balancing distributes workloads
across smaller nodes, enhancing system performance and
stability [4, 5]. The Rock Hyrax strategy draws inspiration from
the cooperative survival tactics of hyrax animals, which
allocate roles and adapt effectively in unstable habitats.
Existing load balancing algorithms can be broadly categorized
into three groups: static, dynamic, and nature-inspired methods
[5]. To address modern networked cloud environments, newer
approaches must be smarter, more efficient, and adaptive.

Static Load Balancing (SLB) leverages prior knowledge of
system resources such as memory, storage, and processing
power, resulting in lower overhead compared to dynamic
methods [6, 7]. However, SLB lacks flexibility in adapting to
changing workloads. Conversely, Dynamic Load Balancing
(DLB) offers higher adaptability by adjusting workloads in real
time, but at the cost of increased overhead [7]. Nature-inspired
approaches, such as the Rock Hyrax algorithm, integrate the
strengths of both models by mimicking decentralized, socially
adaptive survival strategies. This enables accurate workload
distribution with reduced overhead, even under dynamic and
uncertain system conditions.

In contrast, Nature Inspired Load Balancing (NLB)
algorithms mimic biological and natural processes such as
genetic evolution and honey bee foraging [8]. Compared to
traditional methods, NLB is generally more effective in solving
highly complex problems by approaching global optima rather
than local ones. For example, Round Robin, although widely
applied in cloud computing, often struggles with scalability and
adaptability in dynamic environments. With the growing
number of users, scheduling and load balancing techniques
have become essential to sustain the performance of cloud

*Corresponding Author.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

185 | P a g e

www.ijacsa.thesai.org

networks [9]. In this context, the Rock Hyrax approach offers
advantages in social adaptability and efficient load distribution,
even under unstable network conditions.

Load balancing also plays a key role in optimizing task
assignment to virtual machines according to priority [10]. In
static implementations, cluster nodes are connected through
fixed routing and exchange specialized information for
advanced processing [11]. By contrast, dynamic algorithms
monitor traffic conditions in real time and redistribute
workloads adaptively. This continuous feedback mechanism
improves resource utilization, performance, and response time
without relying on prior system information [12, 13].

Nature-inspired methods are becoming increasingly popular
in this area. For instance, Particle Swarm Optimization (PSO)
simulates the collective behavior of fish schools or bird flocks
in search of optimal solutions [5, 6, 14]. Other inspirations
include the human immune system, which adaptively detects
and isolates threats, and physical phenomena such as
earthquakes or avalanches, which inform automated post-
failure recovery models [15]. Since evolutionary principles can
be applied independently of the underlying medium, they
enable the development of highly adaptive cloud systems [16].

This study also highlights the theoretical importance of
latency and accessibility in cloud load balancing. By modeling
more complex dynamic systems, it becomes possible to
maximize workload distribution while considering energy
efficiency. Therefore, exploring Rock Hyrax and Regret
Minimization approaches is highly relevant, as they can
optimize resource allocation, reduce energy consumption, and
enhance the operational efficiency of machine learning–based
applications, including evolving recommendation systems.

This study is organized as follows: Section I introduces the
background and related work, Section II describes the design
and methodology of ReAdaBalancer, Section III presents the
implementation details and experimental setup and also
discusses the results and analysis. Finally, Section IV concludes
the study with key findings and directions for future research.

II. MATERIALS AND METHODS

A. Cloud Computing

Cloud computing has changed the way businesses use and
manage their IT resources. Now, they focus on ensuring that
resources are used efficiently and the load is balanced to get the
best performance. Research conducted a thorough review of
cloud computing usage and emphasized how important load
balancing is for cloud service performance [17]. Dynamic load
balancing approaches are becoming increasingly important as
cloud setups get more complicated. This approach helps to
make resources more efficient and reduce system overhead.
Researchers wrote a long report on dynamic load balancing in
cloud computing. They talked about how difficult it is for cloud
service providers to keep their services available and reliable
while also avoiding resource overload [18]. The research
suggested using nature-inspired metaheuristic algorithms to
improve load balancing [19]. This shows that nature-inspired
methods can be used to find flexible solutions in changing
contexts. All these studies underline the importance of using
advanced optimization algorithms to solve load distribution

problems in cloud computing systems.

Despite advancements in cloud computing load balancing,
there is still a big gap in getting the best resource distribution in
networked systems, especially when workloads and resource
limits are constantly changing [19]. Current methods frequently
have trouble dealing with the intricacies of networked cloud
infrastructures, where the dependency of several nodes and
changing traffic conditions make load balancing difficult. This
study suggests that combining the Rock Hyrax strategy with
Regret Minimization strategies could lead to a better solution
by reducing the regrets people have about their decisions in
real-time load-balancing situations [22]. The goal of this study
is to create a new optimization framework that can adjust to the
changing nature of cloud networks. This will make better use
of resources and improve the overall performance of the system
[20, 21]. However, it still leaves room for further exploration,
especially in quantifying the impact of factors such as
technological readiness, top management support, relative
advantage, competitive pressure, organizational resistance,
system complexity, and data security [23, 24, 31]. Table I
shows a critical literature analysis.

TABLE I. CRITICAL LITERATURE ANALYSIS

Study /Approach Contribution
Limitation / Gap

Identified

Dynamic Load

Balancing [17,18]

Improves efficiency,

reduces overhead

Struggles under highly

dynamic workloads and
distributed nodes

Nature-inspired

Metaheuristics

[19]

Flexible, adaptive
solutions

Often computationally

expensive, lacks real-

time responsiveness

Regret
Minimization [22]

Handles decision-making
under uncertainty

Not yet applied in large-

scale cloud balancing

contexts

Cloud

Performance

Factors [23,24,31]

Identify organizational &

technical influences (e.g.,

security, complexity)

Mostly conceptual, not

integrated into

optimization algorithms

B. RHSO

Many different methods have been created to make the most
of energy use in cloud computing systems, but a lot of them still
have trouble managing load distribution well in a changing and
unpredictable environment [32]. Researchers have come up
with hybrid ways to use less energy, but they don't completely
solve the problems of uncertainty and load changes in cloud
computing [25]. When working with data that changes a lot and
is hard to understand, like loads that change or are hard to
estimate, these methods can run into problems. This shows that
only optimizing energy isn't enough to get the job done without
taking into account how the load changes in the system. Also,
the Rock Hyrax Swarm Optimization (RHSO) algorithm that
was created works well for selecting features for credit card
fraud detection systems, but it is still not very useful in the cloud
computing world [26]. These methods are more often used for
classification and pattern recognition tasks, and they don't
always take into account how uncertain it is to manage
resources in the cloud. We still need to look into how well
RHSO can optimize load distribution in real time in a cloud
computing environment with different resources and needs that
aren't always clear [27, 28]. There are many different load
optimization models, such the Random Regret Minimization
(RRM) model. However, it still has problems when it comes to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

186 | P a g e

www.ijacsa.thesai.org

being used in the cloud computing environment, which is very
dynamic and uncertain [29]. On the other hand, Bayesian
Optimization with expectation correction for cumulative regret
reduction and other similar methods are more focused on
finding the best solution in a noisy environment [30].

This study's goal is to fill in the gaps by creating a new
method that uses both the Rock Hyrax Swarm Optimization
algorithm and the Regret Minimization strategy to optimize
load balancing in cloud computing networks. One of the main
goals of this research is to find a solution to the problem of
uncertainty in load distribution that cloud computing systems
confront. This is because they often need to allocate resources
fast and accurately when demand changes. The system can
lower losses from bad judgments, make load sharing more
efficient, and use less energy more effectively by utilizing a
Regret Minimization strategy based on modularity optimization

[13]. This study focuses to improve the Rock Hyrax and Regret
Minimization methods for optimizing load balancing on
networked cloud-based computing systems. The goal of this
study is to find and improve optimization methods that use
algorithms to make cloud computing load allocation decisions
more accurate. One of the problems with load-balancing is how
to deal with changing and different loads without affecting
performance or resource availability. The idea behind this study
is that using Rock Hyrax with Regret Minimization will give
better results than traditional load-balancing approaches.

C. Research Stages

The focus of this research is to identify problems associated
with throughput optimization to produce an optimal transfer
rate of data delivery services. The stages used in this research
are developed from previous research. Making of the modelling
algorithm is given in the following Fig. 1:

Fig. 1. Process algorithm.

The Proposed Rock Hyrax Load Balancing Algorithm is
intended to efficiently manage workloads in a cloud computing
environment. The following is a complete process flow story of
how the algorithm functions:

1) Job submission: Users submit their tasks to the broker,

which serves as the central controller for job scheduling and

resource allocation in the cloud environment. The broker is also

responsible for managing the distribution of tasks across

different virtual machines (VMs).

2) Initial load assessment: The algorithm starts by

checking the workload and resources of each virtual machine to

find virtual machines that are overloaded. This is done by

comparing the current load with a preset threshold.

3) Threshold monitoring: The waiting job queue length for

each virtual machine (VM) has a threshold. If the queue length

exceeds this threshold, the algorithm triggers load-balancing

actions to ensure that no single VM becomes a bottleneck due

to excessive demand.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

187 | P a g e

www.ijacsa.thesai.org

4) Dynamic load redistribution: The algorithm evaluates

the current state of the virtual machine (VM) when new jobs

arrive. If the VM is overloaded, the algorithm reallocates

waiting tasks to other VMs with available capacity. Dynamic

redistribution and monitoring ensure optimal performance and

prevent server failure.

5) Quality of Service (QoS) considerations: The Rock

Hyrax algorithm considers quality of service parameters such

as maxspan, throughput, response time, and energy efficiency.

This ensures that load balancing addresses live workloads and

optimizes overall system performance.

6) Continuous feedback loop: The capacity and workload

of each server are monitored and sent back to the broker. The

broker can make informed decisions about task allocation and

adjust load distribution strategies as needed with this feedback

loop.

7) Execution and monitoring: Once tasks are allocated to

the appropriate virtual machines (VMs), the algorithm

continuously monitors the execution of these tasks. If any VM

is overloaded again, the process repeats, ensuring that the

system remains balanced and efficient during job execution.

Performance Evaluation: Finally, the results show that
makespan and energy consumption become lower, which
indicates that Rock Hyrax's load balancing algorithm really
works well when organizing resource allocation in cloud
computing.

D. Preprocessing and Augmentation Data

This study looks at common preprocessing or data
augmentation methods that are utilized in machine learning. If
we think about the process in terms of data handling and
optimization, though, we can see that the system is doing some
"preprocessing" processes to manage tasks. For instance, when
a new task comes in, the system will add it to the queue and
check to see whether it goes over the limit. This is like getting
data ready for more processing. This phase makes sure that only
jobs that are too heavy are processed, which cuts down on
unneeded overhead. Also, setting up the "Rock Hyrax"
population and making subgroups can be considered as setting
up several possible solutions (or data points) for optimization,
like feature selection or data splitting. The system does "data
augmentation" by comparing fitness functions and changing the
placements of agents based on these comparisons. This is done
again and over again. You could say that this is an addition to
the original set of possible answers, with each repetition making
the solutions better and more suited to the problem at hand.
Also, the addition of a comparison value and the constant
changes to the agents' positions are like the iterative nature of
data augmentation, where new data variations are made by
making changes and comparisons, which makes the model
better at adapting and finding the best solution. These phases
make sure that the optimization process looks at a lot of
different options, which makes the system stronger and more
efficient, just like how data augmentation makes models more
general.

E. Model Architecture

The model architecture refers to the overall structure of a
machine learning model or computational model, which defines
the components, their relationships, and the flow of data
through the system. The model architecture serves to design,
build, and understand how the various parts of the model
interact to achieve the desired functionality.

The following is an architectural diagram of the M/M/s/k
queue pseudocode based on the pseudocode that has been made.
This diagram illustrates how customers enter the system, wait
in the queue if needed, are served by the server, and then exit
the system or are rejected if the queue is full, as can be seen
from Fig. 2:

Fig. 2. Architectural diagram of the M/M/s/k queuing model.

Fig. 2 shows a queuing system in a crowded place, such as
a fast food restaurant or a call centre. Randomly come to the
queue of customers (represented by a computer icon). However,
this queue has a limit that not everyone can join. If the queue is
full (exceeding k capacity), you will be denied entry. In this
system, several servers (s) serve customers one by one, and
each server has a certain service speed (μ). Once served, exit
the system. This model is called M/M/s/k, and is often used to
measure the performance of capacity-constrained systems, such
as how fast the service is, and how busy the system itself is.

Load balancers distribute load based on server capacity and
user demand. Basic formula:

     ,i j jS argarg C S L S 
 (1)

where, Si is the selected server;

Sj is each server in the pool;

C(Sj) is the processing capacity of server j;

L(Sj) is the latency of server j.

The load balancer selects the server with the lowest C+L
value.

1) ReAdaBalancer algorithm: ReaAda balances tasks with

the smallest load and considers redistribution. Determining the

smallest load on a server can be analogous to a mathematical

formula that describes the probability of a server being active

or not, based on the load received. With a value, which is the

size of the load, and other parameters, such as α and β, which

serve to adjust the sensitivity and threshold. Creating the server

inactive is significantly larger, creating an efficient that when

the server does not receive many requests.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

188 | P a g e

www.ijacsa.thesai.org

   

1
,

1 i
i U

P S
e
 




 

 (2)

where, P(Si) is the probability of selecting server i;

Ui is the utilization of server i;

α and β are parameters that control the sensitivity of the
algorithm to server load. The lower the Ui value, the greater the
chance of that server being selected.

2) Regret minimization: Regret Minimization aims to

minimize the difference between the best decision and the

decision taken:

 
1

,
T

t t t t

t

R w O A


 
 (3)

where, Rt is the regret at time t;

Ot is the optimal outcome that should be obtained if the best
decision is taken;

At is the result obtained from the decision taken by the
system;

Wt is the weight that determines how important the error is
at time t.

The goal of this algorithm is to make Rt→0 over time by
adaptive learning.

3) Performance evaluation: Performance evaluation is

calculated by looking at throughput (T), response time (R), and

error rate (E):

,
T

K
R E


 (4)

where, K is the performance score;

T is the number of successfully processed requests;

R is the average response time;

E is the number of errors that occur.

The higher the K, the better the system performance.

Based on the idea of queuing theory, the M/M/k Load
Balancer Architecture is arranged here in an organized table.
Typically used in high-performance distributed systems where
multiple servers (k) handle randomly arriving jobs (Poisson
process) and each server offers exponential service time.
Describes the architectural structure of the M/M/k queue
system with a Load Balancer. These system requests arrive at a
rate of λ and are then distributed by the Load Balancer to the k
available servers. If all servers are busy, they enter the Queue
before being processed. Utilization (ρ) is an important
parameter that determines whether or not the system is in a
stable state. There are two main probabilities: P₀, which
indicates that there are no customers in the system, and Pq,
which indicates the chance that customers will have to queue
before being served.

Output based on system performance is rather different.
While L (System Length) shows the total customers in the

system, including those being served. Shows L (Queue Length).
In terms of time, Wq (Queue Wait Times) calculates how long
the average customer has to wait in the queue, while W (System
Wait Times) is the total time spent by the system. After
proposals, requests go out as completed requests.

F. Simulation Model

A simulation model is a computational representation of a
process, system used to simulate under various conditions. This
model is built into a diagrammatic architecture.

Here is a diagram of the queue simulation architecture based
on the pseudocode you provided. This diagram shows the
relationship between the main components, such as customer,
simEventList, queue, and queueSim, which can be seen from
Fig. 3.

Fig. 3. Architectural diagram of the queue simulation model.

Performance evaluation at the final stage enables
continuous monitoring and improvement of the system to
remain optimum in handling demand. This approach is not
operational, but it also minimizes the potential for errors and
quality degradation.

G. Experimental Setup

Experimental setup refers to the arrangement of equipment,
in terms of both hardware and software, to analyze the
phenomenon under study.

 The hardware and software used for this study are:

o The research environment (CloudSim, iFogSim);

o Infrastructure for both private and public clouds
(OpenStack, AWS, Azure, GCP);

o Microservices and container platforms like
Kubernetes and Docker;

o systems for edge and fog computing;

 Frameworks for serverless computing.

Adaptive and decentralized load optimization is its best
feature. This makes it very useful in multi cloud, hybrid, and
edge-cloud environments where real-time decision-making and
self-learning are very important.

III. RESULTS AND DISCUSSION

This study show that the integration of Rock Hyrax and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

189 | P a g e

www.ijacsa.thesai.org

Regret Minimization for cloud computing optimization with the
ReAdaBalancer concept keeps the system stable and getting
data quickly is very important. This is done by optimizing
resource allocation. Under the same conditions,
ReAdaBalancer cuts the response time by about 67% and the
request rejection rate by more than 50% compared to the
standard approach. This is done by adjusting to the traffic in
real time and considering the server status. Unlike previous
works such as [22], where only using the Rock Hyrax algorithm
shows lower accuracy due to its inability to stress the system
remains stable in optimizing resource allocation. In contrast to
[28], where they propose a near-optimal discrete optimization
approach for experimental design using a Regret Minimization
framework. This approach aims to select the statistically most
efficient subset of design points from a larger data set. In
addition, while [29] this RRM model can be adapted to plan
resource allocation by considering regret over previous
decisions.

A. Maths Pseudocode

Between mathematical conceptual thinking and effective
programming implementation, Maths Pseudocode is a logical
and methodical presentation of mathematical algorithms
organized in half-code form. including the following:

#Mathematical pseudocode

import maths

def lambdaN(lam, k, n):

Fig. 4 is the pseudocode of the simulation results using
Python.

Fig. 4. Arrival function, service level, and probability.

Summary of Fig. 4

The code above implements the M/M/s/k queuing system,
which analyses a system with a limited number of servers (s)
and a maximum capacity (k). The lambdaN function stops if the
capacity is full, which stops the arrival of customers (λ).
Calculates the service level (μ), which increases with the
number of customers but is limited by the number of servers.
The P0 function terminates an empty system (P₀), which is
useful for evaluating queuing systems. This model is useful for
others with capacity constraints, such as call centers, computer
servers, or service systems.

Fig. 5. Running a mathematical model.

Fig. 5 shows a snippet of Python code written on Google
Colab, titled Mathematical Models. This script implements
several complex mathematical functions used for probabilistic
modelling or queuing theory, marked with common notations
such as λ (arrival rate), μ (service rate), and k (number of
customers in the system). The functions P0 and Pn indicate
attempts to calculate the probability of states in a queuing
system, while the functions PC and PQ indicate probability
calculations in the context of a limited system capacity or
queue. The use of math.factorial, math.pow, and the use of
nested loops reflect typical combinatorial and exponential
calculations in the Poisson or M/M/1/K models.

B. Simulation Pseudocode

Run through simulations, before they are used in actual
computer code, pseudocode, a methodical description of a
logically ordered simulation process, allows the systematic
construction and analysis of scenarios, therefore modelling the
dynamics of complex systems and enabling the comprised. The
following Fig. 6 shows the customer function, simEventList..

Fig. 6. Customer function, simEventList .

Summary of Fig. 6

Part of a queuing system simulation that uses an exponential
distribution to determine customer arrival and service times.
Customer The class represents a customer with attributes of
arrival time, service time, and event type (or departure).
Meanwhile, the simEventList class manages the list of events
in the simulation, generates service times, and determines the
inter-arrival time of customers based on an exponential

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

190 | P a g e

www.ijacsa.thesai.org

distribution. This simulation is useful for analyzing the
performance of other systems that have limited capacity, with
queues, such as contact centers, banks, or other systems.

Fig. 7. Running system simulation.

Summary of Fig. 7

Simulation of a queuing system that uses an exponential
distribution to determine customer arrival and service times.
Each customer has attributes of arrivalTime, serviceTime, and
event type. In this simulation, events are in the simEventList
class, which ensures that each customer's arrival and departure
are sorted chronologically. The available servers, as well as
calculating performance metrics such as average time and
queue length, the queueSim class is responsible for running the
simulation by maintaining the queue. If all servers are busy,
customers will be put into a waiting queue, provided there is
still available capacity.

The simulation is run in a loop that processes each event in
the list sequentially. If a customer arrives and there is a server,
they are served immediately. Otherwise, they enter the queue if
there is still space. Once in the queue, they begin to be served,
the server becomes available again, and the next customer
follows. The final results of the simulation include various
statistical measures that can be used to evaluate the efficiency
of the queuing system, such as average waiting time and queue
length. The model can be used in various real-world
applications, such as customer service, traffic management, and
data processing systems.

C. Load Balancer System Test Pseudocode

The Load Balancer System Test Pseudocode is designed to
confirm the fair and efficient traffic distribution between
servers by logical simulation before technical implementation
is carried out. Pseudocode is a methodical depiction of the load
balancer system test flow comprising the following, as shown
in Fig. 8.

Summary of Fig. 8

The load balancing () function simulates the M/M/k queue
model with multiple servers. It calculates system utilization,
estimated number of customers in the system and queue and
arrival rate (λ), service rate (μ), and arrival rate (λ). With this
simulation, it is possible to evaluate service efficiency in
various queuing systems, such as call centres, hospitals, and
data centres, in order to optimize capacity and reduce customer
waiting time.

Fig. 9 shows the running of simulation results using Python.

Fig. 8. Load balancer function.

Fig. 9. Running simulation test of load balancer system.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

191 | P a g e

www.ijacsa.thesai.org

Simulation summary of Load Balancer Test Model

Load balancing, with the code above, simulates a multiple
server M/M/k queue system. The load balancing function
calculates queue parameters such as the number of customers
in the system (Ly), the waiting time of customers in the system
(Wy), the number of customers in the queue (Lqy), and the
waiting time in the queue (Wqy). These results are calculated
both theoretically and through simulations of varying the value
of λ (arrival rate) within a certain range. The simulation is
added with random noise in the real system to represent in.
After the calculation is complete, the results are visualized
using Hutmatplotlib to compare the theoretical values and
simulation results.

However, there are some implementations of this. Ly is not
suitable for calculating Ly due to multiple servers (M/M/k), as
it only applies to M/M/1 systems. Not checking the system,
which should ensure that the utilization ratio ρ = λ/(kμ)1 in
order to keep the queue under control. If ρ > 1, the system is not
able to increase indefinitely. For improvement, it is necessary
to use the Erlang-C formula to get a more accurate estimation
in the M/M/k model.

D. Innovative ReaAdaBalancer

An innovative load balancing method called
RegretAdaptive Load Balancing (ReAdaBalancer) dynamically
optimizes demand distribution by means of regret reduction.
The simulation in Table II shows how helpful this approach is
in settings with varying workloads and heterogeneous servers.

TABLE II. REGRETADAPTIVE LOAD BALANCER PERFORMANCE RESULTS

Server ID Final Load Final Regret Utilization (%)

0 11 0 11.0%

1 5 0 5.0%

2 0 0 0.0%

3 0 0 0.0%

4 6 0 6.0%

Table Analysis:

1) Final Load: Shows the final load amount that each server

has after 20 iterations.

2) Final Regret: None of the servers are overloaded, so the

regret score remains 0.

3) Utilization (%): All servers have a low utilization rate,

which means the load has been distributed fairly well.
Fig. 10 shows the running of simulation results using

Python.

Fig. 10. Simulation graph of adaptive load balancer regret.

This graph presents "Server Load and Utilization" data
related to the final load and utilization rate of five server units
identified by IDs 0 to 4. The observation shows that there is a
significant imbalance in the workload distribution between
servers. The server with ID 0 had the highest final load of 11
and a utilization rate of 10%, indicating that it was working
intensively and was likely to be the main center of data
processing. Meanwhile, server ID 1 showed a drastic drop with
an end load of only 5 and a utilization rate of 5%, suggesting a
reduction in activity or an imbalance in load allocation. More
strikingly, server IDs 2 and 3 recorded zero values on both
metrics, signifying that they were not involved in any
computing processes at all, potentially indicating high idle time
or no assignment at all. In contrast, server ID 4 shows an
increase again with a final load of 6 and utilization of 6 %,
indicating moderate involvement in system activity. Overall,
this graph reflects an uneven load distribution among the server
units. This imbalance can have an impact on operational
efficiency as well as hardware lifespan. Therefore, there is a
need to evaluate the scheduling and load distribution strategies
to ensure that all system resources are utilized optimally and
proportionally.

E. Discussions

In summary, the discussion confirmed that the proposed
ReAdaBalancer, which includes preprocessing as an important
first step to prepare the data for the load balancing [10] process,
and augmentation, which improves the model in the face of
dynamic changes in cloud environments, both help provide
smart and efficient solutions for load optimization that can be
used on a large scale and in cloud environments that change
quickly.

Despite its advantages, this research has some limitations,
including that the algorithm becomes more difficult to compute
as the number of nodes and the size of the cloud network
increase. The algorithm may have difficulty in making timely
adjustments when there is a sudden change in load or system
failure, which can lead to poor conclusions. Future
improvements may include: 1) the use of parallel computing
and distributed processing to speed up the performance of the
algorithm, 2) the use of online learning or incremental learning
techniques to keep the model up-to-date as new data comes in,
3) the addition of reinforcement learning for parameter
adjustment to provide a dynamic solution that avoids incorrect
parameter selection, 4) the addition of distributed error
detection and self-healing features to the algorithm can make it
more fault-tolerant. For example, replication techniques can be
used to copy the load to a backup server in case of a failure, and
5) the use of hybrid algorithms that combine Rock Hyrax with
other faster optimization methods such as shortest path
algorithms or approximate algorithms can help you make
decisions faster and ensure that load distribution occurs quickly
and efficiently for real-time applications.

ReAdaBalancer has been shown to work very well for
improving system resilience and availability. Helping to make
better use of resources and adapt to changing conditions. The
Rock Hyrax Approach and Regret Minimization will focus on
making cloud computing [13] more scalable, able to adapt
automatically, able to handle failures, better at managing
energy, and more secure in the future. This research can make

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

192 | P a g e

www.ijacsa.thesai.org

a cloud system that is more efficient, safe, and able to adapt to
future issues by looking into how to combine emerging
technologies like machine learning, blockchain, and real time
processing and coming up with solutions for apps that need to
do more than one thing.

IV. CONCLUSION

The model that combines Rock Hyrax and Regret
Minimization for cloud computing optimization with the
ReAdaBalancer concept keeps the system stable, and the
ReAdaBalancer cuts response time by about 67% and request
rejection rate by more than 50% compared to the standard
approach by adjusting traffic in real-time.

Test Server with ID 0 has the largest final load of 11 and
utilization rate of 10%, which means that it is working hard and
is probably the major place where data is processed. Server ID
1, on the other hand, has a final load of only 5 and a utilization
rate of 5%, which means that either activity has decreased or
load allocation has become unbalanced. This performance
boost can be a clever and effective way to optimize load that
works on a large scale and in cloud environments that change
quickly.

Results are in line with the goal and unique features. The
suggested load balancing optimization method effectively
solves the main problems found in the study, such as being able
to adapt to changing system conditions, using a lot of energy,
and not being very good at distributing workloads in real time.
Rock Hyrax and Regret Minimization work together to give a
unique advantage over standard algorithms by changing to
traffic patterns in real-time. This makes the system more
responsive and uses resources better.

REFERENCES

[1] Bello, Sururah A., et al. "Cloud computing in construction industry: Use
cases, benefits and challenges." Automation in Construction 122 (2021):
103441. Available at: https://doi.org/10.1016/j.autcon.2020.103441.

[2] Shukur, H. et al. (2020) ‘Cloud Computing Virtualization of Resources
Allocation for Distributed Systems’, Journal of Applied Science and
Technology Trends, 1(2), pp. 98–105. Available at:
https://doi.org/10.38094/jastt1331.

[3] Kirtirajsinh Zala et al., (2022), PRMS: Design and Development of
Patients' E-Healthcare Records Management System for Privacy
Preservation in Third Party Cloud Platforms, https://doi.org/
10.1109/ACCESS.2022.3198094: IEEE Access. (2022): 85777 - 85791.

[4] Khare, Shivangi, Uday Chourasia, and Anjna Jayant Deen. "Load
balancing in cloud computing." Proceedings of the International
Conference on Cognitive and Intelligent Computing: ICCIC 2021,
Volume 1. Singapore: Springer Nature Singapore, (2022): 978-981.
Available at: https://doi.org/10.1007/978-981-19-2350-0_58.

[5] Shafiq, Dalia Abdulkareem, N. Z. Jhanjhi, and Azween Abdullah. "Load
balancing techniques in cloud computing environment: A review."
Journal of King Saud University-Computer and Information Sciences
34.7 (2022): 3910-3933. Available at:
https://doi.org/10.1016/j.jksuci.2021.02.007.

[6] Mishra, Sambit Kumar, Bibhudatta Sahoo, and Priti Paramita Parida.
"Load balancing in cloud computing: a big picture." Journal of King Saud
University-Computer and Information Sciences 32.2 (2020): 149-158.
Available at: https://doi.org/10.1016/j.jksuci.2018.01.003.

[7] Jena, Uttam Kumar, Pradipta Kumar Das, and Manas Ranjan Kabat.
"Hybridisation of meta-heuristic algorithm for load balancing in cloud
computing environment." Journal of King Saud University-Computer and
Information Sciences 34.6 (2022): 2332-2342. Available at:
https://doi.org/10.1016/j.jksuci.2021.02.004.

[8] Singh, Abhilash, Sandeep Sharma, and Jitendra Singh. "Nature-inspired
algorithms for wireless sensor networks: A comprehensive survey."
Computer Science Review 39 (2021): 100342. Available at:
https://doi.org/10.1016/j.cosrev.2020.100342.

[9] Katangur, Ajay, Somasheker Akkaladevi, and Sadiskumar
Vivekanandhan. "Priority weighted round robin algorithm for load
balancing in the cloud." 2022 IEEE 7th international conference on smart
cloud (SmartCloud). IEEE, (2022): 5179. Available at:
https://doi.org/10.1109/SmartCloud57250.2022.00104.

[10] Jaganathan, Subash Chandra Bose, Ramesh Saha, and S. Kannadhasan.
"An Efficient Enhanced Dynamic Load Balancing Weighted Round
Robin Algorithm for Virtual Machine in Cloud Computing." Journal of
Algebraic Statistics 13.2 (2022): 2121-2128. Available at:
https://doi.org/10.17762/jas.v13i2.394.

[11] Nakas, Christos, Dionisis Kandris, and Georgios Visvardis. "Energy
efficient routing in wireless sensor networks: A comprehensive survey."
Algorithms 13.3 (2020): 72. Available at:
https://doi.org/10.3390/a13030072.

[12] Kashani, Mostafa Haghi, and Ebrahim Mahdipour. "Load balancing
algorithms in fog computing." IEEE Transactions on Services Computing
16.2 (2022): 1505-1521.Available at:
https://doi.org/10.1109/TSC.2022.3174475.

[13] Pradhan, Arabinda, Sukant Kishoro Bisoy, and Amardeep Das. "A survey
on PSO based meta-heuristic scheduling mechanism in cloud computing
environment." Journal of King Saud University-Computer and
Information Sciences 34.8 (2022): 4888-4901. Available at:
https://doi.org/10.1016/j.jksuci.2021.01.003.

[14] Akhtar, Talha, Najmi Ghani Haider, and Shariq Mahmood Khan. "A
comparative study of the application of glowworm swarm optimisation
algorithm with other nature-inspired algorithms in the network load
balancing problem." Engineering, Technology & Applied Science
Research 12.4 (2022): 8777-8784. Available at:
https://doi.org/10.48084/etasr.4999.

[15] Breish, Firas, Christian Hamm, and Simone Andresen. "Nature's Load-
Bearing Design Principles and Their Application in Engineering: A
Review." Biomimetics 9.9 (2024): 545. Avalable at:
https://doi.org/10.3390/biomimetics9090545.

[16] Jiao, Licheng, et al. "Nature-Inspired Intelligent Computing: A
Comprehensive Survey." Research 7 (2024): 1-38. Available at:
https://doi.org/10.34133/research.0442.

[17] Maina Lawan, M., Oduoza, C. and Buckley, K. (2021) ‘A Systematic
Review of Cloud Computing Adoption by Organisations’, International
Journal of Industrial and Manufacturing Systems Engineering, 6(3), p. 39.
Available at: https://doi.org/10.11648/j.ijimse.20210603.11.

[18] Sharmah, D. and Bora, K.C. (2024) ‘A Survey on Dynamic Load
Balancing Techniques in Cloud Computing’, Lecture Notes in Electrical
Engineering, 1088(2), pp. 273–282. Available at:
https://doi.org/10.1007/978-981-99-6855-8_21.

[19] Gupta, R. and Sharma, O.P. (2024) ‘Optimization of Load Balancing in
Cloud Computing through Nature- Inspired Metaheuristic Algorithms’,
pp. 3216–3226. Available at: https://doi.org/10.52783/jes.8054.

[20] Sakhri, A. et al. (2024) ‘A digital twin-based energy-efficient wireless
multimedia sensor network for waterbirds monitoring’, Future Generation
Computer Systems, 155(February), pp. 146–163. Available at:
https://doi.org/10.1016/j.future.2024.02.011.

[21] Chawla, K. (2024) ‘Reinforcement Learning-Based Adaptive Load
Balancing for Dynamic Cloud Environments’. Available at:
http://arxiv.org/abs/2409.04896.

[22] Singhal, S. et al. (2024) ‘Energy Efficient Load Balancing Algorithm for
Cloud Computing Using Rock Hyrax Optimization’, IEEE Access,
12(February), pp. 48737–48749. Available at:
https://doi.org/10.1109/ACCESS.2024.3380159.

[23] Singhal, S. et al. (2023) ‘Energy Aware Load Balancing Framework for
Smart Grid Using Cloud and Fog Computing’, Sensors, 23(7). Available
at: https://doi.org/10.3390/s23073488.

[24] Yang, P. et al. (no date) ‘Reducing Idleness in Financial Cloud Services
via Multi-objective Evolutionary Reinforcement Learning based Load
Balancer arXiv : 2305. 03463v2 [cs .NE] 23 Nov 2023’. Available at:
https://doi.org/10.1007/s11432-023-3895-3.

https://doi.org/10.1016/j.autcon.2020.103441
https://doi.org/10.38094/jastt1331
https://doi.org/10.1007/978-981-19-2350-0_58
https://doi.org/10.1016/j.jksuci.2021.02.007
https://doi.org/10.1016/j.jksuci.2018.01.003
https://doi.org/10.1016/j.jksuci.2021.02.004
https://doi.org/10.1016/j.cosrev.2020.100342
https://doi.org/10.1109/SmartCloud57250.2022.00104
https://doi.org/10.17762/jas.v13i2.394
https://doi.org/10.3390/a13030072
https://doi.org/10.1109/TSC.2022.3174475
https://doi.org/10.1016/j.jksuci.2021.01.003
https://doi.org/10.48084/etasr.4999
https://doi.org/10.3390/biomimetics9090545
https://doi.org/10.34133/research.0442
https://doi.org/10.11648/j.ijimse.20210603.11
https://doi.org/10.1007/978-981-99-6855-8_21
https://doi.org/10.52783/jes.8054
https://doi.org/10.1016/j.future.2024.02.011
http://arxiv.org/abs/2409.04896
https://doi.org/10.1109/ACCESS.2024.3380159
https://doi.org/10.3390/s23073488
https://doi.org/10.1007/s11432-023-3895-3

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

193 | P a g e

www.ijacsa.thesai.org

[25] Kak, S. M., Agarwal, P., Alam, M. A., & Siddiqui, F. (2024). A
hybridized approach for minimizing energy in cloud computing. Cluster
Computing, 27(1), 53-70. Available at: https://doi.org/10.1007/s10586-022-

03807-9.

[26] Padhi, Bharat Kumar, et al. "RHSOFS: feature selection using the rock
hyrax swarm optimisation algorithm for credit card fraud detection
system." Sensors 22.23 (2022): 9321. Available at:
https://doi.org/10.3390/s22239321.

[27] Jagadesh, B. N., et al. "Segmentation Using the IC2T Model and
Classification of Diabetic Retinopathy Using the Rock Hyrax Swarm-
Based Coordination Attention Mechanism." IEEE Access (2023): 124441
- 124458. Availavle at: https://doi.org/10.1109/ACCESS.2023.3330436.

[28] Allen-Zhu, Zeyuan, et al. "Near-optimal discrete optimisation for
experimental design: A regret Minimization approach." Mathematical
Programming 186 (2021): 439-478. Available at:
https://doi.org/10.1007/s10107-019-01464-2.

[29] Mengjie L et al., Random Regret Minimization Model for Variable
Destination- Oriented Path Planning, https://doi.org/
10.1109/ACCESS.2020.3021524. IEEE Access (2020). 163646 - 163659.

[30] Hu, Shouri, et al. "Adjusted expected improvement for cumulative regret
Minimization in noisy bayesian optimisation." arXiv preprint
arXiv:2205.04901 (2022):1:31. Available at:
https://doi.org/10.48550/arXiv.2205.04901.

[31] Xia, J., Li, M., & Guo, Y. (2009). The Queuing Model of M/M/S/K+ M
Based on the Impatience and Changeable Service Rate. Journal of
Systems Science & Information, 7(3). Available at:
https://doi.org/10.1007/s10586-022-03807-9.

[32] Cui, T., Yang, R., Fang, C., & Yu, S. (2023). Deep reinforcement
learning-based resource allocation for content distribution in IoT-edge-
cloud computing environments. Symmetry, 15(1), 217. Available at:
https://doi.org/10.3390/sym15010217.

https://doi.org/10.1007/s10586-022-03807-9
https://doi.org/10.1007/s10586-022-03807-9
https://doi.org/10.3390/s22239321
https://doi.org/10.1109/ACCESS.2023.3330436
https://doi.org/10.48550/arXiv.2205.04901
https://doi.org/10.1007/s10586-022-03807-9
https://doi.org/10.3390/sym15010217

